Statistics/Normal distribution: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 1,331: Line 1,331:
0.8: *******
0.8: *******
0.9: **</pre>
0.9: **</pre>

=={{header|jq}}==
'''Adapted from [[#Wren|Wren]]'''
{{works with|jq}}
'''Works with gojq, the Go implementation of jq''' (*)

Since jq does not have a built-in PRNG, this entry uses an external source
for entropy. For the sake of illustration, we will use /dev/urandom
as follows:
cat /dev/urandom | tr -cd '0-9' | fold -w 10 |
jq -nRr -f normal-distribution.jq

To save space, the function that generates the sample does not retain the observations, and for
simplicity, computes the sum of squared observations on the
assumption that overflow will not be an an issue, which is
reasonable as jq arithmetic uses IEEE 754 64-bit numbers.

(*) gojq requires an enormous amount of memory to complete the task for N=100,000,
and takes about 20 times longer.
'''Preliminaries'''
<lang jq># Pretty print a number to facilitate alignment of the decimal point.
# Input: a number without an exponent
# Output: a string holding the reformatted number so that there are at least `left` characters
# to the left of the decimal point, and exactly `right` characters to its right.
# Spaces are used for padding on the left, and zeros for padding on the right.
# No left-truncation occurs, so `left` can be specified as 0 to prevent left-padding.
def pp(left; right):
def lpad: tostring | (left - length) as $l | (" " * $l)[:$l] + .;
def rpad:
if (right > length) then . + ((right - length) * "0")
else .[:right]
end;
tostring as $s
| $s
| index(".") as $ix
| ((if $ix then $s[0:$ix] else $s end) | lpad) + "." +
(if $ix then $s[$ix+1:] | .[:right] else "" end | rpad) ;

def sigma( stream ): reduce stream as $x (0; . + $x);

# Input: {n, sum, ss}
# Output: augmented object with {mean, variance}
def sample_mean_and_variance:
.mean = (.sum/.n)
| .variance = ((.ss / .n) - .mean*.mean);</lang>
'''The Task'''
<lang jq># Task parameters
def parameters: {
N: 100000,
NUM_BINS: 12,
HIST_CHAR: "■",
HIST_CHAR_ALT: "-",
HIST_CHAR_SIZE: null, # null means compute dynamically
binSize: 0.1,
mu: 0.5,
sigma: 0.25 }
| .bins = [range(0; .NUM_BINS) | 0] ;

# input: an array of two iid rvs on [0,1]
# output: [z0, z1] as per the Box-Muller method -- see
# https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
def normal(mu; sigma):
def pi: (1|atan) * 4;
. as [$u1, $u2]
| pi as $pi
| (sigma * ((-2 * ($u1|log))|sqrt)) as $mag
| [ $mag * ((2 * $pi * $u2)|cos) + mu,
$mag * ((2 * $pi * $u2)|sin) + mu ] ;

# Generate a random sample as specified by ., the task object (see `parameters`).
# Output: updated task object with sample statistics and .bins for creating a histogram.
# Each call to `input` should yield a string of random decimal digits
# such that the ensemble of ("0." + input | tonumber) can be considered to be iid rv on [0,1].
def generate:
# uniformly distributed random variable on [0,1]:
def udrv: "0." + input | tonumber;
# Maybe compute the bucket size:
(.HIST_CHAR_SIZE = (.HIST_CHAR_SIZE // (.N / (.NUM_BINS * 20) | ceil))) as $p
| reduce range(0; $p.N/2) as $i ($p;
([udrv, udrv] | normal($p.mu; $p.sigma)) as $rns
| reduce (0,1) as $j (.;
$rns[$j] as $rn
| .n += 1
| .sum += $rn
| .ss += ($rn*$rn)
| (if $rn < 0 then 0
elif $rn >= 1 then ($p.NUM_BINS - 1)
else ($rn/.binSize)|floor + 1
end ) as $bn
| .bins[$bn] += 1
# to retain the observations: .samples[$i*2 + $j] = $rn
)) ;

# Input: an object with
# {NUM_BINS, HIST_CHAR_SIZE, HIST_CHAR, HIST_CHAR_ALT, binSize, bins}
# Output: a stream of strings
def histogram:
def tidy: pp(2;1);
range(0; .NUM_BINS) as $i
| ((.bins[$i] / .HIST_CHAR_SIZE)|floor) as $bs
| (if $i == 0 or $i == .NUM_BINS -1
then .HIST_CHAR_ALT else .HIST_CHAR end) as $char
| (if $bs == 0 then "" else $char * $bs end) as $hist
| if $i == 0
then " -∞ ..< 0.0 \($hist)" # .bins[0]
elif ($i < .NUM_BINS - 1)
then "\(.binSize * ($i-1) | tidy) ..<\(.binSize * $i|tidy) \($hist)" # .bins[$i]]
else " 1.0 .. +∞ \($hist)" # .bins[.NUM_BINS - 1]
end;

def task:
parameters
| generate
| sample_mean_and_variance as $mv
| (if .HIST_CHAR_SIZE == 1 then "" else "s" end) as $plural
| "Summary statistics for \(.N) observations from N(\(.mu), \(.sigma)):",
" mean: \($mv.mean | pp(2;4))",
" variance: \($mv.variance | pp(2;4))",
" unadjusted stddev: \($mv.variance | sqrt | pp(2;4))",
" Range Number of observations (each \(.HIST_CHAR) represents \(.HIST_CHAR_SIZE) observation\($plural))",
histogram ;

task</lang>
{{out}}
<pre>
Summary statistics for 100000 observations from N(0.5, 0.25):
mean: 0.5001
variance: 0.0622
unadjusted stddev: 0.2495
Range Number of observations (each ■ represents 417 observations)
-∞ ..< 0.0 -----
0.0 ..< 0.1 ■■■■■■■■
0.1 ..< 0.2 ■■■■■■■■■■■■■■
0.2 ..< 0.3 ■■■■■■■■■■■■■■■■■■■■■■■
0.3 ..< 0.4 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.4 ..< 0.5 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.5 ..< 0.6 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.6 ..< 0.7 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.7 ..< 0.8 ■■■■■■■■■■■■■■■■■■■■■■■
0.8 ..< 0.9 ■■■■■■■■■■■■■■
0.9 ..< 1.0 ■■■■■■■■
1.0 .. +∞ ------
</pre>


=={{header|Julia}}==
=={{header|Julia}}==

Revision as of 16:05, 3 October 2021

Task
Statistics/Normal distribution
You are encouraged to solve this task according to the task description, using any language you may know.

The Normal (or Gaussian) distribution is a frequently used distribution in statistics. While most programming languages provide a uniformly distributed random number generator, one can derive normally distributed random numbers from a uniform generator.


The task
  1. Take a uniform random number generator and create a large (you decide how large) set of numbers that follow a normal (Gaussian) distribution. Calculate the dataset's mean and standard deviation, and show a histogram of the data.
  2. Mention any native language support for the generation of normally distributed random numbers.


Reference



C

<lang C>/*

* RosettaCode example: Statistics/Normal distribution in C
*
* The random number generator rand() of the standard C library is obsolete
* and should not be used in more demanding applications. There are plenty
* libraries with advanced features (eg. GSL) with functions to calculate 
* the mean, the standard deviation, generating random numbers etc. 
* However, these features are not the core of the standard C library.
*/
  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <math.h>
  4. include <string.h>
  5. include <time.h>


  1. define NMAX 10000000


double mean(double* values, int n) {

   int i;
   double s = 0;
   for ( i = 0; i < n; i++ )
       s += values[i];
   return s / n;

}


double stddev(double* values, int n) {

   int i;
   double average = mean(values,n);
   double s = 0;
   for ( i = 0; i < n; i++ )
       s += (values[i] - average) * (values[i] - average);
   return sqrt(s / (n - 1));

}

/*

* Normal random numbers generator - Marsaglia algorithm.
*/

double* generate(int n) {

   int i;
   int m = n + n % 2;
   double* values = (double*)calloc(m,sizeof(double));
   double average, deviation;
   if ( values )
   {
       for ( i = 0; i < m; i += 2 )
       {
           double x,y,rsq,f;
           do {
               x = 2.0 * rand() / (double)RAND_MAX - 1.0;
               y = 2.0 * rand() / (double)RAND_MAX - 1.0;
               rsq = x * x + y * y;
           }while( rsq >= 1. || rsq == 0. );
           f = sqrt( -2.0 * log(rsq) / rsq );
           values[i]   = x * f;
           values[i+1] = y * f;
       }
   }
   return values;

}


void printHistogram(double* values, int n) {

   const int width = 50;    
   int max = 0;
   const double low   = -3.05;
   const double high  =  3.05;
   const double delta =  0.1;
   int i,j,k;
   int nbins = (int)((high - low) / delta);
   int* bins = (int*)calloc(nbins,sizeof(int));
   if ( bins != NULL )
   {
       for ( i = 0; i < n; i++ )
       {
           int j = (int)( (values[i] - low) / delta );
           if ( 0 <= j  &&  j < nbins )
               bins[j]++;
       }
       for ( j = 0; j < nbins; j++ )
           if ( max < bins[j] )
               max = bins[j];
       for ( j = 0; j < nbins; j++ )
       {
           printf("(%5.2f, %5.2f) |", low + j * delta, low + (j + 1) * delta );
           k = (int)( (double)width * (double)bins[j] / (double)max );
           while(k-- > 0) putchar('*');
           printf("  %-.1f%%", bins[j] * 100.0 / (double)n);
           putchar('\n');
       }
       free(bins);
   }

}


int main(void) {

   double* seq;
   srand((unsigned int)time(NULL));
   if ( (seq = generate(NMAX)) != NULL )
   {
       printf("mean = %g, stddev = %g\n\n", mean(seq,NMAX), stddev(seq,NMAX));
       printHistogram(seq,NMAX);
       free(seq);
       printf("\n%s\n", "press enter");
       getchar();
       return EXIT_SUCCESS;
   }
   return EXIT_FAILURE;

}</lang>

Output:
mean = 0.000477941, stddev = 0.999945

(-3.05, -2.95) |  0.1%
(-2.95, -2.85) |  0.1%
(-2.85, -2.75) |*  0.1%
(-2.75, -2.65) |*  0.1%
(-2.65, -2.55) |*  0.1%
(-2.55, -2.45) |**  0.2%
(-2.45, -2.35) |**  0.2%
(-2.35, -2.25) |***  0.3%
(-2.25, -2.15) |****  0.4%
(-2.15, -2.05) |*****  0.4%
(-2.05, -1.95) |******  0.5%
(-1.95, -1.85) |********  0.7%
(-1.85, -1.75) |*********  0.8%
(-1.75, -1.65) |***********  0.9%
(-1.65, -1.55) |*************  1.1%
(-1.55, -1.45) |****************  1.3%
(-1.45, -1.35) |******************  1.5%
(-1.35, -1.25) |*********************  1.7%
(-1.25, -1.15) |************************  1.9%
(-1.15, -1.05) |***************************  2.2%
(-1.05, -0.95) |******************************  2.4%
(-0.95, -0.85) |*********************************  2.7%
(-0.85, -0.75) |************************************  2.9%
(-0.75, -0.65) |***************************************  3.1%
(-0.65, -0.55) |*****************************************  3.3%
(-0.55, -0.45) |********************************************  3.5%
(-0.45, -0.35) |**********************************************  3.7%
(-0.35, -0.25) |***********************************************  3.8%
(-0.25, -0.15) |*************************************************  3.9%
(-0.15, -0.05) |*************************************************  4.0%
(-0.05,  0.05) |**************************************************  4.0%
( 0.05,  0.15) |*************************************************  4.0%
( 0.15,  0.25) |*************************************************  3.9%
( 0.25,  0.35) |***********************************************  3.8%
( 0.35,  0.45) |**********************************************  3.7%
( 0.45,  0.55) |********************************************  3.5%
( 0.55,  0.65) |*****************************************  3.3%
( 0.65,  0.75) |***************************************  3.1%
( 0.75,  0.85) |************************************  2.9%
( 0.85,  0.95) |*********************************  2.7%
( 0.95,  1.05) |******************************  2.4%
( 1.05,  1.15) |***************************  2.2%
( 1.15,  1.25) |************************  1.9%
( 1.25,  1.35) |*********************  1.7%
( 1.35,  1.45) |******************  1.5%
( 1.45,  1.55) |****************  1.3%
( 1.55,  1.65) |*************  1.1%
( 1.65,  1.75) |***********  0.9%
( 1.75,  1.85) |*********  0.8%
( 1.85,  1.95) |********  0.7%
( 1.95,  2.05) |******  0.5%
( 2.05,  2.15) |*****  0.4%
( 2.15,  2.25) |****  0.4%
( 2.25,  2.35) |***  0.3%
( 2.35,  2.45) |**  0.2%
( 2.45,  2.55) |**  0.2%
( 2.55,  2.65) |*  0.1%
( 2.65,  2.75) |*  0.1%
( 2.75,  2.85) |*  0.1%
( 2.85,  2.95) |  0.1%

press enter

C#

Library: Math.Net

<lang csharp>using System; using MathNet.Numerics.Distributions; using MathNet.Numerics.Statistics;

class Program {

   static void RunNormal(int sampleSize)
   {
       double[] X = new double[sampleSize];
       var norm = new Normal(new Random());
       norm.Samples(X);
       const int numBuckets = 10;
       var histogram = new Histogram(X, numBuckets);
       Console.WriteLine("Sample size: {0:N0}", sampleSize);
       for (int i = 0; i < numBuckets; i++)
       {
           string bar = new String('#', (int)(histogram[i].Count * 360 / sampleSize));
           Console.WriteLine(" {0:0.00} : {1}", histogram[i].LowerBound, bar);
       }
       var statistics = new DescriptiveStatistics(X);
       Console.WriteLine("  Mean: " + statistics.Mean);
       Console.WriteLine("StdDev: " + statistics.StandardDeviation);
       Console.WriteLine();
   }
   static void Main(string[] args)
   {
       RunNormal(100);
       RunNormal(1000);
       RunNormal(10000);
   }

}</lang>

Output:
Sample size: 100
 -2.12 : #######
 -1.66 : ############################
 -1.19 : #######################################
 -0.72 : ##############################################
 -0.26 : ###############################################################################
 0.21 : ######################################################################################
 0.68 : ################################
 1.14 : #########################
 1.61 : ###
 2.07 : ##########
  Mean: 0.0394411345297757
StdDev: 0.925286665513647

