Statistics/Normal distribution: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|REXX}}: changed font size to 75%.)
m (→‎{{header|REXX}}: added a function name to the REXX section header.)
Line 2,377: Line 2,377:


=={{header|REXX}}==
=={{header|REXX}}==
The REXX language doesn't have any "higher math" BIF functions like   SIN, COS, LN, LOG, SQRT, POW, etc,
The REXX language doesn't have any "higher math" BIF functions like   SIN, COS, LN, LOG, SQRT, EXP, POW, etc,
<br>so we hoi polloi programmers have to roll our own.
<br>so we hoi polloi programmers have to roll our own.
<lang rexx>/*REXX program generates 10,000 normally distributed numbers (Gaussian distribution).*/
<lang rexx>/*REXX program generates 10,000 normally distributed numbers (Gaussian distribution).*/

Revision as of 23:52, 16 September 2018

Task
Statistics/Normal distribution
You are encouraged to solve this task according to the task description, using any language you may know.

The Normal (or Gaussian) distribution is a frequently used distribution in statistics. While most programming languages provide a uniformly distributed random number generator, one can derive normally distributed random numbers from a uniform generator.


The task
  1. Take a uniform random number generator and create a large (you decide how large) set of numbers that follow a normal (Gaussian) distribution. Calculate the dataset's mean and stddev, and show the histogram here.
  2. Mention any native language support for the generation of normally distributed random numbers.


Reference



C

<lang C>/*

* RosettaCode example: Statistics/Normal distribution in C
*
* The random number generator rand() of the standard C library is obsolete
* and should not be used in more demanding applications. There are plenty
* libraries with advanced features (eg. GSL) with functions to calculate 
* the mean, the standard deviation, generating random numbers etc. 
* However, these features are not the core of the standard C library.
*/
  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <math.h>
  4. include <string.h>
  5. include <time.h>


  1. define NMAX 10000000


double mean(double* values, int n) {

   int i;
   double s = 0;
   for ( i = 0; i < n; i++ )
       s += values[i];
   return s / n;

}


double stddev(double* values, int n) {

   int i;
   double average = mean(values,n);
   double s = 0;
   for ( i = 0; i < n; i++ )
       s += (values[i] - average) * (values[i] - average);
   return sqrt(s / (n - 1));

}

/*

* Normal random numbers generator - Marsaglia algorithm.
*/

double* generate(int n) {

   int i;
   int m = n + n % 2;
   double* values = (double*)calloc(m,sizeof(double));
   double average, deviation;
   if ( values )
   {
       for ( i = 0; i < m; i += 2 )
       {
           double x,y,rsq,f;
           do {
               x = 2.0 * rand() / (double)RAND_MAX - 1.0;
               y = 2.0 * rand() / (double)RAND_MAX - 1.0;
               rsq = x * x + y * y;
           }while( rsq >= 1. || rsq == 0. );
           f = sqrt( -2.0 * log(rsq) / rsq );
           values[i]   = x * f;
           values[i+1] = y * f;
       }
   }
   return values;

}


void printHistogram(double* values, int n) {

   const int width = 50;    
   int max = 0;
   const double low   = -3.05;
   const double high  =  3.05;
   const double delta =  0.1;
   int i,j,k;
   int nbins = (int)((high - low) / delta);
   int* bins = (int*)calloc(nbins,sizeof(int));
   if ( bins != NULL )
   {
       for ( i = 0; i < n; i++ )
       {
           int j = (int)( (values[i] - low) / delta );
           if ( 0 <= j  &&  j < nbins )
               bins[j]++;
       }
       for ( j = 0; j < nbins; j++ )
           if ( max < bins[j] )
               max = bins[j];
       for ( j = 0; j < nbins; j++ )
       {
           printf("(%5.2f, %5.2f) |", low + j * delta, low + (j + 1) * delta );
           k = (int)( (double)width * (double)bins[j] / (double)max );
           while(k-- > 0) putchar('*');
           printf("  %-.1f%%", bins[j] * 100.0 / (double)n);
           putchar('\n');
       }
       free(bins);
   }

}


int main(void) {

   double* seq;
   srand((unsigned int)time(NULL));
   if ( (seq = generate(NMAX)) != NULL )
   {
       printf("mean = %g, stddev = %g\n\n", mean(seq,NMAX), stddev(seq,NMAX));
       printHistogram(seq,NMAX);
       free(seq);
       printf("\n%s\n", "press enter");
       getchar();
       return EXIT_SUCCESS;
   }
   return EXIT_FAILURE;

}</lang>

Output:
mean = 0.000477941, stddev = 0.999945

(-3.05, -2.95) |  0.1%
(-2.95, -2.85) |  0.1%
(-2.85, -2.75) |*  0.1%
(-2.75, -2.65) |*  0.1%
(-2.65, -2.55) |*  0.1%
(-2.55, -2.45) |**  0.2%
(-2.45, -2.35) |**  0.2%
(-2.35, -2.25) |***  0.3%
(-2.25, -2.15) |****  0.4%
(-2.15, -2.05) |*****  0.4%
(-2.05, -1.95) |******  0.5%
(-1.95, -1.85) |********  0.7%
(-1.85, -1.75) |*********  0.8%
(-1.75, -1.65) |***********  0.9%
(-1.65, -1.55) |*************  1.1%
(-1.55, -1.45) |****************  1.3%
(-1.45, -1.35) |******************  1.5%
(-1.35, -1.25) |*********************  1.7%
(-1.25, -1.15) |************************  1.9%
(-1.15, -1.05) |***************************  2.2%
(-1.05, -0.95) |******************************  2.4%
(-0.95, -0.85) |*********************************  2.7%
(-0.85, -0.75) |************************************  2.9%
(-0.75, -0.65) |***************************************  3.1%
(-0.65, -0.55) |*****************************************  3.3%
(-0.55, -0.45) |********************************************  3.5%
(-0.45, -0.35) |**********************************************  3.7%
(-0.35, -0.25) |***********************************************  3.8%
(-0.25, -0.15) |*************************************************  3.9%
(-0.15, -0.05) |*************************************************  4.0%
(-0.05,  0.05) |**************************************************  4.0%
( 0.05,  0.15) |*************************************************  4.0%
( 0.15,  0.25) |*************************************************  3.9%
( 0.25,  0.35) |***********************************************  3.8%
( 0.35,  0.45) |**********************************************  3.7%
( 0.45,  0.55) |********************************************  3.5%
( 0.55,  0.65) |*****************************************  3.3%
( 0.65,  0.75) |***************************************  3.1%
( 0.75,  0.85) |************************************  2.9%
( 0.85,  0.95) |*********************************  2.7%
( 0.95,  1.05) |******************************  2.4%
( 1.05,  1.15) |***************************  2.2%
( 1.15,  1.25) |************************  1.9%
( 1.25,  1.35) |*********************  1.7%
( 1.35,  1.45) |******************  1.5%
( 1.45,  1.55) |****************  1.3%
( 1.55,  1.65) |*************  1.1%
( 1.65,  1.75) |***********  0.9%
( 1.75,  1.85) |*********  0.8%
( 1.85,  1.95) |********  0.7%
( 1.95,  2.05) |******  0.5%
( 2.05,  2.15) |*****  0.4%
( 2.15,  2.25) |****  0.4%
( 2.25,  2.35) |***  0.3%
( 2.35,  2.45) |**  0.2%
( 2.45,  2.55) |**  0.2%
( 2.55,  2.65) |*  0.1%
( 2.65,  2.75) |*  0.1%
( 2.75,  2.85) |*  0.1%
( 2.85,  2.95) |  0.1%

press enter

C#

Library: Math.Net

<lang csharp>using System; using MathNet.Numerics.Distributions; using MathNet.Numerics.Statistics;

class Program {

   static void RunNormal(int sampleSize)
   {
       double[] X = new double[sampleSize];
       var norm = new Normal(new Random());
       norm.Samples(X);
       const int numBuckets = 10;
       var histogram = new Histogram(X, numBuckets);
       Console.WriteLine("Sample size: {0:N0}", sampleSize);
       for (int i = 0; i < numBuckets; i++)
       {
           string bar = new String('#', (int)(histogram[i].Count * 360 / sampleSize));
           Console.WriteLine(" {0:0.00} : {1}", histogram[i].LowerBound, bar);
       }
       var statistics = new DescriptiveStatistics(X);
       Console.WriteLine("  Mean: " + statistics.Mean);
       Console.WriteLine("StdDev: " + statistics.StandardDeviation);
       Console.WriteLine();
   }
   static void Main(string[] args)
   {
       RunNormal(100);
       RunNormal(1000);
       RunNormal(10000);
   }

}</lang>

Output:
Sample size: 100
 -2.12 : #######
 -1.66 : ############################
 -1.19 : #######################################
 -0.72 : ##############################################
 -0.26 : ###############################################################################
 0.21 : ######################################################################################
 0.68 : ################################
 1.14 : #########################
 1.61 : ###
 2.07 : ##########
  Mean: 0.0394411345297757
StdDev: 0.925286665513647

Sample size: 1,000
 -2.98 : ##
 -2.34 : ##########
 -1.69 : ##############################
 -1.05 : ################################################################
 -0.40 : ###########################################################################################
 0.24 : ########################################################################################
 0.88 : ##############################################
 1.53 : ##################
 2.17 : #####
 2.82 : ##
  Mean: 0.0868718238400114
StdDev: 0.989120264661867

Sample size: 10,000
 -3.88 :
 -3.12 : ##
 -2.35 : #################
 -1.59 : ####################################################
 -0.82 : ################################################################################################
 -0.06 : ####################################################################################################
 0.71 : ###############################################################
 1.47 : #####################
 2.23 : ####
 3.00 :
  Mean: 0.0208920122989818
StdDev: 1.00046328880424

