Sorting algorithms/Bead sort: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 322: Line 322:


let rec transpose = function
let rec transpose = function
| [] -> []
| [] -> []
| lists -> (List.map List.head lists) :: transpose(removeEmptyLists (List.map List.tail lists))
| lists -> (List.map List.head lists) :: transpose(removeEmptyLists (List.map List.tail lists))


// Using the backward composition operator "<<" (equivalent to Haskells ".") ...
// Using the backward composition operator "<<" (equivalent to Haskells ".") ...
let beadSort1 =
let beadSort =
List.map List.sum << transpose << transpose << List.map (flip List.replicate 1)
List.map List.sum << transpose << transpose << List.map (flip List.replicate 1)


Line 332: Line 332:
let beadSort2 =
let beadSort2 =
List.map (flip List.replicate 1) >> transpose >> transpose >> List.map List.sum</lang>
List.map (flip List.replicate 1) >> transpose >> transpose >> List.map List.sum</lang>
Usage: beadSort1 [2;4;1;3;3] or beadSort2 [2;4;1;3;3]
Usage: beadSort [2;4;1;3;3] or beadSort2 [2;4;1;3;3]


Output:
Output:

Revision as of 06:02, 26 March 2011

Task
Sorting algorithms/Bead sort
You are encouraged to solve this task according to the task description, using any language you may know.

In this task, the goal is to sort an array of positive integers using the Bead Sort Algorithm.

Algorithm has O(S), where S is the sum of the integers in the input set: Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.

C

A rather straightforward implementation; since we do not use dynamic matrix, we have to know the maximum value in the array in advance. Using no sparse matrix means the matrix needs MAX*MAX times the size of an integer bytes to be stored.

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  3. include <string.h>

int *bead_sort(int *a, size_t len) {

 size_t i, j, k;
 bool fallen;
 int *t, *r = NULL;
 int max = a[0];
 for(i = 1; i < len; i++) 
 {
   if ( a[i] < 0 ) return NULL;  // we can't sort nums < 0
   if ( max < a[i] ) max = a[i];
 }
 
 t = malloc(max*max*sizeof(int));
 if ( t == NULL ) return NULL;
 memset(t, 0, max*max*sizeof(int));
 r = malloc(len*sizeof(int));
 memset(r, 0, len*sizeof(int));
 if (r != NULL) 
 {
   // "split" numbers into "beads" (units)
   for(i = 0; i < len; i++)
   {
     for(j = 0; j < a[i]; j++) t[i*max + j]++;
   }
   // make them fall down
   do
   {
     fallen = false;
     for(i = 0; i < max-1; i++)
     {

for(j = 0; j < max; j++) { if ( t[i*max + j] == 1 && t[(i+1)*max + j] == 0 ) { fallen = true; t[i*max + j] = 0; t[(i+1)*max + j] = 1; } }

     }
   } while(fallen);
  1. if defined(SHOW_BEADS)
   for(i = 0; i < max; i++)
   {
     for(j = 0; j < max; j++)
     {

printf("%d ", t[i*max + j]);

     }
     printf("\n");
   }
  1. endif
   // count beads
   k = 0;
   for(i = 0; i < max; i++)
   {
     if ( t[(max - i - 1)*max + 0] == 0 ) break;
     for(j = 0; j < max; j++)
     {

int v = t[(max - i - 1)*max + j]; if ( v == 0 ) break; r[k] += v;

     }
     k++;
   }
   
 }
 free(t);
 return r;

}

int main() {

 int values[] = {5, 3, 1, 7, 4, 1, 1, 20};
 size_t i, len = sizeof(values)/sizeof(int);
 int *r = bead_sort(values, len);
 if ( r == NULL ) return EXIT_FAILURE;
 for(i = 0; i < len; i++)
 {
   printf("%d ", r[i]);
 }
 putchar('\n');
 free(r);
 return EXIT_SUCCESS;

}</lang>

C++

<lang cpp>//this algorithm only works with positive, whole numbers. //O(2n) time complexity where n is the summation of the whole list to be sorted. //O(3n) space complexity.

