Stern-Brocot sequence: Difference between revisions

m
(Added C# and vb.NET versions)
m (→‎{{header|Wren}}: Minor tidy)
 
(66 intermediate revisions by 27 users not shown)
Line 11:
#*     1, 1, 2, 1
# Consider the next member of the series, (the third member i.e. 2)
# GOTO 3
#*
#*
#*         ─── Expanding another loop we get: ───
#*
Line 25:
* Create a function/method/subroutine/procedure/... to generate the Stern-Brocot sequence of integers using the method outlined above.
* Show the first fifteen members of the sequence. (This should be: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4)
* Show the (1-based) index of where the numbers 1-to-10 first appearsappear in the sequence.
* Show the (1-based) index of where the number 100 first appears in the sequence.
* Check that the greatest common divisor of all the two consecutive members of the series up to the 1000<sup>th</sup> member, is always one.
Line 39:
;Ref:
* [https://www.youtube.com/watch?v=DpwUVExX27E Infinite Fractions - Numberphile] (Video).
* [http://www.ams.org/samplings/feature-column/fcarc-stern-brocot Trees, Teeth, and Time: The mathematics of clock making].
* [https://oeis.org/A002487 A002487] The On-Line Encyclopedia of Integer Sequences.
<br><br>
 
=={{header|Ada11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F stern_brocot(predicate = series -> series.len < 20)
<lang Ada>with Ada.Text_IO, Ada.Containers.Vectors;
V sb = [1, 1]
V i = 0
L predicate(sb)
sb [+]= [sum(sb[i .< i + 2]), sb[i + 1]]
i++
R sb
 
V n_first = 15
print(("The first #. values:\n ".format(n_first))‘ ’stern_brocot(series -> series.len < :n_first)[0 .< n_first])
print()
 
V n_max = 10
L(n_occur) Array(1 .. n_max) [+] [100]
print((‘1-based index of the first occurrence of #3 in the series:’.format(n_occur))‘ ’(stern_brocot(series -> @n_occur !C series).index(n_occur) + 1))
print()
 
V n_gcd = 1000
V s = stern_brocot(series -> series.len < :n_gcd)[0 .< n_gcd]
assert(all(zip(s, s[1..]).map((prev, this) -> gcd(prev, this) == 1)), ‘A fraction from adjacent terms is reducible’)</syntaxhighlight>
 
{{out}}
<pre>
The first 15 values:
[1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
 
1-based index of the first occurrence of 1 in the series: 1
1-based index of the first occurrence of 2 in the series: 3
1-based index of the first occurrence of 3 in the series: 5
1-based index of the first occurrence of 4 in the series: 9
1-based index of the first occurrence of 5 in the series: 11
1-based index of the first occurrence of 6 in the series: 33
1-based index of the first occurrence of 7 in the series: 19
1-based index of the first occurrence of 8 in the series: 21
1-based index of the first occurrence of 9 in the series: 35
1-based index of the first occurrence of 10 in the series: 39
1-based index of the first occurrence of 100 in the series: 1179
</pre>
 
=={{header|360 Assembly}}==
{{trans|Fortran}}
<syntaxhighlight lang="360asm">* Stern-Brocot sequence - 12/03/2019
STERNBR CSECT
USING STERNBR,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
SAVE (14,12) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
LA R4,SB+2 k=2; @sb(k)
LA R2,SB+2 i=1; @sb(k-i)
LA R3,SB+0 j=2; @sb(k-j)
LA R1,NN/2 loop counter
LOOP LA R4,2(R4) @sb(k)++
LH R0,0(R2) sb(k-i)
AH R0,0(R3) sb(k-i)+sb(k-j)
STH R0,0(R4) sb(k)=sb(k-i)+sb(k-j)
LA R3,2(R3) @sb(k-j)++
LA R4,2(R4) @sb(k)++
LH R0,0(R3) sb(k-j)
STH R0,0(R4) sb(k)=sb(k-j)
LA R2,2(R2) @sb(k-i)++
BCT R1,LOOP end loop
LA R9,15 n=15
MVC PG(5),=CL80'FIRST'
XDECO R9,XDEC edit n
MVC PG+5(3),XDEC+9 output n
XPRNT PG,L'PG print buffer
LA R10,PG @pg
LA R6,1 i=1
DO WHILE=(CR,R6,LE,R9) do i=1 to n
LR R1,R6 i
SLA R1,1 ~
LH R2,SB-2(R1) sb(i)
XDECO R2,XDEC edit sb(i)
MVC 0(4,R10),XDEC+8 output sb(i)
LA R10,4(R10) @pg+=4
LA R6,1(R6) i++
ENDDO , enddo i
XPRNT PG,L'PG print buffer
LA R7,1 j=1
DO WHILE=(C,R7,LE,=A(11)) do j=1 to 11
IF C,R7,EQ,=F'11' THEN if j=11 then
LA R7,100 j=100
ENDIF , endif
LA R6,1 i=1
DO WHILE=(C,R6,LE,=A(NN)) do i=1 to nn
LR R1,R6 i
SLA R1,1 ~
LH R2,SB-2(R1) sb(i)
CR R2,R7 if sb(i)=j
BE EXITI then leave i
LA R6,1(R6) i++
ENDDO , enddo i
EXITI MVC PG,=CL80'FIRST INSTANCE OF'
XDECO R7,XDEC edit j
MVC PG+17(4),XDEC+8 output j
MVC PG+21(7),=C' IS AT '
XDECO R6,XDEC edit i
MVC PG+28(4),XDEC+8 output i
XPRNT PG,L'PG print buffer
LA R7,1(R7) j++
ENDDO , enddo j
L R13,4(0,R13) restore previous savearea pointer
RETURN (14,12),RC=0 restore registers from calling sav
LTORG
NN EQU 2400 nn
PG DC CL80' ' buffer
XDEC DS CL12 temp for xdeco
SB DC (NN)H'1' sb(nn)
REGEQU
END STERNBR</syntaxhighlight>
{{out}}
<pre>
FIRST 15
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
FIRST INSTANCE OF 1 IS AT 1
FIRST INSTANCE OF 2 IS AT 3
FIRST INSTANCE OF 3 IS AT 5
FIRST INSTANCE OF 4 IS AT 9
FIRST INSTANCE OF 5 IS AT 11
FIRST INSTANCE OF 6 IS AT 33
FIRST INSTANCE OF 7 IS AT 19
FIRST INSTANCE OF 8 IS AT 21
FIRST INSTANCE OF 9 IS AT 35
FIRST INSTANCE OF 10 IS AT 39
FIRST INSTANCE OF 100 IS AT 1179
</pre>
The nice part is the coding of the sequense:
<syntaxhighlight lang="c"> k=2; i=1; j=2;
while(k<nn);
k++; sb[k]=sb[k-i]+sb[k-j];
k++; sb[k]=sb[k-j];
i++; j++;
} </syntaxhighlight>
Only five registers are used. No Horner's rule to access sequence items.
<syntaxhighlight lang="360asm"> LA R4,SB+2 k=2; @sb(k)
LA R2,SB+2 i=1; @sb(k-i)
LA R3,SB+0 j=2; @sb(k-j)
LA R1,NN/2 k=nn/2 'loop counter
LOOP LA R4,2(R4) @sb(k)++
LH R0,0(R2) sb(k-i)
AH R0,0(R3) sb(k-i)+sb(k-j)
STH R0,0(R4) sb(k)=sb(k-i)+sb(k-j)
LA R3,2(R3) @sb(k-j)++
LA R4,2(R4) @sb(k)++
LH R0,0(R3) sb(k-j)
STH R0,0(R4) sb(k)=sb(k-j)
LA R2,2(R2) @sb(k-i)++
BCT R1,LOOP k--; if k>0 then goto loop </syntaxhighlight>
 
=={{header|8080 Assembly}}==
<syntaxhighlight lang="8080asm">puts: equ 9 ; CP/M syscall to print a string
org 100h
;;; Generate the first 1200 elements of the Stern-Brocot sequence
lxi b,600 ; 2 elements generated per loop
lxi h,seq
mov e,m ; Initialization
inx h
push h ; Save considered member pointer
inx h ; Insertion pointer
genseq: xthl ; Load considered member pointer
mov d,e ; D = predecessor
mov e,m ; E = considered member
inx h ; Point at next considered member
xthl ; Load insertion pointer
mov a,d ; A = sum of both members
add e
mov m,a ; Append the sum
inx h
mov m,e ; Append the considered member
inx h
dcx b ; Decrement counter
mov a,b ; Zero?
ora c
jnz genseq ; If not, generate next members of sequence
pop h ; Remove pointer from stack
;;; Print first 15 members of sequence
lxi d,seq
mvi b,15 ; 15 members
mvi h,0
p15: ldax d ; Get current member
mov l,a
call prhl ; Print member
inx d ; Increment pointer
dcr b ; Decrement counter
jnz p15 ; If not zero, print another one
lxi d,nl
mvi c,puts
call 5
;;; Print indices of first occurrence of 1..10
lxi b,010Ah ; B = number, C = counter
call fnext
;;; Print index of first occurrence of 100
lxi b,6401h
call fnext
;;; Check if the GCD of first 1000 consecutive elements is 0
xra a ; Zero out 1001th element as end marker
sta seq+1000
lxi h,seq ; Start of array
mov e,m
inx h
gcdchk: mov d,e ; (D,E) = next pair
mov e,m
inx h
mov a,e
mov b,d
ana a ; Reached the end?
jz done
call gcd ; If not, check GCD
dcr a ; Check that it is 1
jz gcdchk ; If so, check next pair
push h ; GCD not 1 - save pointer
lxi d,gcdn ; Print message
mvi c,puts
call 5
pop h ; Calculate offset in array
lxi d,-seq
dad d
jmp prhl ; Print offset of pair whose GCD is not 1
done: lxi d,gcdy ; Print OK message
mvi c,puts
jmp 5
;;; GCD(A,B)
gcd: cmp b
rz ; If A=B, result = A
jc b_le_a ; B>A?
sub b ; If A>B, subtract B
jmp gcd ; and loop
b_le_a: mov c,a
mov a,b
sub c
mov b,a
mov a,c
jmp gcd
;;; Print indices of occurrences of C numbers
;;; starting at B
fnext: lxi d,seq
fsrch: ldax d ; Get current member
cmp b ; Is it the number we are looking for?
inx d ; Increment number
jnz fsrch ; If no match, check next number
lxi h,-seq ; Match - subtract start of array
dad d
call prhl ; Print index
inr b ; Look for next number
dcr c ; If we need more numbers
jnz fnext
push d ; Save sequence pointer
lxi d,nl ; Print newline
mvi c,puts
call 5
pop d ; Restore sequence pointer
ret
;;; Print HL as ASCII number.
prhl: push h ; Save all registers
push d
push b
lxi b,pnum ; Store pointer to num string on stack
push b
lxi b,-10 ; Divisor
prdgt: lxi d,-1
prdgtl: inx d ; Divide by 10 through trial subtraction
dad b
jc prdgtl
mvi a,'0'+10
add l ; L = remainder - 10
pop h ; Get pointer from stack
dcx h ; Store digit
mov m,a
push h ; Put pointer back on stack
xchg ; Put quotient in HL
mov a,h ; Check if zero
ora l
jnz prdgt ; If not, next digit
pop d ; Get pointer and put in DE
mvi c,9 ; CP/M print string
call 5
pop b ; Restore registers
pop d
pop h
ret
db '*****' ; Placeholder for number
pnum: db ' $'
nl: db 13,10,'$'
gcdn: db 'GCD not 1 at: $'
gcdy: db 'GCD of all pairs of consecutive members is 1.$'
seq: db 1,1 ; Sequence stored here</syntaxhighlight>
 
{{out}}
 
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
1 3 5 9 11 33 19 21 35 39
1179
GCD of all pairs of consecutive members is 1.</pre>
 
=={{header|8086 Assembly}}==
<syntaxhighlight lang="asm">puts: equ 9
cpu 8086
bits 16
org 100h
section .text
;;; Generate the first 1200 elemets of the Stern-Brocot sequence
mov cx,600 ; 2 elements generated per loop
mov si,seq
mov di,seq+2
lodsb
mov ah,al ; AH = predecessor
genseq: lodsb ; AL = considered member
add ah,al ; AH = sum
xchg ah,al ; Swap them (AL = sum, AH = member)
stosw ; Write sum and current considered member
loop genseq ; Loop 600 times
;;; Print first 15 members of sequence
mov si,seq
mov cx,15
p15: lodsb ; Get member
cbw
call prax ; Print member
loop p15
call prnl
;;; Print first occurrences of [1..10]
mov al,1
mov cx,10
call find
call prnl
;;; Print first occurrence of 100
mov al,100
mov cx,1
call find
call prnl
;;; Check pairs of GCDs
mov cx,1000 ; 1000 times
mov si,seq
lodsb
gcdchk: mov ah,al ; AH = last member, AL = current member
lodsb
mov dx,ax ; Calculate GCD
call gcd
dec dl ; See if it is 1
jnz .fail ; If not, failure
loop gcdchk ; Otherwise, check next pair
mov dx,gcdy ; GCD of all pairs is 0
jmp pstr
.fail: mov dx,gcdn ; GCD of current pair is not 0
call pstr
mov ax,si
sub ax,seq+1
jmp prax
;;; DL = gcd(DL,DH)
gcd: cmp dl,dh
jl .lt ; DL < DH
jg .gt ; DL > DH
ret
.lt: sub dh,dl ; DL < DH
jmp gcd
.gt: sub dl,dh ; DL > DH
jmp gcd
;;; Print indices of CX consecutive numbers starting
;;; at AL.
find: mov di,seq
push cx ; Keep loop counter
mov cx,-1
repne scasb ; Find AL starting at [DI]
pop cx ; Restore loop counter
xchg si,ax ; Keep AL in SI
mov ax,di ; Calculate index in sequence
sub ax,seq
call prax ; Output
xchg si,ax ; Restore AL
inc ax ; Increment
loop find ; Keep going CX times
ret
;;; Print newline
prnl: mov dx,nl
jmp pstr
;;; Print number in AX
;;; Destroys AX, BX, DX, BP
prax: mov bp,10 ; Divisor
mov bx,numbuf
.loop: xor dx,dx ; DX = 0
div bp ; Divide DX:AX by 10; DX = remainder
dec bx ; Move string pointer back
add dl,'0' ; Make ASCII digit
mov [bx],dl ; Write digit
test ax,ax ; Any digits left?
jnz .loop
mov dx,bx
pstr: mov ah,puts ; Print number string
int 21h
ret
section .data
gcdn: db 'GCD not 1 at: $'
gcdy: db 'GCD of all pairs of consecutive members is 1.$'
db '*****'
numbuf: db ' $'
nl: db 13,10,'$'
seq: db 1,1</syntaxhighlight>
 
{{out}}
 
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
1 3 5 9 11 33 19 21 35 39
1179
GCD of all pairs of consecutive members is 1.</pre>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC Generate(BYTE ARRAY seq INT POINTER count INT minCount,maxVal)
INT i
 
seq(0)=1 seq(1)=1 count^=2 i=1
WHILE count^<minCount OR seq(count^-1)#maxVal AND seq(count^-2)#maxVal
DO
seq(count^)=seq(i-1)+seq(i)
seq(count^+1)=seq(i)
count^==+2 i==+1
OD
RETURN
 
PROC PrintSeq(BYTE ARRAY seq INT count)
INT i
 
PrintF("First %I items:%E",count)
FOR i=0 TO count-1
DO
PrintB(seq(i)) Put(32)
OD
PutE() PutE()
RETURN
 
PROC PrintLoc(BYTE ARRAY seq INT seqCount
BYTE ARRAY loc INT locCount)
INT i,j
BYTE value
 
FOR i=0 TO locCount-1
DO
j=0 value=loc(i)
WHILE seq(j)#value
DO
j==+1
OD
PrintF("%B appears at position %I%E",value,j+1)
OD
PutE()
RETURN
 
BYTE FUNC Gcd(BYTE a,b)
BYTE tmp
 
IF a<b THEN
tmp=a a=b b=tmp
FI
 
WHILE b#0
DO
tmp=a MOD b
a=b b=tmp
OD
RETURN (a)
 
PROC PrintGcd(BYTE ARRAY seq INT count)
INT i
 
FOR i=0 TO count-2
DO
IF Gcd(seq(i),seq(i+1))>1 THEN
PrintF("GCD between %I and %I item is greater than 1",i+1,i+2)
RETURN
FI
OD
Print("GCD between all two consecutive items of the sequence is equal 1")
RETURN
 
PROC Main()
BYTE ARRAY seq(2000),loc=[1 2 3 4 5 6 7 8 9 10 100]
INT count
 
Generate(seq,@count,1000,100)
PrintSeq(seq,15)
PrintLoc(seq,count,loc,11)
PrintGcd(seq,1000)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Stern-Brocot_sequence.png Screenshot from Atari 8-bit computer]
<pre>
First 15 items:
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
1 appears at position 1
2 appears at position 3
3 appears at position 5
4 appears at position 9
5 appears at position 11
6 appears at position 33
7 appears at position 19
8 appears at position 21
9 appears at position 35
10 appears at position 39
100 appears at position 1179
 
GCD between all two consecutive items of the sequence is equal 1
</pre>
 
=={{header|Ada}}==
<syntaxhighlight lang="ada">with Ada.Text_IO, Ada.Containers.Vectors;
 
procedure Sequence is
Line 138 ⟶ 645:
when Constraint_Error => Put_Line("Some GCD > 1; this is wrong!!!") ;
end;
end Sequence;</langsyntaxhighlight>
 