C++

showing features of C++11 here <lang cpp>#include <random>

  1. include <map>
  2. include <string>
  3. include <iostream>
  4. include <cmath>
  5. include <iomanip>

int main( ) {

  std::random_device myseed ;
  std::mt19937 engine ( myseed( ) ) ;
  std::normal_distribution<> normDistri ( 2 , 3 ) ;
  std::map<int , int> normalFreq ;
  int sum = 0 ; //holds the sum of the randomly created numbers
  double mean = 0.0 ;
  double stddev = 0.0 ;
  for ( int i = 1 ; i < 10001 ; i++ ) 
     ++normalFreq[ normDistri ( engine ) ] ;
  for ( auto MapIt : normalFreq ) {
     sum += MapIt.first * MapIt.second ;
  }
  mean = sum / 10000 ;
  stddev = sqrt( sum / 10000 ) ;
  std::cout << "The mean of the distribution is " << mean << " , the " ;
  std::cout << "standard deviation " << stddev << " !\n" ;
  std::cout << "And now the histogram:\n" ;
  for ( auto MapIt : normalFreq ) {
     std::cout << std::left << std::setw( 4 ) << MapIt.first << 

std::string( MapIt.second / 100 , '*' ) << std::endl ;

  }
  return 0 ;

}</lang> Output:

The mean of the distribution is 1 , the standard deviation 1 !
And now the histogram:
-10 
-9  
-8  
-7  
-6  
-5  
-4  *
-3  **
-2  ****
-1  ******
0   *********************
1   ************
2   ************
3   ***********
4   *********
5   ******
6   ****
7   **
8   *
9   
10  
11  
12  
13  

D

This uses the Box-Muller method as in the Go entry, and the module from the Statistics/Basic. A ziggurat-based normal generator for the Phobos standard library is in the works. <lang d>import std.stdio, std.random, std.math, std.range, std.algorithm,

      statistics_basic;

struct Normals {

   double mu, sigma;
   double[2] state;
   size_t index = state.length;
   enum empty = false;
   void popFront() pure nothrow { index++; }
   @property double front() {
       if (index >= state.length) {
           immutable r = sqrt(-2 * uniform!"]["(0., 1.0).log) * sigma;
           immutable x = 2 * PI * uniform01;
           state = [mu + r * x.sin, mu + r * x.cos];
           index = 0;
       }
       return state[index];
   }

}

void main() {

   const data = Normals(0.0, 0.5).take(100_000).array;
   writefln("Mean: %8.6f, SD: %8.6f\n", data.meanStdDev[]);
   data.map!q{ max(0.0, min(0.9999, a / 3 + 0.5)) }.showHistogram01;

}</lang>

Output:
Mean: 0.000528, SD: 0.502245

 0.0: *
 0.1: ******
 0.2: *****************
 0.3: ***********************************
 0.4: *************************************************
 0.5: **************************************************
 0.6: **********************************
 0.7: *****************
 0.8: ******
 0.9: *

Elixir

<lang elixir>defmodule Statistics do

 def normal_distribution(n, w\\5) do
   {sum, sum2, hist} = generate(n, w)
   mean = sum / n
   stddev = :math.sqrt(sum2 / n - mean*mean)
   
   IO.puts "size:   #{n}"
   IO.puts "mean:   #{mean}"
   IO.puts "stddev: #{stddev}"
   {min, max} = Map.to_list(hist)
                |> Enum.filter_map(fn {_k,v} -> v >= n/120/w end, fn {k,_v} -> k end)
                |> Enum.min_max
   Enum.each(min..max, fn i ->
     bar = String.duplicate("=", trunc(120 * w * Map.get(hist, i, 0) / n))
     :io.fwrite "~4.1f: ~s~n", [i/w, bar]
   end)
   IO.puts ""
 end
 
 defp generate(n, w) do
   Enum.reduce(1..n, {0, 0, %{}}, fn _,{sum, sum2, hist} ->
     z = :rand.normal
     {sum+z, sum2+z*z, Map.update(hist, round(w*z), 1, &(&1+1))}
   end)
 end

end

Enum.each([100,1000,10000], fn n ->

 Statistics.normal_distribution(n)

end)</lang>

Output:
size:   100
mean:   0.027742416007234007
stddev: 1.0209597927405403
-2.6: ============
-2.4: 
-2.2: ============
-2.0: ======
-1.8: 
-1.6: 
-1.4: ==============================
-1.2: ======
-1.0: ==============================
-0.8: ==========================================
-0.6: ==========================================
-0.4: ================================================
-0.2: ================================================
 0.0: ==============================
 0.2: ====================================
 0.4: ==========================================
 0.6: ======================================================
 0.8: ==========================================
 1.0: ================================================
 1.2: ==============================
 1.4: ======
 1.6: ============
 1.8: ============
 2.0: 
 2.2: 
 2.4: ======
 2.6: ======

size:   1000
mean:   -0.025562168667763084
stddev: 1.0338288521306742
-3.2: =
-3.0: 
-2.8: =
-2.6: ===
-2.4: ==
-2.2: ======
-2.0: ==
-1.8: =============
-1.6: ===============
-1.4: =================
-1.2: =================
-1.0: ====================================
-0.8: ===================================
-0.6: ============================================
-0.4: ============================================
-0.2: ===============================================
 0.0: =========================================
 0.2: ===========================================
 0.4: =============================================
 0.6: =======================================
 0.8: ================================
 1.0: ============================
 1.2: ========================
 1.4: ==================
 1.6: ==========
 1.8: =====
 2.0: ========
 2.2: ====
 2.4: =====
 2.6: =
 2.8: =

size:   10000
mean:   -0.009132420943007152
stddev: 0.9979508347451509
-2.6: =
-2.4: ===
-2.2: ====
-2.0: =====
-1.8: =========
-1.6: ==============
-1.4: ================
-1.2: =======================
-1.0: ============================
-0.8: =================================
-0.6: ============================================
-0.4: ===========================================
-0.2: ==============================================
 0.0: ==================================================
 0.2: ============================================
 0.4: ===========================================
 0.6: =======================================
 0.8: =====================================
 1.0: ============================
 1.2: =======================
 1.4: ================
 1.6: ==============
 1.8: =========
 2.0: ======
 2.2: ===
 2.4: ==
 2.6: =

Fortran

Works with: Fortran version 95 and later

Using the Marsaglia polar method <lang fortran>program Normal_Distribution

 implicit none
 integer, parameter :: i64 = selected_int_kind(18)
 integer, parameter :: r64 = selected_real_kind(15)
 integer(i64), parameter :: samples = 1000000_i64
 real(r64) :: mean, stddev
 real(r64) :: sumn = 0, sumnsq = 0
 integer(i64) :: n = 0 
 integer(i64) :: bin(-50:50) = 0
 integer :: i, ind
 real(r64) :: ur1, ur2, nr1, nr2, s
 
 n = 0
 do while(n <= samples)
   call random_number(ur1)
   call random_number(ur2)
   ur1 = ur1 * 2.0 - 1.0
   ur2 = ur2 * 2.0 - 1.0
   
   s = ur1*ur1 + ur2*ur2  
   if(s >= 1.0_r64) cycle
     
   nr1 = ur1 * sqrt(-2.0*log(s)/s)
   ind = floor(5.0*nr1)
   bin(ind) = bin(ind) + 1_i64
   sumn = sumn + nr1
   sumnsq = sumnsq + nr1*nr1
   
   nr2 = ur2 * sqrt(-2.0*log(s)/s)
   ind = floor(5.0*nr2)
   bin(ind) = bin(ind) + 1_i64
   sumn = sumn + nr2
   sumnsq = sumnsq + nr2*nr2
   n = n + 2_i64
 end do

 mean = sumn / n
 stddev = sqrt(sumnsq/n - mean*mean)
 
 write(*, "(a, i0)") "sample size = ", samples
 write(*, "(a, f17.15)") "Mean :   ", mean,
 write(*, "(a, f17.15)") "Stddev : ", stddev
 
 do i = -15, 15 
   write(*, "(f4.1, a, a)") real(i)/5.0, ": ", repeat("=", int(bin(i)*500/samples))
 end do
      

end program</lang>

Output:
sample size = 1000
Mean :   0.043096320705032
Stddev : 0.981532585231540
-3.0:
-2.8:
-2.6: ==
-2.4: ==
-2.2: ====
-2.0: ======
-1.8: =======
-1.6: ============
-1.4: ================
-1.2: =====================
-1.0: ===========================
-0.8: =======================
-0.6: ==================================
-0.4: =====================================
-0.2: ==========================================
 0.0: ===============================================
 0.2: ====================================
 0.4: =================================
 0.6: ==================================
 0.8: =============================
 1.0: ====================
 1.2: ==========================
 1.4: ===========
 1.6: =========
 1.8: ====
 2.0: ======
 2.2: ===
 2.4:
 2.6:
 2.8: =
 3.0:

sample size = 1000000
Mean :   0.000166653231289
Stddev : 1.000025612171690
-3.0:
-2.8: =
-2.6: =
-2.4: ==
-2.2: ====
-2.0: ======
-1.8: =========
-1.6: ============
-1.4: =================
-1.2: =====================
-1.0: ==========================
-0.8: ===============================
-0.6: ===================================
-0.4: ======================================
-0.2: =======================================
 0.0: =======================================
 0.2: ======================================
 0.4: ==================================
 0.6: ===============================
 0.8: ==========================
 1.0: =====================
 1.2: =================
 1.4: ============
 1.6: =========
 1.8: ======
 2.0: ====
 2.2: ==
 2.4: =
 2.6: =
 2.8:
 3.0:

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

Const pi As Double = 3.141592653589793 Randomize

' Generates normally distributed random numbers with mean 0 and standard deviation 1 Function randomNormal() As Double

 Return Cos(2.0 * pi * Rnd) * Sqr(-2.0 * Log(Rnd))

End Function

Sub normalStats(sampleSize As Integer)

 If sampleSize < 1 Then Return 
 Dim r(1 To sampleSize) As Double
 Dim h(-1 To 10) As Integer  all zero by default
 Dim sum As Double = 0.0
 Dim hSum As Integer = 0
 ' Generate 'sampleSize' normally distributed random numbers with mean 0.5 and standard deviation 0.25
 ' calculate their sum
 ' and in which box they will fall when drawing the histogram
 For i As Integer = 1 To sampleSize
   r(i) = 0.5 + randomNormal / 4.0
   sum += r(i)
   If r(i) < 0.0 Then
     h(-1) += 1
   ElseIf r(i) >= 1.0 Then
     h(10) += 1
   Else
     h(Int(r(i) * 10)) += 1
   End If
 Next
 For i As Integer = -1 To 10 : hSum += h(i) :  Next
 ' adjust one of the h() values if necessary to ensure hSum = sampleSize
 Dim adj As Integer = sampleSize - hSum
 If adj <> 0 Then
   For i As Integer = -1 To 10 
     h(i) += adj
     If h(i) >= 0 Then Exit For
     h(i) -= adj
   Next
 End If