  1. include<iostream>
  2. include<vector>

using namespace std;

void distribute( int dist, vector<int> &List)//*beads* go down into different buckets using gravity (addition). {

   if (dist > List.size() )
       List.resize(dist,0); //resize if too big for current vector
   for (int i=0; i < dist; i++)
       List[i] = List[i]+1;

}

int main() {

   vector<int> list;
   vector<int> list2;
   int myints[] = {5,3,1,7,4,1,1};
   vector<int> fifth (myints, myints + sizeof(myints) / sizeof(int) );
   cout << "#1 Beads falling down: ";
   for (int i=0; i < fifth.size(); i++)
       distribute (fifth[i], list);
   cout << endl;
   cout <<endl<< "Beads on their sides: ";
   for (int i=0; i < list.size(); i++)
       cout << " " << list[i];
   cout << endl;	
   //second part
   cout << "#2 Beads right side up: ";
   for (int i=0; i < list.size(); i++)
       distribute (list[i], list2);
   cout << endl;
   cout <<endl<< "Sorted list/array";
   for (int i=0; i < list2.size(); i++)
       cout << " " << list2[i];
   cout << endl;
   return 0;

}</lang>

Output:

Beads falling down:

Beads on their sides: 7 4 4 3 2 1 1 Beads right side up:

Sorted list/array 7 5 4 3 1 1 1

Positive, Negative, and Zeros (all integers)

<lang Cpp>

  1. include<iostream>
  2. include<vector>

using namespace std;

void distribute_neg( int dist, vector<int> &List) { dist=-dist; //resets to positive number for implamentation

if (dist > List.size() ) List.resize(dist,0);//can be done differently but *meh*

for (int i=0; i < dist; i++) List[i]=List[i]-1; } //end of distribute negative

void distribute_pos( int dist, vector<int> &List) if (dist > List.size() ) List.resize(dist,0);

for (int i=0; i < dist; i++) List[i]=List[i]+1; } //end of distribute positive

void sort(vector<int> &List){ int i; int zeros=0; vector<int> list; vector<int> list_pos; vector<int> sorted; vector<int> sorted_pos; cout << "#1 Beads falling down: "; for (i=0; i < List.size(); i++) if (List[i] < 0) distribute_neg (List[i], list); else if (List[i] > 0) distribute_pos(List[i], list_pos); else zeros++;

cout << endl;

cout <<endl<< "Beads on their sides neg: "; for (i=0; i < list.size(); i++) cout << " " << list[i]; cout << endl;

cout <<endl<< "Beads on their sides positive: "; for (i=0; i < list_pos.size(); i++) cout << " " << list_pos[i]; cout << endl; //second part

cout << "#2 Beads right side up: "; for (i=0; i < list.size(); i++) distribute_neg (list[i], sorted);

for (i=0; i < list_pos.size(); i++) distribute_pos(list_pos[i], sorted_pos); cout << endl;

cout << endl;

cout <<endl<< "Sorted list/array neg"; for (i=0; i < sorted.size(); i++) cout << " " << sorted[i]; cout << endl;

cout <<endl<< "Sorted list/array pos"; for (i=0; i < sorted_pos.size(); i++) cout << " " << sorted_pos[i]; cout << endl;

//combine two at end.

while (zeros > 0) { sorted_pos.push_back(0); zeros--; }

i=sorted.size()-1; while (i >= 0) { sorted_pos.push_back(sorted[i]); i--; }

cout <<endl<< "Sorted list/array"; for (i=0; i < sorted_pos.size(); i++) cout << " " << sorted_pos[i]; cout << endl; }

int main(){ int myints[] = {-1, -4, -3, 1, 4, 3, 0}; vector<int> arr (myints, myints + sizeof(myints) / sizeof(int) ); sort(arr); return 0;

}</lang>

Clojure

Translation of: Haskell

<lang Clojure>(defn transpose [xs]

 (loop [transposed [], remaining xs]    
   (if (empty? remaining)
     transposed
     (recur 
       (conj transposed (map #(first %) remaining))
       (filter #(not-empty %) (map #(rest %) remaining)))) ))

(defn bead-sort [xs]

 (map #(reduce + %) 
   (transpose 
     (transpose (map #(replicate % 1) xs)))))

(println (bead-sort [5 2 4 1 3 3 9])) </lang>


Output:

(9 5 4 3 3 2 1)

D

Translation of: Python

<lang d>import std.stdio, std.algorithm, std.range;

auto beadSort(int[] l) {

   auto columns(R)(R m) {
       int[][] r;
       foreach (i; 0 .. reduce!max(map!walkLength(m))) {
           r.length += 1;
           foreach (sub; m)
               if (sub.length > i)
                   r[$-1] ~= 0;
       }
       return r;
   }
   auto m = map!"new int[a]"(l);
   return map!walkLength(columns(columns(m)));

}

void main() {

   writeln(beadSort([5, 3, 1, 7, 4, 1, 1]));

}</lang> Output (D V.2.048):

[7, 5, 4, 3, 1, 1, 1]