Sample size: 1,000
 -2.98 : ##
 -2.34 : ##########
 -1.69 : ##############################
 -1.05 : ################################################################
 -0.40 : ###########################################################################################
 0.24 : ########################################################################################
 0.88 : ##############################################
 1.53 : ##################
 2.17 : #####
 2.82 : ##
  Mean: 0.0868718238400114
StdDev: 0.989120264661867

Sample size: 10,000
 -3.88 :
 -3.12 : ##
 -2.35 : #################
 -1.59 : ####################################################
 -0.82 : ################################################################################################
 -0.06 : ####################################################################################################
 0.71 : ###############################################################
 1.47 : #####################
 2.23 : ####
 3.00 :
  Mean: 0.0208920122989818
StdDev: 1.00046328880424

C++

showing features of C++11 here <lang cpp>#include <random>

  1. include <map>
  2. include <string>
  3. include <iostream>
  4. include <cmath>
  5. include <iomanip>

int main( ) {

  std::random_device myseed ;
  std::mt19937 engine ( myseed( ) ) ;
  std::normal_distribution<> normDistri ( 2 , 3 ) ;
  std::map<int , int> normalFreq ;
  int sum = 0 ; //holds the sum of the randomly created numbers
  double mean = 0.0 ;
  double stddev = 0.0 ;
  for ( int i = 1 ; i < 10001 ; i++ ) 
     ++normalFreq[ normDistri ( engine ) ] ;
  for ( auto MapIt : normalFreq ) {
     sum += MapIt.first * MapIt.second ;
  }
  mean = sum / 10000 ;
  stddev = sqrt( sum / 10000 ) ;
  std::cout << "The mean of the distribution is " << mean << " , the " ;
  std::cout << "standard deviation " << stddev << " !\n" ;
  std::cout << "And now the histogram:\n" ;
  for ( auto MapIt : normalFreq ) {
     std::cout << std::left << std::setw( 4 ) << MapIt.first << 

std::string( MapIt.second / 100 , '*' ) << std::endl ;

  }
  return 0 ;

}</lang> Output:

The mean of the distribution is 1 , the standard deviation 1 !
And now the histogram:
-10 
-9  
-8  
-7  
-6  
-5  
-4  *
-3  **
-2  ****
-1  ******
0   *********************
1   ************
2   ************
3   ***********
4   *********
5   ******
6   ****
7   **
8   *
9   
10  
11  
12  
13  

D

This uses the Box-Muller method as in the Go entry, and the module from the Statistics/Basic. A ziggurat-based normal generator for the Phobos standard library is in the works. <lang d>import std.stdio, std.random, std.math, std.range, std.algorithm,

      statistics_basic;

struct Normals {

   double mu, sigma;
   double[2] state;
   size_t index = state.length;
   enum empty = false;
   void popFront() pure nothrow { index++; }
   @property double front() {
       if (index >= state.length) {
           immutable r = sqrt(-2 * uniform!"]["(0., 1.0).log) * sigma;
           immutable x = 2 * PI * uniform01;
           state = [mu + r * x.sin, mu + r * x.cos];
           index = 0;
       }
       return state[index];
   }

}

void main() {

   const data = Normals(0.0, 0.5).take(100_000).array;
   writefln("Mean: %8.6f, SD: %8.6f\n", data.meanStdDev[]);
   data.map!q{ max(0.0, min(0.9999, a / 3 + 0.5)) }.showHistogram01;

}</lang>

Output:
Mean: 0.000528, SD: 0.502245

 0.0: *
 0.1: ******
 0.2: *****************
 0.3: ***********************************
 0.4: *************************************************
 0.5: **************************************************
 0.6: **********************************
 0.7: *****************
 0.8: ******
 0.9: *

Elixir

<lang elixir>defmodule Statistics do

 def normal_distribution(n, w\\5) do
   {sum, sum2, hist} = generate(n, w)
   mean = sum / n
   stddev = :math.sqrt(sum2 / n - mean*mean)
   
   IO.puts "size:   #{n}"
   IO.puts "mean:   #{mean}"
   IO.puts "stddev: #{stddev}"
   {min, max} = Map.to_list(hist)
                |> Enum.filter_map(fn {_k,v} -> v >= n/120/w end, fn {k,_v} -> k end)
                |> Enum.min_max
   Enum.each(min..max, fn i ->
     bar = String.duplicate("=", trunc(120 * w * Map.get(hist, i, 0) / n))
     :io.fwrite "~4.1f: ~s~n", [i/w, bar]
   end)
   IO.puts ""
 end
 
 defp generate(n, w) do
   Enum.reduce(1..n, {0, 0, %{}}, fn _,{sum, sum2, hist} ->
     z = :rand.normal
     {sum+z, sum2+z*z, Map.update(hist, round(w*z), 1, &(&1+1))}
   end)
 end

end

Enum.each([100,1000,10000], fn n ->

 Statistics.normal_distribution(n)

end)</lang>

Output:
size:   100
mean:   0.027742416007234007
stddev: 1.0209597927405403
-2.6: ============
-2.4: 
-2.2: ============
-2.0: ======
-1.8: 
-1.6: 
-1.4: ==============================
-1.2: ======
-1.0: ==============================
-0.8: ==========================================
-0.6: ==========================================
-0.4: ================================================
-0.2: ================================================
 0.0: ==============================
 0.2: ====================================
 0.4: ==========================================
 0.6: ======================================================
 0.8: ==========================================
 1.0: ================================================
 1.2: ==============================
 1.4: ======
 1.6: ============
 1.8: ============
 2.0: 
 2.2: 
 2.4: ======
 2.6: ======

size:   1000
mean:   -0.025562168667763084
stddev: 1.0338288521306742
-3.2: =
-3.0: 
-2.8: =
-2.6: ===
-2.4: ==
-2.2: ======
-2.0: ==
-1.8: =============
-1.6: ===============
-1.4: =================
-1.2: =================
-1.0: ====================================
-0.8: ===================================
-0.6: ============================================
-0.4: ============================================
-0.2: ===============================================
 0.0: =========================================
 0.2: ===========================================
 0.4: =============================================
 0.6: =======================================
 0.8: ================================
 1.0: ============================
 1.2: ========================
 1.4: ==================
 1.6: ==========
 1.8: =====
 2.0: ========
 2.2: ====
 2.4: =====
 2.6: =
 2.8: =

size:   10000
mean:   -0.009132420943007152
stddev: 0.9979508347451509
-2.6: =
-2.4: ===
-2.2: ====
-2.0: =====
-1.8: =========
-1.6: ==============
-1.4: ================
-1.2: =======================
-1.0: ============================
-0.8: =================================
-0.6: ============================================
-0.4: ===========================================
-0.2: ==============================================
 0.0: ==================================================
 0.2: ============================================
 0.4: ===========================================
 0.6: =======================================
 0.8: =====================================
 1.0: ============================
 1.2: =======================
 1.4: ================
 1.6: ==============
 1.8: =========
 2.0: ======
 2.2: ===
 2.4: ==
 2.6: =

Factor

Works with: Factor version 0.99 2020-01-23

<lang factor>USING: assocs formatting kernel math math.functions math.statistics random sequences sorting ;

2,000,000 [ 0 1 normal-random-float ] replicate  ! make data set dup [ mean ] [ population-std ] bi  ! calculate and show "Mean: %f\nStdev: %f\n\n" printf  ! mean and stddev

[ 10 * floor 10 / ] map  ! map data to buckets histogram >alist [ first ] sort-with  ! create histogram sorted by bucket (key) dup values supremum  ! find maximum count [

   [ /f 100 * >integer ] keepd             ! how big should this histogram bar be?
   [ [ CHAR: * ] "" replicate-as ] dip     ! make the bar
   "% 5.2f: %s   %d\n" printf              ! print a line of the histogram

] curry assoc-each</lang>

Output:
Mean: 0.000798
Stdev: 1.000549

-4.90:    2
-4.80:    1
-4.70:    1
-4.60:    3
-4.50:    3
-4.40:    6
-4.30:    15
-4.20:    13
-4.10:    16
-4.00:    42
-3.90:    62
-3.80:    68
-3.70:    98
-3.60:    145
-3.50:    205
-3.40:    311
-3.30:    379
-3.20:    580
-3.10:    739
-3.00: *   1002
-2.90: *   1349
-2.80: **   1893
-2.70: ***   2499
-2.60: ****   3211
-2.50: *****   4035
-2.40: ******   5141
-2.30: *******   6392
-2.20: *********   7869
-2.10: ************   9780
-2.00: **************   11787
-1.90: ******************   14483
-1.80: *********************   17183
-1.70: *************************   20387
-1.60: ******************************   24049
-1.50: **********************************   27555
-1.40: ****************************************   32153
-1.30: *********************************************   36707
-1.20: ***************************************************   40921
-1.10: *********************************************************   45928
-1.00: ***************************************************************   50707
-0.90: *********************************************************************   55697
-0.80: ***************************************************************************   60377
-0.70: ********************************************************************************   64358
-0.60: ************************************************************************************   67928
-0.50: *****************************************************************************************   71911
-0.40: *********************************************************************************************   75054
-0.30: ************************************************************************************************   77073
-0.20: **************************************************************************************************   78768
-0.10: ***************************************************************************************************   79732
 0.00: ****************************************************************************************************   79952
 0.10: ***************************************************************************************************   79412
 0.20: ************************************************************************************************   77511
 0.30: *********************************************************************************************   74487
 0.40: ******************************************************************************************   72250
 0.50: **************************************************************************************   68789
 0.60: ********************************************************************************   64408
 0.70: ***************************************************************************   60122
 0.80: *********************************************************************   55619
 0.90: ***************************************************************   50869
 1.00: *********************************************************   45883
 1.10: ****************************************************   41586
 1.20: **********************************************   37145
 1.30: ***************************************   31715
 1.40: **********************************   27779
 1.50: ******************************   24270
 1.60: *************************   20516
 1.70: *********************   17221
 1.80: *****************   14344
 1.90: **************   11789
 2.00: ************   9796
 2.10: *********   7922
 2.20: *******   6331
 2.30: ******   5138
 2.40: *****   4044
 2.50: ***   3065
 2.60: **   2397
 2.70: **   1846
 2.80: *   1462
 2.90: *   1001
 3.00:    765
 3.10:    587
 3.20:    393
 3.30:    299
 3.40:    197
 3.50:    132
 3.60:    100
 3.70:    74
 3.80:    59
 3.90:    32
 4.00:    29
 4.10:    12
 4.20:    15
 4.30:    6
 4.40:    3
 4.50:    4
 4.60:    3
 4.70:    2
 4.80:    1

Fortran

Works with: Fortran version 95 and later

Using the Marsaglia polar method <lang fortran>program Normal_Distribution

 implicit none
 integer, parameter :: i64 = selected_int_kind(18)
 integer, parameter :: r64 = selected_real_kind(15)
 integer(i64), parameter :: samples = 1000000_i64
 real(r64) :: mean, stddev
 real(r64) :: sumn = 0, sumnsq = 0
 integer(i64) :: n = 0 
 integer(i64) :: bin(-50:50) = 0
 integer :: i, ind
 real(r64) :: ur1, ur2, nr1, nr2, s
 
 n = 0
 do while(n <= samples)
   call random_number(ur1)
   call random_number(ur2)
   ur1 = ur1 * 2.0 - 1.0
   ur2 = ur2 * 2.0 - 1.0
   
   s = ur1*ur1 + ur2*ur2  
   if(s >= 1.0_r64) cycle
     
   nr1 = ur1 * sqrt(-2.0*log(s)/s)
   ind = floor(5.0*nr1)
   bin(ind) = bin(ind) + 1_i64
   sumn = sumn + nr1
   sumnsq = sumnsq + nr1*nr1
   
   nr2 = ur2 * sqrt(-2.0*log(s)/s)
   ind = floor(5.0*nr2)
   bin(ind) = bin(ind) + 1_i64
   sumn = sumn + nr2
   sumnsq = sumnsq + nr2*nr2
   n = n + 2_i64
 end do

 mean = sumn / n
 stddev = sqrt(sumnsq/n - mean*mean)
 
 write(*, "(a, i0)") "sample size = ", samples
 write(*, "(a, f17.15)") "Mean :   ", mean,
 write(*, "(a, f17.15)") "Stddev : ", stddev
 
 do i = -15, 15 
   write(*, "(f4.1, a, a)") real(i)/5.0, ": ", repeat("=", int(bin(i)*500/samples))
 end do
      

end program</lang>

Output:
sample size = 1000
Mean :   0.043096320705032
Stddev : 0.981532585231540
-3.0:
-2.8:
-2.6: ==
-2.4: ==
-2.2: ====
-2.0: ======
-1.8: =======
-1.6: ============
-1.4: ================
-1.2: =====================
-1.0: ===========================
-0.8: =======================
-0.6: ==================================
-0.4: =====================================
-0.2: ==========================================
 0.0: ===============================================
 0.2: ====================================
 0.4: =================================
 0.6: ==================================
 0.8: =============================
 1.0: ====================
 1.2: ==========================
 1.4: ===========
 1.6: =========
 1.8: ====
 2.0: ======
 2.2: ===
 2.4:
 2.6:
 2.8: =
 3.0:

sample size = 1000000
Mean :   0.000166653231289
Stddev : 1.000025612171690
-3.0:
-2.8: =
-2.6: =
-2.4: ==
-2.2: ====
-2.0: ======
-1.8: =========
-1.6: ============
-1.4: =================
-1.2: =====================
-1.0: ==========================
-0.8: ===============================
-0.6: ===================================
-0.4: ======================================
-0.2: =======================================
 0.0: =======================================
 0.2: ======================================
 0.4: ==================================
 0.6: ===============================
 0.8: ==========================
 1.0: =====================
 1.2: =================
 1.4: ============
 1.6: =========
 1.8: ======
 2.0: ====
 2.2: ==
 2.4: =
 2.6: =
 2.8:
 3.0:

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

Const pi As Double = 3.141592653589793 Randomize

' Generates normally distributed random numbers with mean 0 and standard deviation 1 Function randomNormal() As Double

 Return Cos(2.0 * pi * Rnd) * Sqr(-2.0 * Log(Rnd))

End Function

Sub normalStats(sampleSize As Integer)