{{out}}
Line 147 ⟶ 654:
First 9 at 35; First 10 at 39; First 100 at 1179.
Correct: The first 999 consecutive pairs are relative prime!</pre>
 
=={{header|ALGOL 68}}==
<syntaxhighlight lang="algol68">BEGIN # find members of the Stern-Brocot sequence: starting from 1, 1 the #
# subsequent members are the previous two members summed followed by #
# the previous #
# iterative Greatest Common Divisor routine, returns the gcd of m and n #
PROC gcd = ( INT m, n )INT:
BEGIN
INT a := ABS m, b := ABS n;
WHILE b /= 0 DO
INT new a = b;
b := a MOD b;
a := new a
OD;
a
END # gcd # ;
# returns an array of the Stern-Brocot sequence up to n #
OP STERNBROCOT = ( INT n )[]INT:
BEGIN
[ 1 : IF ODD n THEN n + 1 ELSE n FI ]INT result;
IF n > 0 THEN
result[ 1 ] := result[ 2 ] := 1;
INT next pos := 2;
FOR i FROM 3 WHILE next pos < n DO
INT p1 = result[ i - 1 ];
result[ next pos +:= 1 ] := p1 + result[ i - 2 ];
result[ next pos +:= 1 ] := p1
OD
FI;
result[ 1 : n ]
END # STERNPROCOT # ;
FLEX[ 1 : 0 ]INT sb := STERNBROCOT 1000; # start with 1000 elements #
# if that isn't enough, more will be added later #
# show the first 15 elements of the sequence #
print( ( "The first 15 elements of the Stern-Brocot sequence are:", newline ) );
FOR i TO 15 DO
print( ( whole( sb[ i ], -3 ) ) )
OD;
print( ( newline, newline ) );
# find where the numbers 1-10 first appear #
INT found 10 := 0;
[ 10 ]INT pos 10; FOR i TO UPB pos 10 DO pos 10[ i ] := 0 OD;
FOR i TO UPB sb WHILE found 10 < 10 DO
INT sb i = sb[ i ];
IF sb i <= UPB pos 10 THEN
IF pos 10[ sb i ] = 0 THEN
# first occurance of this number #
pos 10[ sb i ] := i;
found 10 +:= 1
FI
FI
OD;
print( ( "The first positions of 1..", whole( UPB pos 10, 0 ), " in the sequence are:", newline ) );
FOR i TO UPB pos 10 DO
print( ( whole( i, -2 ), ":", whole( pos 10[ i ], 0 ), " " ) )
OD;
print( ( newline, newline ) );
# find where the number 100 first appears #
BOOL found 100 := FALSE;
FOR i WHILE NOT found 100 DO
IF i > UPB sb THEN
# need more elements #
sb := STERNBROCOT ( UPB sb * 2 )
FI;
IF sb[ i ] = 100 THEN
print( ( "100 first appears at position ", whole( i, 0 ), newline, newline ) );
found 100 := TRUE
FI
OD;
# check that the pairs of elements up to 1000 are coprime #
BOOL all coprime := TRUE;
FOR i FROM 2 TO 1000 WHILE all coprime DO
all coprime := gcd( sb[ i ], sb[ i - 1 ] ) = 1
OD;
print( ( "Element pairs up to 1000 are ", IF all coprime THEN "" ELSE "NOT " FI, "coprime", newline ) )
END</syntaxhighlight>
{{out}}
<pre>
The first 15 elements of the Stern-Brocot sequence are:
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
The first positions of 1..10 in the sequence are:
1:1 2:3 3:5 4:9 5:11 6:33 7:19 8:21 9:35 10:39
 
100 first appears at position 1179
 
Element pairs up to 1000 are coprime</pre>
 
=={{header|ALGOL-M}}==
<syntaxhighlight lang="algolm">begin
integer array S[1:1200];
integer i,ok;
 
integer function gcd(a,b);
integer a,b;
gcd :=
if a>b then gcd(a-b,b)
else if a<b then gcd(a,b-a)
else a;
integer function first(n);
integer n;
begin
integer i;
i := 1;
while S[i]<>n do i := i + 1;
first := i;
end;
S[1] := S[2] := 1;
for i := 2 step 1 until 600 do
begin
S[i*2-1] := S[i] + S[i-1];
S[i*2] := S[i];
end;
 
write("First 15 numbers:");
for i := 1 step 1 until 15 do
begin
if i-i/5*5=1 then write(S[i]) else writeon(S[i]);
end;
 
write("");
write("First occurrence:");
for i := 1 step 1 until 10 do write(i, " at", first(i));
write(100, " at", first(100));
 
ok := 1;
for i := 1 step 1 until 999 do
begin
if gcd(S[i], S[i+1]) <> 1 then
begin
write("gcd",S[i],",",S[i+1],"<> 1");
ok := 0;
end;
end;
if ok = 1 then write("The GCD of each pair of consecutive members is 1.");
end</syntaxhighlight>
{{out}}
<pre>First 15 numbers:
1 1 2 1 3
2 3 1 4 3
5 2 5 3 4
 
First occurrence:
1 at 1
2 at 3
3 at 5
4 at 9
5 at 11
6 at 33
7 at 19
8 at 21
9 at 35
10 at 39
100 at 1179
The GCD of each pair of consecutive members is 1.</pre>
 
=={{header|Amazing Hopper}}==
Version: hopper-FLOW!:
<syntaxhighlight lang="amazing hopper">
#include <flow.h>
#include <flow-flow.h>
 
DEF-MAIN(argv,argc)
CLR-SCR
SET( amount, 1200 )
DIM(amount) AS-ONES( Stern )
 
/* Generate Stern-Brocot sequence: */
GOSUB( Generate Sequence )
PRNL( "Find 15 first: ", [1:19] CGET(Stern) )
 
/* show Stern-Brocot sequence: */
SET( i, 1 ), ITERATE( ++i, LE?(i,10), \
PRN( "First ",i," at "), {i} GOSUB( Find First ), PRNL )
PRN( "First 100 at "), {100} GOSUB( Find First ), PRNL
 
/* check GCD: */
ODD-POS, CGET(Stern), EVEN-POS, CGET(Stern), COMP-GCD, GET-SUMMATORY, DIV-INTO( DIV(amount,2) )
 
IF ( IS-EQ?(1), PRNL("The GCD of every pair of adjacent elements is 1"),\
PRNL("Stern-Brocot Sequence is wrong!") )
END
 
RUTINES
 
DEF-FUN(Find First, n )
RET ( SCAN(1, n, Stern) )
DEF-FUN(Generate Sequence)
SET(i,2)
FOR( LE?(i, DIV(amount,2)), ++i )
[i] GET( Stern ), [ MINUS-ONE(i) ] GET( Stern ), ADD-IT
[ SUB(MUL(i,2),1) ] CPUT( Stern )
[i] GET( Stern ), [MUL(i,2)] CPUT( Stern )
NEXT
RET
</syntaxhighlight>
{{out}}
<pre>
Find 15 first: 1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
The GCD of every pair of adjacent elements is 1
</pre>
 
=={{header|APL}}==
<syntaxhighlight lang="apl">task←{
stern←{⍵{
⍺←0 ⋄ ⍺⍺≤⍴⍵:⍺⍺↑⍵
(⍺+1)∇⍵,(+/,2⊃⊣)2↑⍺↓⍵
}1 1}
seq←stern 1200 ⍝ Cache 1200 elements
⎕←'First 15 elements:',15↑seq
⎕←'Locations of 1..10:',seq⍳⍳10
⎕←'Location of 100:',seq⍳100
⎕←'All GCDs 1:','no' 'yes'[1+1∧.=2∨/1000↑seq]
}</syntaxhighlight>
 
{{out}}
 
<pre>First 15 elements: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Locations of 1..10: 1 3 5 9 11 33 19 21 35 39
Location of 100: 1179
All GCDs 1: yes </pre>
 
=={{header|AppleScript}}==
<langsyntaxhighlight lang="applescript">use AppleScript version "2.4"
use framework "Foundation"
use scripting additions
 
 
------------------ STERN-BROCOT SEQUENCE -----------------
 
-- sternBrocot :: Generator [Int]
Line 166 ⟶ 910:
 
 
-- TEST ----------------------------------------- TEST -------------------------
on run
set sbs to take(1200, sternBrocot())
Line 217 ⟶ 961:
 
 
-- GENERIC ABSTRACTIONS ------------------------------- GENERIC ------------------------
 
 
-- Absolute value.
Line 229 ⟶ 972:
end if
end abs
 
 
-- Applied to a predicate and a list, `all` determines if all elements
Line 242 ⟶ 986:
end tell
end all
 
 
-- comparing :: (a -> b) -> (a -> a -> Ordering)
Line 286 ⟶ 1,031:
end if
end drop
 
 
-- dropWhile :: (a -> Bool) -> [a] -> [a]
Line 299 ⟶ 1,045:
drop(i - 1, xs)
end dropWhile
 
 
-- enumFrom :: a -> [a]
Line 319 ⟶ 1,066:
end script
end enumFrom
 
 
-- filter :: (a -> Bool) -> [a] -> [a]
Line 332 ⟶ 1,080:
end tell
end filter
 
 
-- fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
Line 348 ⟶ 1,097:
end script
end fmapGen
 
 
-- fst :: (a, b) -> a
Line 357 ⟶ 1,107:
end if
end fst
 
 
-- gcd :: Int -> Int -> Int
Line 371 ⟶ 1,122:
return x
end gcd
 
 
-- head :: [a] -> a
Line 380 ⟶ 1,132:
end if
end head
 
 
-- iterate :: (a -> a) -> a -> Gen [a]
Line 430 ⟶ 1,183:
end if
end min
 
 
-- Lift 2nd class handler function into 1st class script wrapper
Line 472 ⟶ 1,226:
go's |λ|(xs)
end nubBy
 
 
-- partition :: predicate -> List -> (Matches, nonMatches)
Line 490 ⟶ 1,245:
Tuple(ys, zs)
end partition
 
 
-- showJSON :: a -> String
Line 518 ⟶ 1,274:
end if
end showJSON
 
 
-- snd :: (a, b) -> b
Line 550 ⟶ 1,307:
end if
end sortBy
 
 
-- tail :: [a] -> [a]
Line 572 ⟶ 1,330:
end if
end tail
 
 
-- take :: Int -> [a] -> [a]
Line 604 ⟶ 1,363:
end if
end take
 
 
-- takeWhile :: (a -> Bool) -> [a] -> [a]
Line 620 ⟶ 1,380:
end if
end takeWhile
 
 
-- takeWhileGen :: (a -> Bool) -> Gen [a] -> [a]
Line 633 ⟶ 1,394:
return ys
end takeWhileGen
 
 
-- Tuple (,) :: a -> b -> (a, b)
Line 638 ⟶ 1,400:
{type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple
 
 
-- unlines :: [String] -> String
Line 647 ⟶ 1,410:
str
end unlines
 
 
-- zip :: [a] -> [b] -> [(a, b)]
Line 652 ⟶ 1,416:
zipWith(Tuple, xs, ys)
end zip
 
 
-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
Line 666 ⟶ 1,431:
return lst
end tell
end zipWith</langsyntaxhighlight>
{{Out}}
<pre>[1,1,2,1,3,2,3,1,4,3,5,2,5,3,4]
Line 672 ⟶ 1,437:
[100,1179]
true</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">sternBrocot: function [mx][
seq: [1 1]
result: [[1 1] [2 1]]
idx: 1
while [idx < mx][
'seq ++ seq\[idx] + seq\[idx - 1]
'result ++ @[@[size seq, last seq]]
'seq ++ seq\[idx]
'result ++ @[@[size seq, last seq]]
inc 'idx
]
return result
]
 
sbs: sternBrocot 1000
 
print ["First 15 terms:" join.with:", " first.n:15 map sbs 'sb -> to :string last sb]
 
print ""
indexes: array.of:101 0
toFind: 101
loop sbs 'sb [
[i, n]: sb
if and? -> contains? 1..100 n -> zero? indexes\[n][
indexes\[n]: i
dec 'toFind
if zero? toFind [
break
]
]
]
 
loop (@1..10) ++ 100 'n ->
print ["Index of first occurrence of number" n ":" indexes\[n]]
 
print ""
 
prev: 1
idx: 1
 
loop sbs 'sb [
[i, n]: sb
if not? one? gcd @[prev n] -> break
prev: n
inc 'idx
if idx > 1000 -> break
]
 
print (idx =< 1000)? -> ["Found two successive terms at index:" idx]
-> "All consecutive terms up to the 1000th member have a GCD equal to one."</syntaxhighlight>
 
{{out}}
 
<pre>First 15 terms: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
 
Index of first occurrence of number 1 : 1
Index of first occurrence of number 2 : 3
Index of first occurrence of number 3 : 5
Index of first occurrence of number 4 : 9
Index of first occurrence of number 5 : 11
Index of first occurrence of number 6 : 33
Index of first occurrence of number 7 : 19
Index of first occurrence of number 8 : 21
Index of first occurrence of number 9 : 35
Index of first occurrence of number 10 : 39
Index of first occurrence of number 100 : 1179
 
All consecutive terms up to the 1000th member have a GCD equal to one.</pre>
 
=={{header|AutoHotkey}}==
<langsyntaxhighlight AutoHotkeylang="autohotkey">Found := FindOneToX(100), FoundList := ""
Loop, 10
FoundList .= "First " A_Index " found at " Found[A_Index] "`n"
Line 750 ⟶ 1,586:
b := Mod(a | 0x0, a := b)
return a
}</langsyntaxhighlight>
{{out}}
<pre>First 15: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
Line 765 ⟶ 1,601:
First 100 found at 1179
GCDs of all two consecutive members are one.</pre>
 
=={{header|BASIC}}==
<syntaxhighlight lang="basic">10 DEFINT A,B,I,J,S: DIM S(1200)
20 S(1)=1: S(2)=1
30 FOR I=2 TO 600
40 S(I*2-1)=S(I)+S(I-1)
50 S(I*2)=S(I)
60 NEXT I
70 PRINT "First 15 elements: ";
80 FOR I=1 TO 15: PRINT USING"# ";S(I);: NEXT I
85 PRINT
90 FOR I=1 TO 10
100 FOR J=1 TO 1200: IF S(J)<>I THEN NEXT J
110 PRINT "First";I;"at";J
120 NEXT I
130 FOR J=1 TO 1200: IF S(J)<>100 THEN NEXT J
140 PRINT "First 100 at";J
150 FOR I=2 TO 1000
160 A=S(I): B=S(I-1)
170 J=A: A=B: B=J MOD A: IF B THEN 170
180 IF A<>1 THEN PRINT "GCD <> 1 at ";I: STOP
190 NEXT I
200 PRINT "All GCDs are 1."
210 END</syntaxhighlight>
 
{{out}}
 
<pre>First 15 elements: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
All GCDs are 1.
</pre>
 
==={{header|BASIC256}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="basic256">arraybase 1
max = 2000
global stern
dim stern(max+2)
 
subroutine SternBrocot()
stern[1] = 1
stern[2] = 1
 
i = 2 : n = 2 : ub = stern[?]
 
while i < ub
i += 1
stern[i] = stern[n] + stern[n-1]
i += 1
stern[i] = stern[n]
n += 1
end while
end subroutine
 
function gcd(x, y)
while y
t = y
y = x mod y
x = t
end while
gcd = x
end function
 
call SternBrocot()
 
print "The first 15 are: ";
for i = 1 to 15
print stern[i]; " ";
next i
 
print : print
print "Index First nr."
d = 1
for i = 1 to max
if stern[i] = d then
print i; chr(9); stern[i]
d += 1
if d = 11 then d = 100
if d = 101 then exit for
i = 0
end if
next i
 
print : print
d = 0
for i = 1 to 1000
if gcd(stern[i], stern[i+1]) <> 1 then
d = gcd(stern[i], stern[i+1])
exit for
end if
next i
 
if d = 0 then
print "GCD of two consecutive members of the series up to the 1000th member is 1"
else
print "The GCD for index "; i; " and "; i+1; " = "; d
end if</syntaxhighlight>
{{out}}
<pre>Igual que la entrada de FreeBASIC.</pre>
 
==={{header|QBasic}}===
{{trans|FreeBASIC}}
{{works with|QBasic|1.1}}
<syntaxhighlight lang="qbasic">CONST max = 2000
DIM SHARED stern(max + 2)
 
FUNCTION gcd (x, y)
WHILE y
t = y
y = x MOD y
x = t
WEND
gcd = x
END FUNCTION
 
SUB SternBrocot
stern(1) = 1
stern(2) = 1
i = 2: n = 2: ub = UBOUND(stern)
DO WHILE i < ub
i = i + 1
stern(i) = stern(n) + stern(n - 1)
i = i + 1
stern(i) = stern(n)
n = n + 1
LOOP
END SUB
 
SternBrocot
 
PRINT "The first 15 are: ";
FOR i = 1 TO 15
PRINT stern(i); " ";
NEXT i
 
PRINT : PRINT
PRINT " Index First nr."
d = 1
FOR i = 1 TO max
IF stern(i) = d THEN
PRINT USING " ######"; i; stern(i)
d = d + 1
IF d = 11 THEN d = 100
IF d = 101 THEN EXIT FOR
i = 0
END IF
NEXT i
 
PRINT : PRINT
d = 0
FOR i = 1 TO 1000
IF gcd(stern(i), stern(i + 1)) <> 1 THEN
d = gcd(stern(i), stern(i + 1))
EXIT FOR
END IF
NEXT i
 