F#

Translation of: Haskell

<lang fsharp>open System

let removeEmptyLists lists = lists |> List.filter (not << List.isEmpty) let flip f x y = f y x

let rec transpose = function

   | []    -> []
   | lists -> (List.map List.head lists) :: transpose(removeEmptyLists (List.map List.tail lists))

// Using the backward composition operator "<<" (equivalent to Haskells ".") ... let beadSort =

   List.map List.sum << transpose << transpose << List.map (flip List.replicate 1)

// Using the forward composition operator ">>" ... let beadSort2 =

   List.map (flip List.replicate 1) >> transpose >> transpose >> List.map List.sum</lang>

Usage: beadSort [2;4;1;3;3] or beadSort2 [2;4;1;3;3]

Output:

  val it : int list = [4; 3; 3; 2; 1]

Fortran

Works with: Fortran version 2003
Works with: Fortran version 95

removing the iso_fortran_env as explained in code

This implementation suffers the same problems of the C implementation: if the maximum value in the array to be sorted is very huge, likely there will be not enough free memory to complete the task. Nonetheless, if the Fortran implementation would use "silently" sparse arrays and a compact representation for "sequences" of equal values in an array, then this very same code would run fine even with large integers.

<lang fortran>program BeadSortTest

 use iso_fortran_env 
 ! for ERROR_UNIT; to make this a F95 code,
 ! remove prev. line and declare ERROR_UNIT as an
 ! integer parameter matching the unit associated with
 ! standard error
 integer, dimension(7) :: a = (/ 7, 3, 5, 1, 2, 1, 20 /)
 call beadsort(a)
 print *, a

contains

 subroutine beadsort(a)
   integer, dimension(:), intent(inout) :: a
   integer, dimension(maxval(a), maxval(a)) :: t
   integer, dimension(maxval(a)) :: s
   integer :: i, m
   m = maxval(a)
   
   if ( any(a < 0) ) then
      write(ERROR_UNIT,*) "can't sort"
      return
   end if
   t = 0
   forall(i=1:size(a)) t(i, 1:a(i)) = 1  ! set up abacus
   forall(i=1:m)             ! let beads "fall"; instead of
      s(i) = sum(t(:, i))    ! moving them one by one, we just
      t(:, i) = 0            ! count how many should be at bottom,
      t(1:s(i), i) = 1       ! and then "reset" and set only those
   end forall
   
   forall(i=1:size(a)) a(i) = sum(t(i,:))
   
 end subroutine beadsort

end program BeadSortTest</lang>

Go

Sorts non-negative integers only. The extension to negative values seemed a distraction from this fun task. <lang go>package main

import (

   "fmt"
   "sync"

)

var a = []int{170, 45, 75, 90, 802, 24, 2, 66} var aMax = 1000

func main() {

   fmt.Println("before:", a)
   beadSort()
   fmt.Println("after: ", a)

}

func beadSort() {

   // Poles modeled with a channel for each pole.
   abacus := make([]chan byte, aMax)
   for iPole := range abacus {
       abacus[iPole] = make(chan byte, len(a))
   }
   const bead = 'o'
   // Values to be sorted are modeled as concurrent
   // goroutines that place of beads on poles.
   // Sending a bead on a channel corresponds to
   // letting it fall.  The WaitGroup falling tracks
   // the number of rows of beads that are falling.
   var falling sync.WaitGroup
   falling.Add(len(a))
   for _, x := range a {
       go func(x int) {
           for iPole := 0; iPole < x; iPole++ {
               abacus[iPole] <- bead
           }
           falling.Done()
       }(x)
   }
   // Beads fall concurrently as CPU cores are available.
   // When all beads are done falling, the numbers can
   // read out from highest to lowest.
   falling.Wait()
   for i := len(a) - 1; i >= 0; i-- {
       x := 0
       for _, pole := range abacus {
           select {
           case <-pole:
               x++
               continue
           default:
           }
           break
       }
       a[i] = x
   }

}</lang>

Groovy

Solution: <lang groovy>def beadSort = { list ->

   final nPoles = list.max()
   list.collect {
       print "."
       ([true] * it) + ([false] * (nPoles - it))
   }.transpose().collect { pole ->
       print "."
       pole.findAll { ! it } + pole.findAll { it }
   }.transpose().collect{ beadTally ->
       beadTally.findAll{ it }.size()
   }