 If sampleSize < 1 Then Return 
 Dim r(1 To sampleSize) As Double
 Dim h(-1 To 10) As Integer  all zero by default
 Dim sum As Double = 0.0
 Dim hSum As Integer = 0
 ' Generate 'sampleSize' normally distributed random numbers with mean 0.5 and standard deviation 0.25
 ' calculate their sum
 ' and in which box they will fall when drawing the histogram
 For i As Integer = 1 To sampleSize
   r(i) = 0.5 + randomNormal / 4.0
   sum += r(i)
   If r(i) < 0.0 Then
     h(-1) += 1
   ElseIf r(i) >= 1.0 Then
     h(10) += 1
   Else
     h(Int(r(i) * 10)) += 1
   End If
 Next
 For i As Integer = -1 To 10 : hSum += h(i) :  Next
 ' adjust one of the h() values if necessary to ensure hSum = sampleSize
 Dim adj As Integer = sampleSize - hSum
 If adj <> 0 Then
   For i As Integer = -1 To 10 
     h(i) += adj
     If h(i) >= 0 Then Exit For
     h(i) -= adj
   Next
 End If

 Dim mean As Double = sum / sampleSize
 Dim sd As Double
 sum = 0.0
 ' Now calculate their standard deviation
 For i As Integer = 1 To sampleSize
   sum += (r(i) - mean) ^ 2.0
 Next
 sd  = Sqr(sum/sampleSize)
 ' Draw a histogram of the data with interval 0.1 
 Dim numStars As Integer
 ' If sample size > 300 then normalize histogram to 300
 Dim scale As Double = 1.0
 If sampleSize > 300 Then scale = 300.0 / sampleSize 
 Print "Sample size "; sampleSize
 Print
 Print Using "  Mean #.######"; mean;
 Print Using "  SD #.######"; sd
 Print
 For i As Integer = -1 To 10
   If i = -1 Then
     Print Using "< 0.00 : ";
   ElseIf i = 10 Then
     Print Using ">=1.00 : ";
   Else
     Print Using "  #.## : "; i/10.0;
   End If
   Print Using "##### " ; h(i);
   numStars = Int(h(i) * scale + 0.5)
   Print String(numStars, "*")
 Next 

End Sub

normalStats 100 Print normalStats 1000 Print normalStats 10000 Print normalStats 100000 Print Print "Press any key to quit" Sleep</lang> Sample output:

Output:
Sample size  100

  Mean 0.486977  SD 0.244147

< 0.00 :     2 **
  0.00 :     5 *****
  0.10 :     4 ****
  0.20 :    14 **************
  0.30 :    12 ************
  0.40 :    15 ***************
  0.50 :    17 *****************
  0.60 :    11 ***********
  0.70 :     9 *********
  0.80 :     7 *******
  0.90 :     1 *
>=1.00 :     3 ***

Sample size  1000

  Mean 0.489234  SD 0.247606

< 0.00 :    18 *****
  0.00 :    32 **********
  0.10 :    73 **********************
  0.20 :   111 *********************************
  0.30 :   138 *****************************************
  0.40 :   151 *********************************************
  0.50 :   153 **********************************************
  0.60 :   114 **********************************
  0.70 :   101 ******************************
  0.80 :    51 ***************
  0.90 :    38 ***********
>=1.00 :    20 ******

Sample size  10000

  Mean 0.498239  SD 0.249235

< 0.00 :   225 *******
  0.00 :   333 **********
  0.10 :   589 ******************
  0.20 :   999 ******************************
  0.30 :  1320 ****************************************
  0.40 :  1542 **********************************************
  0.50 :  1581 ***********************************************
  0.60 :  1323 ****************************************
  0.70 :   963 *****************************
  0.80 :   591 ******************
  0.90 :   314 *********
>=1.00 :   220 *******

Sample size  100000

  Mean 0.500925  SD 0.248910

< 0.00 :  2173 *******
  0.00 :  3192 **********
  0.10 :  5938 ******************
  0.20 :  9715 *****************************
  0.30 : 13351 ****************************************
  0.40 : 15399 **********************************************
  0.50 : 15680 ***********************************************
  0.60 : 13422 ****************************************
  0.70 :  9633 *****************************
  0.80 :  5993 ******************
  0.90 :  3207 **********
>=1.00 :  2297 *******

Go

Box-Muller method shown here. Go has a normally distributed random function in the standard library, as shown in the Go Random numbers solution. It uses the ziggurat method. <lang go>package main

import (

   "fmt"
   "math"
   "math/rand"
   "strings"

)

// Box-Muller func norm2() (s, c float64) {

   r := math.Sqrt(-2 * math.Log(rand.Float64()))
   s, c = math.Sincos(2 * math.Pi * rand.Float64())
   return s * r, c * r

}

func main() {

   const (
       n     = 10000
       bins  = 12
       sig   = 3
       scale = 100
   )
   var sum, sumSq float64
   h := make([]int, bins)
   for i, accum := 0, func(v float64) {
       sum += v
       sumSq += v * v
       b := int((v + sig) * bins / sig / 2)
       if b >= 0 && b < bins {
           h[b]++
       }
   }; i < n/2; i++ {
       v1, v2 := norm2()
       accum(v1)
       accum(v2)
   }
   m := sum / n
   fmt.Println("mean:", m)
   fmt.Println("stddev:", math.Sqrt(sumSq/float64(n)-m*m))
   for _, p := range h {
       fmt.Println(strings.Repeat("*", p/scale))
   }

}</lang> Output:

mean: -0.0034970888831523488
stddev: 1.0040682925006286

*
****
*********
***************
*******************
******************
**************
*********
****
*

Haskell

<lang haskell>import Data.Map (Map, empty, insert, findWithDefault, toList) import Data.Maybe (fromMaybe) import Text.Printf (printf) import Data.Function (on) import Data.List (sort, maximumBy, minimumBy) import Control.Monad.Random (RandomGen, Rand, evalRandIO, getRandomR) import Control.Monad (replicateM)

-- Box-Muller getNorm :: RandomGen g => Rand g Double getNorm = do

   u0 <- getRandomR (0.0, 1.0) 
   u1 <- getRandomR (0.0, 1.0) 
   let r = sqrt $ (-2.0) * log u0
       theta = 2.0 * pi * u1
   return $ r * sin theta

putInBin :: Double -> Map Int Int -> Double -> Map Int Int putInBin binWidth t v =

   let bin = round (v / binWidth)
       count = findWithDefault 0 bin t 
   in insert bin (count+1) t

runTest :: Int -> IO () runTest n = do

   rs <- evalRandIO $ replicateM n getNorm 
   let binWidth = 0.1
       tally v (sv, sv2, t) = (sv+v, sv2 + v*v, putInBin binWidth t v)
       (sum, sum2, tallies) = foldr tally (0.0, 0.0, empty) rs
       tallyList = sort $ toList tallies
       printStars tallies binWidth maxCount selection = 
           let count = findWithDefault 0 selection tallies 
               bin = binWidth * fromIntegral selection
               maxStars = 100
               starCount = if maxCount <= maxStars
                           then count 
                           else maxStars * count `div` maxCount
               stars = replicate  starCount '*'
           in printf "%5.2f: %s  %d\n" bin stars count
       mean = sum / fromIntegral n
       stddev = sqrt (sum2/fromIntegral n - mean*mean)
   printf "\n"
   printf "sample count: %d\n" n
   printf "mean:         %9.7f\n" mean
   printf "stddev:       %9.7f\n" stddev
   let maxCount = snd $ maximumBy (compare `on` snd) tallyList
       maxBin = fst $ maximumBy (compare `on` fst) tallyList
       minBin = fst $ minimumBy (compare `on` fst) tallyList
   mapM_ (printStars tallies binWidth maxCount) [minBin..maxBin]

main = do

   runTest 1000
   runTest 2000000</lang>
Output:
sample count: 1000
mean:         -0.0269949
stddev:       0.9795285
-3.10: **  2
-3.00:   0
-2.90:   0
-2.80: **  2
-2.70: *  1
-2.60: ****  4
-2.50: **  2
-2.40: **  2
-2.30:   0
-2.20: ***  3
-2.10: *****  5
-2.00: ******  6
-1.90: ******  6
-1.80: ***********  11
-1.70: ************  12
-1.60: *******  7
-1.50: *************  13
-1.40: *****************  17
-1.30: ********************  20
-1.20: ****************  16
-1.10: *****************  17
-1.00: **********************  22
-0.90: ***************************  27
-0.80: **********************  22
-0.70: ********************************  32
-0.60: *********************************  33
-0.50: ******************************************  42
-0.40: ***********************************************  47
-0.30: ************************************************  48
-0.20: ***************************  27
-0.10: *****************************  29
 0.00: ***********************************************  47
 0.10: ***************************************************  51
 0.20: ******************************************  42
 0.30: ********************************  32
 0.40: *********************************  33
 0.50: *****************************************  41
 0.60: ******************************************  42
 0.70: ****************************  28
 0.80: **********************  22
 0.90: ***************************  27
 1.00: *******************  19
 1.10: **********************  22
 1.20: ************************  24
 1.30: ********************  20
 1.40: *****************  17
 1.50: **********  10
 1.60: *************  13
 1.70: ****  4
 1.80: ***  3
 1.90: *******  7
 2.00: ******  6
 2.10: *  1
 2.20: *  1
 2.30: *******  7
 2.40: ***  3
 2.50:   0
 2.60: *  1
 2.70:   0
 2.80:   0
 2.90:   0
 3.00: *  1
 3.10:   0
 3.20:   0
 3.30: *  1

sample count: 2000000
mean:         0.0001017
stddev:       0.9994329
-4.60:   3
-4.50:   2
-4.40:   3
-4.30:   9
-4.20:   18
-4.10:   19
-4.00:   20
-3.90:   41
-3.80:   77
-3.70:   84
-3.60:   105
-3.50:   189
-3.40:   245
-3.30:   350
-3.20:   460
-3.10:   619
-3.00: *  838
-2.90: *  1234
-2.80: *  1586
-2.70: **  2063
-2.60: ***  2716
-2.50: ****  3503
-2.40: *****  4345
-2.30: *******  5678
-2.20: ********  7160
-2.10: ***********  8856
-2.00: *************  10915
-1.90: ****************  13299
-1.80: *******************  15599
-1.70: ***********************  19004
-1.60: ***************************  22321
-1.50: ********************************  25940
-1.40: *************************************  29622
-1.30: ******************************************  34213
-1.20: ************************************************  38922
-1.10: ******************************************************  43415
-1.00: ************************************************************  48250
-0.90: ******************************************************************  53210
-0.80: ************************************************************************  58127
-0.70: ******************************************************************************  62438
-0.60: ***********************************************************************************  66650
-0.50: ****************************************************************************************  70298
-0.40: ********************************************************************************************  73739
-0.30: ***********************************************************************************************  75831
-0.20: **************************************************************************************************  78222
-0.10: ***************************************************************************************************  79412
 0.00: ****************************************************************************************************  79801
 0.10: ***************************************************************************************************  79255
 0.20: *************************************************************************************************  78163
 0.30: ************************************************************************************************  76667
 0.40: ********************************************************************************************  73554
 0.50: ****************************************************************************************  70391
 0.60: ***********************************************************************************  66566
 0.70: ******************************************************************************  62857
 0.80: ************************************************************************  57962
 0.90: ******************************************************************  53407
 1.00: ************************************************************  48565
 1.10: ******************************************************  43496
 1.20: ************************************************  38799
 1.30: ******************************************  34156
 1.40: *************************************  29713
 1.50: ********************************  25946
 1.60: ***************************  22264
 1.70: ***********************  18843
 1.80: *******************  15780
 1.90: ****************  13151
 2.00: *************  10905
 2.10: **********  8690
 2.20: ********  7102
 2.30: *******  5693
 2.40: *****  4459
 2.50: ****  3550
 2.60: ***  2603
 2.70: **  2155
 2.80: **  1619
 2.90: *  1121
 3.00: *  914
 3.10:   607
 3.20:   478
 3.30:   349
 3.40:   216
 3.50:   170
 3.60:   113
 3.70:   79
 3.80:   58
 3.90:   48
 4.00:   33
 4.10:   20
 4.20:   9
 4.30:   8
 4.40:   7
 4.50:   3
 4.60:   3
 4.70:   0
 4.80:   1
 4.90:   1

J

Solution <lang j>runif01=: ?@$ 0: NB. random uniform number generator rnorm01=. (2 o. 2p1 * runif01) * [: %: _2 * ^.@runif01 NB. random normal number generator (Box-Muller)

mean=: +/ % # NB. mean stddev=: (<:@# %~ +/)&.:*:@(- mean) NB. standard deviation histogram=: <:@(#/.~)@(i.@#@[ , I.)</lang> Example Usage <lang j> DataSet=: rnorm01 1e5

  (mean , stddev) DataSet

0.000781667 1.00154

  require 'plot'
  plot (5 %~ i: 25) ([;histogram) DataSet</lang>

Java

Translation of: D
Works with: Java version 8

<lang java>import static java.lang.Math.*; import static java.util.Arrays.stream; import java.util.Locale; import java.util.function.DoubleSupplier; import static java.util.stream.Collectors.joining; import java.util.stream.DoubleStream; import static java.util.stream.IntStream.range;

public class Test implements DoubleSupplier {

   private double mu, sigma;
   private double[] state = new double[2];
   private int index = state.length;
   Test(double m, double s) {
       mu = m;
       sigma = s;
   }
   static double[] meanStdDev(double[] numbers) {
       if (numbers.length == 0)
           return new double[]{0.0, 0.0};
       double sx = 0.0, sxx = 0.0;
       long n = 0;
       for (double x : numbers) {
           sx += x;
           sxx += pow(x, 2);
           n++;
       }
       return new double[]{sx / n, pow((n * sxx - pow(sx, 2)), 0.5) / n};
   }
   static String replicate(int n, String s) {
       return range(0, n + 1).mapToObj(i -> s).collect(joining());
   }
   static void showHistogram01(double[] numbers) {
       final int maxWidth = 50;
       long[] bins = new long[10];
       for (double x : numbers)
           bins[(int) (x * bins.length)]++;
       double maxFreq = stream(bins).max().getAsLong();
       for (int i = 0; i < bins.length; i++)
           System.out.printf(" %3.1f: %s%n", i / (double) bins.length,
                   replicate((int) (bins[i] / maxFreq * maxWidth), "*"));
       System.out.println();
   }
   @Override
   public double getAsDouble() {
       index++;
       if (index >= state.length) {
           double r = sqrt(-2 * log(random())) * sigma;
           double x = 2 * PI * random();
           state = new double[]{mu + r * sin(x), mu + r * cos(x)};
           index = 0;
       }
       return state[index];
   }
   public static void main(String[] args) {
       Locale.setDefault(Locale.US);
       double[] data = DoubleStream.generate(new Test(0.0, 0.5)).limit(100_000)
               .toArray();
       double[] res = meanStdDev(data);
       System.out.printf("Mean: %8.6f, SD: %8.6f%n", res[0], res[1]);
       showHistogram01(stream(data).map(a -> max(0.0, min(0.9999, a / 3 + 0.5)))
               .toArray());
   }

}</lang>

Mean: -0.001870, SD: 0.500539
 0.0: **
 0.1: *******
 0.2: ******************
 0.3: ************************************
 0.4: ***************************************************
 0.5: **************************************************
 0.6: ***********************************
 0.7: ******************
 0.8: *******
 0.9: **

jq

Adapted from Wren

Works with: jq

Works with gojq, the Go implementation of jq (*)

Since jq does not have a built-in PRNG, this entry uses an external source for entropy. For the sake of illustration, we will use /dev/urandom as follows:

  cat /dev/urandom | tr -cd '0-9' | fold -w 10 |
     jq -nRr -f normal-distribution.jq

To save space, the function that generates the sample does not retain the observations, and for simplicity, computes the sum of squared observations on the assumption that overflow will not be an an issue, which is reasonable as jq arithmetic uses IEEE 754 64-bit numbers.

