Sum and product puzzle: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Perl 6}}: minor changes)
(Number the facts in the "Guidance" section)
Line 21: Line 21:
{| class="wikitable"
{| class="wikitable"
|-
|-
!
! Quote
! Quote
! Implied fact
! Implied fact
|-
|-
! 1)
| S says "P does not know X and Y."
| S says "P does not know X and Y."
| For every possible sum decomposition of the number <tt>X+Y</tt>, the product has in turn ''more than one'' product decomposition.
| For every possible sum decomposition of the number <tt>X+Y</tt>, the product has in turn ''more than one'' product decomposition.
|-
|-
! 2)
| P says "Now I know X and Y."
| P says "Now I know X and Y."
| The number <tt>X*Y</tt> has ''only one'' product decomposition for which the preceding fact is true.
| The number <tt>X*Y</tt> has ''only one'' product decomposition for which fact 1 is true.
|-
|-
! 3)
| S says "Now I also know X and Y."
| S says "Now I also know X and Y."
| The number <tt>X+Y</tt> has ''only one'' sum decomposition for which the preceding fact is true.
| The number <tt>X+Y</tt> has ''only one'' sum decomposition for which fact 2 is true.
|}
|}


Line 39: Line 43:
<br>
<br>


Your program can solve the puzzle by considering all potential solutions <tt>(X, Y)</tt> in the range <tt>2 ≤ X < Y ≤ 98</tt>, and then successively eliminating candidates based on the three facts. It turns out only one solution remains!<br>
Your program can solve the puzzle by considering all pairs <tt>(X, Y)</tt> in the range <tt>2 ≤ X < Y ≤ 98</tt>, and then successively eliminating candidates based on the three facts. It turns out only one solution remains!<br>
See the [[#Python|Python example]] for an implementation that uses this approach and runs reasonably fast.
See the [[#Python|Python example]] for an implementation that uses this approach and runs reasonably fast.



Revision as of 12:51, 2 August 2016

Sum and product puzzle is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Solve the "Impossible Puzzle":

X and Y are two different whole numbers greater than 1. Their sum is no greater than 100, and Y is greater than X. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X+Y and P knows the product X*Y. Both S and P know all the information in this paragraph.

The following conversation occurs:

  • S says "P does not know X and Y."
  • P says "Now I know X and Y."
  • S says "Now I also know X and Y!"

What are X and Y?

Guidance

It can be hard to wrap one's head around what the three lines of dialog between S (the "sum guy") and P (the "product guy") convey about the values of X and Y. So for your convenience, here's a break-down:

Quote Implied fact
1) S says "P does not know X and Y." For every possible sum decomposition of the number X+Y, the product has in turn more than one product decomposition.
2) P says "Now I know X and Y." The number X*Y has only one product decomposition for which fact 1 is true.
3) S says "Now I also know X and Y." The number X+Y has only one sum decomposition for which fact 2 is true.

Terminology:

  • "sum decomposition" of a number = Any pair of positive integers (A, B) so that A+B equals the number. Here, with the additional constraint 2 ≤ A < B.
  • "product decomposition" of a number = Any pair of positive integers (A, B) so that A*B equals the number. Here, with the additional constraint 2 ≤ A < B.


Your program can solve the puzzle by considering all pairs (X, Y) in the range 2 ≤ X < Y ≤ 98, and then successively eliminating candidates based on the three facts. It turns out only one solution remains!
See the Python example for an implementation that uses this approach and runs reasonably fast.


See also



AWK

<lang AWK>

  1. syntax: GAWK -f SUM_AND_PRODUCT_PUZZLE.AWK

BEGIN {

   for (s=2; s<=100; s++) {
     if ((a=satisfies_statement3(s)) != 0) {
       printf("%d (%d+%d)\n",s,a,s-a)
     }
   }
   exit(0)

} function satisfies_statement1(s, a) { # S says: P does not know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if at least one of a or b is composite
   for (a=2; a<=int(s/2); a++) {
     if (is_prime(a) && is_prime(s-a)) {
       return(0)
     }
   }
   return(1)

} function satisfies_statement2(p, i,j,winner) { # P says: Now I know the two numbers.