IF d <> 0 THEN
PRINT "GCD of two consecutive members of the series up to the 1000th member is 1"
ELSE
PRINT "The GCD for index "; i; " and "; i + 1; " = "; d
END IF</syntaxhighlight>
{{out}}
<pre>Igual que la entrada de FreeBASIC.</pre>
 
==={{header|Yabasic}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="yabasic">limite = 2000
dim stern(limite+2)
 
sub SternBrocot()
stern(1) = 1
stern(2) = 1
i = 2 : n = 2 : ub = arraysize(stern(),1)
while i < ub
i = i + 1
stern(i) = stern(n) + stern(n -1)
i = i + 1
stern(i) = stern(n)
n = n + 1
wend
end sub
 
sub gcd(p, q)
if q = 0 return p
return gcd(q, mod(p, q))
end sub
 
SternBrocot()
 
print "The first 15 are: ";
for i = 1 to 15
print stern(i), " ";
next i
 
print "\n\n Index First nr."
d = 1
for i = 1 to limite
if stern(i) = d then
print i using "######", stern(i) using "######"
d = d + 1
if d = 11 d = 100
if d = 101 break
i = 0
end if
next i
 
print : print
d = 0
for i = 1 to 1000
if gcd(stern(i), stern(i+1)) <> 1 then
d = gcd(stern(i), stern(i+1))
break
end if
next i
 
if d = 0 then
print "GCD of two consecutive members of the series up to the 1000th member is 1"
else
print "The GCD for index ", i, " and ", i+1, " = ", d
end if</syntaxhighlight>
{{out}}
<pre>Igual que la entrada de FreeBASIC.</pre>
 
=={{header|BCPL}}==
<syntaxhighlight lang="bcpl">get "libhdr"
 
manifest $( AMOUNT = 1200 $)
 
let gcd(a,b) =
a>b -> gcd(a-b, b),
a<b -> gcd(a, b-a),
a
 
let mkstern(s, n) be
$( s!1 := 1
s!2 := 1
for i=2 to n/2 do
$( s!(i*2-1) := s!i + s!(i-1)
s!(i*2) := s!i
$)
$)
 
let find(v, n, max) = valof
for i=1 to max
if v!i=n then resultis i
 
let findwrite(v, n, max) be
writef("%I3 at %I4*N", n, find(v, n, max))
 
let start() be
$( let stern = vec AMOUNT
mkstern(stern, AMOUNT)
writes("First 15 numbers: ")
for i=1 to 15 do writef("%N ", stern!i)
writes("*N*NFirst occurrence:*N")
for i=1 to 10 do findwrite(stern, i, AMOUNT)
findwrite(stern, 100, AMOUNT)
if valof
$( for i=2 to AMOUNT
unless gcd(stern!i, stern!(i-1)) = 1
resultis false
resultis true
$) then
writes("*NThe GCD of each pair of consecutive members is 1.*N")
$)</syntaxhighlight>
{{out}}
<pre>First 15 numbers: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
First occurrence:
1 at 1
2 at 3
3 at 5
4 at 9
5 at 11
6 at 33
7 at 19
8 at 21
9 at 35
10 at 39
100 at 1179
 
The GCD of each pair of consecutive members is 1.</pre>
 
=={{header|C}}==
Recursive function.
<langsyntaxhighlight lang="c">#include <stdio.h>
 
typedef unsigned int uint;
Line 805 ⟶ 1,941:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>
Line 823 ⟶ 1,959:
</pre>
The above <code>f()</code> can be replaced by the following, which is much faster but probably less obvious as to how it arrives from the recurrence relations.
<langsyntaxhighlight lang="c">uint f(uint n)
{
uint a = 1, b = 0;
Line 832 ⟶ 1,968:
}
return b;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
 
static class Program {
static List<int> l = new List<int>() { 1, 1 };
 
static int gcd(int a, int b) {
return a > 0 ? a < b ? gcd(b % a, a) : gcd(a % b, b) : b; }
 
static void Main(string[] args) {
int max = 1000; int take = 15; int i = 1;
int[] selection = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100 };
do { l.AddRange(new List<int>() { l[i] + l[i - 1], l[i] }); i += 1; }
while (l.Count < max || l[l.Count - 2] != selection.Last());
Console.Write("The first {0} items In the Stern-Brocot sequence: ", take);
Console.WriteLine("{0}\n", string.Join(", ", l.Take(take)));
Console.WriteLine("The locations of where the selected numbers (1-to-10, & 100) first appear:");
foreach (int ii in selection) {
int j = l.FindIndex(x => x == ii) + 1; Console.WriteLine("{0,3}: {1:n0}", ii, j); }
Console.WriteLine(); bool good = true;
for (i = 1; i <= max; i++) { if (gcd(l[i], l[i - 1]) != 1) { good = false; break; } }
Console.WriteLine("The greatest common divisor of all the two consecutive items of the" +
" series up to the {0}th item is {1}always one.", max, good ? "" : "not ");
}
}</syntaxhighlight>
{{out}}
<pre>The first 15 items In the Stern-Brocot sequence: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
 
The locations of where the selected numbers (1-to-10, & 100) first appear:
1: 1
2: 3
3: 5
4: 9
5: 11
6: 33
7: 19
8: 21
9: 35
10: 39
100: 1,179
 
The greatest common divisor of all the two consecutive items of the series up to the 1000th item is always one.
</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">
#include <iostream>
#include <iomanip>
Line 886 ⟶ 2,068:
return 0;
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 926 ⟶ 2,108:
 
CORRECT: ALL GCDs ARE '1'!
</pre>
=={{header|C sharp|C#}}==
<lang csharp>using System;
using System.Collections.Generic;
using System.Linq;
 
static class Program {
static List<int> l = new List<int>() { 1, 1 };
 
static int gcd(int a, int b) {
return a > 0 ? a < b ? gcd(b % a, a) : gcd(a % b, b) : b; }
 
static void Main(string[] args) {
int max = 1000; int take = 15; int i = 1;
int[] selection = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100 };
do { l.AddRange(new List<int>() { l[i] + l[i - 1], l[i] }); i += 1; }
while (l.Count < max || l[l.Count - 2] != selection.Last());
Console.Write("The first {0} items In the Stern-Brocot sequence: ", take);
Console.WriteLine("{0}\n", string.Join(", ", l.Take(take)));
Console.WriteLine("The locations of where the selected numbers (1-to-10, & 100) first appear:");
foreach (int ii in selection) {
int j = l.FindIndex(x => x == ii) + 1; Console.WriteLine("{0,3}: {1:n0}", ii, j); }
Console.WriteLine(); bool good = true;
for (i = 1; i <= max; i++) { if (gcd(l[i], l[i - 1]) != 1) { good = false; break; } }
Console.WriteLine("The greatest common divisor of all the two consecutive items of the" +
" series up to the {0}th item is {1}always one.", max, good ? "" : "not ");
}
}</lang>
{{out}}
<pre>The first 15 items In the Stern-Brocot sequence: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
 
The locations of where the selected numbers (1-to-10, & 100) first appear:
1: 1
2: 3
3: 5
4: 9
5: 11
6: 33
7: 19
8: 21
9: 35
10: 39
100: 1,179
 
The greatest common divisor of all the two consecutive items of the series up to the 1000th item is always one.
</pre>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">;; each step adds two items
(defn sb-step [v]
(let [i (quot (count v) 2)]
Line 1,007 ⟶ 2,144:
true)
 
(report-sb)</langsyntaxhighlight>
 
{{Output}}
Line 1,027 ⟶ 2,164:
 
===Clojure: Using Lazy Sequences===
<langsyntaxhighlight lang="clojure">(ns test-p.core)
(defn gcd
"(gcd a b) computes the greatest common divisor of a and b."
Line 1,059 ⟶ 2,196:
(println (every? (fn [[ith ith-plus-1]] (= (gcd ith ith-plus-1) 1))
one-thousand-pairs))
</syntaxhighlight>
</lang>
{{Output}}
 
Line 1,077 ⟶ 2,214:
true
</pre>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">stern = proc (n: int) returns (array[int])
s: array[int] := array[int]$fill(1, n, 1)
for i: int in int$from_to(2, n/2) do
s[i*2-1] := s[i] + s[i-1]
s[i*2] := s[i]
end
return (s)
end stern
 
gcd = proc (a,b: int) returns (int)
while b ~= 0 do
a, b := b, a//b
end
return (a)
end gcd
 
find = proc [T: type] (a: array[T], val: T) returns (int) signals (not_found)
where T has equal: proctype (T,T) returns (bool)
for i: int in array[T]$indexes(a) do
if a[i] = val then return (i) end
end
signal not_found
end find
 
start_up = proc ()
po: stream := stream$primary_output()
s: array[int] := stern(1200)
stream$puts(po, "First 15 numbers:")
for i: int in int$from_to(1, 15) do
stream$puts(po, " " || int$unparse(s[i]))
end
stream$putl(po, "")
for i: int in int$from_to(1, 10) do
stream$putl(po, "First " || int$unparse(i) || " at " ||
int$unparse(find[int](s, i)))
end
stream$putl(po, "First 100 at " || int$unparse(find[int](s, 100)))
 
begin
for i: int in int$from_to(2, array[int]$high(s)) do
if gcd(s[i-1], s[i]) ~= 1 then
exit gcd_not_one(i)
end
end
stream$putl(po, "The GCD of every pair of adjacent elements is 1.")
end except when gcd_not_one(i: int):
stream$putl(po, "The GCD of the pair at " || int$unparse(i) || " is not 1.")
end
end start_up</syntaxhighlight>
{{out}}
<pre>First 15 numbers: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
The GCD of every pair of adjacent elements is 1.</pre>
 
=={{header|Common Lisp}}==
<langsyntaxhighlight lang="lisp">(defun stern-brocot (numbers)
(declare ((or null (vector integer)) numbers))
(cond ((null numbers)
Line 1,134 ⟶ 2,338:
(first-1-to-10)
(first-100)
(check-gcd))</langsyntaxhighlight>
{{out}}
<pre>First 15: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Line 1,149 ⟶ 2,353:
First 100 at 1179
Correct. The GCDs of all the two consecutive numbers are 1.</pre>
 
=={{header|Cowgol}}==
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
# Redefining these is enough to change the type and length everywhere,
# but arrays are 0-based so you need one extra element.
typedef Stern is uint8; # 8-bit math is enough for the numbers we need
var stern: Stern[1201]; # Array containing Stern-Brocot sequence
 
# Fill up the Stern-Brocot array
sub GenStern() is
stern[1] := 1;
stern[2] := 1;
 
var i: @indexof stern := 1;
var last: @indexof stern := @sizeof stern / 2;
while i <= last loop
stern[i*2-1] := stern[i] + stern[i-1];
stern[i*2] := stern[i];
i := i + 1;
end loop;
end sub;
 
# Find the first location of a given number
sub FindFirst(n: Stern): (i: @indexof stern) is
i := 1;
while i < @sizeof stern and stern[i] != n loop
i := i + 1;
end loop;
end sub;
 
GenStern(); # Generate sequence
 
# Print the first 15 numbers
var i: @indexof stern := 1;
while i <= 15 loop
print_i32(stern[i] as uint32);
print_char(' ');
i := i + 1;
end loop;
print_nl();
 
# Print the first occurrence of 1..10
var j: Stern := 1;
while j <= 10 loop
print_i32(FindFirst(j) as uint32);
print_char(' ');
j := j + 1;
end loop;
print_nl();
 
# Print the first occurrence of 100
print_i32(FindFirst(100) as uint32);
print_nl();
 
# Check that all GCDs of consecutive pairs are 1
sub gcd(a: Stern, b: Stern): (r: Stern) is
while a != b loop
if a > b then
a := a - b;
else
b := b - a;
end if;
end loop;
r := a;
end sub;
 
i := 1;
while i < @sizeof stern / 2 loop
if gcd(stern[i], stern[i+1]) != 1 then
print("GCD not 1 at: ");
print_i32(i as uint32);
print_nl();
ExitWithError();
end if;
i := i + 1;
end loop;
 
print("All GCDs are 1.\n");</syntaxhighlight>
 
{{out}}
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
1 3 5 9 11 33 19 21 35 39
1179
All GCDs are 1.</pre>
 
=={{header|D}}==
{{trans|Python}}
<langsyntaxhighlight lang="d">import std.stdio, std.numeric, std.range, std.algorithm;
 
/// Generates members of the stern-brocot series, in order,
Line 1,180 ⟶ 2,469:
assert(zip(s, s.dropOne).all!(ss => ss[].gcd == 1),
"A fraction from adjacent terms is reducible.");
}</langsyntaxhighlight>
{{out}}
<pre>The first 15 values:
Line 1,198 ⟶ 2,487:
 
This uses a queue from the Queue/usage Task:
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.range, std.numeric, queue_usage2;
 
struct SternBrocot {
Line 1,215 ⟶ 2,504:
void main() {
SternBrocot().drop(50_000_000).front.writeln;
}</langsyntaxhighlight>
{{out}}
<pre>7004</pre>
Line 1,221 ⟶ 2,510:
<b>Direct Version:</b>
{{trans|C}}
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.numeric, std.range, std.algorithm, std.bigint, std.conv;
 
Line 1,248 ⟶ 2,537:
 
sternBrocot(10.BigInt ^^ 20_000).text.length.writeln;
}</langsyntaxhighlight>
{{out}}
<pre>The first 15 values:
Line 1,265 ⟶ 2,554:
1-based index of the first occurrence of 100 in the series: 1179
7984</pre>
 
=={{header|EasyLang}}==
{{trans|Lua}}
<syntaxhighlight>
global sb[] .
proc sternbrocot n . .
sb[] = [ 1 1 ]
pos = 2
repeat
c = sb[pos]
sb[] &= c + sb[pos - 1]
sb[] &= c
pos += 1
until len sb[] >= n
.
.
func first v .
for i to len sb[]
if v <> 0
if sb[i] = v
return i
.
else
if sb[i] <> 0
return i
.
.
.
return 0
.
func gcd x y .
if y = 0
return x
.
return gcd y (x mod y)
.
func$ task5 .
for i to 1000
if gcd sb[i] sb[i + 1] <> 1
return "FAIL"
.
.
return "PASS"
.
sternbrocot 10000
write "Task 2: "
for i to 15
write sb[i] & " "
.
print "\n\nTask 3:"
for i to 10
print "\t" & i & " " & first i
.
print "\nTask 4: " & first 100
print "\nTask 5: " & task5
</syntaxhighlight>
 
{{out}}
<pre>
Task 2: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
Task 3:
1 1
2 3
3 5
4 9
5 11
6 33
7 19
8 21
9 35
10 39
 
Task 4: 1179
 
Task 5: PASS
</pre>
 
 
=={{header|EchoLisp}}==
=== Function ===
<langsyntaxhighlight lang="lisp">
;; stern (2n ) = stern (n)
;; stern(2n+1) = stern(n) + stern(n+1)
Line 1,278 ⟶ 2,645:
(else (let ((m (/ (1- n) 2))) (+ (stern m) (stern (1+ m)))))))
(remember 'stern)
</syntaxhighlight>
</lang>
{{out}}
<langsyntaxhighlight lang="lisp">
; generate the sequence and check GCD
(for ((n 10000))
Line 1,301 ⟶ 2,668:
(stern 900000) → 446
(stern 900001) → 2479
</syntaxhighlight>
</lang>
 
=== Stream ===
From [https://oeis.org/A002487 A002487], if we group the elements by two, we get (uniquely) all the rationals. Another way to generate the rationals, hence the stern sequence, is to iterate the function f(x) = floor(x) + 1 - fract(x).
 