(*) gojq requires an enormous amount of memory to complete the task for N=100,000, and takes about 20 times longer.

Preliminaries <lang jq># Pretty print a number to facilitate alignment of the decimal point.

  1. Input: a number without an exponent
  2. Output: a string holding the reformatted number so that there are at least `left` characters
  3. to the left of the decimal point, and exactly `right` characters to its right.
  4. Spaces are used for padding on the left, and zeros for padding on the right.
  5. No left-truncation occurs, so `left` can be specified as 0 to prevent left-padding.

def pp(left; right):

 def lpad: tostring | (left - length) as $l | (" " * $l)[:$l] + .;
 def rpad:
   if (right > length) then . + ((right - length) * "0")
   else .[:right]
   end;
 tostring as $s
 | $s
 | index(".") as $ix
   | ((if $ix then $s[0:$ix] else $s end) | lpad) + "." +
      (if $ix then $s[$ix+1:] | .[:right] else "" end | rpad) ;

def sigma( stream ): reduce stream as $x (0; . + $x);

  1. Input: {n, sum, ss}
  2. Output: augmented object with {mean, variance}

def sample_mean_and_variance:

 .mean = (.sum/.n)
 | .variance = ((.ss / .n) - .mean*.mean);</lang>

The Task <lang jq># Task parameters def parameters: {

   N:         100000,
   NUM_BINS:  12,
   HIST_CHAR: "■",
   HIST_CHAR_ALT: "-",
   HIST_CHAR_SIZE: null,  # null means compute dynamically
   binSize:   0.1,
   mu:        0.5,
   sigma:     0.25 }
   | .bins = [range(0; .NUM_BINS) | 0] ;
  1. input: an array of two iid rvs on [0,1]
  2. output: [z0, z1] as per the Box-Muller method -- see
  3. https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

def normal(mu; sigma):

 def pi: (1|atan) * 4;
 . as [$u1, $u2]
 | pi as $pi
 | (sigma * ((-2 * ($u1|log))|sqrt)) as $mag
 | [ $mag * ((2 * $pi * $u2)|cos) + mu,
     $mag * ((2 * $pi * $u2)|sin) + mu ] ;
  1. Generate a random sample as specified by ., the task object (see `parameters`).
  2. Output: updated task object with sample statistics and .bins for creating a histogram.
  3. Each call to `input` should yield a string of random decimal digits
  4. such that the ensemble of ("0." + input | tonumber) can be considered to be iid rv on [0,1].

def generate:

 # uniformly distributed random variable on [0,1]:
 def udrv: "0." + input | tonumber;
 # Maybe compute the bucket size:
 (.HIST_CHAR_SIZE = (.HIST_CHAR_SIZE // (.N / (.NUM_BINS * 20) | ceil))) as $p
 | reduce range(0; $p.N/2) as $i ($p;
     ([udrv, udrv] | normal($p.mu; $p.sigma)) as $rns
     | reduce (0,1) as $j (.;
         $rns[$j] as $rn

| .n += 1 | .sum += $rn | .ss += ($rn*$rn)

         | (if $rn < 0 then 0
	     elif $rn >= 1 then ($p.NUM_BINS - 1)
            else  ($rn/.binSize)|floor + 1

end ) as $bn

         | .bins[$bn] += 1
         # to retain the observations: .samples[$i*2 + $j] = $rn

)) ;

  1. Input: an object with
  2. {NUM_BINS, HIST_CHAR_SIZE, HIST_CHAR, HIST_CHAR_ALT, binSize, bins}
  3. Output: a stream of strings

def histogram:

 def tidy: pp(2;1);
 range(0; .NUM_BINS) as $i
 | ((.bins[$i] / .HIST_CHAR_SIZE)|floor) as $bs
 | (if $i == 0 or $i == .NUM_BINS -1
    then .HIST_CHAR_ALT else .HIST_CHAR end) as $char
 | (if $bs == 0 then "" else $char * $bs end) as $hist
 | if $i == 0
   then " -∞  ..< 0.0 \($hist)"    #   .bins[0]
   elif ($i < .NUM_BINS - 1)
   then "\(.binSize * ($i-1) | tidy) ..<\(.binSize * $i|tidy) \($hist)"  # .bins[$i]]
   else " 1.0 ..  +∞  \($hist)"    #   .bins[.NUM_BINS - 1]
   end;

def task:

 parameters
 | generate
 | sample_mean_and_variance as $mv
 | (if .HIST_CHAR_SIZE == 1 then "" else "s" end) as $plural
 | "Summary statistics for \(.N) observations from N(\(.mu), \(.sigma)):",
    "    mean:              \($mv.mean | pp(2;4))",
    "    variance:          \($mv.variance | pp(2;4))",
    "    unadjusted stddev: \($mv.variance | sqrt | pp(2;4))",
    "    Range               Number of observations (each \(.HIST_CHAR) represents \(.HIST_CHAR_SIZE) observation\($plural))",
    histogram ;

task</lang>

Output:
Summary statistics for 100000 observations from N(0.5, 0.25):
    mean:               0.5001
    variance:           0.0622
    unadjusted stddev:  0.2495
    Range               Number of observations (each ■ represents 417 observations)
 -∞  ..< 0.0 -----
 0.0 ..< 0.1 ■■■■■■■■
 0.1 ..< 0.2 ■■■■■■■■■■■■■■
 0.2 ..< 0.3 ■■■■■■■■■■■■■■■■■■■■■■■
 0.3 ..< 0.4 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 0.4 ..< 0.5 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 0.5 ..< 0.6 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 0.6 ..< 0.7 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 0.7 ..< 0.8 ■■■■■■■■■■■■■■■■■■■■■■■
 0.8 ..< 0.9 ■■■■■■■■■■■■■■
 0.9 ..< 1.0 ■■■■■■■■
 1.0 ..  +∞  ------

Julia

Julia has the builtin package "Distributions" to generate random numbers from a standard distribution (Normal, Chisq etc.). <lang julia>using Printf, Distributions, Gadfly

data = rand(Normal(0, 1), 1000) @printf("N = %i\n", length(data)) @printf("μ = %2.2f\tσ = %2.2f\n", mean(data), std(data)) @printf("range = (%2.2f, %2.2f\n)", minimum(data), maximum(data)) h = plot(x=data, Geom.histogram) draw(PNG("norm_hist.png", 10cm, 10cm), h)</lang>

Output:
N = 1000
μ = 0.02	σ = 0.97
range = (-2.76, 3.42)

Kotlin

Translation of: FreeBASIC

<lang scala>// version 1.1.2

val rand = java.util.Random()

fun normalStats(sampleSize: Int) {

   if (sampleSize < 1) return
   val r = DoubleArray(sampleSize)
   val h = IntArray(12) // all zero by default
   /*
      Generate 'sampleSize' normally distributed random numbers with mean 0.5 and SD 0.25
      and calculate in which box they will fall when drawing the histogram
   */
   for (i in 0 until sampleSize) {
       r[i] = 0.5 + rand.nextGaussian() / 4.0
       when {
           r[i] <  0.0 -> h[0]++
           r[i] >= 1.0 -> h[11]++    
           else        -> h[1 + (r[i] * 10).toInt()]++
       }
   }  
   // adjust one of the h[] values if necessary to ensure they sum to sampleSize
   val adj = sampleSize - h.sum()
   if (adj != 0) {
       for (i in 0..11) {
           h[i] += adj
           if (h[i] >= 0) break
           h[i] -= adj
       }
   }
   val mean = r.average()
   val sd = Math.sqrt(r.map { (it - mean) * (it - mean) }.average())
 
   // Draw a histogram of the data with interval 0.1 
   var numStars: Int
   // If sample size > 300 then normalize histogram to 300 
   val scale = if (sampleSize <= 300) 1.0 else 300.0 / sampleSize 
   println("Sample size $sampleSize\n")
   println("  Mean ${"%1.6f".format(mean)}  SD ${"%1.6f".format(sd)}\n") 
   for (i in 0..11) {
       when (i) { 
           0    -> print("< 0.00 : ")
           11   -> print(">=1.00 : ")
           else -> print("  %1.2f : ".format(i / 10.0))
       }      
       print("%5d ".format(h[i]))
       numStars = (h[i] * scale + 0.5).toInt()
       println("*".repeat(numStars))
   }
   println()

}

fun main(args: Array<String>) {

   val sampleSizes = intArrayOf(100, 1_000, 10_000, 100_000) 
   for (sampleSize in sampleSizes) normalStats(sampleSize)

}</lang>

Output:
Sample size 100

  Mean 0.525211  SD 0.266316

< 0.00 :     3 ***
  0.10 :     1 *
  0.20 :     3 ***
  0.30 :    11 ***********
  0.40 :    14 **************
  0.50 :    13 *************
  0.60 :    15 ***************
  0.70 :    13 *************
  0.80 :    10 **********
  0.90 :    11 ***********
  1.00 :     4 ****
>=1.00 :     2 **

Sample size 1000

  Mean 0.500948  SD 0.255757

< 0.00 :    29 *********
  0.10 :    35 ***********
  0.20 :    70 *********************
  0.30 :    71 *********************
  0.40 :   138 *****************************************
  0.50 :   139 ******************************************
  0.60 :   168 **************************************************
  0.70 :   123 *************************************
  0.80 :   110 *********************************
  0.90 :    62 *******************
  1.00 :    32 **********
>=1.00 :    23 *******

Sample size 10000

  Mean 0.501376  SD 0.248317

< 0.00 :   240 *******
  0.10 :   305 *********
  0.20 :   617 *******************
  0.30 :   927 ****************************
  0.40 :  1291 ***************************************
  0.50 :  1554 ***********************************************
  0.60 :  1609 ************************************************
  0.70 :  1319 ****************************************
  0.80 :   983 *****************************
  0.90 :   609 ******************
  1.00 :   324 **********
>=1.00 :   222 *******

Sample size 100000

  Mean 0.499427  SD 0.250533

< 0.00 :  2341 *******
  0.10 :  3246 **********
  0.20 :  6005 ******************
  0.30 :  9718 *****************************
  0.40 : 13247 ****************************************
  0.50 : 15595 ***********************************************
  0.60 : 15271 **********************************************
  0.70 : 13405 ****************************************
  0.80 :  9653 *****************************
  0.90 :  5990 ******************
  1.00 :  3257 **********
>=1.00 :  2272 *******

Lasso

<lang Lasso>define stat1(a) => { if(#a->size) => { local(mean = (with n in #a sum #n) / #a->size) local(sdev = math_pow(((with n in #a sum Math_Pow((#n - #mean),2)) / #a->size),0.5)) return (:#sdev, #mean) else return (:0,0) } } define stat2(a) => { if(#a->size) => { local(sx = 0, sxx = 0) with x in #a do => { #sx += #x #sxx += #x*#x } local(sdev = math_pow((#a->size * #sxx - #sx * #sx),0.5) / #a->size) return (:#sdev, #sx / #a->size) else return (:0,0) } } define histogram(a) => { local( out = '\r', h = array(0,0,0,0,0,0,0,0,0,0,0), maxwidth = 50, sc = 0 ) with n in #a do => { if((#n * 10) <= 0) => { #h->get(1) += 1 else((#n * 10) >= 10) #h->get(#h->size) += 1 else #h->get(integer(decimal(#n)*10)+1) += 1 }

} local(mx = decimal(with n in #h max #n)) with i in #h do => { #out->append((#sc/10.0)->asString(-precision=1)+': '+('+' * integer(#i / #mx * #maxwidth))+'\r') #sc++ } return #out } define normalDist(mean,sdev) => { // Uses Box-Muller transform return ((-2 * decimal_random->log)->sqrt * (2 * pi * decimal_random)->cos) * #sdev + #mean }

with scale in array(100,1000,10000) do => {^ local(n = array) loop(#scale) => { #n->insert(normalDist(0.5, 0.2)) } local(sdev1,mean1) = stat1(#n) local(sdev2,mean2) = stat2(#n) #scale' numbers:\r'

   'Naive  method: sd: '+#sdev1+', mean: '+#mean1+'\r'
   'Second  method: sd: '+#sdev2+', mean: '+#mean2+'\r'
   histogram(#n)
   '\r\r'

^}</lang>

Output:
100 numbers:
Naive  method: sd: 0.199518, mean: 0.506059
Second  method: sd: 0.199518, mean: 0.506059

0.0: ++
0.1: ++++
0.2: +++++++++++++++++
0.3: ++++++++++++++++++++++
0.4: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.5: +++++++++++++++++++++++++++++++++++++++
0.6: +++++++++++++++++++++++++++++++++
0.7: ++++++++++++++++++++++++
0.8: ++++++++++++++++++++
0.9: ++++
1.0: ++


1000 numbers:
Naive  method: sd: 0.199653, mean: 0.504046
Second  method: sd: 0.199653, mean: 0.504046