 Dim mean As Double = sum / sampleSize
 Dim sd As Double
 sum = 0.0
 ' Now calculate their standard deviation
 For i As Integer = 1 To sampleSize
   sum += (r(i) - mean) ^ 2.0
 Next
 sd  = Sqr(sum/sampleSize)
 ' Draw a histogram of the data with interval 0.1 
 Dim numStars As Integer
 ' If sample size > 300 then normalize histogram to 300
 Dim scale As Double = 1.0
 If sampleSize > 300 Then scale = 300.0 / sampleSize 
 Print "Sample size "; sampleSize
 Print
 Print Using "  Mean #.######"; mean;
 Print Using "  SD #.######"; sd
 Print
 For i As Integer = -1 To 10
   If i = -1 Then
     Print Using "< 0.00 : ";
   ElseIf i = 10 Then
     Print Using ">=1.00 : ";
   Else
     Print Using "  #.## : "; i/10.0;
   End If
   Print Using "##### " ; h(i);
   numStars = Int(h(i) * scale + 0.5)
   Print String(numStars, "*")
 Next 

End Sub

normalStats 100 Print normalStats 1000 Print normalStats 10000 Print normalStats 100000 Print Print "Press any key to quit" Sleep</lang> Sample output:

Output:
Sample size  100

  Mean 0.486977  SD 0.244147

< 0.00 :     2 **
  0.00 :     5 *****
  0.10 :     4 ****
  0.20 :    14 **************
  0.30 :    12 ************
  0.40 :    15 ***************
  0.50 :    17 *****************
  0.60 :    11 ***********
  0.70 :     9 *********
  0.80 :     7 *******
  0.90 :     1 *
>=1.00 :     3 ***

Sample size  1000

  Mean 0.489234  SD 0.247606

< 0.00 :    18 *****
  0.00 :    32 **********
  0.10 :    73 **********************
  0.20 :   111 *********************************
  0.30 :   138 *****************************************
  0.40 :   151 *********************************************
  0.50 :   153 **********************************************
  0.60 :   114 **********************************
  0.70 :   101 ******************************
  0.80 :    51 ***************
  0.90 :    38 ***********
>=1.00 :    20 ******

Sample size  10000

  Mean 0.498239  SD 0.249235

< 0.00 :   225 *******
  0.00 :   333 **********
  0.10 :   589 ******************
  0.20 :   999 ******************************
  0.30 :  1320 ****************************************
  0.40 :  1542 **********************************************
  0.50 :  1581 ***********************************************
  0.60 :  1323 ****************************************
  0.70 :   963 *****************************
  0.80 :   591 ******************
  0.90 :   314 *********
>=1.00 :   220 *******

Sample size  100000

  Mean 0.500925  SD 0.248910

< 0.00 :  2173 *******
  0.00 :  3192 **********
  0.10 :  5938 ******************
  0.20 :  9715 *****************************
  0.30 : 13351 ****************************************
  0.40 : 15399 **********************************************
  0.50 : 15680 ***********************************************
  0.60 : 13422 ****************************************
  0.70 :  9633 *****************************
  0.80 :  5993 ******************
  0.90 :  3207 **********
>=1.00 :  2297 *******

Go

Box-Muller method shown here. Go has a normally distributed random function in the standard library, as shown in the Go Random numbers solution. It uses the ziggurat method. <lang go>package main

import (

   "fmt"
   "math"
   "math/rand"
   "strings"

)

// Box-Muller func norm2() (s, c float64) {

   r := math.Sqrt(-2 * math.Log(rand.Float64()))
   s, c = math.Sincos(2 * math.Pi * rand.Float64())
   return s * r, c * r

}

func main() {

   const (
       n     = 10000
       bins  = 12
       sig   = 3
       scale = 100
   )
   var sum, sumSq float64
   h := make([]int, bins)
   for i, accum := 0, func(v float64) {
       sum += v
       sumSq += v * v
       b := int((v + sig) * bins / sig / 2)
       if b >= 0 && b < bins {
           h[b]++
       }
   }; i < n/2; i++ {
       v1, v2 := norm2()
       accum(v1)
       accum(v2)
   }
   m := sum / n
   fmt.Println("mean:", m)
   fmt.Println("stddev:", math.Sqrt(sumSq/float64(n)-m*m))
   for _, p := range h {
       fmt.Println(strings.Repeat("*", p/scale))
   }

}</lang> Output:

mean: -0.0034970888831523488
stddev: 1.0040682925006286

*
****
*********
***************
*******************
******************
**************
*********
****
*

Haskell

<lang haskell>import Data.Map (Map, empty, insert, findWithDefault, toList) import Data.Maybe (fromMaybe) import Text.Printf (printf) import Data.Function (on) import Data.List (sort, maximumBy, minimumBy) import Control.Monad.Random (RandomGen, Rand, evalRandIO, getRandomR) import Control.Monad (replicateM)

-- Box-Muller getNorm :: RandomGen g => Rand g Double getNorm = do

   u0 <- getRandomR (0.0, 1.0) 
   u1 <- getRandomR (0.0, 1.0) 
   let r = sqrt $ (-2.0) * log u0
       theta = 2.0 * pi * u1
   return $ r * sin theta

putInBin :: Double -> Map Int Int -> Double -> Map Int Int putInBin binWidth t v =

   let bin = round (v / binWidth)
       count = findWithDefault 0 bin t 
   in insert bin (count+1) t

runTest :: Int -> IO () runTest n = do

   rs <- evalRandIO $ replicateM n getNorm 
   let binWidth = 0.1
       tally v (sv, sv2, t) = (sv+v, sv2 + v*v, putInBin binWidth t v)
       (sum, sum2, tallies) = foldr tally (0.0, 0.0, empty) rs
       tallyList = sort $ toList tallies
       printStars tallies binWidth maxCount selection = 
           let count = findWithDefault 0 selection tallies 
               bin = binWidth * fromIntegral selection
               maxStars = 100
               starCount = if maxCount <= maxStars
                           then count 
                           else maxStars * count `div` maxCount
               stars = replicate  starCount '*'
           in printf "%5.2f: %s  %d\n" bin stars count
       mean = sum / fromIntegral n
       stddev = sqrt (sum2/fromIntegral n - mean*mean)
   printf "\n"
   printf "sample count: %d\n" n
   printf "mean:         %9.7f\n" mean
   printf "stddev:       %9.7f\n" stddev
   let maxCount = snd $ maximumBy (compare `on` snd) tallyList
       maxBin = fst $ maximumBy (compare `on` fst) tallyList
       minBin = fst $ minimumBy (compare `on` fst) tallyList
   mapM_ (printStars tallies binWidth maxCount) [minBin..maxBin]

main = do

   runTest 1000
   runTest 2000000</lang>
Output:
sample count: 1000
mean:         -0.0269949
stddev:       0.9795285
-3.10: **  2
-3.00:   0
-2.90:   0
-2.80: **  2
-2.70: *  1
-2.60: ****  4
-2.50: **  2
-2.40: **  2
-2.30:   0
-2.20: ***  3
-2.10: *****  5
-2.00: ******  6
-1.90: ******  6
-1.80: ***********  11
-1.70: ************  12
-1.60: *******  7
-1.50: *************  13
-1.40: *****************  17
-1.30: ********************  20
-1.20: ****************  16
-1.10: *****************  17
-1.00: **********************  22
-0.90: ***************************  27
-0.80: **********************  22
-0.70: ********************************  32
-0.60: *********************************  33
-0.50: ******************************************  42
-0.40: ***********************************************  47
-0.30: ************************************************  48
-0.20: ***************************  27
-0.10: *****************************  29
 0.00: ***********************************************  47
 0.10: ***************************************************  51
 0.20: ******************************************  42
 0.30: ********************************  32
 0.40: *********************************  33
 0.50: *****************************************  41
 0.60: ******************************************  42
 0.70: ****************************  28
 0.80: **********************  22
 0.90: ***************************  27
 1.00: *******************  19
 1.10: **********************  22
 1.20: ************************  24
 1.30: ********************  20
 1.40: *****************  17
 1.50: **********  10
 1.60: *************  13
 1.70: ****  4
 1.80: ***  3
 1.90: *******  7
 2.00: ******  6
 2.10: *  1
 2.20: *  1
 2.30: *******  7
 2.40: ***  3
 2.50:   0
 2.60: *  1
 2.70:   0
 2.80:   0
 2.90:   0
 3.00: *  1
 3.10:   0
 3.20:   0
 3.30: *  1

sample count: 2000000
mean:         0.0001017
stddev:       0.9994329
-4.60:   3
-4.50:   2
-4.40:   3
-4.30:   9
-4.20:   18
-4.10:   19
-4.00:   20
-3.90:   41
-3.80:   77
-3.70:   84
-3.60:   105
-3.50:   189
-3.40:   245
-3.30:   350
-3.20:   460
-3.10:   619
-3.00: *  838
-2.90: *  1234
-2.80: *  1586
-2.70: **  2063
-2.60: ***  2716
-2.50: ****  3503
-2.40: *****  4345
-2.30: *******  5678
-2.20: ********  7160
-2.10: ***********  8856
-2.00: *************  10915
-1.90: ****************  13299
-1.80: *******************  15599
-1.70: ***********************  19004
-1.60: ***************************  22321
-1.50: ********************************  25940
-1.40: *************************************  29622
-1.30: ******************************************  34213
-1.20: ************************************************  38922
-1.10: ******************************************************  43415
-1.00: ************************************************************  48250
-0.90: ******************************************************************  53210
-0.80: ************************************************************************  58127
-0.70: ******************************************************************************  62438
-0.60: ***********************************************************************************  66650
-0.50: ****************************************************************************************  70298
-0.40: ********************************************************************************************  73739
-0.30: ***********************************************************************************************  75831
-0.20: **************************************************************************************************  78222
-0.10: ***************************************************************************************************  79412
 0.00: ****************************************************************************************************  79801
 0.10: ***************************************************************************************************  79255
 0.20: *************************************************************************************************  78163
 0.30: ************************************************************************************************  76667
 0.40: ********************************************************************************************  73554
 0.50: ****************************************************************************************  70391
 0.60: ***********************************************************************************  66566
 0.70: ******************************************************************************  62857
 0.80: ************************************************************************  57962
 0.90: ******************************************************************  53407
 1.00: ************************************************************  48565
 1.10: ******************************************************  43496
 1.20: ************************************************  38799
 1.30: ******************************************  34156
 1.40: *************************************  29713
 1.50: ********************************  25946
 1.60: ***************************  22264
 1.70: ***********************  18843
 1.80: *******************  15780
 1.90: ****************  13151
 2.00: *************  10905
 2.10: **********  8690
 2.20: ********  7102
 2.30: *******  5693
 2.40: *****  4459
 2.50: ****  3550
 2.60: ***  2603
 2.70: **  2155
 2.80: **  1619
 2.90: *  1121
 3.00: *  914
 3.10:   607
 3.20:   478
 3.30:   349
 3.40:   216
 3.50:   170
 3.60:   113
 3.70:   79
 3.80:   58
 3.90:   48
 4.00:   33
 4.10:   20
 4.20:   9
 4.30:   8
 4.40:   7
 4.50:   3
 4.60:   3
 4.70:   0
 4.80:   1
 4.90:   1