  1. Given p, for all pairs (a,b), a*b=p, 2 <= a,b <= 99, true if exactly one pair satisfies statement 1
   for (i=2; i<=int(sqrt(p)); i++) {
     if (p % i == 0) {
       j = int(p/i)
       if (!(2 <= j && j <= 99)) { # in range
         continue
       }
       if (satisfies_statement1(i+j)) {
         if (winner) {
           return(0)
         }
         winner = 1
       }
     }
   }
   return(winner)

} function satisfies_statement3(s, a,b,winner) { # S says: Now I know the two numbers.

  1. Given s, for all pairs (a,b), a+b=s, 2 <= a,b <= 99, true if exactly one pair satisfies statements 1 and 2
   if (!satisfies_statement1(s)) {
     return(0)
   }
   for (a=2; a<=int(s/2); a++) {
     b = s - a
     if (satisfies_statement2(a*b)) {
       if (winner) {
         return(0)
       }
       winner = a
     }
   }
   return(winner)

} function is_prime(x, i) {

   if (x <= 3) {
     return(1)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} </lang>

Output:

17 (4+13)

D

Translation of: Scala

<lang d>void main() {

   import std.stdio, std.algorithm, std.range, std.typecons;
   const s1 = cartesianProduct(iota(1, 101), iota(1, 101))
              .filter!(p => 1 < p[0] && p[0] < p[1] && p[0] + p[1] < 100)
              .array;
   alias P = const Tuple!(int, int);
   enum add   = (P p) => p[0] + p[1];
   enum mul   = (P p) => p[0] * p[1];
   enum sumEq = (P p) => s1.filter!(q => add(q) == add(p));
   enum mulEq = (P p) => s1.filter!(q => mul(q) == mul(p));
   const s2 = s1.filter!(p => sumEq(p).all!(q => mulEq(q).walkLength != 1)).array;
   const s3 = s2.filter!(p => mulEq(p).setIntersection(s2).walkLength == 1).array;
   s3.filter!(p => sumEq(p).setIntersection(s3).walkLength == 1).writeln;

}</lang>

Output:
[const(Tuple!(int, int))(4, 13)]

With an older version of the LDC2 compiler replace the cartesianProduct line with: <lang d>

   const s1 = iota(1, 101).map!(x => iota(1, 101).map!(y => tuple(x, y))).joiner

</lang> The .array turn the lazy ranges into arrays. This is a necessary optimization because D lazy Ranges aren't memoized as Haskell lazy lists.

Run-time: about 0.43 seconds with dmd, 0.08 seconds with ldc2.

Elixir

Translation of: Ruby

<lang elixir>defmodule Puzzle do

 def sum_and_product do
   s1 = for x <- 2..49, y <- x+1..99, x+y<100, do: {x,y}
   s2 = Enum.filter(s1, fn p ->
     Enum.all?(sumEq(s1,p), fn q -> length(mulEq(s1,q)) != 1 end)
   end)
   s3 = Enum.filter(s2, fn p -> only1?(mulEq(s1,p), s2) end)
   Enum.filter(s3, fn p -> only1?(sumEq(s1,p), s3) end) |> IO.inspect 
 end
 
 defp add({x,y}), do: x + y
 
 defp mul({x,y}), do: x * y
 
 defp sumEq(s, p), do: Enum.filter(s, fn q -> add(p) == add(q) end)
 
 defp mulEq(s, p), do: Enum.filter(s, fn q -> mul(p) == mul(q) end)
 
 defp only1?(a, b) do
   Set.size(Set.intersection(Enum.into(a, HashSet.new), Enum.into(b, HashSet.new))) == 1
 end

end

Puzzle.sum_and_product</lang>

Output:
[{4, 13}]

Go

<lang go>package main

import "fmt"

type pair struct{ x, y int }

func main() { //const max = 100 // Use 1685 (the highest with a unique answer) instead // of 100 just to make it work a little harder :). const max = 1685 var all []pair for a := 2; a < max; a++ { for b := a + 1; b < max-a; b++ { all = append(all, pair{a, b}) } } fmt.Println("There are", len(all), "pairs where a+b <", max, "(and a<b)") products := countProducts(all)