0.0: +++
0.1: ++++++
0.2: ++++++++++++++++
0.3: ++++++++++++++++++++++++++++++
0.4: +++++++++++++++++++++++++++++++++++++++++++++++
0.5: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.6: ++++++++++++++++++++++++++++++++++++++++++++++
0.7: +++++++++++++++++++++++++
0.8: +++++++++++++++++++
0.9: +++++++
1.0: ++++


10000 numbers:
Naive  method: sd: 0.202354, mean: 0.502519
Second  method: sd: 0.202354, mean: 0.502519

0.0: +++
0.1: +++++++
0.2: +++++++++++++++
0.3: +++++++++++++++++++++++++++++
0.4: ++++++++++++++++++++++++++++++++++++++++++
0.5: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.6: +++++++++++++++++++++++++++++++++++++++++++
0.7: ++++++++++++++++++++++++++++++
0.8: ++++++++++++++++
0.9: +++++++
1.0: ++++

Liberty BASIC

Uses LB Statistics/Basic <lang lb>call sample 100000

end

sub sample n

   dim dat( n)
   for i =1 to n
       dat( i) =normalDist( 1, 0.2)
   next i
   '// show mean, standard deviation. Find max, min.
   mx  =-1000
   mn  = 1000
   sum =0
   sSq =0
   for i =1 to n
       d =dat( i)
       mx =max( mx, d)
       mn =min( mn, d)
       sum =sum +d
       sSq =sSq +d^2
   next i
   print n; " data terms used."
   mean =sum / n
   print "Largest term was "; mx; " & smallest was "; mn
   range =mx -mn
   print "Mean ="; mean
   print "Stddev ="; ( sSq /n -mean^2)^0.5
   '// show histogram
   nBins =50
   dim bins( nBins)
   for i =1 to n
       z =int( ( dat( i) -mn) /range *nBins)
       bins( z) =bins( z) +1
   next i
   for b =0 to nBins -1
       for j =1 to int( nBins *bins( b)) /n *30)
           print "#";
       next j
       print
   next b
   print

end sub

function normalDist( m, s) ' Box Muller method

   u =rnd( 1)
   v =rnd( 1)
   normalDist =( -2 *log( u))^0.5 *cos( 2 *3.14159265 *v)

end function</lang>

100000 data terms used.
Largest term was 4.12950792 & smallest was -4.37934139
Mean =-0.26785425e-2
Stddev =1.00097669


#
##
###
#####
########
############
################
########################
##############################
######################################
##############################################
########################################################
###################################################################
##############################################################################
#######################################################################################
################################################################################################
####################################################################################################
########################################################################################################
#####################################################################################################
##############################################################################################
#########################################################################################
##################################################################################
#########################################################################
##############################################################
####################################################
##########################################
#################################
##########################
##################
#############
#########
######
####
##
#
#

Lua

Lua provides math.random() to generate uniformly distributed random numbers. The function gaussian() shown here uses math.random() to generate normally distributed random numbers with given mean and variance. <lang Lua>function gaussian (mean, variance)

   return  math.sqrt(-2 * variance * math.log(math.random())) *
           math.cos(2 * math.pi * math.random()) + mean

end

function mean (t)

   local sum = 0
   for k, v in pairs(t) do
       sum = sum + v
   end
   return sum / #t

end

function std (t)

   local squares, avg = 0, mean(t)
   for k, v in pairs(t) do
       squares = squares + ((avg - v) ^ 2)
   end
   local variance = squares / #t
   return math.sqrt(variance)

end

function showHistogram (t)

   local lo = math.ceil(math.min(unpack(t)))
   local hi = math.floor(math.max(unpack(t)))
   local hist, barScale = {}, 200
   for i = lo, hi do
       hist[i] = 0
       for k, v in pairs(t) do
           if math.ceil(v - 0.5) == i then
               hist[i] = hist[i] + 1
           end
       end
       io.write(i .. "\t" .. string.rep('=', hist[i] / #t * barScale))
       print(" " .. hist[i])
   end

end

math.randomseed(os.time()) local t, average, variance = {}, 50, 10 for i = 1, 1000 do

   table.insert(t, gaussian(average, variance))

end print("Mean:", mean(t) .. ", expected " .. average) print("StdDev:", std(t) .. ", expected " .. math.sqrt(variance) .. "\n") showHistogram(t)</lang>

Output:
Mean:   50.008328894275, expected 50
StdDev: 3.2374717425824, expected 3.1622776601684

41       3
42      = 8
43      == 11
44      ==== 22
45      ======= 38
46      ============ 60
47      ============== 73
48      ================== 92
49      ======================= 118
50      =========================== 136
51      ========================= 128
52      ================= 89
53      ================= 89
54      =========== 56
55      ======= 37
56      === 18
57      = 7
58      = 5
59      = 6
60       2

Maple

Maple has a built-in for sampling directly from Normal distributions: <lang maple>with(Statistics): n := 100000: X := Sample( Normal(0,1), n ); Mean( X ); StandardDeviation( X ); Histogram( X );</lang>

Mathematica/Wolfram Language

<lang Mathematica>x:= RandomReal[1] SampleNormal[n_] := (Print[#//Length, " numbers, Mean : ", #//Mean, ", StandardDeviation : ", #//StandardDeviation];

   Histogram[#, BarOrigin -> Left,Axes -> False])& [(Table[(-2*Log[x])^0.5*Cos[2*Pi*x], {n} ]]

Invocation: SampleNormal[ 10000 ] ->10000 numbers, Mean : -0.0122308, StandardDeviation : 1.00646 </lang>

MATLAB / Octave

<lang Matlab> N = 100000;

 x = randn(N,1);
 mean(x)
 std(x) 
 [nn,xx] = hist(x,100);
 bar(xx,nn);</lang>

Nim

In module “random”, Nim provides two procedures named gauss to generate random values following normal distribution and following Gauss distribution with given mean and standard deviation.

Here is a way to generate random values following normal distribution from random values following uniform distribution. It uses the Basic form of the Box-Muller transform.

<lang Nim>import math, random, sequtils, stats, strformat, strutils

proc drawHistogram(ns: seq[float]) =

 # Distribute values in bins.
 const NBins = 50
 var minval = min(ns)
 var maxval = max(ns)
 var h = newSeq[int](NBins + 1)
 for n in ns:
   let pos = ((n - minval) * NBins / (maxval - minval)).toInt
   inc h[pos]
 # Eliminate extremes values.
 const MaxWidth = 50
 let mx = max(h)
 var first = 0
 while (h[first] / mx * MaxWidth).toInt == 0: inc first
 var last = h.high
 while (h[last] / mx * MaxWidth).toInt == 0: dec last
 # Draw the histogram.
 echo ""
 for n in first..last:
   echo repeat('+', (h[n] / mx * MaxWidth).toInt)
 echo ""


const N = 100_000

randomize()

let u1, u2 = newSeqWith(N, rand(1.0))

var z = newSeq[float](N) for i in 0..<N:

 z[i] = sqrt(-2 * ln(u1[i])) * cos(2 * PI * u2[i])

echo &"μ = {z.mean:.12f} σ = {z.standardDeviation:.12f}" z.drawHistogram()</lang>

Output:
μ = -0.001105836229   σ = 0.999906544722

+
+
++
+++
+++++
+++++++
+++++++++
++++++++++++
++++++++++++++++
+++++++++++++++++++++
++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++
+++++++++++++++++++++++++
++++++++++++++++++++
++++++++++++++++
++++++++++++
+++++++++
++++++
+++++
+++
++
+
+

PARI/GP

Works with: PARI/GP version 2.4.3 and above

<lang parigp>rnormal()={ my(u1=random(1.),u2=random(1.); sqrt(-2*log(u1))*cos(2*Pi*u1) \\ Could easily be extended with a second normal at very little cost. }; mean(v)={

 sum(i=1,#v,v[i])/#v

}; stdev(v,mu="")={

 if(mu=="",mu=mean(v));
 sqrt(sum(i=1,#v,(v[i]-mu)^2))/#v

}; histogram(v,bins=16,low=0,high=1)={

 my(u=vector(bins),width=(high-low)/bins);
 for(i=1,#v,u[(v[i]-low)\width+1]++);
 u

}; show(n)={

 my(v=vector(n,i,rnormal()),m=mean(v),s=stdev(v,m),h,sz=ceil(n/300));
 h=histogram(v,,vecmin(v)-.1,vecmax(v)+.1);
 for(i=1,#h,for(j=1,h[i]\sz,print1("#"));print());

}; show(10^4)</lang>

For versions before 2.4.3, define <lang parigp>rreal()={

 my(pr=32*ceil(default(realprecision)*log(10)/log(4294967296))); \\ Current precision
 random(2^pr)*1.>>pr

};</lang> and use rreal() in place of random(1.).

A PARI implementation: <lang C>GEN rnormal(long prec) { pari_sp ltop = avma; GEN u1, u2, left, right, ret; u1 = randomr(prec); u2 = randomr(prec); left = sqrtr_abs(shiftr(mplog(u1), 1)); right = mpcos(mulrr(shiftr(mppi(prec), 1), u2));

ret = mulrr(left, right); ret = gerepileupto(ltop, ret); return ret; }</lang> Use mpsincos and caching to generate two values at nearly the same cost.

Pascal

Works with: free Pascal

//not neccessary include unit math if using function rnorm

got some trouble with math.randg needs this call randg(cMean,cMean*cStdDiv), whereas randg(cMean,cStdDiv) to get the same results??

From Free Pascal Docs unit math <lang pascal>Program Example40; {$IFDEF FPC}

 {$MOde objFPC}

{$ENDIF} { Program to demonstrate the randg function. } Uses Math;

type

 tTestData =  extended;//because of math.randg
 ttstfunc = function  (mean, sd: tTestData): tTestData;
 tExArray = Array of tTestData;
 tSolution = record
               SolExArr : tExArray;
               SollowVal,
               SolHighVal,
               SolMean,
               SolStdDiv : tTestData;
               SolSmpCnt : LongInt;
             end;

function getSol(genFunc:ttstfunc;Mean,StdDiv: tTestData;smpCnt: LongInt): tSolution; var

 GenValue,
 sumValue,
 sumsqrVal : extended;

Begin

 with result do
 Begin
   SolSmpCnt  := smpCnt;
   SolMean    := 0;
   SolStdDiv  := 0;
   SolLowVal  := Mean+50* StdDiv;
   SolHighVal := Mean-50* StdDiv;
   setlength(SolExArr,smpCnt);
   if smpCnt <= 0 then
     EXIT;
   sumValue   := 0;
   sumsqrVal  := 0;
   repeat
     GenValue   := genFunc(Mean,StdDiv);
     sumValue   := sumvalue+GenValue;
     sumsqrVal  :=  sumsqrVal+sqr(GenValue);
     IF GenValue < SollowVal then
       SollowVal:= GenValue
     else
       IF GenValue > SolHighVal then
          SolHighVal := GenValue;
     dec(smpCnt);
     SolExArr[smpCnt] := GenValue;
   until smpCnt<= 0;
   SolMean := sumValue/SolSmpCnt;
   SolStdDiv := sqrt(sumsqrVal/SolSmpCnt-sqr(SolMean));
 end;

end;

//http://wiki.freepascal.org/Generating_Random_Numbers#Normal_.28Gaussian.29_Distribution function rnorm (mean, sd: tTestData): tTestData;

{Calculates Gaussian random numbers according to the Box-Müller approach}
 var
  u1, u2: extended;
begin
  u1 := random;
  u2 := random;
  rnorm := mean * abs(1 + sqrt(-2 * (ln(u1))) * cos(2 * pi * u2) * sd);
 end;

procedure Histo(const sol:TSolution;Colcnt,ColLen :LongInt); var

 CntHisto : array of integer;
 LoLmt,HiLmt,span : tTestData;
 i, j,cnt,maxCnt: LongInt;
 sCross : Ansistring;

Begin

 setlength(CntHisto,Colcnt);
 with Sol do
 Begin
   span := solHighVal-solLowVal;
   LoLmt := solLowVal;
   writeln('Count: ',SolSmpCnt:10,' Mean ',SolMean:10:6,' StdDiv ',SolStdDIv:10:6);
   writeln('span : ',span:10:5,' Low  ',solLowVal:10:6,'   high ',solHighVal:10:6);
 end;
 maxCnt := 0;
 For j := 0 to Colcnt-1 do
 Begin
   HiLmt:= LoLmt+span/Colcnt;
   cnt := 0;
   with sol do
     For i := 0 to High(SolExArr) do
        IF (HiLmt > SolExArr[i]) AND  (SolExArr[i]>= LoLmt) then
           inc(cnt);
   CntHisto[j] := cnt;
   IF maxCnt < cnt then
     maxCnt := cnt;
   LoLmt:=  HiLmt;
 end;
 inc(CntHisto[Colcnt]); // for HiLmt itself
 writeln;
 LoLmt := sol.solLowVal;
 For i := 0 to Colcnt-1 do
 Begin
   Writeln(LoLmt:8:4,': ');
   cnt:= Round(CntHisto[i]*ColLen/maxCnt);
   setlength(sCross,cnt+3);
   fillChar(sCross[1],3,' ');
   fillChar(sCross[4],cnt,'#');
   writeln(CntHisto[i]:10,sCross);
   LoLmt := LoLmt+span/Colcnt;
 end;
 Writeln(sol.solHighVal:8:4,': ');

end;

const

 cHistCnt = 11;
 cColLen = 65;
 cStdDiv = 0.25;
 cMean   = 20*cStdDiv;

var

 mySol : tSolution;

begin

 Randomize;
 // test of randg of unit math
 Writeln('function randg');
 mySol := getSol(@randg,cMean,cMean*cStdDiv,100000);
 Histo(mySol,cHistCnt,cColLen);
 writeln;
 // test of rnorm from wiki
 Writeln('function rnorm');
 mySol := getSol(@rnorm,cMean,cStdDiv,1000000);
 Histo(mySol,cHistCnt,cColLen);

end.</lang>

Output:

function randg Count: 100000 Mean 5.000326 StdDiv 1.250027 span : 10.65123 Low -0.333310 high 10.317922