J

Solution <lang j>runif01=: ?@$ 0: NB. random uniform number generator rnorm01=. (2 o. 2p1 * runif01) * [: %: _2 * ^.@runif01 NB. random normal number generator (Box-Muller)

mean=: +/ % # NB. mean stddev=: (<:@# %~ +/)&.:*:@(- mean) NB. standard deviation histogram=: <:@(#/.~)@(i.@#@[ , I.)</lang> Example Usage <lang j> DataSet=: rnorm01 1e5

  (mean , stddev) DataSet

0.000781667 1.00154

  require 'plot'
  plot (5 %~ i: 25) ([;histogram) DataSet</lang>

Java

Translation of: D
Works with: Java version 8

<lang java>import static java.lang.Math.*; import static java.util.Arrays.stream; import java.util.Locale; import java.util.function.DoubleSupplier; import static java.util.stream.Collectors.joining; import java.util.stream.DoubleStream; import static java.util.stream.IntStream.range;

public class Test implements DoubleSupplier {

   private double mu, sigma;
   private double[] state = new double[2];
   private int index = state.length;
   Test(double m, double s) {
       mu = m;
       sigma = s;
   }
   static double[] meanStdDev(double[] numbers) {
       if (numbers.length == 0)
           return new double[]{0.0, 0.0};
       double sx = 0.0, sxx = 0.0;
       long n = 0;
       for (double x : numbers) {
           sx += x;
           sxx += pow(x, 2);
           n++;
       }
       return new double[]{sx / n, pow((n * sxx - pow(sx, 2)), 0.5) / n};
   }
   static String replicate(int n, String s) {
       return range(0, n + 1).mapToObj(i -> s).collect(joining());
   }
   static void showHistogram01(double[] numbers) {
       final int maxWidth = 50;
       long[] bins = new long[10];
       for (double x : numbers)
           bins[(int) (x * bins.length)]++;
       double maxFreq = stream(bins).max().getAsLong();
       for (int i = 0; i < bins.length; i++)
           System.out.printf(" %3.1f: %s%n", i / (double) bins.length,
                   replicate((int) (bins[i] / maxFreq * maxWidth), "*"));
       System.out.println();
   }
   @Override
   public double getAsDouble() {
       index++;
       if (index >= state.length) {
           double r = sqrt(-2 * log(random())) * sigma;
           double x = 2 * PI * random();
           state = new double[]{mu + r * sin(x), mu + r * cos(x)};
           index = 0;
       }
       return state[index];
   }
   public static void main(String[] args) {
       Locale.setDefault(Locale.US);
       double[] data = DoubleStream.generate(new Test(0.0, 0.5)).limit(100_000)
               .toArray();
       double[] res = meanStdDev(data);
       System.out.printf("Mean: %8.6f, SD: %8.6f%n", res[0], res[1]);
       showHistogram01(stream(data).map(a -> max(0.0, min(0.9999, a / 3 + 0.5)))
               .toArray());
   }

}</lang>

Mean: -0.001870, SD: 0.500539
 0.0: **
 0.1: *******
 0.2: ******************
 0.3: ************************************
 0.4: ***************************************************
 0.5: **************************************************
 0.6: ***********************************
 0.7: ******************
 0.8: *******
 0.9: **

Julia

Julia has the builtin package "Distributions" to generate random numbers from a standard distribution (Normal, Chisq etc.). <lang julia>using Distributions, Gadfly

data = rand(Normal(0, 1), 1000) @printf("N = %i\n", length(data)) @printf("μ = %2.2f\tσ = %2.2f\n", mean(data), std(data)) @printf("range = (%2.2f, %2.2f\n)", minimum(data), maximum(data)) h = plot(x=data, Geom.histogram) draw(PNG("norm_hist.png", 10cm, 10cm), h)</lang>

Output:
N = 1000
μ = 0.02	σ = 0.97
range = (-2.76, 3.42)

Kotlin

Translation of: FreeBASIC

<lang scala>// version 1.1.2

val rand = java.util.Random()

fun normalStats(sampleSize: Int) {

   if (sampleSize < 1) return
   val r = DoubleArray(sampleSize)
   val h = IntArray(12) // all zero by default
   /*
      Generate 'sampleSize' normally distributed random numbers with mean 0.5 and SD 0.25
      and calculate in which box they will fall when drawing the histogram
   */
   for (i in 0 until sampleSize) {
       r[i] = 0.5 + rand.nextGaussian() / 4.0
       when {
           r[i] <  0.0 -> h[0]++
           r[i] >= 1.0 -> h[11]++    
           else        -> h[1 + (r[i] * 10).toInt()]++
       }
   }  
   // adjust one of the h[] values if necessary to ensure they sum to sampleSize
   val adj = sampleSize - h.sum()
   if (adj != 0) {
       for (i in 0..11) {
           h[i] += adj
           if (h[i] >= 0) break
           h[i] -= adj
       }
   }
   val mean = r.average()
   val sd = Math.sqrt(r.map { (it - mean) * (it - mean) }.average())
 
   // Draw a histogram of the data with interval 0.1 
   var numStars: Int
   // If sample size > 300 then normalize histogram to 300 
   val scale = if (sampleSize <= 300) 1.0 else 300.0 / sampleSize 
   println("Sample size $sampleSize\n")
   println("  Mean ${"%1.6f".format(mean)}  SD ${"%1.6f".format(sd)}\n") 
   for (i in 0..11) {
       when (i) { 
           0    -> print("< 0.00 : ")
           11   -> print(">=1.00 : ")
           else -> print("  %1.2f : ".format(i / 10.0))
       }      
       print("%5d ".format(h[i]))
       numStars = (h[i] * scale + 0.5).toInt()
       println("*".repeat(numStars))
   }
   println()

}

fun main(args: Array<String>) {

   val sampleSizes = intArrayOf(100, 1_000, 10_000, 100_000) 
   for (sampleSize in sampleSizes) normalStats(sampleSize)

}</lang>

Output:
Sample size 100

  Mean 0.525211  SD 0.266316

< 0.00 :     3 ***
  0.10 :     1 *
  0.20 :     3 ***
  0.30 :    11 ***********
  0.40 :    14 **************
  0.50 :    13 *************
  0.60 :    15 ***************
  0.70 :    13 *************
  0.80 :    10 **********
  0.90 :    11 ***********
  1.00 :     4 ****
>=1.00 :     2 **

Sample size 1000

  Mean 0.500948  SD 0.255757

< 0.00 :    29 *********
  0.10 :    35 ***********
  0.20 :    70 *********************
  0.30 :    71 *********************
  0.40 :   138 *****************************************
  0.50 :   139 ******************************************
  0.60 :   168 **************************************************
  0.70 :   123 *************************************
  0.80 :   110 *********************************
  0.90 :    62 *******************
  1.00 :    32 **********
>=1.00 :    23 *******

Sample size 10000

  Mean 0.501376  SD 0.248317

< 0.00 :   240 *******
  0.10 :   305 *********
  0.20 :   617 *******************
  0.30 :   927 ****************************
  0.40 :  1291 ***************************************
  0.50 :  1554 ***********************************************
  0.60 :  1609 ************************************************
  0.70 :  1319 ****************************************
  0.80 :   983 *****************************
  0.90 :   609 ******************
  1.00 :   324 **********
>=1.00 :   222 *******

Sample size 100000

  Mean 0.499427  SD 0.250533

< 0.00 :  2341 *******
  0.10 :  3246 **********
  0.20 :  6005 ******************
  0.30 :  9718 *****************************
  0.40 : 13247 ****************************************
  0.50 : 15595 ***********************************************
  0.60 : 15271 **********************************************
  0.70 : 13405 ****************************************
  0.80 :  9653 *****************************
  0.90 :  5990 ******************
  1.00 :  3257 **********
>=1.00 :  2272 *******

Lasso

<lang Lasso>define stat1(a) => { if(#a->size) => { local(mean = (with n in #a sum #n) / #a->size) local(sdev = math_pow(((with n in #a sum Math_Pow((#n - #mean),2)) / #a->size),0.5)) return (:#sdev, #mean) else return (:0,0) } } define stat2(a) => { if(#a->size) => { local(sx = 0, sxx = 0) with x in #a do => { #sx += #x #sxx += #x*#x } local(sdev = math_pow((#a->size * #sxx - #sx * #sx),0.5) / #a->size) return (:#sdev, #sx / #a->size) else return (:0,0) } } define histogram(a) => { local( out = '\r', h = array(0,0,0,0,0,0,0,0,0,0,0), maxwidth = 50, sc = 0 ) with n in #a do => { if((#n * 10) <= 0) => { #h->get(1) += 1 else((#n * 10) >= 10) #h->get(#h->size) += 1 else #h->get(integer(decimal(#n)*10)+1) += 1 }