}</lang>

Annotated Solution (same solution really): <lang groovy>def beadSortVerbose = { list ->

   final nPoles = list.max()
   // each row is a number tally-arrayed across the abacus
   def beadTallies = list.collect { number -> 
       print "."
       // true == bead, false == no bead
       ([true] * number) + ([false] * (nPoles - number))
   }
   // each row is an abacus pole
   def abacusPoles = beadTallies.transpose()
   def abacusPolesDrop = abacusPoles.collect { pole ->
       print "."
       // beads drop to the BOTTOM of the pole
       pole.findAll { ! it } + pole.findAll { it }
   }
   // each row is a number again
   def beadTalliesDrop = abacusPolesDrop.transpose()
   beadTalliesDrop.collect{ beadTally -> beadTally.findAll{ it }.size() }

}</lang>

Test: <lang groovy>println beadSort([23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78,4]) println beadSort([88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70,12,7,1])</lang>

Output:

........................................................................................................................[4, 12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99]
...............................................................................................................[0, 1, 4, 5, 7, 8, 12, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]

Individual dots shown here are "retallying dots". They are not equivalent to the "swap dots" shown in other Groovy sorting examples. Like the swap dots the retallying dots represent atomic operations that visually indicate the overall sorting effort. However, they are not equivalent to swaps, or even equivalent in actual effort between bead sorts.

The cost of transposition is not accounted for here because with clever indexing it can easily be optimized away. In fact, one could write a list class for Groovy that performs the transpose operation merely by setting a single boolean value that controls indexing calculations.

Haskell

<lang haskell>import Data.List

beadSort :: [Int] -> [Int] beadSort = map sum. transpose. transpose. map (flip replicate 1)</lang> Example; <lang haskell>*Main> beadSort [2,4,1,3,3] [4,3,3,2,1]</lang>

Icon and Unicon

The program below handles integers and not just whole numbers. As are so many others, the solution is limited by the lack of sparse array or list compression.

Some lines in this example are too long (more than 80 characters). Please fix the code if it's possible and remove this message.

<lang Icon>procedure main() #: demonstrate various ways to sort a list and string

  write("Sorting Demo using ",image(beadsort))
     writes("  on list : ")
     writex(UL := [3, 14, 1, 5, 9, 2, 6, 3])
     displaysort(beadsort,copy(UL))    

end

procedure beadsort(X) #: return sorted list ascending(or descending) local base,i,j,x # handles negatives and zeros, may also reduce storage

  poles := list(max!X-(base := min!X -1),0)                       # set up poles, we will track sums not individual beads
  every x := !X do {                                              # each item in the list
     if integer(x) ~= x then runerr(101,x)                        # ... must be an integer
     every poles[1 to x - base] +:= 1                             # ... beads "fall" into the sum for that pole 
     }


  every (X[j := *X to 1 by -1] := base) & (i := 1 to *poles) do   # read from the bottom of the poles
    if poles[i] > 0 then {                                        # if there's a bead on the pole ... 
       poles[i] -:= 1                                             # ... remove it 

X[j] +:= 1 # ... and add it in place

    }
  return X 

end</lang>

Note: This example relies on the supporting procedures 'writex' in Bubble Sort.


This example is in need of improvement:

Need to confirm if min/max are native in Icon. They are available in the IPL

Abbreviated sample output:

Sorting Demo using procedure beadsort
  on list : [ 3 14 1 5 9 2 6 3 ]
    with op = &null:         [ 1 2 3 3 5 6 9 14 ]   (0 ms)

J

Generally, this task should be accomplished in J using \:~. Here we take an approach that's more comparable with the other examples on this page.

<lang j>bead=: [: +/ #"0&1</lang>

Example use:

<lang> bead bead 2 4 1 3 3 4 3 3 2 1

  bead bead 5 3 1 7 4 1 1

7 5 4 3 1 1 1</lang>

Extending to deal with sequences of arbitrary integers:

<lang j>bball=: ] (] + [: bead^:2 -) <./ - 1:</lang>

Example use:

<lang> bball 2 0 _1 3 1 _2 _3 0 3 2 1 0 0 _1 _2 _3</lang>

Octave

Translation of: Fortran

<lang octave>function sorted = beadsort(a)

 sorted = a;
 m = max(a);
 if ( any(a < 0) )
   error("can't sort");
 endif
 t = zeros(m, m);
 for i = 1:numel(a)
   t(i, 1:a(i)) = 1;
 endfor
 for i = 1:m
   s = sum(t(:, i));
   t(:, i) = 0;
   t(1:s, i) = 1;
 endfor
 for i = 1:numel(a)
   sorted(i) = sum(t(i, :));
 endfor

endfunction

beadsort([5, 7, 1, 3, 1, 1, 20])</lang>

Perl

Instead of storing the bead matrix explicitly, I choose to store just the number of beads in each row and column, compacting on the fly. At all times, the sum of the row widths is equal to the sum column heights.