// Those for which no sum decomposition has unique product to are // S mathimatician's possible pairs. var sPairs []pair pairs: for _, p := range all { s := p.x + p.y // foreach a+b=s (a<b) for a := 2; a < s/2+s&1; a++ { b := s - a if products[a*b] == 1 { // Excluded because P would have a unique product continue pairs } } sPairs = append(sPairs, p) } fmt.Println("S starts with", len(sPairs), "possible pairs.") //fmt.Println("S pairs:", sPairs) sProducts := countProducts(sPairs)

// Look in sPairs for those with a unique product to get // P mathimatician's possible pairs. var pPairs []pair for _, p := range sPairs { if sProducts[p.x*p.y] == 1 { pPairs = append(pPairs, p) } } fmt.Println("P then has", len(pPairs), "possible pairs.") //fmt.Println("P pairs:", pPairs) pSums := countSums(pPairs)

// Finally, look in pPairs for those with a unique sum var final []pair for _, p := range pPairs { if pSums[p.x+p.y] == 1 { final = append(final, p) } }

// Nicely show any answers. switch len(final) { case 1: fmt.Println("Answer:", final[0].x, "and", final[0].y) case 0: fmt.Println("No possible answer.") default: fmt.Println(len(final), "possible answers:", final) } }

func countProducts(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x*p.y]++ } return m }

func countSums(list []pair) map[int]int { m := make(map[int]int) for _, p := range list { m[p.x+p.y]++ } return m }

// not used, manually inlined above func decomposeSum(s int) []pair { pairs := make([]pair, 0, s/2) for a := 2; a < s/2+s&1; a++ { pairs = append(pairs, pair{a, s - a}) } return pairs }</lang>

Output:

For x + y < 100 (max = 100):

There are 2304 pairs where a+b < 100 (and a<b)
S starts with 145 possible pairs.
P then has 86 possible pairs.
Answer: 4 and 13

For x + y < 1685 (max = 1685):

There are 706440 pairs where a+b < 1685 (and a<b)
S starts with 50485 possible pairs.
P then has 17485 possible pairs.
Answer: 4 and 13

Run-time ~1 msec and ~600 msec respectively. Could be slightly faster if the slices and maps were given an estimated capacity to start (e.g. (max/2)² for all pairs) to avoid re-allocations (and resulting copies).

Haskell

Translation of: D

<lang haskell>import Data.List (intersect)

s1, s2, s3, s4 :: [(Int, Int)] s1 = [(x, y) | x <- [1 .. 100], y <- [1 .. 100], 1 < x && x < y && x + y < 100]

add, mul :: (Int, Int) -> Int add (x, y) = x + y mul (x, y) = x * y

sumEq, mulEq :: (Int, Int) -> [(Int, Int)] sumEq p = filter (\q -> add q == add p) s1 mulEq p = filter (\q -> mul q == mul p) s1

s2 = filter (\p -> all (\q -> (length $ mulEq q) /= 1) (sumEq p)) s1 s3 = filter (\p -> length (mulEq p `intersect` s2) == 1) s2 s4 = filter (\p -> length (sumEq p `intersect` s3) == 1) s3

main = print s4</lang>

Output:
[(4,13)]

Run-time: about 1.97 seconds.

Perl 6

Translation of: Python
Works with: Rakudo version 2016.07

<lang perl6>sub sums (Int $n) { ($_, $n - $_ for 2 .. $n div 2) } sub grep-unique (&by, @list) { @list.classify(&by).values.grep(* == 1).map(*[0]) }

my @all-pairs = (|($_ X $_+1 .. 98) for 2..97);

  1. Fact 1:

my %products-unique := set map ~*, grep-unique { [*] |$_ }, @all-pairs; my @s-pairs = @all-pairs.grep: { none (%products-unique{~$_} for sums [+] $_) };

  1. Fact 2:

my @p-pairs = grep-unique { [*] |$_ }, @s-pairs;