} local(mx = decimal(with n in #h max #n)) with i in #h do => { #out->append((#sc/10.0)->asString(-precision=1)+': '+('+' * integer(#i / #mx * #maxwidth))+'\r') #sc++ } return #out } define normalDist(mean,sdev) => { // Uses Box-Muller transform return ((-2 * decimal_random->log)->sqrt * (2 * pi * decimal_random)->cos) * #sdev + #mean }

with scale in array(100,1000,10000) do => {^ local(n = array) loop(#scale) => { #n->insert(normalDist(0.5, 0.2)) } local(sdev1,mean1) = stat1(#n) local(sdev2,mean2) = stat2(#n) #scale' numbers:\r'

   'Naive  method: sd: '+#sdev1+', mean: '+#mean1+'\r'
   'Second  method: sd: '+#sdev2+', mean: '+#mean2+'\r'
   histogram(#n)
   '\r\r'

^}</lang>

Output:
100 numbers:
Naive  method: sd: 0.199518, mean: 0.506059
Second  method: sd: 0.199518, mean: 0.506059

0.0: ++
0.1: ++++
0.2: +++++++++++++++++
0.3: ++++++++++++++++++++++
0.4: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.5: +++++++++++++++++++++++++++++++++++++++
0.6: +++++++++++++++++++++++++++++++++
0.7: ++++++++++++++++++++++++
0.8: ++++++++++++++++++++
0.9: ++++
1.0: ++


1000 numbers:
Naive  method: sd: 0.199653, mean: 0.504046
Second  method: sd: 0.199653, mean: 0.504046

0.0: +++
0.1: ++++++
0.2: ++++++++++++++++
0.3: ++++++++++++++++++++++++++++++
0.4: +++++++++++++++++++++++++++++++++++++++++++++++
0.5: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.6: ++++++++++++++++++++++++++++++++++++++++++++++
0.7: +++++++++++++++++++++++++
0.8: +++++++++++++++++++
0.9: +++++++
1.0: ++++


10000 numbers:
Naive  method: sd: 0.202354, mean: 0.502519
Second  method: sd: 0.202354, mean: 0.502519

0.0: +++
0.1: +++++++
0.2: +++++++++++++++
0.3: +++++++++++++++++++++++++++++
0.4: ++++++++++++++++++++++++++++++++++++++++++
0.5: ++++++++++++++++++++++++++++++++++++++++++++++++++
0.6: +++++++++++++++++++++++++++++++++++++++++++
0.7: ++++++++++++++++++++++++++++++
0.8: ++++++++++++++++
0.9: +++++++
1.0: ++++

Liberty BASIC

Uses LB Statistics/Basic <lang lb>call sample 100000

end

sub sample n

   dim dat( n)
   for i =1 to n
       dat( i) =normalDist( 1, 0.2)
   next i
   '// show mean, standard deviation. Find max, min.
   mx  =-1000
   mn  = 1000
   sum =0
   sSq =0
   for i =1 to n
       d =dat( i)
       mx =max( mx, d)
       mn =min( mn, d)
       sum =sum +d
       sSq =sSq +d^2
   next i
   print n; " data terms used."
   mean =sum / n
   print "Largest term was "; mx; " & smallest was "; mn
   range =mx -mn
   print "Mean ="; mean
   print "Stddev ="; ( sSq /n -mean^2)^0.5
   '// show histogram
   nBins =50
   dim bins( nBins)
   for i =1 to n
       z =int( ( dat( i) -mn) /range *nBins)
       bins( z) =bins( z) +1
   next i
   for b =0 to nBins -1
       for j =1 to int( nBins *bins( b)) /n *30)
           print "#";
       next j
       print
   next b
   print

end sub

function normalDist( m, s) ' Box Muller method

   u =rnd( 1)
   v =rnd( 1)
   normalDist =( -2 *log( u))^0.5 *cos( 2 *3.14159265 *v)

end function</lang>

100000 data terms used.
Largest term was 4.12950792 & smallest was -4.37934139
Mean =-0.26785425e-2
Stddev =1.00097669


#
##
###
#####
########
############
################
########################
##############################
######################################
##############################################
########################################################
###################################################################
##############################################################################
#######################################################################################
################################################################################################
####################################################################################################
########################################################################################################
#####################################################################################################
##############################################################################################
#########################################################################################
##################################################################################
#########################################################################
##############################################################
####################################################
##########################################
#################################
##########################
##################
#############
#########
######
####
##
#
#

Lua

Lua provides math.random() to generate uniformly distributed random numbers. The function gaussian() shown here uses math.random() to generate normally distributed random numbers with given mean and variance. <lang Lua>function gaussian (mean, variance)

   return  math.sqrt(-2 * variance * math.log(math.random())) *
           math.cos(2 * math.pi * math.random()) + mean

end

function mean (t)

   local sum = 0
   for k, v in pairs(t) do
       sum = sum + v
   end
   return sum / #t

end

function std (t)

   local squares, avg = 0, mean(t)
   for k, v in pairs(t) do
       squares = squares + ((avg - v) ^ 2)
   end
   local variance = squares / #t
   return math.sqrt(variance)

end

function showHistogram (t)

   local lo = math.ceil(math.min(unpack(t)))
   local hi = math.floor(math.max(unpack(t)))
   local hist, barScale = {}, 200
   for i = lo, hi do
       hist[i] = 0
       for k, v in pairs(t) do
           if math.ceil(v - 0.5) == i then
               hist[i] = hist[i] + 1
           end
       end
       io.write(i .. "\t" .. string.rep('=', hist[i] / #t * barScale))
       print(" " .. hist[i])
   end

end

math.randomseed(os.time()) local t, average, variance = {}, 50, 10 for i = 1, 1000 do

   table.insert(t, gaussian(average, variance))

end print("Mean:", mean(t) .. ", expected " .. average) print("StdDev:", std(t) .. ", expected " .. math.sqrt(variance) .. "\n") showHistogram(t)</lang>

Output:
Mean:   50.008328894275, expected 50
StdDev: 3.2374717425824, expected 3.1622776601684

41       3
42      = 8
43      == 11
44      ==== 22
45      ======= 38
46      ============ 60
47      ============== 73
48      ================== 92
49      ======================= 118
50      =========================== 136
51      ========================= 128
52      ================= 89
53      ================= 89
54      =========== 56
55      ======= 37
56      === 18
57      = 7
58      = 5
59      = 6
60       2

Maple

Maple has a built-in for sampling directly from Normal distributions: <lang maple>with(Statistics): n := 100000: X := Sample( Normal(0,1), n ); Mean( X ); StandardDeviation( X ); Histogram( X );</lang>

Mathematica

<lang Mathematica>x:= RandomReal[1] SampleNormal[n_] := (Print[#//Length, " numbers, Mean : ", #//Mean, ", StandardDeviation : ", #//StandardDeviation];

   Histogram[#, BarOrigin -> Left,Axes -> False])& [(Table[(-2*Log[x])^0.5*Cos[2*Pi*x], {n} ]]

Invocation: SampleNormal[ 10000 ] ->10000 numbers, Mean : -0.0122308, StandardDeviation : 1.00646 </lang>

MATLAB / Octave

<lang Matlab> N = 100000;

 x = randn(N,1);
 mean(x)
 std(x) 
 [nn,xx] = hist(x,100);
 bar(xx,nn);</lang>

PARI/GP

Works with: PARI/GP version 2.4.3 and above

<lang parigp>rnormal()={ my(u1=random(1.),u2=random(1.); sqrt(-2*log(u1))*cos(2*Pi*u1) \\ Could easily be extended with a second normal at very little cost. }; mean(v)={

 sum(i=1,#v,v[i])/#v

}; stdev(v,mu="")={

 if(mu=="",mu=mean(v));
 sqrt(sum(i=1,#v,(v[i]-mu)^2))/#v

}; histogram(v,bins=16,low=0,high=1)={

 my(u=vector(bins),width=(high-low)/bins);
 for(i=1,#v,u[(v[i]-low)\width+1]++);
 u

}; show(n)={

 my(v=vector(n,i,rnormal()),m=mean(v),s=stdev(v,m),h,sz=ceil(n/300));
 h=histogram(v,,vecmin(v)-.1,vecmax(v)+.1);
 for(i=1,#h,for(j=1,h[i]\sz,print1("#"));print());

}; show(10^4)</lang>

For versions before 2.4.3, define <lang parigp>rreal()={

 my(pr=32*ceil(default(realprecision)*log(10)/log(4294967296))); \\ Current precision
 random(2^pr)*1.>>pr

};</lang> and use rreal() in place of random(1.).

A PARI implementation: <lang C>GEN rnormal(long prec) { pari_sp ltop = avma; GEN u1, u2, left, right, ret; u1 = randomr(prec); u2 = randomr(prec); left = sqrtr_abs(shiftr(mplog(u1), 1)); right = mpcos(mulrr(shiftr(mppi(prec), 1), u2));

ret = mulrr(left, right); ret = gerepileupto(ltop, ret); return ret; }</lang> Use mpsincos and caching to generate two values at nearly the same cost.

Pascal

Works with: free Pascal

//not neccessary include unit math if using function rnorm

got some trouble with math.randg needs this call randg(cMean,cMean*cStdDiv), whereas randg(cMean,cStdDiv) to get the same results??