-0.3333:
       25
 0.6350:
      287   #
 1.6033:
     2291   #####
 2.5716:
     9531   #####################
 3.5399:
    22608   #################################################
 4.5082:
    29953   #################################################################
 5.4765:
    22917   ##################################################
 6.4447:
     9716   #####################
 7.4130:
     2352   #####
 8.3813:
      295   #
 9.3496:
       24
10.3179:

function rnorm Count: 1000000 Mean 4.998391 StdDiv 1.251103 span : 11.08994 Low 0.001521 high 11.091461

 0.0015:
      704
 1.0097:
     7797   ##
 2.0179:
    49235   ###########
 3.0261:
   162761   ####################################
 4.0342:
   293242   #################################################################
 5.0424:
   285818   ###############################################################
 6.0506:
   150781   #################################
 7.0588:
    42641   #########
 8.0669:
     6467   #
 9.0751:
      528
10.0833:
       25
11.0915:

Perl

Translation of: Raku

<lang perl>use constant pi => 3.14159265; use List::Util qw(sum reduce min max);

sub normdist {

   my($m, $sigma) = @_;
   my $r = sqrt -2 * log rand;
   my $theta = 2 * pi * rand;
   $r * cos($theta) * $sigma + $m;

}

$size = 100000; $mean = 50; $stddev = 4;

push @dataset, normdist($mean,$stddev) for 1..$size;

my $m = sum(@dataset) / $size; print "m = $m\n";

my $sigma = sqrt( (reduce { $a + $b **2 } 0,@dataset) / $size - $m**2 ); print "sigma = $sigma\n";

   $hash{int $_}++ for @dataset;
   my $scale = 180 * $stddev / $size;
   my @subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >;
   for $i (min(@dataset)..max(@dataset)) {
       my $x = ($hash{$i} // 0) * $scale;
       my $full = int $x;
       my $part = 8 * ($x - $full);
       my $t1 = '█' x $full;
       my $t2 = $subbar[$part];
       print "$i\t$t1$t2\n";
   }

</lang>

Output:
32  ⎸
33  ⎸
34  ⎸
35  ⎸
36  ▎
37  ▋
38  █▏
39  ██▍
40  ████▍
41  ███████▌
42  ████████████⎸
43  ███████████████████▏
44  ████████████████████████████⎸
45  ██████████████████████████████████████▎
46  █████████████████████████████████████████████████▎
47  ██████████████████████████████████████████████████████████▋
48  ██████████████████████████████████████████████████████████████████▋
49  ███████████████████████████████████████████████████████████████████████▍
50  ██████████████████████████████████████████████████████████████████████▋
51  ██████████████████████████████████████████████████████████████████▌
52  ████████████████████████████████████████████████████████████▎
53  ████████████████████████████████████████████████▏
54  █████████████████████████████████████▊
55  ███████████████████████████▍
56  ███████████████████▊
57  ████████████▌
58  ███████▌
59  ████▍
60  ██▏
61  █⎸
62  ▌
63  ▏
64  ⎸
65  ⎸
66  ⎸

Phix

Translation of: Liberty_BASIC

<lang Phix>procedure sample(integer n) -- show mean, standard deviation. Find max, min. sequence dat = repeat(0,n)

   for i=1 to n do
       dat[i] = sqrt(-2*log(rnd()))*cos(2*PI*rnd())
   end for
   printf(1,"%d data terms used.\n",{n})

   atom mean = sum(dat)/n,
        mx = max(dat),
        mn = min(dat),
        range = mx-mn
   printf(1,"Largest term was %g & smallest was %g\n",{mx,mn})
   printf(1,"Mean = %g\n",{mean})
   printf(1,"Stddev = %g\n",sqrt(sum(sq_mul(dat,dat))/n-mean*mean))

   -- show histogram
   integer nBins = 50
   sequence bins = repeat(0,nBins+1)
   for i=1 to n do
       bins[floor((dat[i]-mn)/range*nBins)+1] += 1
   end for
   for b=1 to nBins do
       puts(1,repeat('#',floor(nBins*bins[b]/n*30))&"\n")
   end for

end procedure

sample(100000)</lang>

Output:
100000 data terms used.
Largest term was 4.30779 & smallest was -4.11902
Mean = -0.00252597
Stddev = 1.00067

#
##
####
######
##########
#############
##################
########################
#################################
########################################
####################################################
#############################################################
######################################################################
###############################################################################
#######################################################################################
###############################################################################################
#################################################################################################
#####################################################################################################
###################################################################################################
################################################################################################
########################################################################################
###############################################################################
#######################################################################
############################################################
#################################################
#######################################
##############################
#########################
################
############
#########
######
####
##
#
Translation of: Lua

<lang Phix>function gaussian(atom mean, atom variance)

   return sqrt(-2 * variance * log(rnd())) *
          cos(2 * variance * PI * rnd()) + mean

end function

function mean(sequence t)

   return sum(t)/length(t)

end function

function std(sequence t)

   atom squares = 0,
        avg = mean(t)
   for i=1 to length(t) do
       squares += power(avg-t[i],2)
   end for
   atom variance = squares/length(t)
   return sqrt(variance)

end function

procedure showHistogram(sequence t)

   for i=ceil(min(t)) to floor(max(t)) do
       integer n = 0
       for k=1 to length(t) do
           n += ceil(t[k]-0.5)=i
       end for
       integer l = floor(n/length(t)*200)
       printf(1,"%d %s %d\n",{i,repeat('=',l),n})
   end for

end procedure

sequence t = repeat(0,100000) integer avg = 50, variance = 10 for i=1 to length(t) do

   t[i] = gaussian(avg, variance)

end for printf(1,"Mean: %g, expected %g\n",{mean(t),avg}) printf(1,"StdDev: %g, expected %g\n",{std(t),sqrt(variance)}) showHistogram(t)</lang>

Output:
Mean: 50.0041, expected 50
StdDev: 3.1673, expected 3.16228
37  2
38  7
39  30
40  92
41  220
42 = 523
43 == 1098
44 ==== 2140
45 ======= 3690
46 =========== 5753
47 =============== 7906
48 ==================== 10299
49 ======================= 11813
50 ========================= 12555
51 ======================= 11934
52 ==================== 10327
53 ================ 8099
54 =========== 5733
55 ======= 3684
56 ==== 2126
57 == 1098
58  487
59  226
60  106
61  36
62  9
63  7

PureBasic

<lang purebasic>Procedure.f randomf(resolution = 2147483647)

 ProcedureReturn Random(resolution) / resolution

EndProcedure

Procedure.f normalDist() ;Box Muller method

  ProcedureReturn Sqr(-2 * Log(randomf())) * Cos(2 * #PI * randomf())

EndProcedure

Procedure sample(n, nBins = 50)

 Protected i, maxBinValue, binNumber
 Protected.f d, mean, sum, sumSq, mx, mn, range
 
 Dim dat.f(n)
 For i = 1 To n
   dat(i) = normalDist()
 Next
 
 ;show mean, standard deviation, find max & min.
 mx  = -1000
 mn  =  1000
 sum = 0
 sumSq = 0
 For i = 1 To n
   d = dat(i)
   If d > mx: mx = d: EndIf
   If d < mn: mn = d: EndIf
   sum + d
   sumSq + d * d
 Next
 
 PrintN(Str(n) + " data terms used.")
 PrintN("Largest term was " + StrF(mx) + " & smallest was " + StrF(mn))
 mean = sum / n
 PrintN("Mean = " + StrF(mean))
 PrintN("Stddev = " + StrF((sumSq / n) - Sqr(mean * mean)))
 
 ;show histogram
 range = mx - mn
 Dim bins(nBins)
 For i = 1 To n
   binNumber = Int(nBins * (dat(i) - mn) / range)
   bins(binNumber) + 1
 Next
  
 maxBinValue = 1
 For i = 0 To nBins
   If bins(i) > maxBinValue
     maxBinValue = bins(i)
   EndIf
 Next
 
 #normalizedMaxValue = 70
 For binNumber = 0 To nBins
   tickMarks = Round(bins(binNumber) * #normalizedMaxValue / maxBinValue, #PB_Round_Nearest)
   PrintN(ReplaceString(Space(tickMarks), " ", "#"))
 Next
 PrintN("")

EndProcedure

If OpenConsole()

 sample(100000)
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang> Sample output:

100000 data terms used.
Largest term was 4.5352029800 & smallest was -4.5405135155
Mean = 0.0012346541
Stddev = 0.9959455132





#
###
######
##########
##################
############################
#########################################
#####################################################
################################################################
######################################################################
######################################################################
################################################################
#####################################################
#########################################
#############################
##################
##########
######
###
#




Python

This uses the external matplotlib package as well as the built-in standardlib function random.gauss. <lang python>from __future__ import division import matplotlib.pyplot as plt import random

mean, stddev, size = 50, 4, 100000 data = [random.gauss(mean, stddev) for c in range(size)]

mn = sum(data) / size sd = (sum(x*x for x in data) / size

     - (sum(data) / size) ** 2) ** 0.5

print("Sample mean = %g; Stddev = %g; max = %g; min = %g for %i values"

     % (mn, sd, max(data), min(data), size))

plt.hist(data,bins=50)</lang>

Output:
Sample mean = 49.9822; Stddev = 4.00938; max = 66.8091; min = 33.5283 for 100000 values

R

Generate normal random numbers from uniform random numbers, using the Box-Muller transform. Both x and y are normally distributed, and independent. <lang r>n <- 100000 u <- sqrt(-2*log(runif(n))) v <- 2*pi*runif(n) x <- u*cos(v) y <- v*sin(v) hist(x)</lang>


R can generate random normal distributed numbers using the rnorm function: <lang r>n <- 100000 x <- rnorm(n, mean=0, sd=1) mean(x) sd(x) hist(x)</lang>

Racket

This shows how one would generate samples from a normal distribution, compute statistics and plot a histogram.

<lang racket>

  1. lang racket

(require math (planet williams/science/histogram-with-graphics))

(define data (sample (normal-dist 50 4) 100000))

(displayln (~a "Mean:\t" (mean data))) (displayln (~a "Stddev:\t" (stddev data))) (displayln (~a "Max:\t" (apply max data))) (displayln (~a "Min:\t" (apply min data)))

(define h (make-histogram-with-ranges-uniform 40 30 70)) (for ([x data]) (histogram-increment! h x)) (histogram-plot h "Normal distribution μ=50 σ=4") </lang>

The other part of the task was to produce normal distributed numbers from a unit distribution. The following code is an implementation of the polar method. It is a slightly modified version of code originally written by Sebastian Egner. <lang racket>

  1. lang racket

(require math)

(define random-normal

 (let ([unit (uniform-dist)]
       [next #f])
   (λ (μ σ)
     (if next
         (begin0
           (+ μ (* σ next))
           (set! next #f))
         (let loop ()
           (let* ([v1 (- (* 2.0 (sample unit)) 1.0)]
                  [v2 (- (* 2.0 (sample unit)) 1.0)]
                  [s (+ (sqr v1) (sqr v2))])
             (cond [(>= s 1) (loop)]
                   [else (define scale (sqrt (/ (* -2.0 (log s)) s)))
                         (set! next (* scale v2))
                         (+ μ (* σ scale v1))])))))))

</lang>

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.03

<lang perl6>sub normdist ($m, $σ) {

   my $r = sqrt -2 * log rand;
   my $Θ = τ * rand;
   $r * cos($Θ) * $σ + $m;

}

sub MAIN ($size = 100000, $mean = 50, $stddev = 4) {

   my @dataset = normdist($mean,$stddev) xx $size;
   my $m = [+](@dataset) / $size;
   say (:$m);
   my $σ = sqrt [+](@dataset X** 2) / $size - $m**2;
   say (:$σ);
   (my %hash){.round}++ for @dataset;
   my $scale = 180 * $stddev / $size;
   constant @subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >;
   for %hash.keys».Int.minmax(+*) -> $i {
       my $x = (%hash{$i} // 0) * $scale;
       my $full = floor $x;
       my $part = 8 * ($x - $full);
       say $i, "\t", '█' x $full, @subbar[$part];
   }

}</lang>

Output:
"m" => 50.006107405837142e0
"σ" => 4.0814435639885254e0
33	⎸
34	⎸
35	⎸
36	▏
37	▎
38	▊
39	█▋
40	███⎸
41	█████▊
42	██████████⎸
43	███████████████▋
44	███████████████████████▏
45	████████████████████████████████▌
46	███████████████████████████████████████████▍
47	██████████████████████████████████████████████████████▏
48	███████████████████████████████████████████████████████████████▏
49	█████████████████████████████████████████████████████████████████████▋
50	███████████████████████████████████████████████████████████████████████▊
51	█████████████████████████████████████████████████████████████████████▌
52	███████████████████████████████████████████████████████████████⎸
53	██████████████████████████████████████████████████████▎
54	███████████████████████████████████████████⎸
55	████████████████████████████████▌
56	███████████████████████▍
57	███████████████▉
58	█████████▉
59	█████▍
60	███▍
61	█▋
62	▊
63	▍
64	▏
65	⎸
66	⎸
67	⎸

REXX

The REXX language doesn't have any "higher math" BIF functions like   SIN, COS, LN, LOG, SQRT, EXP, POW, etc,
so we hoi polloi programmers have to roll our own. <lang rexx>/*REXX program generates 10,000 normally distributed numbers (Gaussian distribution).*/ numeric digits 20 /*use twenty decimal digs for accuracy.*/ parse arg n seed . /*obtain optional arguments from the CL*/ if n== | n=="," then n= 10000 /*Not specified? Then use the default.*/ if datatype(seed, 'W') then call random ,,seed /*seed is for repeatable RANDOM numbers*/ call pi /*call subroutine to define pi constant*/

       do g=1  for n;   #.g= sqrt( -2 * ln( rand() ) )      *      cos( 2 * pi * rand() )
       end   /*g*/                              /* [↑]  uniform random number ───► #.g */

s= 0 mn= #.1; mx= mn; noise= n * .0005 /*calculate the noise: 1/20th % of N.*/ ss= 0

       do j=1  for n;         _= #.j            /*the sum,  and  the sum of squares.   */
       s= s + _;              ss= ss  +  _ * _  /*the sum,  and  the sum of squares.   */
       mn= min(mn, _);        mx= max(mx, _)    /*find the minimum  and the maximum.   */
       end   /*j*/