<langsyntaxhighlight lang="lisp">
;; grouping
(for ((i (in-range 2 40 2))) (write (/ (stern i)(stern (1+ i)))))
Line 1,320 ⟶ 2,687:
 
→ 1/2 1/3 2/3 1/4 3/5 2/5 3/4 1/5 4/7 3/8 5/7 2/7 5/8 3/7 4/5 1/6 5/9 4/11 7/10
</syntaxhighlight>
</lang>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">defmodule SternBrocot do
def sequence do
Stream.unfold({0,{1,1}}, fn {i,acc} ->
Line 1,350 ⟶ 2,717:
end
 
SternBrocot.task</langsyntaxhighlight>
 
{{out}}
Line 1,372 ⟶ 2,739:
=={{header|F_Sharp|F#}}==
===The function===
<langsyntaxhighlight lang="fsharp">
// Generate Stern-Brocot Sequence. Nigel Galloway: October 11th., 2018
let sb=Seq.unfold(fun (n::g::t)->Some(n,[g]@t@[n+g;g]))[1;1]
</syntaxhighlight>
</lang>
===The Task===
Uses [[Greatest_common_divisor#F.23]]
<langsyntaxhighlight lang="fsharp">
sb |> Seq.take 15 |> Seq.iter(printf "%d ");printfn ""
[1..10] |> List.map(fun n->(n,(sb|>Seq.findIndex(fun g->g=n))+1)) |> List.iter(printf "%A ");printfn ""
printfn "%d" ((sb|>Seq.findIndex(fun g->g=100))+1)
printfn "There are %d consecutive members, of the first thousand members, with GCD <> 1" (sb |> Seq.take 1000 |>Seq.pairwise |> Seq.filter(fun(n,g)->gcd n g <> 1) |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,394 ⟶ 2,761:
=={{header|Factor}}==
Using the alternative function given in the C example for computing the Stern-Brocot sequence.
<langsyntaxhighlight lang="factor">USING: formatting io kernel lists lists.lazy locals math
math.ranges prettyprint sequences ;
IN: rosetta-code.stern-brocot
Line 1,424 ⟶ 2,791:
: main ( -- ) first15 first-appearances gcd-test ;
 
MAIN: main</langsyntaxhighlight>
{{out}}
<pre>
Line 1,441 ⟶ 2,808:
All GCDs are 1.
</pre>
 
=={{header|Forth}}==
<syntaxhighlight lang="forth">: stern ( n -- x : return N'th item of Stern-Brocot sequence)
dup 2 >= if
2 /mod swap if
dup 1+ recurse
swap recurse
+
else
recurse
then
then
;
 
: first ( n -- x : return X such that stern X = n )
1 begin over over stern <> while 1+ repeat
swap drop
;
 
: gcd ( a b -- a gcd b )
begin swap over mod dup 0= until drop
;
: task
( Print first 15 numbers )
." First 15: " 1 begin dup stern . 1+ dup 15 > until
drop cr
( Print first occurrence of 1..10 )
1 begin
." First " dup . ." at " dup first .
1+ cr
dup 10 > until
drop
( Print first occurrence of 100 )
." First 100 at " 100 first . cr
( Check that the GCD of each adjacent pair up to 1000 is 1 )
-1 2 begin
dup stern over 1- stern gcd 1 =
rot and swap
1+
dup 1000 > until
swap if
." All GCDs are 1."
drop
else
." GCD <> 1 at: " .
then
cr
;
 
task
bye</syntaxhighlight>
 
{{out}}
 
<pre>First 15: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
All GCDs are 1.
</pre>
 
=={{header|Fortran}}==
{{trans|VBScript}}
===Fortran IV===
<syntaxhighlight lang="fortran">* STERN-BROCOT SEQUENCE - FORTRAN IV
DIMENSION ISB(2400)
NN=2400
ISB(1)=1
ISB(2)=1
I=1
J=2
K=2
1 IF(K.GE.NN) GOTO 2
K=K+1
ISB(K)=ISB(K-I)+ISB(K-J)
K=K+1
ISB(K)=ISB(K-J)
I=I+1
J=J+1
GOTO 1
2 N=15
WRITE(*,101) N
101 FORMAT(1X,'FIRST',I4)
WRITE(*,102) (ISB(I),I=1,15)
102 FORMAT(15I4)
DO 5 J=1,11
JJ=J
IF(J.EQ.11) JJ=100
DO 3 I=1,K
IF(ISB(I).EQ.JJ) GOTO 4
3 CONTINUE
4 WRITE(*,103) JJ,I
103 FORMAT(1X,'FIRST',I4,' AT ',I4)
5 CONTINUE
END </syntaxhighlight>
{{out}}
<pre>
FIRST 15
FIRST 15
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
FIRST 1 AT 1
FIRST 2 AT 3
FIRST 3 AT 5
FIRST 4 AT 9
FIRST 5 AT 11
FIRST 6 AT 33
FIRST 7 AT 19
FIRST 8 AT 21
FIRST 9 AT 35
FIRST 10 AT 39
FIRST 100 AT 1179
</pre>
===Fortran 90===
<syntaxhighlight lang="fortran"> ! Stern-Brocot sequence - Fortran 90
parameter (nn=2400)
dimension isb(nn)
isb(1)=1; isb(2)=1
i=1; j=2; k=2
do while(k.lt.nn)
k=k+1; isb(k)=isb(k-i)+isb(k-j)
k=k+1; isb(k)=isb(k-j)
i=i+1; j=j+1
end do
n=15
write(*,"(1x,'First',i4)") n
write(*,"(15i4)") (isb(i),i=1,15)
do j=1,11
jj=j
if(j==11) jj=100
do i=1,k
if(isb(i)==jj) exit
end do
write(*,"(1x,'First',i4,' at ',i4)") jj,i
end do
end </syntaxhighlight>
{{out}}
<pre>
First 15
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' version 02-03-2019
' compile with: fbc -s console
 
#Define max 2000
 
Dim Shared As UInteger stern(max +2)
 
Sub stern_brocot
 
stern(1) = 1
stern(2) = 1
 
Dim As UInteger i = 2 , n = 2, ub = UBound(stern)
 
Do While i < ub
i += 1
stern(i) = stern(n) + stern(n -1)
i += 1
stern(i) = stern(n)
n += 1
Loop
 
End Sub
 
Function gcd(x As UInteger, y As UInteger) As UInteger
 
Dim As UInteger t
 
While y
t = y
y = x Mod y
x = t
Wend
 
Return x
 
End Function
 
' ------=< MAIN >=------
 
Dim As UInteger i
 
stern_brocot
 
Print "The first 15 are: " ;
For i = 1 To 15
Print stern(i); " ";
Next
 
Print : Print
Print " Index First nr."
Dim As UInteger d = 1
For i = 1 To max
If stern(i) = d Then
Print Using " ######"; i; stern(i)
d += 1
If d = 11 Then d = 100
If d = 101 Then Exit For
i = 0
End If
Next
 
Print : Print
d = 0
For i = 1 To 1000
If gcd(stern(i), stern(i +1)) <> 1 Then
d = gcd(stern(i), stern(i +1))
Exit For
End If
Next
 
If d = 0 Then
Print "GCD of two consecutive members of the series up to the 1000th member is 1"
Else
Print "The GCD for index "; i; " and "; i +1; " = "; d
End If
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre>The first 15 are: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
Index First nr.
1 1
3 2
5 3
9 4
11 5
33 6
19 7
21 8
35 9
39 10
1179 100
 
GCD of two consecutive members of the series up to the 1000th member is 1</pre>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,490 ⟶ 3,121:
}
return x
}</langsyntaxhighlight>
<langsyntaxhighlight lang="go">// SB implements the Stern-Brocot sequence.
//
// Generator() satisfies RC Task 1. For remaining tasks, Generator could be
Line 1,564 ⟶ 3,195:
}
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,606 ⟶ 3,237:
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.List (elemIndex)
 
sb :: [Int]
sb = 1 : 1 : f (tail sb) sb
where
f (a : aa) (b : bb) = a + b : a : f aa bb
 
main :: IO ()
Line 1,618 ⟶ 3,249:
print
[ (i, 1 + (\(Just i) -> i) (elemIndex i sb))
| i <- [1 .. 10] ++<> [100] ]
]
print $ all (\(a, b) -> 1 == gcd a b) $ take 1000 $ zip sb (tail sb)</lang>
print $
all (\(a, b) -> 1 == gcd a b) $
take 1000 $ zip sb (tail sb)</syntaxhighlight>
{{out}}
<pre>[1,1,2,1,3,2,3,1,4,3,5,2,5,3,4]
Line 1,627 ⟶ 3,261:
Or, expressed in terms of iterate:
 
<syntaxhighlight lang ="haskell">import Data.ListFunction (nubBy, sortByon)
import Data.List (nubBy, sortOn)
import Data.Ord (comparing)
 
import Data.Monoid ((<>))
------------------ STERN-BROCOT SEQUENCE -----------------
import Data.Function (on)
 
sternBrocot :: [Int]
sternBrocot = head <$> iterate go [1, 1]
where
let go (a:b:xs) = (b : xs) <> [a + b, b]
in head go (a : b : xs) = (b : xs) <$> iterate[a go+ [1b, 1b]
 
-- TEST ------------------------------------ TEST -------------------------
main :: IO ()
main = do
Line 1,643 ⟶ 3,278:
print $
take 10 $
nubBy (on (==) fst) $
sortOn fst $
sortBy (comparing fst) $ takeWhile ((110 >=) . fst) $ zip sternBrocot [1 ..]
print $ take 1 $ dropWhile takeWhile ((100110 />=) . fst) $ zip sternBrocot [1 ..]
zip sternBrocot [1 ..]
print $ (all ((1 ==) . uncurry gcd) . (zip <*> tail)) $ take 1000 sternBrocot</lang>
print $
take 1 $
dropWhile ((100 /=) . fst) $
zip sternBrocot [1 ..]
print $
(all ((1 ==) . uncurry gcd) . (zip <*> tail)) $
take 1000 sternBrocot</syntaxhighlight>
{{Out}}
<pre>[1,1,2,1,3,2,3,1,4,3,5,2,5,3,4]
Line 1,652 ⟶ 3,294:
[(100,1179)]
True</pre>
 
=={{header|J}}==
We have two different kinds of list specifications here (length of the sequence, and the presence of certain values in the sequence). Also the underlying list generation mechanism is somewhat arbitrary. So let's generate the sequence iteratively and provide a truth valued function of the intermediate sequences to determine when we have generated one which is adequately long:
 
<syntaxhighlight lang="j">sternbrocot=:1 :0
ind=. 0
seq=. 1 1
while. -. u seq do.
ind=. ind+1
seq=. seq, +/\. seq {~ _1 0 +ind
end.
)</syntaxhighlight>
 
(Grammatical aside: this is an adverb which generates a noun without taking any x/y arguments. So usage is: <code>u sternbrocot</code>. J does have precedence rules, just not very many of them. Users of other languages can get a rough idea of the grammatical terms like this: adverb is approximately like a macro, verb approximately like a function and noun is approximately like a number. Also x and y are J's names for left and right noun arguments, and u and v are J's names for left and right verb arguments. An adverb has a left verb argument. There are some other important constraints but that's probably more than enough detail for this task.)
 
First fifteen members of the sequence:
 
<syntaxhighlight lang="j"> 15{.(15<:#) sternbrocot
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4</syntaxhighlight>
 
One based indices of where numbers 1-10 first appear in the sequence:
 
<syntaxhighlight lang="j"> 1+(10 e. ]) sternbrocot i.1+i.10
1 3 5 9 11 33 19 21 35 39</syntaxhighlight>
 
One based index of where the number 100 first appears:
 
<syntaxhighlight lang="j"> 1+(100 e. ]) sternbrocot i. 100
1179</syntaxhighlight>
 
List of distinct greatest common divisors of adjacent number pairs from a sternbrocot sequence which includes the first 1000 elements:
 
<syntaxhighlight lang="j"> ~.2 +./\ (1000<:#) sternbrocot
1</syntaxhighlight>
 
=={{header|Java}}==
{{works with|Java|1.5+}}
This example generates the first 1200 members of the sequence since that is enough to cover all of the tests in the description. It borrows the <code>gcd</code> method from <code>BigInteger</code> rather than using its own.
<syntaxhighlight lang="java5">import java.math.BigInteger;
import java.util.LinkedList;
 
public class SternBrocot {
static LinkedList<Integer> sequence = new LinkedList<Integer>(){{
add(1); add(1);
}};
private static void genSeq(int n){
for(int conIdx = 1; sequence.size() < n; conIdx++){
int consider = sequence.get(conIdx);
int pre = sequence.get(conIdx - 1);
sequence.add(consider + pre);
sequence.add(consider);
}
}
public static void main(String[] args){
genSeq(1200);
System.out.println("The first 15 elements are: " + sequence.subList(0, 15));
for(int i = 1; i <= 10; i++){
System.out.println("First occurrence of " + i + " is at " + (sequence.indexOf(i) + 1));
}
System.out.println("First occurrence of 100 is at " + (sequence.indexOf(100) + 1));
boolean failure = false;
for(int i = 0; i < 999; i++){
failure |= !BigInteger.valueOf(sequence.get(i)).gcd(BigInteger.valueOf(sequence.get(i + 1))).equals(BigInteger.ONE);
}
System.out.println("All GCDs are" + (failure ? " not" : "") + " 1");
}
}</syntaxhighlight>
{{out}}
<pre>The first 15 elements are: [1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
First occurrence of 1 is at 1
First occurrence of 2 is at 3
First occurrence of 3 is at 5
First occurrence of 4 is at 9
First occurrence of 5 is at 11
First occurrence of 6 is at 33
First occurrence of 7 is at 19
First occurrence of 8 is at 21
First occurrence of 9 is at 35
First occurrence of 10 is at 39
First occurrence of 100 is at 1179
All GCDs are 1</pre>
 
=== Stern-Brocot Tree ===
{{works with|Java|8}}
<syntaxhighlight lang="java">import java.awt.*;
import javax.swing.*;
 
public class SternBrocot extends JPanel {
 
public SternBrocot() {
setPreferredSize(new Dimension(800, 500));
setFont(new Font("Arial", Font.PLAIN, 18));
setBackground(Color.white);
}
 
private void drawTree(int n1, int d1, int n2, int d2,
int x, int y, int gap, int lvl, Graphics2D g) {
 
if (lvl == 0)
return;
 
// mediant
int numer = n1 + n2;
int denom = d1 + d2;
 
if (lvl > 1) {
g.drawLine(x + 5, y + 4, x - gap + 5, y + 124);
g.drawLine(x + 5, y + 4, x + gap + 5, y + 124);
}
 
g.setColor(getBackground());
g.fillRect(x - 10, y - 15, 35, 40);
 
g.setColor(getForeground());
g.drawString(String.valueOf(numer), x, y);
g.drawString("_", x, y + 2);
g.drawString(String.valueOf(denom), x, y + 22);
 
drawTree(n1, d1, numer, denom, x - gap, y + 120, gap / 2, lvl - 1, g);
drawTree(numer, denom, n2, d2, x + gap, y + 120, gap / 2, lvl - 1, g);
}
 
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
 
int w = getWidth();
 
drawTree(0, 1, 1, 0, w / 2, 50, w / 4, 4, g);
}
 
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Stern-Brocot Tree");
f.setResizable(false);
f.add(new SternBrocot(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}</syntaxhighlight>
[[File:stern_brocot_tree_java.gif]]
 
=={{header|JavaScript}}==
<langsyntaxhighlight JavaScriptlang="javascript">(() => {
'use strict';
 
Line 1,978 ⟶ 3,773:
// MAIN ---
return main();
})();</langsyntaxhighlight>
{{Out}}
<pre>[1,1,2,1,3,2,3,1,4,3,5,2,5,3,4]
Line 1,984 ⟶ 3,779:
[100,1179]
true</pre>
 
=={{header|J}}==
 
We have two different kinds of list specifications here (length of the sequence, and the presence of certain values in the sequence). Also the underlying list generation mechanism is somewhat arbitrary. So let's generate the sequence iteratively and provide a truth valued function of the intermediate sequences to determine when we have generated one which is adequately long:
 
<lang J>sternbrocot=:1 :0
ind=. 0
seq=. 1 1
while. -. u seq do.
ind=. ind+1
seq=. seq, +/\. seq {~ _1 0 +ind
end.
)</lang>
 
(Grammatical aside: this is an adverb which generates a noun without taking any x/y arguments. So usage is: <code>u sternbrocot</code>. J does have precedence rules, just not very many of them. Users of other languages can get a rough idea of the grammatical terms like this: adverb is approximately like a macro, verb approximately like a function and noun is approximately like a number. Also x and y are J's names for left and right noun arguments, and u and v are J's names for left and right verb arguments. An adverb has a left verb argument. There are some other important constraints but that's probably more than enough detail for this task.)
 
First fifteen members of the sequence:
 
<lang J> 15{.(15<:#) sternbrocot
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4</lang>
 
One based indices of where numbers 1-10 first appear in the sequence:
 
<lang J> 1+(10 e. ]) sternbrocot i.1+i.10
1 3 5 9 11 33 19 21 35 39</lang>
 
One based index of where the number 100 first appears:
 
<lang J> 1+(100 e. ]) sternbrocot i. 100
1179</lang>
 
List of distinct greatest common divisors of adjacent number pairs from a sternbrocot sequence which includes the first 1000 elements:
 
<lang J> ~.2 +./\ (1000<:#) sternbrocot
1</lang>
 
=={{header|Java}}==
{{works with|Java|1.5+}}
This example generates the first 1200 members of the sequence since that is enough to cover all of the tests in the description. It borrows the <code>gcd</code> method from <code>BigInteger</code> rather than using its own.
<lang java5>import java.math.BigInteger;
import java.util.LinkedList;
 
public class SternBrocot {
static LinkedList<Integer> sequence = new LinkedList<Integer>(){{
add(1); add(1);
}};
private static void genSeq(int n){
for(int conIdx = 1; sequence.size() < n; conIdx++){
int consider = sequence.get(conIdx);
int pre = sequence.get(conIdx - 1);
sequence.add(consider + pre);
sequence.add(consider);
}
}
public static void main(String[] args){
genSeq(1200);
System.out.println("The first 15 elements are: " + sequence.subList(0, 15));
for(int i = 1; i <= 10; i++){
System.out.println("First occurrence of " + i + " is at " + (sequence.indexOf(i) + 1));
}
System.out.println("First occurrence of 100 is at " + (sequence.indexOf(100) + 1));
boolean failure = false;
for(int i = 0; i < 999; i++){
failure |= !BigInteger.valueOf(sequence.get(i)).gcd(BigInteger.valueOf(sequence.get(i + 1))).equals(BigInteger.ONE);
}
System.out.println("All GCDs are" + (failure ? " not" : "") + " 1");
}
}</lang>
{{out}}
<pre>The first 15 elements are: [1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
First occurrence of 1 is at 1
First occurrence of 2 is at 3
First occurrence of 3 is at 5
First occurrence of 4 is at 9
First occurrence of 5 is at 11
First occurrence of 6 is at 33
First occurrence of 7 is at 19
First occurrence of 8 is at 21
First occurrence of 9 is at 35
First occurrence of 10 is at 39
First occurrence of 100 is at 1179
All GCDs are 1</pre>
 