From Free Pascal Docs unit math <lang pascal>Program Example40; {$IFDEF FPC}

 {$MOde objFPC}

{$ENDIF} { Program to demonstrate the randg function. } Uses Math;

type

 tTestData =  extended;//because of math.randg
 ttstfunc = function  (mean, sd: tTestData): tTestData;
 tExArray = Array of tTestData;
 tSolution = record
               SolExArr : tExArray;
               SollowVal,
               SolHighVal,
               SolMean,
               SolStdDiv : tTestData;
               SolSmpCnt : LongInt;
             end;

function getSol(genFunc:ttstfunc;Mean,StdDiv: tTestData;smpCnt: LongInt): tSolution; var

 GenValue,
 sumValue,
 sumsqrVal : extended;

Begin

 with result do
 Begin
   SolSmpCnt  := smpCnt;
   SolMean    := 0;
   SolStdDiv  := 0;
   SolLowVal  := Mean+50* StdDiv;
   SolHighVal := Mean-50* StdDiv;
   setlength(SolExArr,smpCnt);
   if smpCnt <= 0 then
     EXIT;
   sumValue   := 0;
   sumsqrVal  := 0;
   repeat
     GenValue   := genFunc(Mean,StdDiv);
     sumValue   := sumvalue+GenValue;
     sumsqrVal  :=  sumsqrVal+sqr(GenValue);
     IF GenValue < SollowVal then
       SollowVal:= GenValue
     else
       IF GenValue > SolHighVal then
          SolHighVal := GenValue;
     dec(smpCnt);
     SolExArr[smpCnt] := GenValue;
   until smpCnt<= 0;
   SolMean := sumValue/SolSmpCnt;
   SolStdDiv := sqrt(sumsqrVal/SolSmpCnt-sqr(SolMean));
 end;

end;

//http://wiki.freepascal.org/Generating_Random_Numbers#Normal_.28Gaussian.29_Distribution function rnorm (mean, sd: tTestData): tTestData;

{Calculates Gaussian random numbers according to the Box-Müller approach}
 var
  u1, u2: extended;
begin
  u1 := random;
  u2 := random;
  rnorm := mean * abs(1 + sqrt(-2 * (ln(u1))) * cos(2 * pi * u2) * sd);
 end;

procedure Histo(const sol:TSolution;Colcnt,ColLen :LongInt); var

 CntHisto : array of integer;
 LoLmt,HiLmt,span : tTestData;
 i, j,cnt,maxCnt: LongInt;
 sCross : Ansistring;

Begin

 setlength(CntHisto,Colcnt);
 with Sol do
 Begin
   span := solHighVal-solLowVal;
   LoLmt := solLowVal;
   writeln('Count: ',SolSmpCnt:10,' Mean ',SolMean:10:6,' StdDiv ',SolStdDIv:10:6);
   writeln('span : ',span:10:5,' Low  ',solLowVal:10:6,'   high ',solHighVal:10:6);
 end;
 maxCnt := 0;
 For j := 0 to Colcnt-1 do
 Begin
   HiLmt:= LoLmt+span/Colcnt;
   cnt := 0;
   with sol do
     For i := 0 to High(SolExArr) do
        IF (HiLmt > SolExArr[i]) AND  (SolExArr[i]>= LoLmt) then
           inc(cnt);
   CntHisto[j] := cnt;
   IF maxCnt < cnt then
     maxCnt := cnt;
   LoLmt:=  HiLmt;
 end;
 inc(CntHisto[Colcnt]); // for HiLmt itself
 writeln;
 LoLmt := sol.solLowVal;
 For i := 0 to Colcnt-1 do
 Begin
   Writeln(LoLmt:8:4,': ');
   cnt:= Round(CntHisto[i]*ColLen/maxCnt);
   setlength(sCross,cnt+3);
   fillChar(sCross[1],3,' ');
   fillChar(sCross[4],cnt,'#');
   writeln(CntHisto[i]:10,sCross);
   LoLmt := LoLmt+span/Colcnt;
 end;
 Writeln(sol.solHighVal:8:4,': ');

end;

const

 cHistCnt = 11;
 cColLen = 65;
 cStdDiv = 0.25;
 cMean   = 20*cStdDiv;

var

 mySol : tSolution;

begin

 Randomize;
 // test of randg of unit math
 Writeln('function randg');
 mySol := getSol(@randg,cMean,cMean*cStdDiv,100000);
 Histo(mySol,cHistCnt,cColLen);
 writeln;
 // test of rnorm from wiki
 Writeln('function rnorm');
 mySol := getSol(@rnorm,cMean,cStdDiv,1000000);
 Histo(mySol,cHistCnt,cColLen);

end.</lang>

Output:

function randg Count: 100000 Mean 5.000326 StdDiv 1.250027 span : 10.65123 Low -0.333310 high 10.317922

-0.3333:
       25
 0.6350:
      287   #
 1.6033:
     2291   #####
 2.5716:
     9531   #####################
 3.5399:
    22608   #################################################
 4.5082:
    29953   #################################################################
 5.4765:
    22917   ##################################################
 6.4447:
     9716   #####################
 7.4130:
     2352   #####
 8.3813:
      295   #
 9.3496:
       24
10.3179:

function rnorm Count: 1000000 Mean 4.998391 StdDiv 1.251103 span : 11.08994 Low 0.001521 high 11.091461

 0.0015:
      704
 1.0097:
     7797   ##
 2.0179:
    49235   ###########
 3.0261:
   162761   ####################################
 4.0342:
   293242   #################################################################
 5.0424:
   285818   ###############################################################
 6.0506:
   150781   #################################
 7.0588:
    42641   #########
 8.0669:
     6467   #
 9.0751:
      528
10.0833:
       25
11.0915:

Perl

Translation of: Perl 6

<lang perl>use constant pi => 3.14159265; use List::Util qw(sum reduce min max);

sub normdist {

   my($m, $sigma) = @_;
   my $r = sqrt -2 * log rand;
   my $theta = 2 * pi * rand;
   $r * cos($theta) * $sigma + $m;

}

$size = 100000; $mean = 50; $stddev = 4;

push @dataset, normdist($mean,$stddev) for 1..$size;

my $m = sum(@dataset) / $size; print "m = $m\n";

my $sigma = sqrt( (reduce { $a + $b **2 } 0,@dataset) / $size - $m**2 ); print "sigma = $sigma\n";

   $hash{int $_}++ for @dataset;
   my $scale = 180 * $stddev / $size;
   my @subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >;
   for $i (min(@dataset)..max(@dataset)) {
       my $x = ($hash{$i} // 0) * $scale;
       my $full = int $x;
       my $part = 8 * ($x - $full);
       my $t1 = '█' x $full;
       my $t2 = $subbar[$part];
       print "$i\t$t1$t2\n";
   }

</lang>

Output:
32  ⎸
33  ⎸
34  ⎸
35  ⎸
36  ▎
37  ▋
38  █▏
39  ██▍
40  ████▍
41  ███████▌
42  ████████████⎸
43  ███████████████████▏
44  ████████████████████████████⎸
45  ██████████████████████████████████████▎
46  █████████████████████████████████████████████████▎
47  ██████████████████████████████████████████████████████████▋
48  ██████████████████████████████████████████████████████████████████▋
49  ███████████████████████████████████████████████████████████████████████▍
50  ██████████████████████████████████████████████████████████████████████▋
51  ██████████████████████████████████████████████████████████████████▌
52  ████████████████████████████████████████████████████████████▎
53  ████████████████████████████████████████████████▏
54  █████████████████████████████████████▊
55  ███████████████████████████▍
56  ███████████████████▊
57  ████████████▌
58  ███████▌
59  ████▍
60  ██▏
61  █⎸
62  ▌
63  ▏
64  ⎸
65  ⎸
66  ⎸

Perl 6

Works with: Rakudo version 2018.03

<lang perl6>sub normdist ($m, $σ) {

   my $r = sqrt -2 * log rand;
   my $Θ = τ * rand;
   $r * cos($Θ) * $σ + $m;

}

sub MAIN ($size = 100000, $mean = 50, $stddev = 4) {

   my @dataset = normdist($mean,$stddev) xx $size;
   my $m = [+](@dataset) / $size;
   say (:$m);
   my $σ = sqrt [+](@dataset X** 2) / $size - $m**2;
   say (:$σ);
   (my %hash){.round}++ for @dataset;
   my $scale = 180 * $stddev / $size;
   constant @subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >;
   for %hash.keys».Int.minmax(+*) -> $i {
       my $x = (%hash{$i} // 0) * $scale;
       my $full = floor $x;
       my $part = 8 * ($x - $full);
       say $i, "\t", '█' x $full, @subbar[$part];
   }

}</lang>

Output:
"m" => 50.006107405837142e0
"σ" => 4.0814435639885254e0
33	⎸
34	⎸
35	⎸
36	▏
37	▎
38	▊
39	█▋
40	███⎸
41	█████▊
42	██████████⎸
43	███████████████▋
44	███████████████████████▏
45	████████████████████████████████▌
46	███████████████████████████████████████████▍
47	██████████████████████████████████████████████████████▏
48	███████████████████████████████████████████████████████████████▏
49	█████████████████████████████████████████████████████████████████████▋
50	███████████████████████████████████████████████████████████████████████▊
51	█████████████████████████████████████████████████████████████████████▌
52	███████████████████████████████████████████████████████████████⎸
53	██████████████████████████████████████████████████████▎
54	███████████████████████████████████████████⎸
55	████████████████████████████████▌
56	███████████████████████▍
57	███████████████▉
58	█████████▉
59	█████▍
60	███▍
61	█▋
62	▊
63	▍
64	▏
65	⎸
66	⎸
67	⎸

Phix

Translation of: Liberty_BASIC

<lang Phix>procedure sample(integer n) -- show mean, standard deviation. Find max, min. sequence dat = repeat(0,n)

   for i=1 to n do
       dat[i] = sqrt(-2*log(rnd()))*cos(2*PI*rnd())
   end for
   printf(1,"%d data terms used.\n",{n})

   atom mean = sum(dat)/n,
        mx = max(dat),
        mn = min(dat),
        range = mx-mn
   printf(1,"Largest term was %g & smallest was %g\n",{mx,mn})
   printf(1,"Mean = %g\n",{mean})
   printf(1,"Stddev = %g\n",sqrt(sum(sq_mul(dat,dat))/n-mean*mean))

   -- show histogram
   integer nBins = 50
   sequence bins = repeat(0,nBins+1)
   for i=1 to n do
       bins[floor((dat[i]-mn)/range*nBins)+1] += 1
   end for
   for b=1 to nBins do
       puts(1,repeat('#',floor(nBins*bins[b]/n*30))&"\n")
   end for

end procedure

sample(100000)</lang>

Output:
100000 data terms used.
Largest term was 4.30779 & smallest was -4.11902
Mean = -0.00252597
Stddev = 1.00067

#
##
####
######
##########
#############
##################
########################
#################################
########################################
####################################################
#############################################################
######################################################################
###############################################################################
#######################################################################################
###############################################################################################
#################################################################################################
#####################################################################################################
###################################################################################################
################################################################################################
########################################################################################
###############################################################################
#######################################################################
############################################################
#################################################
#######################################
##############################
#########################
################
############
#########
######
####
##
#
Translation of: Lua