  1. Fact 3:

my @final-pairs = grep-unique { [+] |$_ }, @p-pairs;

printf "X = %d, Y = %d\n", |$_ for @final-pairs;</lang>

Output:
X = 4, Y = 13

Python

From Wikipedia: <lang python>from collections import Counter

all_pairs=set((a,b) for a in range(2,100) for b in range(a+1,100) if a+b<100)

def decompose_sum(s):

   return [(a,s-a) for a in range(2,int(s/2+1))]

_prod_counts=Counter(a*b for a,b in all_pairs) unique_products=set((a,b) for a,b in all_pairs if _prod_counts[a*b]==1)

  1. Find all pairs, for which no sum decomposition has unique product
  2. In other words, for which all sum decompositions have non-unique product

s_pairs=[(a,b) for a,b in all_pairs if

   all((x,y) not in unique_products for (x,y) in decompose_sum(a+b))]

  1. Since product guy now knows, possible pairs are those out of above for which product is unique

product_pairs=[(a,b) for a,b in s_pairs if Counter(c*d for c,d in s_pairs)[a*b]==1]

  1. Since the sum guy now knows

final_pairs=[(a,b) for a,b in product_pairs if Counter(c+d for c,d in product_pairs)[a+b]==1]

print(final_pairs) # [(4, 13)]</lang>

Output:
[(4, 13)]

Racket

Translation of: D

To calculate the results faster this program use memorization. So it has a modified version of sum= and mul= to increase the chances of reusing the results.

<lang Racket>#lang racket (define-syntax-rule (define/mem (name args ...) body ...)

 (begin
   (define cache (make-hash))
   (define (name args ...)
     (hash-ref! cache (list args ...) (lambda () body ...)))))

(define (sum p) (+ (first p) (second p))) (define (mul p) (* (first p) (second p)))

(define (sum= p s) (filter (lambda (q) (= p (sum q))) s)) (define (mul= p s) (filter (lambda (q) (= p (mul q))) s))

(define (puzzle tot)

 (printf "Max Sum: ~a\n" tot)
 (define s1 (for*/list ([x (in-range 2 (add1 tot))]
                        [y (in-range (add1 x) (- (add1 tot) x))])
              (list x y)))
 (printf "Possible pairs: ~a\n" (length s1))
 (define/mem (sumEq/all p) (sum= p s1))
 (define/mem (mulEq/all p) (mul= p s1))
 (define s2 (filter (lambda (p) (andmap (lambda (q)
                                          (not (= (length (mulEq/all (mul q))) 1)))
                                        (sumEq/all (sum p))))
                    s1))
 (printf "Initial pairs for S: ~a\n" (length s2))
 (define s3 (filter (lambda (p) (= (length (mul= (mul p) s2)) 1))
                  s2))
 (displayln (length s3))
 (printf "Pairs for P: ~a\n" (length s3))
 (define s4 (filter (lambda (p) (= (length (sum= (sum p) s3)) 1))
                    s3))
 (printf "Final pairs for S: ~a\n" (length s4))
 (displayln s4))

(puzzle 100)</lang>

Output:
Max Sum: 100
Possible pairs: 2352
Initial pairs for S: 145
Pairs for P: 86
Final pairs for S: 1
((4 13))

Ruby

Translation of: D

<lang ruby>def add(x,y) x + y end def mul(x,y) x * y end

def sumEq(s,p) s.select{|q| add(*p) == add(*q)} end def mulEq(s,p) s.select{|q| mul(*p) == mul(*q)} end

s1 = (a = *2...100).product(a).select{|x,y| x<y && x+y<100} s2 = s1.select{|p| sumEq(s1,p).all?{|q| mulEq(s1,q).size != 1} } s3 = s2.select{|p| (mulEq(s1,p) & s2).size == 1} p s3.select{|p| (sumEq(s1,p) & s3).size == 1}</lang>

Output:
[[4, 13]]