=== Stern-Brocot Tree ===
{{works with|Java|8}}
<lang java>import java.awt.*;
import javax.swing.*;
 
public class SternBrocot extends JPanel {
 
public SternBrocot() {
setPreferredSize(new Dimension(800, 500));
setFont(new Font("Arial", Font.PLAIN, 18));
setBackground(Color.white);
}
 
private void drawTree(int n1, int d1, int n2, int d2,
int x, int y, int gap, int lvl, Graphics2D g) {
 
if (lvl == 0)
return;
 
// mediant
int numer = n1 + n2;
int denom = d1 + d2;
 
if (lvl > 1) {
g.drawLine(x + 5, y + 4, x - gap + 5, y + 124);
g.drawLine(x + 5, y + 4, x + gap + 5, y + 124);
}
 
g.setColor(getBackground());
g.fillRect(x - 10, y - 15, 35, 40);
 
g.setColor(getForeground());
g.drawString(String.valueOf(numer), x, y);
g.drawString("_", x, y + 2);
g.drawString(String.valueOf(denom), x, y + 22);
 
drawTree(n1, d1, numer, denom, x - gap, y + 120, gap / 2, lvl - 1, g);
drawTree(numer, denom, n2, d2, x + gap, y + 120, gap / 2, lvl - 1, g);
}
 
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
 
int w = getWidth();
 
drawTree(0, 1, 1, 0, w / 2, 50, w / 4, 4, g);
}
 
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Stern-Brocot Tree");
f.setResizable(false);
f.add(new SternBrocot(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}</lang>
[[File:stern_brocot_tree_java.gif]]
 
=={{header|jq}}==
Line 2,144 ⟶ 3,785:
 
'''Foundations:'''
<langsyntaxhighlight lang="jq">def until(cond; update):
def _until:
if cond then . else (update | _until) end;
Line 2,155 ⟶ 3,796:
else [.[1], .[0] % .[1]] | rgcd
end;
[a,b] | rgcd ;</langsyntaxhighlight>
'''The A002487 integer sequence:'''
 
Line 2,162 ⟶ 3,803:
The n-th element of the Rosetta Code sequence (counting from 1)
is thus a[n], which accords with the fact that jq arrays have an index origin of 0.
<langsyntaxhighlight lang="jq"># If n is non-negative, then A002487(n)
# generates an array with at least n elements of
# the A002487 sequence;
Line 2,179 ⟶ 3,820:
| if (.[$l-2] == -n) then .
else .[$l + 1] = .[$n] + .[$n+1]
end ) ;</langsyntaxhighlight>
'''The tasks:'''
<langsyntaxhighlight lang="jq"># Generate a stream of n integers beginning with 1,1...
def stern_brocot(n): A002487(n+1) | .[1:n+1][];
 
Line 2,212 ⟶ 3,853:
"",
gcd_task
</syntaxhighlight>
</lang>
{{out}}
<langsyntaxhighlight lang="sh">$ jq -r -n -f stern_brocot.jq
First 15 integers of the Stern-Brocot sequence
as defined in the task description are:
Line 2,246 ⟶ 3,887:
index of 100 is 1179
 
GCDs are all 1</langsyntaxhighlight>
 
=={{header|Julia}}==
{{trans|Python}}
<syntaxhighlight lang="julia">using Printf
<lang julia>function sternbrocot(f::Function=(x) -> length(x) ≥ 20)::Vector{Int}
 
function sternbrocot(f::Function=(x) -> length(x) ≥ 20)::Vector{Int}
rst = Int[1, 1]
i = 32
while !f(rst)
append!(rst, Int[rst[i-1] + rst[i-21], rst[i-2]])
i += 1
end
Line 2,273 ⟶ 3,916:
else
println("Rejected.")
end</langsyntaxhighlight>
 
{{out}}
<pre>
<pre>First 15 elements of Stern-Brocot series:
First 15 elements of Stern-Brocot series:
[1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 4, 1, 5]
[1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
 
Index of first occurrence of 1 in the series: 1
Line 2,283 ⟶ 3,927:
Index of first occurrence of 3 in the series: 5
Index of first occurrence of 4 in the series: 9
Index of first occurrence of 5 in the series: 1511
Index of first occurrence of 6 in the series: 1733
Index of first occurrence of 7 in the series: 2319
Index of first occurrence of 8 in the series: 3121
Index of first occurrence of 9 in the series: 3335
Index of first occurrence of 10 in the series: 5139
Index of first occurrence of 100 in the series: 18551179
 
Assertion: the greatest common divisor of all the two
consecutive members of the series up to the 1000th member, is always one: RejectedConfirmed.</pre>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.0
 
val sbs = mutableListOf(1, 1)
Line 2,358 ⟶ 4,002:
}
println("all one")
}</langsyntaxhighlight>
 
{{out}}
Line 2,383 ⟶ 4,027:
 
=={{header|Lua}}==
<langsyntaxhighlight Lualang="lua">-- Task 1
function sternBrocot (n)
local sbList, pos, c = {1, 1}, 2
Line 2,431 ⟶ 4,075:
for i = 1, 10 do print("\t" .. i, findFirst(sb, i)) end
print("\nTask 4: " .. findFirst(sb, 100))
print("\nTask 5: " .. task5(sb))</langsyntaxhighlight>
{{out}}
<pre>Task 2: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Line 2,451 ⟶ 4,095:
Task 5: PASS</pre>
 
=={{header|OforthMACRO-11}}==
<syntaxhighlight lang="macro11"> .TITLE STNBRC
.MCALL .TTYOUT,.EXIT
AMOUNT = ^D1200
STNBRC::JSR PC,GENSEQ
 
; PRINT FIRST 15
<lang Oforth>: stern(n)
MOV #FST15,R1
JSR PC,PRSTR
MOV #STERN+2,R3
MOV #^D15,R4
1$: MOV (R3)+,R0
JSR PC,PR0
SOB R4,1$
MOV #NEWLINE,R1
JSR PC,PRSTR
 
; PRINT FIRST OCCURRENCE OF 1..10 AND 100
MOV #FSTOCC,R1
JSR PC,PRSTR
MOV #1,R3
2$: JSR PC,PRFST
INC R3
CMP R3,#^D10
BLE 2$
MOV #^D100,R3
JSR PC,PRFST
MOV #NEWLIN,R1
JSR PC,PRSTR
 
; CHECK GCDS OF ADJACENT PAIRS UP TO 1000
MOV #CHKGCD,R1
JSR PC,PRSTR
MOV #STERN+2,R2
MOV #^D999,R5
MOV (R2)+,R3
3$: MOV R3,R4
MOV (R2)+,R3
MOV R3,R0
MOV R4,R1
JSR PC,GCD
DEC R0
BNE 4$
SOB R5,3$
MOV #ALL1,R1
BR 5$
4$: MOV #NOTAL1,R1
5$: JSR PC,PRSTR
.EXIT
 
FST15: .ASCIZ /FIRST 15: /
FSTOCC: .ASCIZ /FIRST OCCURRENCES:/<15><12>
ATWD: .ASCIZ /AT /
CHKGCD: .ASCIZ /CHECKING GCDS OF ADJACENT PAIRS... /
NOTAL1: .ASCII /NOT /
ALL1: .ASCIZ /ALL 1./
NEWLIN: .BYTE 15,12,0
.EVEN
 
; GENERATE STERN-BROCOT SEQUENCE
GENSEQ: MOV #1,R0
MOV R0,STERN+2
MOV R0,STERN+4
MOV #STERN+<2*AMOUNT>,R5
MOV #STERN+2,R0
MOV #STERN+6,R1
MOV (R0)+,R2
1$: MOV R2,R3
MOV (R0)+,R2
MOV R2,R4
ADD R3,R4
MOV R4,(R1)+
MOV R2,(R1)+
CMP R1,R5
BLT 1$
RTS PC
 
; LET R0 = FIRST OCCURRENCE OF R3 IN SEQUENCE
FNDFST: MOV #STERN,R0
1$: CMP (R0)+,R3
BNE 1$
SUB #STERN+2,R0
ASR R0
RTS PC
 
; PRINT FIRST OCC. OF <R3>
PRFST: MOV R3,R0
JSR PC,PR0
MOV #ATWD,R1
JSR PC,PRSTR
JSR PC,FNDFST
JSR PC,PR0
MOV #NEWLIN,R1
JMP PRSTR
 
; LET R0 = GCD(R0,R1)
GCD: CMP R0,R1
BLT 1$
BGT 2$
RTS PC
1$: SUB R0,R1
BR GCD
2$: SUB R1,R0
BR GCD
 
; PRINT NUMBER IN R0 AS DECIMAL
PR0: MOV #4$,R1
1$: MOV #-1,R2
2$: INC R2
SUB #12,R0
BCC 2$
ADD #72,R0
MOVB R0,-(R1)
MOV R2,R0
BNE 1$
3$: MOVB (R1)+,R0
.TTYOUT
BNE 3$
RTS PC
.ASCII /...../
4$: .ASCIZ / /
.EVEN
 
; PRINT STRING IN R1
PRSTR: MOVB (R1)+,R0
.TTYOUT
BNE PRSTR
RTS PC
; STERN-BROCOT BUFFER
STERN: .BLKW AMOUNT+1
.END STNBRC</syntaxhighlight>
{{out}}
<pre>FIRST 15: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
FIRST OCCURRENCES:
1 AT 1
2 AT 3
3 AT 5
4 AT 9
5 AT 11
6 AT 33
7 AT 19
8 AT 21
9 AT 35
10 AT 39
100 AT 1179
 
CHECKING GCDS OF ADJACENT PAIRS... ALL 1.</pre>
 
=={{header|MAD}}==
<syntaxhighlight lang="mad"> NORMAL MODE IS INTEGER
VECTOR VALUES FRST15 = $20HFIRST 15 NUMBERS ARE*$
VECTOR VALUES FRSTAT = $6HFIRST ,I3,S1,11HAPPEARS AT ,I4*$
VECTOR VALUES NUMBER = $I4*$
DIMENSION STERN(1200)
STERN(1) = 1
STERN(2) = 1
R GENERATE FIRST 1200 MEMBERS OF THE STERN-BROCOT SEQUENCE
THROUGH GENSEQ, FOR I = 1, 1, I .GE. 600
STERN(I*2-1) = STERN(I) + STERN(I-1)
GENSEQ STERN(I*2) = STERN(I)
 
R PRINT FIRST 15 VALUES OF STERN-BROCOT SEQUENCE
PRINT FORMAT FRST15
THROUGH P15, FOR I = 1, 1, I .G. 15
P15 PRINT ON LINE FORMAT NUMBER, STERN(I)
R PRINT FIRST OCCURRENCE OF 1..10
THROUGH FRST10, FOR I = 1, 1, I .G. 10
FRST10 PRINT FORMAT FRSTAT, I, FIRST.(I)
PRINT FORMAT FRSTAT, 100, FIRST.(100)
R SEARCH FOR FIRST OCCURRENCE OF N IN SEQUENCE
INTERNAL FUNCTION(N)
ENTRY TO FIRST.
THROUGH SCAN, FOR K = 1, 1, I .G. 1200
SCAN WHENEVER N .E. STERN(K), FUNCTION RETURN K
END OF FUNCTION
END OF PROGRAM</syntaxhighlight>
 
{{out}}
 
<pre style="height: 45ex;">FIRST 15 NUMBERS ARE
1
1
2
1
3
2
3
1
4
3
5
2
5
3
4
FIRST 1 APPEARS AT 1
FIRST 2 APPEARS AT 3
FIRST 3 APPEARS AT 5
FIRST 4 APPEARS AT 9
FIRST 5 APPEARS AT 11
FIRST 6 APPEARS AT 33
FIRST 7 APPEARS AT 19
FIRST 8 APPEARS AT 21
FIRST 9 APPEARS AT 35
FIRST 10 APPEARS AT 39
FIRST 100 APPEARS AT 1179</pre>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">sb = {1, 1};
Do[
sb = sb~Join~{Total@sb[[i - 1 ;; i]], sb[[i]]}
,
{i, 2, 1000}
]
Take[sb, 15]
Flatten[FirstPosition[sb, #] & /@ Range[10]]
First@FirstPosition[sb, 100]
AllTrue[Partition[Take[sb, 1000], 2, 1], Apply[GCD] /* EqualTo[1]]</syntaxhighlight>
{{out}}
<pre>{1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4}
{1, 3, 5, 9, 11, 33, 19, 21, 35, 39}
1179
True</pre>
 
=={{header|Miranda}}==
<syntaxhighlight lang="miranda">main :: [sys_message]
main = [Stdout (lay
["First 15: " ++ show first15,
"Indices of first 1..10: " ++ show idx10,
"Index of first 100: " ++ show idx100,
"The GCDs of the first 1000 pairs are all 1: " ++ show allgcd])]
 
first15 :: [num]
first15 = take 15 stern
 
idx10 :: [num]
idx10 = [find num stern | num<-[1..10]]
 
idx100 :: num
idx100 = find 100 stern
 
allgcd :: bool
allgcd = and [gcd a b = 1 | (a, b) <- take 1000 (zip2 stern (tl stern))]
 
 
|| Stern-Brocot sequence
stern :: [num]
stern = 1 : 1 : concat (map consider (zip2 stern (tl stern)))
where consider (prev,item) = [prev + item, item]
 
|| Supporting functions
gcd :: num->num->num
gcd a 0 = a
gcd a b = gcd b (a mod b)
 
find :: *->[*]->num
find item = find' 1
where find' idx [] = 0
find' idx (a:as) = idx, if a = item
= find' (idx + 1) as, otherwise</syntaxhighlight>
{{out}}
<pre>First 15: [1,1,2,1,3,2,3,1,4,3,5,2,5,3,4]
Indices of first 1..10: [1,3,5,9,11,33,19,21,35,39]
Index of first 100: 1179
The GCDs of the first 1000 pairs are all 1: True</pre>
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE SternBrocot;
FROM InOut IMPORT WriteString, WriteCard, WriteLn;
 
CONST Amount = 1200;
 
VAR stern: ARRAY [1..Amount] OF CARDINAL;
i: CARDINAL;
PROCEDURE GCD(a,b: CARDINAL): CARDINAL;
VAR c: CARDINAL;
BEGIN
WHILE b # 0 DO
c := a MOD b;
a := b;
b := c;
END;
RETURN a;
END GCD;
 
PROCEDURE Generate;
VAR i: CARDINAL;
BEGIN
stern[1] := 1;
stern[2] := 1;
FOR i := 2 TO Amount DIV 2 DO
stern[i*2 - 1] := stern[i] + stern[i-1];
stern[i*2] := stern[i];
END;
END Generate;
 
PROCEDURE FindFirst(n: CARDINAL): CARDINAL;
VAR i: CARDINAL;
BEGIN
FOR i := 1 TO Amount DO
IF stern[i] = n THEN
RETURN i;
END;
END;
END FindFirst;
 
PROCEDURE ShowFirst(n: CARDINAL);
BEGIN
WriteString("First");
WriteCard(n,4);
WriteString(" at ");
WriteCard(FindFirst(n), 4);
WriteLn;
END ShowFirst;
 
BEGIN
Generate;
WriteString("First 15 numbers:");
FOR i := 1 TO 15 DO
WriteCard(stern[i], 2);
END;
WriteLn;
FOR i := 1 TO 10 DO
ShowFirst(i);
END;
ShowFirst(100);
WriteLn;
FOR i := 2 TO Amount DO
IF GCD(stern[i-1], stern[i]) # 1 THEN
WriteString("GCD of adjacent elements not 1 at: ");
WriteCard(i-1, 4);
WriteLn;
HALT;
END;
END;
WriteString("The GCD of every pair of adjacent elements is 1.");
WriteLn;
END SternBrocot.</syntaxhighlight>
{{out}}
<pre>First 15 numbers: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
 
The GCD of every pair of adjacent elements is 1.</pre>
 
=={{header|Nim}}==
We use an iterator and store the values in a sequence. To reduce memory usage, we could replace the sequence with a deque and pop the previous value at each round. But it’s no worth to complete the task.
 