<lang Phix>function gaussian(atom mean, atom variance)

   return sqrt(-2 * variance * log(rnd())) *
          cos(2 * variance * PI * rnd()) + mean

end function

function mean(sequence t)

   return sum(t)/length(t)

end function

function std(sequence t)

   atom squares = 0,
        avg = mean(t)
   for i=1 to length(t) do
       squares += power(avg-t[i],2)
   end for
   atom variance = squares/length(t)
   return sqrt(variance)

end function

procedure showHistogram(sequence t)

   for i=ceil(min(t)) to floor(max(t)) do
       integer n = 0
       for k=1 to length(t) do
           n += ceil(t[k]-0.5)=i
       end for
       integer l = floor(n/length(t)*200)
       printf(1,"%d %s %d\n",{i,repeat('=',l),n})
   end for

end procedure

sequence t = repeat(0,100000) integer avg = 50, variance = 10 for i=1 to length(t) do

   t[i] = gaussian(avg, variance)

end for printf(1,"Mean: %g, expected %g\n",{mean(t),avg}) printf(1,"StdDev: %g, expected %g\n",{std(t),sqrt(variance)}) showHistogram(t)</lang>

Output:
Mean: 50.0041, expected 50
StdDev: 3.1673, expected 3.16228
37  2
38  7
39  30
40  92
41  220
42 = 523
43 == 1098
44 ==== 2140
45 ======= 3690
46 =========== 5753
47 =============== 7906
48 ==================== 10299
49 ======================= 11813
50 ========================= 12555
51 ======================= 11934
52 ==================== 10327
53 ================ 8099
54 =========== 5733
55 ======= 3684
56 ==== 2126
57 == 1098
58  487
59  226
60  106
61  36
62  9
63  7

PureBasic

<lang purebasic>Procedure.f randomf(resolution = 2147483647)

 ProcedureReturn Random(resolution) / resolution

EndProcedure

Procedure.f normalDist() ;Box Muller method

  ProcedureReturn Sqr(-2 * Log(randomf())) * Cos(2 * #PI * randomf())

EndProcedure

Procedure sample(n, nBins = 50)

 Protected i, maxBinValue, binNumber
 Protected.f d, mean, sum, sumSq, mx, mn, range
 
 Dim dat.f(n)
 For i = 1 To n
   dat(i) = normalDist()
 Next
 
 ;show mean, standard deviation, find max & min.
 mx  = -1000
 mn  =  1000
 sum = 0
 sumSq = 0
 For i = 1 To n
   d = dat(i)
   If d > mx: mx = d: EndIf
   If d < mn: mn = d: EndIf
   sum + d
   sumSq + d * d
 Next
 
 PrintN(Str(n) + " data terms used.")
 PrintN("Largest term was " + StrF(mx) + " & smallest was " + StrF(mn))
 mean = sum / n
 PrintN("Mean = " + StrF(mean))
 PrintN("Stddev = " + StrF((sumSq / n) - Sqr(mean * mean)))
 
 ;show histogram
 range = mx - mn
 Dim bins(nBins)
 For i = 1 To n
   binNumber = Int(nBins * (dat(i) - mn) / range)
   bins(binNumber) + 1
 Next
  
 maxBinValue = 1
 For i = 0 To nBins
   If bins(i) > maxBinValue
     maxBinValue = bins(i)
   EndIf
 Next
 
 #normalizedMaxValue = 70
 For binNumber = 0 To nBins
   tickMarks = Round(bins(binNumber) * #normalizedMaxValue / maxBinValue, #PB_Round_Nearest)
   PrintN(ReplaceString(Space(tickMarks), " ", "#"))
 Next
 PrintN("")

EndProcedure

If OpenConsole()

 sample(100000)
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang> Sample output:

100000 data terms used.
Largest term was 4.5352029800 & smallest was -4.5405135155
Mean = 0.0012346541
Stddev = 0.9959455132





#
###
######
##########
##################
############################
#########################################
#####################################################
################################################################
######################################################################
######################################################################
################################################################
#####################################################
#########################################
#############################
##################
##########
######
###
#




Python

This uses the external matplotlib package as well as the built-in standardlib function random.gauss. <lang python>from __future__ import division import matplotlib.pyplot as plt import random

mean, stddev, size = 50, 4, 100000 data = [random.gauss(mean, stddev) for c in range(size)]

mn = sum(data) / size sd = (sum(x*x for x in data) / size

     - (sum(data) / size) ** 2) ** 0.5

print("Sample mean = %g; Stddev = %g; max = %g; min = %g for %i values"

     % (mn, sd, max(data), min(data), size))

plt.hist(data,bins=50)</lang>

Output:
Sample mean = 49.9822; Stddev = 4.00938; max = 66.8091; min = 33.5283 for 100000 values

R

R can generate random normal distributed numbers using the rnorm command: <lang r>n = 100000; X = rnorm(n, mean = 0, sd = 1); mean( X ); sd( X ); hist( X );</lang>

Racket

This shows how one would generate samples from a normal distribution, compute statistics and plot a histogram.

<lang racket>

  1. lang racket

(require math (planet williams/science/histogram-with-graphics))

(define data (sample (normal-dist 50 4) 100000))

(displayln (~a "Mean:\t" (mean data))) (displayln (~a "Stddev:\t" (stddev data))) (displayln (~a "Max:\t" (apply max data))) (displayln (~a "Min:\t" (apply min data)))

(define h (make-histogram-with-ranges-uniform 40 30 70)) (for ([x data]) (histogram-increment! h x)) (histogram-plot h "Normal distribution μ=50 σ=4") </lang>

The other part of the task was to produce normal distributed numbers from a unit distribution. The following code is an implementation of the polar method. It is a slightly modified version of code originally written by Sebastian Egner. <lang racket>

  1. lang racket

(require math)

(define random-normal

 (let ([unit (uniform-dist)]
       [next #f])
   (λ (μ σ)
     (if next
         (begin0
           (+ μ (* σ next))
           (set! next #f))
         (let loop ()
           (let* ([v1 (- (* 2.0 (sample unit)) 1.0)]
                  [v2 (- (* 2.0 (sample unit)) 1.0)]
                  [s (+ (sqr v1) (sqr v2))])
             (cond [(>= s 1) (loop)]
                   [else (define scale (sqrt (/ (* -2.0 (log s)) s)))
                         (set! next (* scale v2))
                         (+ μ (* σ scale v1))])))))))

</lang>

REXX

The REXX language doesn't have any "higher math" BIF functions like   SIN, COS, LN, LOG, SQRT, EXP, POW, etc,
so we hoi polloi programmers have to roll our own. <lang rexx>/*REXX program generates 10,000 normally distributed numbers (Gaussian distribution).*/ numeric digits 20 /*use 20 decimal digits for accuracy.*/ parse arg n seed . /*obtain optional arguments from the CL*/ if n== | n=="," then n= 10000 /*Not specified? Then use the default.*/ if datatype(seed, 'W') then call random ,,seed /*seed is for repeatable RANDOM numbers*/ call pi /*call subroutine to define pi constant*/

       do g=1  for n;   #.g= sqrt( -2 * ln( rand() ) )      *      cos( 2 * pi * rand() )
       end   /*g*/                              /* [↑]  uniform random number ───► #.g */

s= 0 mn= #.1; mx= mn; noise= n * .0005 /*calculate the noise: 1/20th % of N.*/ ss= 0

       do j=1  for n;  _=#.j; s=s+_;  ss=ss+_*_ /*the sum,  and  the sum of squares.   */
       mn= min(mn, _);        mx= max(mx, _)    /*find the minimum  and the maximum.   */
       end   /*j*/

!.= 0 say 'number of data points = ' aa(n ) say ' minimum = ' aa(mn ) say ' maximum = ' aa(mx ) say ' arithmetic mean = ' aa(s/n) say ' standard deviation = ' aa(sqrt( ss/n - (s/n) **2) ) ?mn= !.1; ?mx= ?mn /*define minimum & maximum value so far*/ parse value scrSize() with sd sw . /*obtain the (true) screen size of term*/ /*◄──not all REXXes have this BIF*/ sdE= sd - 4 /*the effective (useable) screen depth.*/ swE= sw - 1 /* " " " " width.*/ $= 1 / max(1, mx-mn) * sdE /*$ is used for scaling depth of histo*/

           do i=1  for n;        ?= trunc( (#.i-mn) * $) /*calculate the relative line.*/
           !.?= !.? + 1                                  /*bump the counter.           */
           ?mn= min(?mn, !.?);   ?mx= max(?mx, !.?)      /*find the minimum and maximum*/
           end   /*i*/

f=swE/?mx /*limit graph to 1 full screen*/

           do h=0  for sdE;      _= !.h                  /*obtain a data point.        */
           if _>noise  then say copies('─', trunc(_*f) ) /*display a bar of histogram. */
           end   /*h*/                                   /*[↑]  use a hyphen for histo.*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ aa: parse arg a; return left(, (a>=0) + 2 * datatype(a, 'W'))a /*prepend a blank if #>=0, add 2 blanks if whole.*/ e: e = 2.7182818284590452353602874713526624977572470936999595749669676277240766303535; return e pi: pi= 3.1415926535897932384626433832795028841971693993751058209749445923078164062862; return pi r2r: return arg(1) // (pi() * 2) /*normalize the given angle (in radians) to ±2pi.*/ rand: return random(1, 1e5) / 1e5 /*REXX generates uniform random postive integers.*/ .sincos: parse arg z,_,i; x= x*x; p= z; do k=2 by 2; _= -_*x/(k*(k+i)); z= z+_; if z=p then leave; p= z; end; return z /*──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ ln: procedure; parse arg x,f; call e; ig= x>1.5; is= 1 -2*(ig\==1); ii= 0; xx= x; do while ig & xx>1.5 | \ig & xx<.5

        _= e;  do k=-1; iz= xx*_ **-is;  if k>=0 & (ig & iz<1 | \ig & iz>.5)  then leave;  _= _*_; izz= iz; end;  xx= izz
        ii= ii +is*2**k; end; x= x*e**-ii-1; z=0; _=-1; p=z; do k=1;_=-_*x;z=z+_/k;if z=p then leave;p=z;end; return z+ii

/*──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; x=r2r(x); a=abs(x); hpi= pi*.5; numeric fuzz min(6, digits()-3); if a=pi then return -1

        if a=hpi | a=hpi*3  then return 0; if a=pi/3  then return .5; if a=pi*2/3 then return -.5; return .sinCos(1,1,-1)

/*──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d= digits(); m.= 9; numeric digits; numeric form; h= d+6

        parse value format(x,2,1,,0) 'E0'  with  g 'E' _ .; g=g*.5'e'_%2;    do j=0  while h>9; m.j=h; h=h%2+1; end /*j*/
          do k=j+5  to 0  by -1;  numeric digits m.k;  g=(g+x/g)*.5;  end  /*k*/;          numeric digits d;   return g/1</lang>

This REXX program makes use of   scrsize   REXX program (or BIF) which is used to determine the screen size of the terminal (console);   this is to aid in maximizing the width of the horizontal histogram.