!.= 0 say 'number of data points = ' fmt(n ) say ' minimum = ' fmt(mn ) say ' maximum = ' fmt(mx ) say ' arithmetic mean = ' fmt(s/n) say ' standard deviation = ' fmt(sqrt( ss/n - (s/n) **2) ) ?mn= !.1; ?mx= ?mn /*define minimum & maximum value so far*/ parse value scrSize() with sd sw . /*obtain the (true) screen size of term*/ /*◄──not all REXXes have this BIF*/ sdE= sd - 4 /*the effective (usable) screen depth. */ swE= sw - 1 /* " " " " width.*/ $= 1 / max(1, mx-mn) * sdE /*$ is used for scaling depth of histo*/

           do i=1  for n; ?= trunc((#.i-mn) *$) /*calculate the relative line.         */
           !.?= !.? + 1                         /*bump the counter.                    */
           ?mn= min(?mn, !.?)                   /*find the minimum.                    */
           ?mx= max(?mx, !.?)                   /*  "   "  maximum.                    */
           end   /*i*/

f= swE/?mx /*limit graph to 1 full screen*/

           do h=0  for sdE;     _= !.h                   /*obtain a data point.        */
           if _>noise  then say copies('─', trunc(_*f) ) /*display a bar of histogram. */
           end   /*h*/                                   /*[↑]  use a hyphen for histo.*/

exit /*stick a fork in it, we're all done. */ /*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ fmt: parse arg @; return left(, (@>=0) + 2 * datatype(@, 'W'))@ /*prepend a blank if #>=0, add 2 blanks if whole.*/ e: e = 2.7182818284590452353602874713526624977572470936999595749669676277240766303535; return e pi: pi= 3.1415926535897932384626433832795028841971693993751058209749445923078164062862; return pi r2r: return arg(1) // (pi() * 2) /*normalize the given angle (in radians) to ±2pi.*/ rand: return random(1, 1e5) / 1e5 /*REXX generates uniform random postive integers.*/ /*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ ln: procedure; parse arg x,f; call e; ig= x>1.5; is= 1 -2*(ig\==1); ii= 0; xx= x; do while ig & xx>1.5 | \ig & xx<.5

     _= e;  do k=-1; iz= xx*_ **-is;  if k>=0 & (ig & iz<1 | \ig & iz>.5)  then leave;  _= _*_; izz= iz; end;  xx= izz
     ii= ii +is*2**k; end; x= x*e**-ii-1; z=0; _=-1; p=z; do k=1;_=-_*x;z=z+_/k;if z=p then leave;p=z;end; return z+ii

/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; x=r2r(x); a=abs(x); hpi= pi*.5; numeric fuzz min(6, digits()-3); if a=pi then return -1

     if a=hpi | a=hpi*3  then return 0;   if a=pi/3  then return .5;   if a=pi*2/3 then return -.5;   z= 1;   _= 1
     x= x*x;  p= z;      do k=2  by 2; _= -_ * x / (k*(k-1));   z= z + _;  if z=p  then leave;  p= z; end;    return z

/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d= digits(); m.= 9; numeric digits; numeric form; h= d+6

     parse value format(x,2,1,,0) 'E0'  with  g 'E' _ .; g=g*.5'e'_%2;    do j=0  while h>9; m.j=h; h=h%2+1; end /*j*/
       do k=j+5  to 0  by -1;  numeric digits m.k;  g=(g+x/g)*.5;  end  /*k*/;          numeric digits d;   return g/1</lang>

This REXX program makes use of   scrsize   REXX program (or BIF) which is used to determine the screen size of the terminal (console);   this is to aid in maximizing the width of the horizontal histogram.

The   SCRSIZE.REX   REXX program is included here   ──►   SCRSIZE.REX.

output   when using the default input:

(The output shown when the screen size is 62x140.)

The graph is shown at   3/4   size.

number of data points =     10000
              minimum =  -3.8181072371544448250
              maximum =   3.5445917138265268562
      arithmetic mean =  -0.01406470979976873427
   standard deviation =   0.99486092191249231518
─
─
───
────
─────
─────
────────
───────────
──────────────
─────────────────────
──────────────────────
──────────────────────────────────
────────────────────────────────────────
───────────────────────────────────────────────
─────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────
─────────────────────────────────────────────────
─────────────────────────────────
──────────────────────────────────
───────────────────────
──────────────────────
──────────────────
───────────
──────────
──────
───
────
──
─

Run BASIC

<lang runbasic> s = 100000 h$ = "=============================================================" h$ = h$ + h$ dim ndis(s) ' mean and standard deviation. mx = -9999 mn = 9999 sum = 0 sumSqr = 0 for i = 1 to s ' find minimum and maximum ms = rnd(1) ss = rnd(1) nd = (-2 * log(ms))^0.5 * cos(2 *3.14159265 * ss) ' normal distribution ndis(i) = nd mx = max(mx, nd) mn = min(mn, nd) sum = sum + nd sumSqr = sumSqr + nd ^ 2 next i

mean = sum / s range = mx - mn

print "Samples  :"; s print "Largest  :"; mx print "Smallest  :"; mn print "Range  :"; range print "Mean  :"; mean print "Stand Dev :"; (sumSqr /s -mean^2)^0.5

'Show chart of histogram nBins = 50 dim bins(nBins) for i = 1 to s z = int((ndis(i) -mn) /range *nBins) bins(z) = bins(z) + 1 mb = max(bins(z),mb) next i for b = 0 to nBins -1

print using("##",b);" ";using("#####",bins(b));" ";left$(h$,(bins(b) / mb) * 90)

next b END</lang>

Output:
Samples   :100000
Largest   :4.61187177
Smallest  :-4.21695424
Range     :8.82882601
Mean      :-9.25042513e-4
Stand Dev :1.00680067

=
==
===
=====
========
=============
=================
=======================
==============================
=======================================
===============================================
=========================================================
===================================================================
===========================================================================
===================================================================================
=======================================================================================
==========================================================================================
========================================================================================
======================================================================================
=================================================================================
============================================================================
==================================================================
========================================================
==============================================
=====================================
============================
=====================
===============
==========
=======
=====
===
=
=

Rust

Library: math
Library: rand
Library: rand_distr

<lang rust>//! Rust rosetta example for normal distribution use math::{histogram::Histogram, traits::ToIterator}; use rand; use rand_distr::{Distribution, Normal};

/// Returns the mean of the provided samples /// /// ## Arguments /// * data -- reference to float32 array fn mean(data: &[f32]) -> Option<f32> {

   let sum: f32 = data.iter().sum();
   Some(sum / data.len() as f32)

}

/// Returns standard deviation of the provided samples /// /// ## Arguments /// * data -- reference to float32 array fn standard_deviation(data: &[f32]) -> Option<f32> {

   let mean = mean(data).expect("invalid mean");
   let sum = data.iter().fold(0.0, |acc, &x| acc + (x - mean).powi(2));
   Some((sum / data.len() as f32).sqrt())

}

/// Prints a histogram in the shell /// /// ## Arguments /// * data -- reference to float32 array /// * maxwidth -- the maxwidth of the histogram in # of characters /// * bincount -- number of bins in the histogram /// * ch -- character used to plot the graph fn print_histogram(data: &[f32], maxwidth: usize, bincount: usize, ch: char) {

   let min_val = data.iter().cloned().fold(f32::NAN, f32::min);
   let max_val = data.iter().cloned().fold(f32::NAN, f32::max);
   let histogram = Histogram::new(Some(&data.to_vec()), bincount, min_val, max_val).unwrap();
   let max_bin_value = histogram.get_counters().iter().max().unwrap();
   println!();
   for x in histogram.to_iter() {
       let (bin_min, bin_max, freq) = x;
       let bar_width = (((freq as f64) / (*max_bin_value as f64)) * (maxwidth as f64)) as u32;
       let bar_as_string = (1..bar_width).fold(String::new(), |b, _| b + &ch.to_string());
       println!(
           "({:>6},{:>6}) |{} {:.2}%",
           format!("{:.2}", bin_min),
           format!("{:.2}", bin_max),
           bar_as_string,
           (freq as f64) * 100.0 / (data.len() as f64)
       );
   }
   println!();

}

/// Runs the demo to generate normal distribution of three different sample sizes fn main() {

   let expected_mean: f32 = 0.0;
   let expected_std_deviation: f32 = 4.0;
   let normal = Normal::new(expected_mean, expected_std_deviation).unwrap();
   let mut rng = rand::thread_rng();
   for &number_of_samples in &[1000, 10_000, 1_000_000] {
       let data: Vec<f32> = normal
           .sample_iter(&mut rng)
           .take(number_of_samples)
           .collect();
       println!("Statistics for sample size {}:", number_of_samples);
       println!("\tMean: {:?}", mean(&data).expect("invalid mean"));
       println!(
           "\tStandard deviation: {:?}",
           standard_deviation(&data).expect("invalid standard deviation")
       );
       print_histogram(&data, 80, 40, '-');
   }

}</lang>

Output:
Statistics for sample size 1000:
	Mean: -0.11356559
	Standard deviation: 4.0244555

(-13.81,-13.12) | 0.10%
(-13.12,-12.44) | 0.00%
(-12.44,-11.75) | 0.10%
(-11.75,-11.06) | 0.20%
(-11.06,-10.38) |- 0.30%
(-10.38, -9.69) | 0.10%
( -9.69, -9.01) |--- 0.50%
( -9.01, -8.32) |---- 0.60%
( -8.32, -7.64) |------ 0.80%
( -7.64, -6.95) |-------------- 1.60%
( -6.95, -6.27) |----------------- 1.90%
( -6.27, -5.58) |------------------------ 2.60%
( -5.58, -4.90) |----------------------- 2.50%
( -4.90, -4.21) |---------------------------------------- 4.20%
( -4.21, -3.53) |------------------------------------- 3.90%
( -3.53, -2.84) |------------------------------------------------- 5.10%
( -2.84, -2.15) |---------------------------------------------- 4.80%
( -2.15, -1.47) |------------------------------------------------------------------------ 7.40%
( -1.47, -0.78) |---------------------------------------------------------- 6.00%
( -0.78, -0.10) |----------------------------------------------------------------------- 7.30%
( -0.10,  0.59) |------------------------------------------------------------------------------- 8.10%
(  0.59,  1.27) |----------------------------------------------------------------------- 7.30%
(  1.27,  1.96) |------------------------------------------------- 5.10%
(  1.96,  2.64) |------------------------------------------------------------ 6.20%
(  2.64,  3.33) |----------------------------------------- 4.30%
(  3.33,  4.01) |----------------------------- 3.10%
(  4.01,  4.70) |------------------------------------- 3.90%
(  4.70,  5.39) |-------------------------- 2.80%
(  5.39,  6.07) |---------------------- 2.40%
(  6.07,  6.76) |---------------- 1.80%
(  6.76,  7.44) |---------------- 1.80%
(  7.44,  8.13) |--------- 1.10%
(  8.13,  8.81) |---------- 1.20%
(  8.81,  9.50) | 0.20%
(  9.50, 10.18) | 0.00%
( 10.18, 10.87) | 0.10%
( 10.87, 11.55) |- 0.30%
( 11.55, 12.24) | 0.10%
( 12.24, 12.92) | 0.10%
( 12.92, 13.61) | 0.10%

Statistics for sample size 10000:
	Mean: 0.02012564
	Standard deviation: 3.9697735

(-15.80,-14.99) | 0.02%
(-14.99,-14.18) | 0.04%
(-14.18,-13.37) | 0.04%
(-13.37,-12.56) | 0.04%
(-12.56,-11.75) | 0.09%
(-11.75,-10.94) | 0.08%
(-10.94,-10.13) |- 0.25%
(-10.13, -9.32) |--- 0.42%
( -9.32, -8.51) |----- 0.67%
( -8.51, -7.70) |--------- 1.10%
( -7.70, -6.89) |------------- 1.48%
( -6.89, -6.08) |------------------ 1.98%
( -6.08, -5.27) |-------------------------- 2.82%
( -5.27, -4.45) |------------------------------------ 3.80%
( -4.45, -3.64) |--------------------------------------------- 4.66%
( -3.64, -2.83) |------------------------------------------------------- 5.72%
( -2.83, -2.02) |------------------------------------------------------------------ 6.85%
( -2.02, -1.21) |---------------------------------------------------------------------------- 7.80%
( -1.21, -0.40) |---------------------------------------------------------------------------- 7.79%
( -0.40,  0.41) |------------------------------------------------------------------------------- 8.09%
(  0.41,  1.22) |----------------------------------------------------------------------------- 7.89%
(  1.22,  2.03) |--------------------------------------------------------------------------- 7.76%
(  2.03,  2.84) |-------------------------------------------------------------------- 7.06%
(  2.84,  3.65) |------------------------------------------------------- 5.74%
(  3.65,  4.46) |-------------------------------------------- 4.64%
(  4.46,  5.27) |-------------------------------------- 4.00%
(  5.27,  6.08) |---------------------------- 3.03%
(  6.08,  6.89) |------------------- 2.07%
(  6.89,  7.71) |-------------- 1.54%
(  7.71,  8.52) |-------- 0.97%
(  8.52,  9.33) |----- 0.61%
(  9.33, 10.14) |-- 0.36%
( 10.14, 10.95) |- 0.25%
( 10.95, 11.76) | 0.19%
( 11.76, 12.57) | 0.08%
( 12.57, 13.38) | 0.02%
( 13.38, 14.19) | 0.01%
( 14.19, 15.00) | 0.03%
( 15.00, 15.81) | 0.00%
( 15.81, 16.62) | 0.01%

Statistics for sample size 1000000:
	Mean: -0.004743685
	Standard deviation: 4.0006065