<syntaxhighlight lang="nim">import math, strformat, strutils
 
iterator sternBrocot(): (int, int) =
## Yield index and value of the terms of the sequence.
var sequence: seq[int]
sequence.add 1
sequence.add 1
var index = 1
yield (1, 1)
yield (2, 1)
while true:
sequence.add sequence[index] + sequence[index - 1]
yield (sequence.len, sequence[^1])
sequence.add sequence[index]
yield (sequence.len, sequence[^1])
inc index
 
# Fiind first 15 terms.
var res: seq[int]
for i, n in sternBrocot():
res.add n
if i == 15: break
echo "First 15 terms: ", res.join(" ")
echo()
 
# Find indexes for 1..10.
var indexes: array[1..10, int]
var toFind = 10
for i, n in sternBrocot():
if n in 1..10 and indexes[n] == 0:
indexes[n] = i
dec toFind
if toFind == 0: break
for n in 1..10:
echo &"Index of first occurrence of number {n:3}: {indexes[n]:4}"
 
# Find index for 100.
var index: int
for i, n in sternBrocot():
if n == 100:
index = i
break
echo &"Index of first occurrence of number 100: {index:4}"
echo()
 
# Check GCD.
var prev = 1
index = 1
for i, n in sternBrocot():
if gcd(prev, n) != 1: break
prev = n
inc index
if index > 1000: break
if index <= 1000:
echo "Found two successive terms at index: ", index
else:
echo "All consecutive terms up to the 1000th member have a GCD equal to one."</syntaxhighlight>
 
{{out}}
<pre>First 15 terms: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
Index of first occurrence of number 1: 1
Index of first occurrence of number 2: 3
Index of first occurrence of number 3: 5
Index of first occurrence of number 4: 9
Index of first occurrence of number 5: 11
Index of first occurrence of number 6: 33
Index of first occurrence of number 7: 19
Index of first occurrence of number 8: 21
Index of first occurrence of number 9: 35
Index of first occurrence of number 10: 39
Index of first occurrence of number 100: 1179
 
All consecutive terms up to the 1000th member have a GCD equal to one.</pre>
 
=={{header|OCaml}}==
<syntaxhighlight lang="ocaml">let seq_stern_brocot =
let rec next x xs () =
match xs () with
| Seq.Nil -> assert false
| Cons (x', xs') -> Seq.Cons (x' + x, Seq.cons x' (next x' xs'))
in
let rec tail () = Seq.Cons (1, next 1 tail) in
Seq.cons 1 tail</syntaxhighlight>
;<nowiki>Tests:</nowiki>
<syntaxhighlight lang="ocaml">let rec gcd a = function
| 0 -> a
| b -> gcd b (a mod b)
 
let seq_index_of el =
let rec next i sq =
match sq () with
| Seq.Nil -> 0
| Cons (e, sq') -> if e = el then i else next (succ i) sq'
in
next 1
 
let seq_map_pairwise f sq =
match sq () with
| Seq.Nil -> Seq.empty
| Cons (_, sq') -> Seq.map2 f sq sq'
 
let () =
seq_stern_brocot |> Seq.take 15 |> Seq.iter (Printf.printf " %u") |> print_newline
and () =
List.iter
(fun n -> seq_stern_brocot |> seq_index_of n |> Printf.printf " %u@%u" n)
[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 100]
|> print_newline
and () =
seq_stern_brocot |> Seq.take 1000 |> seq_map_pairwise gcd |> Seq.for_all ((=) 1)
|> Printf.printf " %B\n"</syntaxhighlight>
{{out}}
<pre>
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
1@1 2@3 3@5 4@9 5@11 6@33 7@19 8@21 9@35 10@39 100@1179
true
</pre>
 
=={{header|Oforth}}==
<syntaxhighlight lang="oforth">: stern(n)
| l i |
ListBuffer new dup add(1) dup add(1) dup ->l
Line 2,459 ⟶ 4,586:
n 2 mod ifFalse: [ dup removeLast drop ] dup freeze ;
 
stern(10000) Constant new: Sterns</langsyntaxhighlight>
 
{{out}}
Line 2,490 ⟶ 4,617:
{{Works with|PARI/GP|2.7.4 and above}}
 
<langsyntaxhighlight lang="parigp">
\\ Stern-Brocot sequence
\\ 5/27/16 aev
Line 2,518 ⟶ 4,645:
if(j==1, print("Yes"), print("No"));
}
</langsyntaxhighlight>
{{Output}}
Line 2,530 ⟶ 4,657:
=={{header|Pascal}}==
{{works with|Free Pascal}}
<langsyntaxhighlight lang="pascal">program StrnBrCt;
{$IFDEF FPC}
{$MODE DELPHI}
Line 2,616 ⟶ 4,743:
writeln('GCD-test is O.K.');
setlength(seq,0);
end.</langsyntaxhighlight>{{Out}}<pre>1,1,2,1,3,2,3,1,4,3,5,2,5,3,4
1 @ 1,2 @ 3,3 @ 5,4 @ 9,5 @ 11,6 @ 33,7 @ 38,8 @ 42,9 @ 47,10 @ 57
100 @ 1179
Line 2,622 ⟶ 4,749:
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">use strict;
use warnings;
 
Line 2,657 ⟶ 4,784:
($a, $b) = ($b, $generator->());
}
}</langsyntaxhighlight>
{{out}}
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Line 2,673 ⟶ 4,800:
 
A slightly different method:{{libheader|ntheory}}
<langsyntaxhighlight lang="perl">use ntheory qw/gcd vecsum vecfirst/;
 
sub stern_diatomic {
Line 2,691 ⟶ 4,818:
print "The first 999 consecutive pairs are ",
(vecsum( map { gcd(stern_diatomic($_),stern_diatomic($_+1)) } 1..999 ) == 999)
? "all coprime.\n" : "NOT all coprime!\n";</langsyntaxhighlight>
{{out}}
<pre>First fifteen: [1 1 2 1 3 2 3 1 4 3 5 2 5 3 4]
Line 2,697 ⟶ 4,824:
Index of 100 first occurrence: 1179
The first 999 consecutive pairs are all coprime.</pre>
 
=={{header|Perl 6}}==
{{works with|rakudo|2017-03}}
<lang perl6>constant @Stern-Brocot = 1, 1, {
|(@_[$_ - 1] + @_[$_], @_[$_]) given ++$
} ... *;
 
say @Stern-Brocot[^15];
 
for (flat 1..10, 100) -> $ix {
say "first occurrence of $ix is at index : ", 1 + @Stern-Brocot.first($ix, :k);
}
 
say so 1 == all map ^1000: { [gcd] @Stern-Brocot[$_, $_ + 1] }</lang>
{{out}}
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
first occurrence of 1 is at index : 1
first occurrence of 2 is at index : 3
first occurrence of 3 is at index : 5
first occurrence of 4 is at index : 9
first occurrence of 5 is at index : 11
first occurrence of 6 is at index : 33
first occurrence of 7 is at index : 19
first occurrence of 8 is at index : 21
first occurrence of 9 is at index : 35
first occurrence of 10 is at index : 39
first occurrence of 100 is at index : 1179
True</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>sequence sb = {1,1}
<span style="color: #004080;">sequence</span> <span style="color: #000000;">sb</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}</span>
integer c = 2
<span style="color: #004080;">integer</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span>
 
function stern_brocot(integer n)
<span style="color: #008080;">function</span> <span style="color: #000000;">stern_brocot</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
while length(sb)<n do
<span style="color: #008080;">while</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sb</span><span style="color: #0000FF;">)<</span><span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
sb &= sb[c]+sb[c-1] & sb[c]
<span style="color: #000000;">sb</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">sb</span><span style="color: #0000FF;">[</span><span style="color: #000000;">c</span><span style="color: #0000FF;">]+</span><span style="color: #000000;">sb</span><span style="color: #0000FF;">[</span><span style="color: #000000;">c</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">&</span> <span style="color: #000000;">sb</span><span style="color: #0000FF;">[</span><span style="color: #000000;">c</span><span style="color: #0000FF;">]</span>
c += 1
<span style="color: #000000;">c</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
return sb[1..n]
<span style="color: #008080;">return</span> <span style="color: #000000;">sb</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">n</span><span style="color: #0000FF;">]</span>
end function
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
 
sequence s = stern_brocot(15)
<span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">stern_brocot</span><span style="color: #0000FF;">(</span><span style="color: #000000;">15</span><span style="color: #0000FF;">)</span>
puts(1,"first 15:")
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"first 15:"</span><span style="color: #0000FF;">)</span>
?s
<span style="color: #0000FF;">?</span><span style="color: #000000;">s</span>
integer n = 16, k
<span style="color: #004080;">integer</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">16</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span>
sequence idx = tagset(10)
<span style="color: #004080;">sequence</span> <span style="color: #000000;">idx</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">tagset</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)</span>
for i=1 to length(idx) do
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">idx</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
while 1 do
<span style="color: #008080;">while</span> <span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
k = find(idx[i],s)
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">idx</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
if k!=0 then exit end if
<span style="color: #008080;">if</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
n *= 2
<span style="color: #000000;">n</span> <span style="color: #0000FF;">*=</span> <span style="color: #000000;">2</span>
s = stern_brocot(n)
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">stern_brocot</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
idx[i] = k
<span style="color: #000000;">idx</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">k</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
puts(1,"indexes of 1..10:")
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"indexes of 1..10:"</span><span style="color: #0000FF;">)</span>
?idx
<span style="color: #0000FF;">?</span><span style="color: #000000;">idx</span>
puts(1,"index of 100:")
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"index of 100:"</span><span style="color: #0000FF;">)</span>
while 1 do
<span style="color: #008080;">while</span> <span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
k = find(100,s)
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">100</span><span style="color: #0000FF;">,</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
if k!=0 then exit end if
<span style="color: #008080;">if</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
n *= 2
<span style="color: #000000;">n</span> <span style="color: #0000FF;">*=</span> <span style="color: #000000;">2</span>
s = stern_brocot(n)
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">stern_brocot</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
?k
<span style="color: #0000FF;">?</span><span style="color: #000000;">k</span>
s = stern_brocot(1000)
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">stern_brocot</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">)</span>
integer maxgcd = 1
<span style="color: #004080;">integer</span> <span style="color: #000000;">maxgcd</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
for i=1 to 999 do
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">999</span> <span style="color: #008080;">do</span>
maxgcd = max(gcd(s[i],s[i+1]),maxgcd)
<span style="color: #000000;">maxgcd</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">max</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">gcd</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]),</span><span style="color: #000000;">maxgcd</span><span style="color: #0000FF;">)</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
printf(1,"max gcd:%d\n",{maxgcd})</lang>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"max gcd:%d\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">maxgcd</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{Out}}
<pre>
Line 2,779 ⟶ 4,880:
{{trans|C}}
Using the <tt>gcd</tt> function defined at ''[[Greatest_common_divisor#PicoLisp]]'':
<langsyntaxhighlight PicoLisplang="picolisp">(de nmbr (N)
(let (A 1 B 0)
(while (gt0 N)
Line 2,795 ⟶ 4,896:
(for (L Lst (cdr L) (cddr L))
(test 1 (gcd (car L) (cadr L))) )
(prinl "All consecutive pairs are relative prime!") )</langsyntaxhighlight>
{{out}}
<pre>
Line 2,812 ⟶ 4,913:
All consecutive pairs are relative prime!
</pre>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pli">sternBrocot: procedure options(main);
%replace MAX by 1200;
declare S(1:MAX) fixed;
/* find the first occurrence of N in S */
findFirst: procedure(n) returns(fixed);
declare (n, i) fixed;
do i=1 to MAX;
if S(i)=n then return(i);
end;
end findFirst;
/* find the greatest common divisor of A and B */
gcd: procedure(a, b) returns(fixed) recursive;
declare (a, b) fixed;
if b = 0 then return(a);
return(gcd(b, mod(a, b)));
end gcd;
/* calculate S(i) up to MAX */
declare i fixed;
S(1) = 1; S(2) = 1;
do i=2 to MAX/2;
S(i*2-1) = S(i) + S(i-1);
S(i*2) = S(i);
end;
/* print first 15 elements */
put skip list('First 15 elements: ');
do i=1 to 15;
put edit(S(i)) (F(2));
end;
/* find first occurrences of 1..10 and 100 */
do i=1 to 10;
put skip list('First',i,'at',findFirst(i));
end;
put skip list('First ',100,'at',findFirst(100));
/* check GCDs of adjacent pairs up to 1000th element */
do i=2 to 1000;
if gcd(S(i-1),S(i)) ^= 1 then do;
put skip list('GCD of adjacent pair not 1 at i=',i);
stop;
end;
end;
put skip list('All GCDs of adjacent pairs are 1.');
end sternBrocot;</syntaxhighlight>
{{out}}
<pre>First 15 elements: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
All GCDs of adjacent pairs are 1.</pre>
 
=={{header|PL/M}}==
<syntaxhighlight lang="plm">100H:
/* FIND LOCATION OF FIRST ELEMENT IN ARRAY */
FIND$FIRST: PROCEDURE (ARR, EL) ADDRESS;
DECLARE (ARR, N) ADDRESS, (EL, A BASED ARR) BYTE;
N = 0;
LOOP:
IF A(N) = EL THEN RETURN N;
ELSE N = N + 1;
GO TO LOOP;
END FIND$FIRST;
 
/* CP/M CALL */
BDOS: PROCEDURE (FN, ARG);
DECLARE FN BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
 
PRINT: PROCEDURE (STRING);
DECLARE STRING ADDRESS;
CALL BDOS(9, STRING);
END PRINT;
 
/* PRINT NUMBER */
PRINT$NUMBER: PROCEDURE (N);
DECLARE S (6) BYTE INITIAL ('.....$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = N MOD 10 + '0';
IF (N := N / 10) > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT$NUMBER;
 
/* GENERATE FIRST 1200 ELEMENTS OF STERN-BROCOT SEQUENCE */
DECLARE S (1201) BYTE, I ADDRESS;
S(1) = 1;
S(2) = 1;
DO I = 2 TO 600;
S(I*2-1) = S(I) + S(I-1);
S(I*2) = S(I);
END;
 
/* PRINT FIRST 15 ELEMENTS */
CALL PRINT(.'FIRST 15 ELEMENTS: $');
DO I = 1 TO 15;
CALL PRINT$NUMBER(S(I));
CALL PRINT(.' $');
END;
CALL PRINT(.(13,10,'$'));
 
/* PRINT FIRST OCCURRENCE OF N */
PRINT$FIRST: PROCEDURE (N);
DECLARE N BYTE;
CALL PRINT(.'FIRST $');
CALL PRINT$NUMBER(N);
CALL PRINT(.' AT $');
CALL PRINT$NUMBER(FIND$FIRST(.S, N));
CALL PRINT(.(13,10,'$'));
END PRINT$FIRST;
 
DO I = 1 TO 10;
CALL PRINT$FIRST(I);
END;
CALL PRINT$FIRST(100);
 
/* CHECK GCDS */
GCD: PROCEDURE (A, B) BYTE;
DECLARE (A, B, C) BYTE;
LOOP:
C = A;
A = B;
B = C MOD A;
IF B <> 0 THEN GO TO LOOP;
RETURN A;
END GCD;
 
DO I = 2 TO 1000;
IF GCD(S(I-1),S(I)) <> 1 THEN DO;
CALL PRINT(.'GCD NOT 1 AT: $');
CALL PRINT$NUMBER(I);
CALL BDOS(0,0);
END;
END;
 
CALL PRINT(.'ALL GCDS ARE 1$');
CALL BDOS(0,0);
EOF</syntaxhighlight>
{{out}}
<pre>FIRST 15 ELEMENTS: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
FIRST 1 AT 1
FIRST 2 AT 3
FIRST 3 AT 5
FIRST 4 AT 9
FIRST 5 AT 11
FIRST 6 AT 33
FIRST 7 AT 19
FIRST 8 AT 21
FIRST 9 AT 35
FIRST 10 AT 39
FIRST 100 AT 1179
ALL GCDS ARE 1</pre>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
<lang PowerShell>
# An iterative approach
function iter_sb($count = 2000)
Line 2,843 ⟶ 5,112:
'GCD = 1 for first 1000 members: {0}' -f $gcd
}
</syntaxhighlight>
</lang>
 
{{out}}
Line 2,876 ⟶ 5,145:
GCD = 1 for first 1000 members: True
</pre>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">EnableExplicit
Define.i i
 
If OpenConsole("")
PrintN("Stern-Brocot_sequence")
Else
End 1
EndIf
 
Procedure.i f(n.i)
If n<2
ProcedureReturn n
ElseIf n&1
ProcedureReturn f(n/2)+f(n/2+1)
Else
ProcedureReturn f(n/2)
EndIf
EndProcedure
 
Procedure.i gcd(a.i,b.i)
If b : ProcedureReturn gcd(b,a%b) : EndIf
ProcedureReturn a
EndProcedure
 
Procedure.i ind(m.i)
Define.i i=1
While f(i)<>m : i+1 : Wend
ProcedureReturn i
EndProcedure
 
Print("First 15 elements: ")
For i=1 To 15
Print(Str(f(i))+Space(3))
Next
PrintN(~"\n")
 
For i=1 To 10
PrintN(RSet(Str(i),3)+" is at pos. #"+Str(ind(i)))
Next
PrintN("100 is at pos. #"+Str(ind(100)))
PrintN("")
 
i=1
While i<1000 And gcd(f(i),f(i+1))=1 : i+1 : Wend
If i=1000
PrintN("All GCDs are 1.")
Else
PrintN("GCD of "+Str(i)+" and "+Str(i+1)+" is not 1")
EndIf
 
Input()</syntaxhighlight>
{{out}}
<pre>Stern-Brocot_sequence
First 15 elements: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
 
1 is at pos. #1
2 is at pos. #3
3 is at pos. #5
4 is at pos. #9
5 is at pos. #11
6 is at pos. #33
7 is at pos. #19
8 is at pos. #21
9 is at pos. #35
10 is at pos. #39
100 is at pos. #1179
 
All GCDs are 1.</pre>
 
=={{header|Python}}==
===Python: procedural===
<langsyntaxhighlight lang="python">def stern_brocot(predicate=lambda series: len(series) < 20):
"""\
Generates members of the stern-brocot series, in order, returning them when the predicate becomes false
Line 2,914 ⟶ 5,253:
s = stern_brocot(lambda series: len(series) < n_gcd)[:n_gcd]
assert all(gcd(prev, this) == 1
for prev, this in zip(s, s[1:])), 'A fraction from adjacent terms is reducible'</langsyntaxhighlight>
 
{{out}}
Line 2,937 ⟶ 5,276:
 
See the [[Talk:Stern-Brocot_sequence#deque_over_list.3F|talk page]] for how a deque was selected over the use of a straightforward list'
<langsyntaxhighlight lang="python">>>> from itertools import takewhile, tee, islice
>>> from collections import deque
>>> from fractions import gcd
Line 2,958 ⟶ 5,297:
>>> all(gcd(p, t) == 1 for p, t in islice(zip(prev, this), 1000))
True
>>> </langsyntaxhighlight>
 