The   SCRSIZE.REX   REXX program is included here   ──►   SCRSIZE.REX.

output   when using the default input:

(The output shown when the screen size is 62x140.)

The graph is shown at   3/4   size.

number of data points =     10000
              minimum =  -3.8181072371544448250
              maximum =   3.5445917138265268562
      arithmetic mean =  -0.01406470979976873427
   standard deviation =   0.99486092191249231518
─
─
───
────
─────
─────
────────
───────────
──────────────
─────────────────────
──────────────────────
──────────────────────────────────
────────────────────────────────────────
───────────────────────────────────────────────
─────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────
─────────────────────────────────────────────────
─────────────────────────────────
──────────────────────────────────
───────────────────────
──────────────────────
──────────────────
───────────
──────────
──────
───
────
──
─

Run BASIC

<lang runbasic> s = 100000 h$ = "=============================================================" h$ = h$ + h$ dim ndis(s) ' mean and standard deviation. mx = -9999 mn = 9999 sum = 0 sumSqr = 0 for i = 1 to s ' find minimum and maximum ms = rnd(1) ss = rnd(1) nd = (-2 * log(ms))^0.5 * cos(2 *3.14159265 * ss) ' normal distribution ndis(i) = nd mx = max(mx, nd) mn = min(mn, nd) sum = sum + nd sumSqr = sumSqr + nd ^ 2 next i

mean = sum / s range = mx - mn

print "Samples  :"; s print "Largest  :"; mx print "Smallest  :"; mn print "Range  :"; range print "Mean  :"; mean print "Stand Dev :"; (sumSqr /s -mean^2)^0.5

'Show chart of histogram nBins = 50 dim bins(nBins) for i = 1 to s z = int((ndis(i) -mn) /range *nBins) bins(z) = bins(z) + 1 mb = max(bins(z),mb) next i for b = 0 to nBins -1

print using("##",b);" ";using("#####",bins(b));" ";left$(h$,(bins(b) / mb) * 90)

next b END</lang>

Output:
Samples   :100000
Largest   :4.61187177
Smallest  :-4.21695424
Range     :8.82882601
Mean      :-9.25042513e-4
Stand Dev :1.00680067

=
==
===
=====
========
=============
=================
=======================
==============================
=======================================
===============================================
=========================================================
===================================================================
===========================================================================
===================================================================================
=======================================================================================
==========================================================================================
========================================================================================
======================================================================================
=================================================================================
============================================================================
==================================================================
========================================================
==============================================
=====================================
============================
=====================
===============
==========
=======
=====
===
=
=

SAS

<lang sas>data test; n=100000; twopi=2*constant('pi'); do i=1 to n; u=ranuni(0); v=ranuni(0); r=sqrt(-2*log(u)); x=r*cos(twopi*v); y=r*sin(twopi*v); z=rannor(0); output; end; keep x y z;

proc means mean stddev;

proc univariate; histogram /normal;

run;

/* Variable Mean Std Dev


x -0.0052720 0.9988467 y 0.000023995 1.0019996 z 0.0012857 1.0056536

  • /</lang>

Sidef

Translation of: Perl 6

<lang ruby>define τ = Number.tau

func normdist (m, σ) {

   var r = sqrt(-2 * 1.rand.log)
   var Θ = (τ * 1.rand)
   r * Θ.cos * σ + m

}

var size = 100_000 var mean = 50 var stddev = 4

var dataset = size.of { normdist(mean, stddev) } var m = (dataset.sum(0) / size) say ("m: #{m}")

var σ = sqrt(dataset »**» 2 -> sum(0) / size - m**2) say ("s: #{σ}")

var hash = Hash() dataset.each { |n| hash{ n.round(0) } := 0 ++ }

var scale = (180 * stddev / size) const subbar = < ⎸ ▏ ▎ ▍ ▌ ▋ ▊ ▉ █ >

for i in (hash.keys.map{.to_i}.sort) {

   var x = (hash{i} * scale)
   var full = x.int
   var part = (8 * (x - full))
   say (i, "\t", '█' * full, subbar[part])

}</lang>

Output:
m: 49.99538275618550306540055142077589
s: 4.00295544816687358837821680496471
33	⎸
34	⎸
35	⎸
36	▏
37	▎
38	▊
39	█▋
40	███▏
41	██████▏
42	█████████▍
43	███████████████▌
44	███████████████████████▋
45	████████████████████████████████▍
46	████████████████████████████████████████████▎
47	█████████████████████████████████████████████████████▍
48	███████████████████████████████████████████████████████████████▍
49	█████████████████████████████████████████████████████████████████████▌
50	████████████████████████████████████████████████████████████████████████▋
51	█████████████████████████████████████████████████████████████████████▊
52	██████████████████████████████████████████████████████████████▏
53	████████████████████████████████████████████████████▉
54	███████████████████████████████████████████▉
55	█████████████████████████████████▎
56	███████████████████████⎸
57	███████████████▋
58	█████████▋
59	█████▍
60	███▍
61	█▊
62	▋
63	▍
64	▏
65	⎸
66	⎸

Stata

Pairs of normal numbers are generated from pairs of uniform numbers using the polar form of Box-Muller method. A normal density is added to the histogram for comparison. See histogram in Stata help. A Q-Q plot is also drawn.

<lang stata>. clear all . set obs 100000 . gen u=runiform() . gen v=runiform() . gen r=sqrt(-2*log(u)) . gen x=r*cos(2*_pi*v) . gen y=r*sin(2*_pi*v) . gen z=rnormal() . summarize x y z

   Variable |        Obs        Mean    Std. Dev.       Min        Max

+---------------------------------------------------------

          x |    100,000    .0025861    1.002346  -4.508192   4.164336
          y |    100,000    .0017389    1.001586  -4.631144   4.460274
          z |    100,000     .005054    .9998861  -5.134265   4.449522

. hist x, normal . hist y, normal . hist z, normal . qqplot x z, msize(tiny)</lang>

Tcl

<lang tcl>package require Tcl 8.5

  1. Uses the Box-Muller transform to compute a pair of normal random numbers

proc tcl::mathfunc::nrand {mean stddev} {

   variable savednormalrandom
   if {[info exists savednormalrandom]} {

return [expr {$savednormalrandom*$stddev + $mean}][unset savednormalrandom]

   }
   set r [expr {sqrt(-2*log(rand()))}]
   set theta [expr {2*3.1415927*rand()}]
   set savednormalrandom [expr {$r*sin($theta)}]
   expr {$r*cos($theta)*$stddev + $mean}

} proc stats {size {slotfactor 10}} {

   set sum 0.0
   set sum2 0.0
   for {set i 0} {$i < $size} {incr i} {

set r [expr { nrand(0.5, 0.2) }]

incr histo([expr {int(floor($r*$slotfactor))}]) set sum [expr {$sum + $r}] set sum2 [expr {$sum2 + $r**2}]

   }
   set mean [expr {$sum / $size}]
   set stddev [expr {sqrt($sum2/$size - $mean**2)}]
   puts "$size numbers"
   puts "Mean:   $mean"
   puts "StdDev: $stddev"
   foreach i [lsort -integer [array names histo]] {

puts [string repeat "*" [expr {$histo($i)*350/int($size)}]]

   }

}

stats 100 puts "" stats 1000 puts "" stats 10000 puts "" stats 100000 20</lang> Sample output:

100 numbers
Mean:   0.49355955990390254
StdDev: 0.19651396178121985
***
*******
**************
***********************************
********************************************************
******************************************************************
*************************************************************************
******************************************
**************************************
**************

1000 numbers
Mean:   0.5066940614105869
StdDev: 0.2016794788065389


*
*****
**************
****************************
**********************************************************
****************************************************************
*************************************************************
******************************************************
***********************************
************
*********
*

10000 numbers
Mean:   0.49980964730768285
StdDev: 0.1968441612522318

*
*****
***************
*******************************
*****************************************************
******************************************************************
*******************************************************************
****************************************************
*********************************
***************
*****
*



100000 numbers
Mean:   0.49960438950922254
StdDev: 0.20060211160998606





*
**
***
******
*********
**************
******************
***********************
*****************************
********************************
**********************************
**********************************
********************************
****************************
***********************
******************
*************
*********
******
***
**
*







The blank lines in the output are where the number of samples is too small to even merit a single unit on the histogram.

zkl

Translation of: Go

<lang zkl>fcn norm2{ // Box-Muller

  const PI2=(0.0).pi*2;;
  rnd:=(0.0).random.fp(1);  // random number in [0,1), using partial application
  r,a:=(-2.0*rnd().log()).sqrt(), PI2*rnd();
  return(r*a.cos(), r*a.sin());  // z0,z1

} const N=100000, BINS=12, SIG=3, SCALE=500; var sum=0.0,sumSq=0.0, h=BINS.pump(List(),0); // (0,0,0,...) fcn accum(v){

  sum+=v;
  sumSq+=v*v;
  b:=(v + SIG)*BINS/SIG/2;
  if(0<=b<BINS) h[b]+=1;

};</lang> Partial application: rnd() --> (0.0).random(1). Basically, the fp method fixes the call parameters, which are then used when the partial thing is run. <lang zkl>foreach i in (N/2){ v1,v2:=norm2(); accum(v1); accum(v2); } println("Samples: %,d".fmt(N)); println("Mean: ", m:=sum/N); println("Stddev: ", (sumSq/N - m*m).sqrt()); foreach p in (h){ println("*"*(p/SCALE)) }</lang>

Output:
Samples: 100,000
Mean:    0.0005999
Stddev:  1.003
*
***
********
******************
*****************************
**************************************
**************************************
*****************************
******************
********
***
*