(-20.00,-19.02) | 0.00%
(-19.02,-18.04) | 0.00%
(-18.04,-17.06) | 0.00%
(-17.06,-16.07) | 0.00%
(-16.07,-15.09) | 0.00%
(-15.09,-14.11) | 0.01%
(-14.11,-13.13) | 0.03%
(-13.13,-12.15) | 0.06%
(-12.15,-11.16) | 0.14%
(-11.16,-10.18) |- 0.28%
(-10.18, -9.20) |--- 0.53%
( -9.20, -8.22) |------ 0.95%
( -8.22, -7.24) |----------- 1.51%
( -7.24, -6.25) |------------------ 2.40%
( -6.25, -5.27) |--------------------------- 3.48%
( -5.27, -4.29) |-------------------------------------- 4.82%
( -4.29, -3.31) |-------------------------------------------------- 6.27%
( -3.31, -2.32) |------------------------------------------------------------- 7.62%
( -2.32, -1.34) |----------------------------------------------------------------------- 8.77%
( -1.34, -0.36) |----------------------------------------------------------------------------- 9.58%
( -0.36,  0.62) |------------------------------------------------------------------------------- 9.74%
(  0.62,  1.60) |---------------------------------------------------------------------------- 9.39%
(  1.60,  2.59) |-------------------------------------------------------------------- 8.49%
(  2.59,  3.57) |---------------------------------------------------------- 7.30%
(  3.57,  4.55) |----------------------------------------------- 5.86%
(  4.55,  5.53) |----------------------------------- 4.45%
(  5.53,  6.51) |------------------------ 3.16%
(  6.51,  7.50) |---------------- 2.09%
(  7.50,  8.48) |--------- 1.34%
(  8.48,  9.46) |----- 0.81%
(  9.46, 10.44) |-- 0.46%
( 10.44, 11.42) | 0.23%
( 11.42, 12.41) | 0.11%
( 12.41, 13.39) | 0.06%
( 13.39, 14.37) | 0.02%
( 14.37, 15.35) | 0.01%
( 15.35, 16.34) | 0.00%
( 16.34, 17.32) | 0.00%
( 17.32, 18.30) | 0.00%
( 18.30, 19.28) | 0.00%

SAS

<lang sas>data test; n=100000; twopi=2*constant('pi'); do i=1 to n; u=ranuni(0); v=ranuni(0); r=sqrt(-2*log(u)); x=r*cos(twopi*v); y=r*sin(twopi*v); z=rannor(0); output; end; keep x y z;

proc means mean stddev;

proc univariate; histogram /normal;

run;

/* Variable Mean Std Dev


x -0.0052720 0.9988467 y 0.000023995 1.0019996 z 0.0012857 1.0056536

  • /</lang>

Sidef

Translation of: Raku

<lang ruby>define τ = Num.tau

func normdist (m, σ) {

   var r = sqrt(-2 * 1.rand.log)
   var Θ = (τ * 1.rand)
   r * Θ.cos * σ + m

}

var size = 100_000 var mean = 50 var stddev = 4

var dataset = size.of { normdist(mean, stddev) } var m = (dataset.sum / size) say ("m: #{m}")

var σ = sqrt(dataset »**» 2 -> sum / size - m**2) say ("s: #{σ}")

var hash = Hash() dataset.each { |n| hash{ n.round } := 0 ++ }

var scale = (180 * stddev / size) const subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >

for i in (hash.keys.map{.to_i}.sort) {

   var x = (hash{i} * scale)
   var full = x.int
   var part = (8 * (x - full))
   say (i, "\t", '█' * full, subbar[part])

}</lang>

Output:
m: 49.99538275618550306540055142077589
s: 4.00295544816687358837821680496471
33	⎸
34	⎸
35	⎸
36	▏
37	▎
38	▊
39	█▋
40	███▏
41	██████▏
42	█████████▍
43	███████████████▌
44	███████████████████████▋
45	████████████████████████████████▍
46	████████████████████████████████████████████▎
47	█████████████████████████████████████████████████████▍
48	███████████████████████████████████████████████████████████████▍
49	█████████████████████████████████████████████████████████████████████▌
50	████████████████████████████████████████████████████████████████████████▋
51	█████████████████████████████████████████████████████████████████████▊
52	██████████████████████████████████████████████████████████████▏
53	████████████████████████████████████████████████████▉
54	███████████████████████████████████████████▉
55	█████████████████████████████████▎
56	███████████████████████⎸
57	███████████████▋
58	█████████▋
59	█████▍
60	███▍
61	█▊
62	▋
63	▍
64	▏
65	⎸
66	⎸

Stata

Pairs of normal numbers are generated from pairs of uniform numbers using the Box-Muller method. A normal density is added to the histogram for comparison. See histogram in Stata help. A Q-Q plot is also drawn.

<lang stata>clear all set obs 100000 gen u=runiform() gen v=runiform() gen r=sqrt(-2*log(u)) gen x=r*cos(2*_pi*v) gen y=r*sin(2*_pi*v) gen z=rnormal() sum x y z

   Variable |        Obs        Mean    Std. Dev.       Min        Max

+---------------------------------------------------------

          x |    100,000    .0025861    1.002346  -4.508192   4.164336
          y |    100,000    .0017389    1.001586  -4.631144   4.460274
          z |    100,000     .005054    .9998861  -5.134265   4.449522

hist x, normal hist y, normal hist z, normal qqplot x z, msize(tiny)</lang>

Tcl

<lang tcl>package require Tcl 8.5

  1. Uses the Box-Muller transform to compute a pair of normal random numbers

proc tcl::mathfunc::nrand {mean stddev} {

   variable savednormalrandom
   if {[info exists savednormalrandom]} {

return [expr {$savednormalrandom*$stddev + $mean}][unset savednormalrandom]

   }
   set r [expr {sqrt(-2*log(rand()))}]
   set theta [expr {2*3.1415927*rand()}]
   set savednormalrandom [expr {$r*sin($theta)}]
   expr {$r*cos($theta)*$stddev + $mean}

} proc stats {size {slotfactor 10}} {

   set sum 0.0
   set sum2 0.0
   for {set i 0} {$i < $size} {incr i} {

set r [expr { nrand(0.5, 0.2) }]

incr histo([expr {int(floor($r*$slotfactor))}]) set sum [expr {$sum + $r}] set sum2 [expr {$sum2 + $r**2}]

   }
   set mean [expr {$sum / $size}]
   set stddev [expr {sqrt($sum2/$size - $mean**2)}]
   puts "$size numbers"
   puts "Mean:   $mean"
   puts "StdDev: $stddev"
   foreach i [lsort -integer [array names histo]] {

puts [string repeat "*" [expr {$histo($i)*350/int($size)}]]

   }

}

stats 100 puts "" stats 1000 puts "" stats 10000 puts "" stats 100000 20</lang> Sample output:

100 numbers
Mean:   0.49355955990390254
StdDev: 0.19651396178121985
***
*******
**************
***********************************
********************************************************
******************************************************************
*************************************************************************
******************************************
**************************************
**************

1000 numbers
Mean:   0.5066940614105869
StdDev: 0.2016794788065389


*
*****
**************
****************************
**********************************************************
****************************************************************
*************************************************************
******************************************************
***********************************
************
*********
*

10000 numbers
Mean:   0.49980964730768285
StdDev: 0.1968441612522318

*
*****
***************
*******************************
*****************************************************
******************************************************************
*******************************************************************
****************************************************
*********************************
***************
*****
*



100000 numbers
Mean:   0.49960438950922254
StdDev: 0.20060211160998606





*
**
***
******
*********
**************
******************
***********************
*****************************
********************************
**********************************
**********************************
********************************
****************************
***********************
******************
*************
*********
******
***
**
*







The blank lines in the output are where the number of samples is too small to even merit a single unit on the histogram.

VBA

<lang vb>Public Sub standard_normal()

   Dim s() As Variant, bins(71) As Single
   ReDim s(20000)
   For i = 1 To 20000
       s(i) = WorksheetFunction.Norm_S_Inv(Rnd())
   Next i
   For i = -35 To 35
       bins(i + 36) = i / 10
   Next i
   Debug.Print "sample size"; UBound(s), "mean"; mean(s), "standard deviation"; standard_deviation(s)
           t = WorksheetFunction.Frequency(s, bins)
   For i = -35 To 35
       Debug.Print Format((i - 1) / 10, "0.00");
       Debug.Print "-"; Format(i / 10, "0.00"),
       Debug.Print String$(t(i + 36, 1) / 10, "X");
       Debug.Print
   Next i

End Sub</lang>

Output:
sample size 20000           mean-5,26306310478751E-03   standard deviation 1,00355037427319 
-3,60--3,50   
-3,50--3,40   
-3,40--3,30   
-3,30--3,20   
-3,20--3,10   
-3,10--3,00   
-3,00--2,90   XX
-2,90--2,80   X
-2,80--2,70   XX
-2,70--2,60   XX
-2,60--2,50   XXX
-2,50--2,40   XXXX
-2,40--2,30   XXXXX
-2,30--2,20   XXXXXXXX
-2,20--2,10   XXXXXXXX
-2,10--2,00   XXXXXXXXXXX
-2,00--1,90   XXXXXXXXXXXXX
-1,90--1,80   XXXXXXXXXXXXXXX
-1,80--1,70   XXXXXXXXXXXXXXXX
-1,70--1,60   XXXXXXXXXXXXXXXXXXXX
-1,60--1,50   XXXXXXXXXXXXXXXXXXXXXXXX
-1,50--1,40   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-1,40--1,30   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-1,30--1,20   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-1,20--1,10   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-1,10--1,00   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-1,00--0,90   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,90--0,80   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,80--0,70   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,70--0,60   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,60--0,50   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,50--0,40   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,40--0,30   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,30--0,20   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,20--0,10   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-0,10-0,00    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,00-0,10     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,10-0,20     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,20-0,30     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,30-0,40     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,40-0,50     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,50-0,60     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,60-0,70     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,70-0,80     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,80-0,90     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0,90-1,00     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1,00-1,10     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1,10-1,20     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1,20-1,30     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1,30-1,40     XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1,40-1,50     XXXXXXXXXXXXXXXXXXXXXXXXXX
1,50-1,60     XXXXXXXXXXXXXXXXXXXXXXXXX
1,60-1,70     XXXXXXXXXXXXXXXXXXXXXX
1,70-1,80     XXXXXXXXXXXXXXXXXX
1,80-1,90     XXXXXXXXXXXXXXX
1,90-2,00     XXXXXXXXXXX
2,00-2,10     XXXXXXXXXXXX
2,10-2,20     XXXXXXX
2,20-2,30     XXXXXX
2,30-2,40     XXXXX
2,40-2,50     XXX
2,50-2,60     XXXX
2,60-2,70     XX
2,70-2,80     XX
2,80-2,90     X
2,90-3,00     X
3,00-3,10     X
3,10-3,20     X
3,20-3,30     
3,30-3,40     
3,40-3,50  

Wren

Library: Wren-fmt
Library: Wren-math

<lang ecmascript>import "random" for Random import "/fmt" for Fmt import "/math" for Nums

var rgen = Random.new()

// Box-Muller method from Wikipedia var normal = Fn.new { |mu, sigma|

   var u1  = rgen.float()
   var u2  = rgen.float()
   var mag = sigma * (-2 * u1.log).sqrt
   var z0  = mag * (2 * Num.pi * u2).cos + mu
   var z1  = mag * (2 * Num.pi * u2).sin + mu
   return [z0, z1]

}

var N = 100000 var NUM_BINS = 12 var HIST_CHAR = "■" var HIST_CHAR_SIZE = 250 var bins = List.filled(NUM_BINS, 0) var binSize = 0.1 var samples = List.filled(N, 0) var mu = 0.5 var sigma = 0.25 for (i in 0...N/2) {

   var rns = normal.call(mu, sigma)
   for (j in 0..1) {
       var rn = rns[j]
       var bn
       if (rn < 0) {
           bn = 0
       } else if (rn >= 1) {
           bn = 11
       } else {
           bn = (rn/binSize).floor + 1
       }
       bins[bn] = bins[bn] + 1
       samples[i*2 + j] = rn
   }

}

Fmt.print("Normal distribution with mean $0.2f and S/D $0.2f for $,d samples:\n", mu, sigma, N) System.print(" Range Number of samples within that range") for (i in 0...NUM_BINS) {

   var hist = HIST_CHAR * (bins[i] / HIST_CHAR_SIZE).round
   if (i == 0) {
       Fmt.print("  -∞ ..< 0.00  $s $,d", hist, bins[0])
   } else if (i < NUM_BINS - 1) {
       Fmt.print("$4.2f ..< $4.2f  $s $,d", binSize * (i-1), binSize * i, hist, bins[i])
   } else {
       Fmt.print("1.00 ... +∞    $s $,d", hist, bins[NUM_BINS - 1])
   }

} Fmt.print("\nActual mean for these samples : $0.5f", Nums.mean(samples)) Fmt.print("Actual S/D for these samples : $0.5f", Nums.stdDev(samples))</lang>

Output:

Specimen run:

Normal distribution with mean 0.50 and S/D 0.25 for 100,000 samples:

    Range           Number of samples within that range
  -∞ ..< 0.00  ■■■■■■■■■ 2,243
0.00 ..< 0.10  ■■■■■■■■■■■■■ 3,250
0.10 ..< 0.20  ■■■■■■■■■■■■■■■■■■■■■■■■ 5,977
0.20 ..< 0.30  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,723
0.30 ..< 0.40  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 13,104
0.40 ..< 0.50  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 15,601
0.50 ..< 0.60  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 15,469
0.60 ..< 0.70  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 13,334
0.70 ..< 0.80  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,659
0.80 ..< 0.90  ■■■■■■■■■■■■■■■■■■■■■■■■ 6,119
0.90 ..< 1.00  ■■■■■■■■■■■■■ 3,173
1.00 ... +∞    ■■■■■■■■■ 2,348

Actual mean for these samples : 0.50099
Actual S/D  for these samples : 0.25051

zkl

Translation of: Go

<lang zkl>fcn norm2{ // Box-Muller

  const PI2=(0.0).pi*2;;
  rnd:=(0.0).random.fp(1);  // random number in [0,1), using partial application
  r,a:=(-2.0*rnd().log()).sqrt(), PI2*rnd();
  return(r*a.cos(), r*a.sin());  // z0,z1

} const N=100000, BINS=12, SIG=3, SCALE=500; var sum=0.0,sumSq=0.0, h=BINS.pump(List(),0); // (0,0,0,...) fcn accum(v){

  sum+=v;
  sumSq+=v*v;
  b:=(v + SIG)*BINS/SIG/2;
  if(0<=b<BINS) h[b]+=1;

};</lang> Partial application: rnd() --> (0.0).random(1). Basically, the fp method fixes the call parameters, which are then used when the partial thing is run. <lang zkl>foreach i in (N/2){ v1,v2:=norm2(); accum(v1); accum(v2); } println("Samples: %,d".fmt(N)); println("Mean: ", m:=sum/N); println("Stddev: ", (sumSq/N - m*m).sqrt()); foreach p in (h){ println("*"*(p/SCALE)) }</lang>

Output:
Samples: 100,000
Mean:    0.0005999
Stddev:  1.003
*
***
********
******************
*****************************
**************************************
**************************************
*****************************
******************
********
***
*