Scala

<lang scala>object ImpossiblePuzzle extends App {

 type XY = (Int, Int)
 val step0 = for {
   x <- 1 to 100
   y <- 1 to 100
   if 1 < x && x < y && x + y < 100
 } yield (x, y)

 def sum(xy: XY) = xy._1 + xy._2
 def prod(xy: XY) = xy._1 * xy._2
 def sumEq(xy: XY) = step0 filter { sum(_) == sum(xy) }
 def prodEq(xy: XY) = step0 filter { prod(_) == prod(xy) }

 val step2 = step0 f

zkl

Damn it Jim, I'm a programmer, not a logician. So I translated the python code found in https://qmaurmann.wordpress.com/2013/08/10/sam-and-polly-and-python/ but I don't understand it. It does seem quite a bit more efficient than the Scala code, on par with the Python code. <lang zkl>mul:=Utils.Helpers.summer.fp1('*,1); //-->list.reduce('*,1), multiply list items var allPairs=[[(a,b); [2..100]; { [a+1..100] },{ a+b<100 }; ROList]]; // 2,304 pairs

sxys,pxys:=D(),D(); // hashes of allPairs sums and products: 95,1155 foreach xy in (allPairs){ sxys.appendV(xy.sum(),xy); pxys.appendV(xy:mul(_),xy) }

sOK:= 'wrap(s){ (not sxys[s].filter1('wrap(xy){ pxys[xy:mul(_)].len()<2 })) }; pOK:= 'wrap(p){ 1==pxys[p].filter('wrap([(x,y)]){ sOK(x+y) }).len() }; sOK2:='wrap(s){ 1==sxys[s].filter('wrap(xy){ pOK(xy:mul(_)) }).len() }; allPairs.filter('wrap([(x,y)]){ sOK(x+y) and pOK(x*y) and sOK2(x+y) }) .println();</lang> [[ ]] denotes list comprehension, filter1 returns (and stops at) the first thing that is "true", 'wrap creates a closure so the "wrapped" code/function can see local variables (read only). In a [function] prototype, the "[(x,y)]xy]" notation says xy is a list like thing, assign the parts to x & y (xy is optional), used here to just to do both ways. The ":" says take the LHS and stuff it into the "_".

Output:
L(L(4,13))

ilter { sumEq(_) forall { prodEq(_).size != 1 }}

 val step3 = step2 filter { prodEq(_).intersect(step2).size == 1 }
 val step4 = step3 filter { sumEq(_).intersect(step3).size == 1 }
 println(step4)

}</lang>

Output:
Vector((4,13))

Run-time: about 3.82 seconds.

zkl

Damn it Jim, I'm a programmer, not a logician. So I translated the python code found in https://qmaurmann.wordpress.com/2013/08/10/sam-and-polly-and-python/ but I don't understand it. It does seem quite a bit more efficient than the Scala code, on par with the Python code. <lang zkl>mul:=Utils.Helpers.summer.fp1('*,1); //-->list.reduce('*,1), multiply list items var allPairs=[[(a,b); [2..100]; { [a+1..100] },{ a+b<100 }; ROList]]; // 2,304 pairs

sxys,pxys:=D(),D(); // hashes of allPairs sums and products: 95,1155 foreach xy in (allPairs){ sxys.appendV(xy.sum(),xy); pxys.appendV(xy:mul(_),xy) }

sOK:= 'wrap(s){ (not sxys[s].filter1('wrap(xy){ pxys[xy:mul(_)].len()<2 })) }; pOK:= 'wrap(p){ 1==pxys[p].filter('wrap([(x,y)]){ sOK(x+y) }).len() }; sOK2:='wrap(s){ 1==sxys[s].filter('wrap(xy){ pOK(xy:mul(_)) }).len() }; allPairs.filter('wrap([(x,y)]){ sOK(x+y) and pOK(x*y) and sOK2(x+y) }) .println();</lang> [[ ]] denotes list comprehension, filter1 returns (and stops at) the first thing that is "true", 'wrap creates a closure so the "wrapped" code/function can see local variables (read only). In a [function] prototype, the "[(x,y)]xy]" notation says xy is a list like thing, assign the parts to x & y (xy is optional), used here to just to do it both ways. The ":" says take the LHS and stuff it into the "_".

Output:
L(L(4,13))