===Python: Composing pure (curried) functions===
 
Or,Composing composingand testing a solutionStern-Brocot fromfunction by composition of generic and reusable functional abstractions: (curried for more flexible nesting and rearrangement).
{{Works with|Python|3.7}}
<lang python>from itertools import (islice, takewhile)
<syntaxhighlight lang="python">'''Stern-Brocot sequence'''
from fractions import gcd
 
import math
import operator
from itertools import count, dropwhile, islice, takewhile
 
 
# sternBrocot :: Generator [Int]
def sternBrocot():
'''Non-finite list of the Stern-Brocot
sequence of integers.
'''
def go(xs):
x[a, b] = xs[1:2]
return (a, xs[1:] + [xs[0]a + xb, xb])
return fmapGenunfoldr(headgo)([1, 1])
iterate(go)([1, 1])
)
 
 
# TESTS -------------------------- TESTS -------------------------
# main :: IO ()
def main():
'''Various tests'''
 
[eq, ne, gcd] = map(
curry,
[operator.eq, operator.ne, math.gcd]
)
 
# main :: IO ()
def main():
sbs = take(1200)(sternBrocot())
ixSB = zip(sbs, enumFrom(1))
 
print (
print(unlines(map(str, [
*(
 
take(15)(sbs),
# First 15 members take(10)(of the sequence.
nubBytake(on(eq15)(fstsbs))(,
 
sortBy(fst)(
# Indices of where the numbers [1..10] first appear.
takeWhile(lambda x: 12 != x[0])(
ixSBtake(10)(
nubBy(on(eq)(fst))(
)sorted(
takewhile(
compose(ne(12))(fst),
ixSB
),
key=fst
)
),
take(1)(
dropWhile(lambda x: 100 != fst(x))(
list(ixSB)
)
),
_all(lambda tpl: 1 == gcd(*tpl))(
take(1000)(zip(sbs, sbs[1:]))
)
), sep='\n'
)
 
# Index of where the number 100 first appears.
take(1)(dropwhile(compose(ne(100))(fst), ixSB)),
 
# Is the gcd of any two consecutive members,
# GENERIC ABSTRACTIONS ------------------------------------
# up to the 1000th member, always one ?
every(compose(eq(1)(gcd)))(
take(1000)(zip(sbs, tail(sbs)))
)
])))
 
 
# ----------------- GENERIC ABSTRACTIONS -----------------
# _all :: (a -> Bool) -> [a] -> Bool
def _all(p):
return lambda xs: all(map(p, xs))
 
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
 
# dropWhile :: (a -> Bool) -> [a] -> [a]
# dropWhile :: (Char -> Bool) -> String -> String
def dropWhile(p):
return lambda xs: (lambda lng=len(xs): xs[(
until(lambda i: i == lng or not p(xs[i]))
(lambda i: 1 + i)
(0)
):] if 0 < lng else [])()
 
# curry :: ((a, b) -> c) -> a -> b -> c
def curry(f):
'''A curried function derived
from an uncurried function.'''
return lambda a: lambda b: f(a, b)
 
# enumFrom :: Int -> [Int]
def enumFrom(n):
v = n
while True:
yield(v)
v = 1 + v
 
# enumFrom :: Enum a => a -> [a]
def enumFrom(x):
'''A non-finite stream of enumerable values,
starting from the given value.'''
return count(x) if isinstance(x, int) else (
map(chr, count(ord(x)))
)
 
# eq (==) :: Eq a => a -> a -> Bool
def eq(a):
return lambda b: a == b
 
# every :: (a -> Bool) -> [a] -> Bool
 
def every(p):
# fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
'''True if p(x) holds for every x in xs'''
def fmapGen(f):
return lambda xs: all(map(p, xs))
def go(g):
v = take(1)(g)
while 0 < len(v):
yield(f(v)[0])
v = take(1)(g)
return lambda gen: go(gen)
 
 
# fst :: (a, b) -> a
def fst(tpl):
'''First member of a pair.'''
return tpl[0]
 
Line 3,055 ⟶ 5,401:
# head :: [a] -> a
def head(xs):
'''The first element of a non-empty list.'''
return xs[0]
 
 
# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
def go(x):
v = x
while True:
yield(v)
v = f(v)
return lambda x: go(x)
 
 
# nubBy :: (a -> a -> Bool) -> [a] -> [a]
def nubBy(p):
'''A sublist of xs from which all duplicates,
(as defined by the equality predicate p)
are excluded.
'''
def go(xs):
if 0not < len(xs):
x = xs[0]
return [x] + go(
list(filter(
lambda y: not p(x)(y),
xs[1:]
))
)
else:
return []
return lambda xs: go( x = xs)[0]
return [x] + go(
list(filter(
lambda y: not p(x)(y),
xs[1:]
))
)
return go
 
 
# on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
def on(f):
'''A function returning the value of applying
the binary f to g(a) g(b)'''
return lambda g: lambda a: lambda b: f(g(a))(g(b))
 
 
# sortBytail :: (a -> b) -> [a] -> [a]
# tail :: Gen [a] -> [a]
def sortBy(f):
def tail(xs):
return lambda xs: sorted(xs, key=f)
'''The elements following the head of a
(non-empty) list or generator stream.'''
if isinstance(xs, list):
return xs[1:]
else:
islice(xs, 1) # First item dropped.
return xs
 
 
Line 3,097 ⟶ 5,446:
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.'''
return lambda xs: (
xs[0:n]
Line 3,104 ⟶ 5,455:
 
 
# takeWhileunfoldr :: (ab -> BoolMaybe (a, b)) -> [a]b -> Gen [a]
def unfoldr(f):
# takeWhile :: (Char -> Bool) -> String -> String
'''A lazy (generator) list unfolded from a seed value
def takeWhile(p):
by repeated application of f until no residue remains.
return lambda xs: list(
Dual islice(to fold/reduce.
f returns either None or just takewhile(pvalue, xsresidue),.
For a strict output list, wrap the result with list()
None
)'''
def go(x):
valueResidue = f(x)
while valueResidue:
yield valueResidue[0]
valueResidue = f(valueResidue[1])
return go
 
 
# unlines :: [String] -> String
# until :: (a -> Bool) -> (a -> a) -> a -> a
def untilunlines(pxs):
'''A single string derived by the intercalation
def go(f, x):
of a list of strings with the newline character.'''
v = x
return while not p'\n'.join(vxs):
v = f(v)
return v
return lambda f: lambda x: go(f, x)
 
 
# MAIN ---
main()</lang>
if __name__ == '__main__':
main()</syntaxhighlight>
{{Out}}
<pre>[1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
Line 3,131 ⟶ 5,486:
[(100, 1179)]
True</pre>
 
=={{header|Quackery}}==
<syntaxhighlight lang="quackery"> [ [ dup while
tuck mod again ]
drop abs ] is gcd ( n n --> n )
 
[ 2dup peek
dip [ 1+ 2dup peek ]
over + swap join
swap dip join ] is two-terms ( [ n --> [ n )
 
' [ 1 1 ] 0
8 times two-terms
over 15 split drop
witheach [ echo sp ] cr
[ two-terms
over -2 peek 100 = until ]
drop
10 times
[ i^ 1+ over find 1+ echo sp ] cr
dup size 1 - echo cr
false swap
behead swap witheach
[ tuck gcd 1 != if
[ dip not conclude ] ]
drop iff
[ say "Reducible pair found." ]
else
[ say "No reducible pairs found." ]</syntaxhighlight>
 
{{out}}
 
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
1 3 5 9 11 33 19 21 35 39
1179
No reducible pairs found.
</pre>
 
=={{header|R}}==
===For loop===
{{trans|PARI/GP}}
{{Works with|R|3.3.2 and above}}
{{libheader|pracma}}
 
<syntaxhighlight lang="rsplus">
<lang r>
## Stern-Brocot sequence
## 12/19/16 aev
Line 3,159 ⟶ 5,553:
if(j==1) {cat(" *** All GCDs=1!\n")} else {cat(" *** All GCDs!=1??\n")}
}
</langsyntaxhighlight>
 
{{Output}}
Line 3,172 ⟶ 5,566:
>
</pre>
===While loop===
{{libheader|gmp}}
Tasks like this are R's bread and butter. The previous solution uses smart mathematical tricks to generate the desired sequence with a for loop and uses a similarly clever for loop for the task involving gcds. However, R is smart enough to let us avoid this work by writing some much more idiomatic code.
 
As with the previous solution, we have used a library for our gcd function. In this case, we have used gmp.
=={{header|Racket}}==
<syntaxhighlight lang="rsplus">genNStern <- function(n)
{
sternNums <- c(1, 1)
i <- 2
while((endIndex <- length(sternNums)) < n)
{
#To show off R's vectorization, the following line is deliberately terse.
#It assigns sternNums[i-1]+sternNums[i] to sternNums[endIndex+1]
#and it assigns sternNums[i], the "considered" number, to sternNums[endIndex+2], now the end of the sequence.
#Note that we do not have to initialize a big sternNums array to do this.
#True to the algorithm, the new entries are appended to the end of the old sequence.
sternNums[endIndex + c(1, 2)] <- c(sum(sternNums[c(i - 1, i)]), sternNums[i])
i <- i + 1
}
sternNums[seq_len(n)]
}
#N=5000 was picked arbitrarily. The code runs very fast regardless of this number being much more than we need.
firstFiveThousandTerms <- genNStern(5000)
match(1:10, firstFiveThousandTerms)
match(100, firstFiveThousandTerms)
all(sapply(1:999, function(i) gmp::gcd(firstFiveThousandTerms[i], firstFiveThousandTerms[i + 1])) == 1)</syntaxhighlight>
{{Output}}
<pre>> firstFiveThousandTerms <- genNStern(5000)
> match(1:10, firstFiveThousandTerms)
[1] 1 3 5 9 11 33 19 21 35 39
> match(100, firstFiveThousandTerms)
[1] 1179
> all(sapply(1:999, function(i) gmp::gcd(firstFiveThousandTerms[i], firstFiveThousandTerms[i + 1])) == 1)
[1] TRUE</pre>
 
=={{header|Racket}}==
<lang racket>#lang racket
<syntaxhighlight lang="racket">#lang racket
;; OEIS Definition
;; A002487
Line 3,212 ⟶ 5,639:
(for/first ((i (in-range 1 1000))
#:unless (= 1 (gcd (Stern-Brocot i) (Stern-Brocot (add1 i))))) #t)
(display "\tdidn't find gcd > (or otherwise ≠) 1"))</langsyntaxhighlight>
 
{{out}}
Line 3,235 ⟶ 5,662:
didn't find gcd > (or otherwise ≠) 1</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|rakudo|2017-03}}
<syntaxhighlight lang="raku" line>constant @Stern-Brocot = 1, 1, { |(@_[$_ - 1] + @_[$_], @_[$_]) given ++$ } ... *;
 
put @Stern-Brocot[^15];
 
for flat 1..10, 100 -> $ix {
say "First occurrence of {$ix.fmt('%3d')} is at index: {(1+@Stern-Brocot.first($ix, :k)).fmt('%4d')}";
}
 
say so 1 == all map ^1000: { [gcd] @Stern-Brocot[$_, $_ + 1] }</syntaxhighlight>
{{out}}
<pre>1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First occurrence of 1 is at index: 1
First occurrence of 2 is at index: 3
First occurrence of 3 is at index: 5
First occurrence of 4 is at index: 9
First occurrence of 5 is at index: 11
First occurrence of 6 is at index: 33
First occurrence of 7 is at index: 19
First occurrence of 8 is at index: 21
First occurrence of 9 is at index: 35
First occurrence of 10 is at index: 39
First occurrence of 100 is at index: 1179
True</pre>
 
=={{header|Refal}}==
<syntaxhighlight lang="refal">$ENTRY Go {
, <Stern 1300>: e.Seq
= <Prout 'First 15: ' <Take 15 e.Seq>>
<ForEach (<Iota 1 10>) ShowFirst e.Seq>
<ShowFirst 100 e.Seq>
<Prout <GcdPairCheck <Take 1000 e.Seq>>>;
};
 
Stern {
s.N = <Stern <- s.N 2> (1) 1>;
0 (e.X) e.Y = e.X e.Y;
s.N (e.X s.P) s.C e.Y,
<- s.N 1>: s.Rem,
<+ s.P s.C>: s.CSum
= <Stern s.Rem (e.X s.P s.C) e.Y s.CSum s.C>;
};
 
Take {
0 e.X = ;
s.N s.I e.X = s.I <Take <- s.N 1> e.X>;
};
 
FindFirst {
s.I e.X = <FindFirst (1) s.I e.X>;
(s.L) s.I s.I e.X = s.L;
(s.L) s.I s.J e.X = <FindFirst (<+ s.L 1>) s.I e.X>;
};
 
ShowFirst {
s.I e.X, <FindFirst s.I e.X>: s.N = <Prout 'First ' s.I 'at ' s.N>;
};
 
ForEach {
() s.F e.Arg = ;
(s.I e.X) s.F e.Arg = <Mu s.F s.I e.Arg> <ForEach (e.X) s.F e.Arg>;
};
 
Iota {
s.From s.To = <Iota s.From s.To s.From>;
s.From s.To s.To = s.To;
s.From s.To s.Cur = s.Cur <Iota s.From s.To <+ s.Cur 1>>;
};
 
Gcd {
s.N 0 = s.N;
s.N s.M = <Gcd s.M <Mod s.N s.M>>;
};
 
GcdPairCheck {
s.A s.B e.X, <Gcd s.A s.B>: 1
= <GcdPairCheck s.B e.X>;
s.A s.B e.X, <Gcd s.A s.B>: s.N
= 'The GCD of ' <Symb s.A> ' and ' <Symb s.B> ' is ' <Symb s.N>;
e.X = 'The GCDs of all adjacent pairs are 1.';
};</syntaxhighlight>
{{out}}
<pre>First 15: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
The GCDs of all adjacent pairs are 1.</pre>
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program generates & displays a Stern─Brocot sequence; finds 1─based indices; GCDs*/
parse arg N idx fix chk . /*get optional arguments from the C.L. */
if N=='' | N=="," then N= 15 15 /*Not specified? Then use the default.*/
if idx=='' | idx=="," then idx= 10 10 /* " " " " " " */
if fix=='' | fix=="," then fix= 100 100 /* " " " " " " */
if chk=='' | chk=="," then chk=1000 1000 /* " " " " " " */
 
if N>0 then say center('the first' N "numbers in the Stern─Brocot sequence", 70, '═')
a= Stern_Brocot(N) /*invoke function to generate sequence.*/
say a /*display the sequence to the terminal.*/
say
say center('the 1─based index for the first' idx "integers", 70, '═')
a= Stern_Brocot(-idx) /*invoke function to generate sequence.*/
w= length(idx); do i=1 for idx
say 'for ' right(i, w)", the index is: " wordpos(i, a)
end /*i*/
say
say center('the 1─based index for' fix, 70, "═")
a= Stern_Brocot(-fix) /*invoke function to generate sequence.*/
say 'for ' fix", the index is: " wordpos(fix, a)
say
if chk<2 then exit 0
say center('checking if all two consecutive members have a GCD=1', 70, '═')
a= Stern_Brocot(chk) /*invoke function to generate sequence.*/
do c=1 for chk-1; if gcd(subword(a, c, 2))==1 then iterate
say 'GCD check failed at index' c; exit 13
end /*c*/
say
 
say '───── All ' chk " two consecutive members have a GCD of unity."
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
gcd: procedure; $=; do i=1 for arg(); $= $ arg(i) /*get arg list. */
end /*i*/
parse var $ x z .; if x=0 then x=z z /*is zero case? */
x=abs(x) /*use absolute x*/
do j=2 to words($); y=abs( word($, j) )
Line 3,277 ⟶ 5,802:
return x /*return the GCD*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
Stern_Brocot: parse arg h 1 f; $= 1 1; if h<0 then h= 1e9
else f= 0
f= abs(f)
do k=2 until words($)>=h | wordpos(f, $)\==0; _=word($, k)
_= word($, k); $= $ (_ + word($, k-1) ) _
end /*k*/
if f==0 then return subword($, 1, h)
return $</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
Line 3,310 ⟶ 5,835:
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
# Project : Stern-Brocot sequence
 
Line 3,364 ⟶ 5,889:
end
return gcd
</syntaxhighlight>
</lang>
Output:
<pre>
Line 3,381 ⟶ 5,906:
Correct: The first 999 consecutive pairs are relative prime!
</pre>
 
=={{header|RPL}}==
Task 1 is done by applying the algorithm explained above.
Other requirements are based on Mike Stay's formula for OEIS AA002487:
a(n) = a(n-2) + a(n-1) - 2*(a(n-2) mod a(n-1))
which avoids keeping a huge subset of the sequence in memory
{{works with|Halcyon Calc|4.2.7}}
{| class="wikitable"
! RPL code
! Comment
|-
|
{ 1 1 } 1
'''WHILE''' OVER SIZE 4 PICK < '''REPEAT'''
GETI ROT ROT DUP2 GET 4 ROLL +
ROT SWAP + SWAP
DUP2 GET ROT SWAP + SWAP
'''END''' ROT DROP2
≫ ‘'''TASK1'''’ STO
0 1
2 4 ROLL '''START'''
DUP2 + LAST MOD 2 * - ROT DROP '''NEXT'''
SWAP DROP
≫ ‘'''STERN'''’ STO
≪ 1
'''WHILE''' DUP '''STERN''' 3 PICK ≠ '''REPEAT''' 1 + '''END''' R→C
≫ ‘'''WHEN'''’ STO
|
'''TASK1''' ''( n -- {SB(1)..SB(n) )''
initialize stack with SB(1), SB(2) and pointer i
loop until SB(n) reached
get SB(i)+SB(i+1)
add to list
add SB(i+1) to list
clean stack
'''STERN''' ''( n -- SB(n) )''
initialize stack with SB(0), SB(1)
loop n-2 times
SB(i)=SB(i-1)+SB(i-2)-2*(SB(i-2) mod SB(i-1))
clean stack
'''WHEN''' ''( m -- (n,SB(n)) )'' with SB(n) = m
loop until found
|}
{{in}}
<pre>
15 TASK1
{ } 1 10 FOR n n WHEN + NEXT
100 WHEN
</pre>
{{out}}
<pre>
3: { 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 }
2: { (1,1) (2,3) (3,5) (4,9) (5,11) (6,33) (7,19) (8,21) (9,35) (10,39) }
1: (100,1179)
</pre>
===Faster version for big values of n===
We use here the fact that
SB(2^k) = 1 and SB(2^k + 1) = k+1 for any k>0
which can be easily demonstrated by using the definition of the fusc sequence, identical to the Stern-Brocot sequence (OEIS AA002487).
{| class="wikitable"
! RPL code
! Comment
|-
|
'''IF''' DUP 4 < '''THEN''' 0 1
'''ELSE'''
DUP LN 2 LN / IP 2 OVER ^
ROT SWAP - 1 ROT 1 +
'''END'''
≫ ‘'''Offset'''’ STO
'''Offset'''
2 4 ROLL '''START'''
DUP2 + LAST MOD 2 * - ROT DROP '''NEXT'''
SWAP DROP
≫ ‘'''STERN'''’ STO
|
'''Offset''' ''( n -- 1 k+1 offset )''
start at the beginning for small n values
otherwise
get k with 2^k ≤ n
initialize stack to 1, k+1, n-2^k
'''STERN''' ''( n -- SB(n) )''
initialize stack
loop n-2 times
SB(i)=SB(i-1)+SB(i-2)-2*(SB(i-2) mod SB(i-1))
clean stack
|}
2147484950 '''STERN'''
1: 1385
 
=={{header|Ruby}}==
{{works with|Ruby|2.1}}
<langsyntaxhighlight lang="ruby">def sb
return enum_for :sb unless block_given?
a=[1,1]
Line 3,403 ⟶ 6,033:
else
puts "Whoops, not all GCD's are 1!"
end</langsyntaxhighlight>
 
{{out}}
Line 3,423 ⟶ 6,053:
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">lazy val sbSeq: Stream[BigInt] = {
BigInt("1") #::
BigInt("1") #::
Line 3,441 ⟶ 6,071:
(sbSeq zip sbSeq.tail).take(1000).forall{ case (a,b) => a.gcd(b) == 1 } )
}
</syntaxhighlight>
</lang>
 
{{out}}
Line 3,462 ⟶ 6,092:
</pre>
 
=={{header|Scheme}}==
{{works with|Chez Scheme}}
'''The Function'''
<syntaxhighlight lang="scheme">; Recursive function to return the Nth Stern-Brocot sequence number.
 
(define stern-brocot
(lambda (n)
(cond
((<= n 0)
0)
((<= n 2)
1)
((even? n)
(stern-brocot (/ n 2)))
(else
(let ((earlier (/ (1+ n) 2)))
(+ (stern-brocot earlier) (stern-brocot (1- earlier))))))))</syntaxhighlight>
'''The Task'''
<syntaxhighlight lang="scheme">; Show the first 15 Stern-Brocot sequence numbers.
 
(printf "First 15 Stern-Brocot numbers:")
(do ((index 1 (1+ index)))
((> index 15))
(printf " ~a" (stern-brocot index)))
(newline)
 
; Show the indices of where the numbers 1 to 10 first appear in the Stern-Brocot sequence.
 
(let ((indices (make-vector 11 #f))
(found 0))
(do ((index 1 (1+ index)))
((>= found 10))
(let ((number (stern-brocot index)))
(when (and (<= number 10) (not (vector-ref indices number)))
(vector-set! indices number index)
(set! found (1+ found)))))
(printf "Indices of where the numbers 1 to 10 first appear:")
(do ((index 1 (1+ index)))
((> index 10))
(printf " ~a" (vector-ref indices index))))
(newline)
 
; Show the index of where the number 100 first appears in the Stern-Brocot sequence.
 
(do ((index 1 (1+ index)) (found #f))
(found)
(let ((number (stern-brocot index)))
(when (= number 100)
(printf "Index where the number 100 first appears: ~a~%" index)
(set! found #t))))
 
; Check that the GCD of all two consecutive members up to the 1000th member is always one.
 
(let ((any-bad #f)
(gcd (lambda (a b)
(if (= b 0)
a
(gcd b (remainder a b))))))
(do ((index 1 (1+ index)))
((> index 1000))
(let ((sbgcd (gcd (stern-brocot index) (stern-brocot (1+ index)))))
(when (not (= 1 sbgcd))
(printf "GCD of Stern-Brocot ~a and ~a+1 is ~a -- Not 1~%" index index sbgcd)
(set! any-bad #t))))
(when (not any-bad)
(printf "GCDs of all Stern-Brocot consecutive pairs from 1 to 1000 are 1~%")))</syntaxhighlight>
{{out}}
<pre>First 15 Stern-Brocot numbers: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Indices of where the numbers 1 to 10 first appear: 1 3 5 9 11 33 19 21 35 39
Index where the number 100 first appears: 1179
GCDs of all Stern-Brocot consecutive pairs from 1 to 1000 are 1</pre>
 
=={{header|SETL}}==
<syntaxhighlight lang="setl">program stern_brocot_sequence;
s := stern(1200);
 
print("First 15 elements:", s(1..15));
 
loop for n in [1..10] with 100 do
if exists k = s(i) | k = n then
print("First", n, "at", i);
end if;
end loop;
 
gcds := [gcd(s(i-1), s(i)) : i in [2..1000]];
 
if exists g = gcds(i) | g /= 1 then
print("The GCD of the pair at", i, "is not 1.");
else
print("All GCDs of consecutive pairs up to 1000 are 1.");
end if;
 
proc stern(n);
s := [1, 1];
loop for i in [2..n div 2] do
s(i*2-1) := s(i) + s(i-1);
s(i*2) := s(i);
end loop;
return s;
end proc;
 
proc gcd(a,b);
loop while b/=0 do
[a, b] := [b, a mod b];
end loop;
return a;
end proc;
end program;</syntaxhighlight>
{{out}}
<pre>First 15 elements: [1 1 2 1 3 2 3 1 4 3 5 2 5 3 4]
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 6 at 33
First 7 at 19
First 8 at 21
First 9 at 35
First 10 at 39
First 100 at 1179
All GCDs of consecutive pairs up to 1000 are 1.</pre>
=={{header|Sidef}}==
{{trans|Perl}}
<langsyntaxhighlight lang="ruby"># Declare a function to generate the Stern-Brocot sequence
func stern_brocot {
var list = [1, 1]
Line 3,497 ⟶ 6,249:
} * 1000
 
say "All GCD's are 1"</langsyntaxhighlight>
{{out}}
<pre>
Line 3,515 ⟶ 6,267:
</pre>
 
=={{header|VBScriptSnobol}}==
<syntaxhighlight lang="snobol">* GCD function
<lang VBScript>sb = Array(1,1)
DEFINE('GCD(A,B)') :(GCD_END)
i = 1 'considered
GCD GCD = A
j = 2 'precedent
EQ(B,0) :S(RETURN)
n = 0 'loop counter
A = B
Do
B = REMDR(GCD,B) :(GCD)
ReDim Preserve sb(UBound(sb) + 1)
GCD_END
sb(UBound(sb)) = sb(UBound(sb) - i) + sb(UBound(sb) - j)
ReDim Preserve sb(UBound(sb) + 1)
sb(UBound(sb)) = sb(UBound(sb) - j)
i = i + 1
j = j + 1
n = n + 1
Loop Until n = 2000
 
* Find first occurrence of element in array
WScript.Echo "First 15: " & DisplayElements(15)
DEFINE('IDX(ARR,ELM)') :(IDX_END)
IDX IDX = 1
ITEST EQ(ARR<IDX>,ELM) :S(RETURN)
IDX = IDX + 1 :(ITEST)
IDX_END
* Declare array
SEQ = ARRAY(1200,1)
 
* Fill array with Stern-Brocot sequence
For k = 1 To 10
IX = 1
WScript.Echo "The first instance of " & k & " is in #" & ShowFirstInstance(k) & "."
FILL IX = IX + 1
Next
SEQ<IX * 2 - 1> = SEQ<IX> + SEQ<IX - 1>
SEQ<IX * 2> = SEQ<IX> :S(FILL)
* Print first 15 elements
DONE IX = 1
S = "First 15 elements:"
P15 S = S " " SEQ<IX>
IX = IX + 1 LT(IX,15) :S(P15)
OUTPUT = S
* Print first occurrence of 1..10 and 100
N = 1
FIRSTN OUTPUT = "First " N " at " IDX(SEQ,N)
N = N + 1 LT(N,10) :S(FIRSTN)
OUTPUT = "First 100 at " IDX(SEQ,100)
* Test GCD between 1000 consecutive members
IX = 2
GCDTEST EQ(GCD(SEQ<IX - 1>,SEQ<IX>),1) :F(GCDFAIL)
IX = IX + 1 LT(IX,1000) :S(GCDTEST)
OUTPUT = "All GCDs are 1." :(END)
GCDFAIL OUTPUT = "GCD is not 1 at " IX "."
 
END</syntaxhighlight>
WScript.Echo "The first instance of " & 100 & " is in #" & ShowFirstInstance(100) & "."
 
{{out}}
Function DisplayElements(n)
For i = 0 To n - 1
If i < n - 1 Then
DisplayElements = DisplayElements & sb(i) & ", "
Else
DisplayElements = DisplayElements & sb(i)
End If
Next
End Function
 
<pre>First 15 elements: 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4
Function ShowFirstInstance(n)
First 1 at 1
For i = 0 To UBound(sb)
First 2 at 3
If sb(i) = n Then
First 3 at 5
ShowFirstInstance = i + 1
First 4 at 9
Exit For
First 5 at 11
End If
First 6 at 33
Next
First 7 at 19
End Function</lang>
First 8 at 21
{{Out}}
First 9 at 35
<pre>First 15: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
First 10 at 39
The first instance of 1 is in #1.
First 100 at 1179
The first instance of 2 is in #3.
All GCDs are 1.</pre>
The first instance of 3 is in #5.
 
The first instance of 4 is in #9.
=={{header|Swift}}==
The first instance of 5 is in #11.
<syntaxhighlight lang="swift">struct SternBrocot: Sequence, IteratorProtocol {
The first instance of 6 is in #33.
private var seq = [1, 1]
The first instance of 7 is in #19.
 
The first instance of 8 is in #21.
mutating func next() -> Int? {
The first instance of 9 is in #35.
seq += [seq[0] + seq[1], seq[1]]
The first instance of 10 is in #39.
 
The first instance of 100 is in #1179.</pre>
return seq.removeFirst()
}
}
 
func gcd<T: BinaryInteger>(_ a: T, _ b: T) -> T {
guard a != 0 else {
return b
}
 
return a < b ? gcd(b % a, a) : gcd(a % b, b)
}
 
print("First 15: \(Array(SternBrocot().prefix(15)))")
 
var found = Set<Int>()
 
for (i, val) in SternBrocot().enumerated() {
switch val {
case 1...10 where !found.contains(val), 100 where !found.contains(val):
print("First \(val) at \(i + 1)")
found.insert(val)
case _:
continue
}
 
if found.count == 11 {
break
}
}
 
let firstThousand = SternBrocot().prefix(1000)
let gcdIsOne = zip(firstThousand, firstThousand.dropFirst()).allSatisfy({ gcd($0.0, $0.1) == 1 })
 
print("GCDs of all two consecutive members are \(gcdIsOne ? "" : "not")one")</syntaxhighlight>
 
{{out}}
<pre>First 15: [1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
First 1 at 1
First 2 at 3
First 3 at 5
First 4 at 9
First 5 at 11
First 7 at 19
First 8 at 21
First 6 at 33
First 9 at 35
First 10 at 39
First 100 at 1179
GCDs of all two consecutive members are one</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">
#!/usr/bin/env tclsh
#
Line 3,676 ⟶ 6,493:
 
main
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 3,697 ⟶ 6,514:
First 1000 elements are all pairwise coprime
</pre>
 
=={{header|VBScript}}==
<syntaxhighlight lang="vbscript">sb = Array(1,1)
i = 1 'considered
j = 2 'precedent
n = 0 'loop counter
Do
ReDim Preserve sb(UBound(sb) + 1)
sb(UBound(sb)) = sb(UBound(sb) - i) + sb(UBound(sb) - j)
ReDim Preserve sb(UBound(sb) + 1)
sb(UBound(sb)) = sb(UBound(sb) - j)
i = i + 1
j = j + 1
n = n + 1
Loop Until n = 2000
 
WScript.Echo "First 15: " & DisplayElements(15)
 
For k = 1 To 10
WScript.Echo "The first instance of " & k & " is in #" & ShowFirstInstance(k) & "."
Next
 
WScript.Echo "The first instance of " & 100 & " is in #" & ShowFirstInstance(100) & "."
 
Function DisplayElements(n)
For i = 0 To n - 1
If i < n - 1 Then
DisplayElements = DisplayElements & sb(i) & ", "
Else
DisplayElements = DisplayElements & sb(i)
End If
Next
End Function
 
Function ShowFirstInstance(n)
For i = 0 To UBound(sb)
If sb(i) = n Then
ShowFirstInstance = i + 1
Exit For
End If
Next
End Function</syntaxhighlight>
{{Out}}
<pre>First 15: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
The first instance of 1 is in #1.
The first instance of 2 is in #3.
The first instance of 3 is in #5.
The first instance of 4 is in #9.
The first instance of 5 is in #11.
The first instance of 6 is in #33.
The first instance of 7 is in #19.
The first instance of 8 is in #21.
The first instance of 9 is in #35.
The first instance of 10 is in #39.
The first instance of 100 is in #1179.</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<langsyntaxhighlight lang="vbnet">Imports System
Imports System.Collections.Generic
Imports System.Linq
Line 3,727 ⟶ 6,600:
" series up to the {0}th item is {1}always one.", max, If(good, "", "not "))
End Sub
End Module</langsyntaxhighlight>
{{out}}
<pre>The first 15 items In the Stern-Brocot sequence: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4
Line 3,745 ⟶ 6,618:
 
The greatest common divisor of all the two consecutive items of the series up to the 1000th item is always one.
</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-math}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./math" for Int
import "./fmt" for Fmt
 
var sbs = [1, 1]
 
var sternBrocot = Fn.new { |n, fromStart|
if (n < 4 || (n % 2 != 0)) Fiber.abort("n must be >= 4 and even.")
var consider = fromStart ? 1 : (n/2).floor - 1
while (true) {
var sum = sbs[consider] + sbs[consider - 1]
sbs.add(sum)
sbs.add(sbs[consider])
if (sbs.count == n) return
consider = consider + 1
}
}
 
var n = 16 // needs to be even to ensure 'considered' number is added
System.print("First 15 members of the Stern-Brocot sequence:")
sternBrocot.call(n, true)
System.print(sbs.take(15).toList)
 
var firstFind = List.filled(11, 0)
firstFind[0] = -1 // needs to be non-zero for subsequent test
var i = 0
for (v in sbs) {
if (v <= 10 && firstFind[v] == 0) firstFind[v] = i + 1
i = i + 1
}
while (true) {
n = n + 2
sternBrocot.call(n, false)
var vv = sbs[-2..-1]
var m = n - 1
var outer = false
for (v in vv) {
if (v <= 10 && firstFind[v] == 0) firstFind[v] = m
if (firstFind.all { |e| e != 0 }) {
outer = true
break
}
m = m + 1
}
if (outer) break
}
System.print("\nThe numbers 1 to 10 first appear at the following indices:")
for (i in 1..10) Fmt.print("$2d -> $d", i, firstFind[i])
 
System.write("\n100 first appears at index ")
while (true) {
n = n + 2
sternBrocot.call(n, false)
var vv = sbs[-2..-1]
if (vv[0] == 100) {
System.print("%(n - 1).")
break
}
if (vv[1] == 100) {
System.print("%(n).")
break
}
}
 
System.write("\nThe GCDs of each pair of the series up to the 1,000th member are ")
var p = 0
while (p < 1000) {
if (Int.gcd(sbs[p], sbs[p + 1]) != 1) {
System.print("not all one.")
return
}
p = p + 2
}
System.print("all one.")</syntaxhighlight>
 
{{out}}
<pre>
First 15 members of the Stern-Brocot sequence:
[1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4]
 
The numbers 1 to 10 first appear at the following indices:
1 -> 1
2 -> 3
3 -> 5
4 -> 9
5 -> 11
6 -> 33
7 -> 19
8 -> 21
9 -> 35
10 -> 39
 
100 first appears at index 1179.
 
The GCDs of each pair of the series up to the 1,000th member are all one.
</pre>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">fcn SB // Stern-Brocot sequence factory --> Walker
{ Walker(fcn(sb,n){ a,b:=sb; sb.append(a+b,b); sb.del(0); a }.fp(L(1,1))) }
 
Line 3,758 ⟶ 6,731:
[1..].zip(SB()).filter1(fcn(sb){ 100==sb[1] }).println();
 
sb:=SB(); do(500){ if(sb.next().gcd(sb.next())!=1) println("Oops") }</langsyntaxhighlight>
{{out}}
<pre>
9,485

edits