<lang perl>sub beadsort {

   my @data = @_;
   my @columns;
   my @rows;
   for my $datum (@data) {
       for my $column ( 0 .. $datum-1 ) {
           ++ $rows[ $columns[$column]++ ];
       }
   }
   return reverse @rows;

}

beadsort 5, 7, 1, 3, 1, 1, 20; </lang>

Perl 6

Translation of: Haskell

<lang perl6>use List::Utils;

sub beadsort(@l) {

   (transpose(transpose(map {[1 xx $_]}, @l))).map(*.elems);

}

my @list = 2,1,3,5; say beadsort(@list).perl;</lang>

Output:

(5, 3, 2, 1)

PicoLisp

The following implements a direct model of the bead sort algorithm. Each pole is a list of 'T' symbols for the beads. <lang PicoLisp>(de beadSort (Lst)

  (let Abacus (cons NIL)
     (for N Lst                                   # Thread beads on poles
        (for (L Abacus  (ge0 (dec 'N))  (cdr L))
           (or (cdr L) (queue 'L (cons)))
           (push (cadr L) T) ) )
     (make
        (while (gt0 (cnt pop (cdr Abacus)))       # Drop and count beads
           (link @) ) ) ) )</lang>

Output:

: (beadSort (5 3 1 7 4 1 1 20))
-> (20 7 5 4 3 1 1 1)

PL/I

<lang PL/I> /* Handles both negative and positive values. */

maxval: procedure (z) returns (fixed binary);

  declare z(*) fixed binary;
  declare (maxv initial (0), i) fixed binary;
  do i = lbound(z,1) to hbound(z,1);
     maxv = max(z(i), maxv);
  end;
  put skip data (maxv); put skip;
  return (maxv);

end maxval; minval: procedure (z) returns (fixed binary);

  declare z(*) fixed binary;
  declare (minv initial (0), i) fixed binary;
  do i = lbound(z,1) to hbound(z,1);
     if z(i) < 0 then minv = min(z(i), minv);
  end;
  put skip data (minv); put skip;
  return (minv);

end minval;

/* To deal with negative values, array elements are incremented */ /* by the greatest (in magnitude) negative value, thus making */ /* them positive. The resultant values are stored in an */ /* unsigned array (PL/I provides both signed and unsigned data */ /* types). At procedure end, the array values are restored to */ /* original values. */

(subrg, fofl, size, stringrange, stringsize): beadsort: procedure (z); /* 8-1-2010 */

  declare (z(*)) fixed binary;
  declare b(maxval(z)-minval(z)+1) bit (maxval(z)-minval(z)+1) aligned;
  declare (i, j, k, m, n) fixed binary;
  declare a(hbound(z,1)) fixed binary unsigned;
  declare offset fixed binary initial (minval(z));
  PUT SKIP LIST('CHECKPOINT A'); PUT SKIP;
  n = hbound(z,1);
  m = hbound(b,1);
  if offset < 0 then
     a = z - offset;
  else
     a = z;
  b = '0'b;
  do i = 1 to n;
     substr(b(i), 1, a(i)) = copy('1'b, a(i));
  end;
  do j = 1 to m; put skip list (b(j)); end;
  do j = 1 to m;
     k = 0;
     do i =1 to n;
        if substr(b(i), j, 1) then k = k + 1;
     end;
     do i = 1 to n;
        substr(b(i), j, 1) = (i <= k);
     end;
  end;
  put skip;
  do j = 1 to m; put skip list (b(j)); end;
  do i = 1 to n;
     k = 0;
     do j = 1 to m; k = k + substr(b(i), j, 1); end;
     a(i) = k;
  end;
  if offset < 0 then z = a + offset; else z = a;

end beadsort;</lang>

PowerShell

<lang PowerShell>Function BeadSort ( [Int64[]] $indata ) { if( $indata.length -gt 1 ) { $min = $indata[ 0 ] $max = $indata[ 0 ] for( $i = 1; $i -lt $indata.length; $i++ ) { if( $indata[ $i ] -lt $min ) { $min = $indata[ $i ] } if( $indata[ $i ] -gt $max ) { $max = $indata[ $i ] } } #Find the min & max $poles = New-Object 'UInt64[]' ( $max - $min + 1 ) $indata | ForEach-Object { $min..$_ | ForEach-Object { $poles[ $_ - $min ] += 1 } } #Add Beads to the poles, already moved to the bottom $min..( $max - 1 ) | ForEach-Object { $i = $_ - $min if( $poles[ $i ] -gt $poles[ $i + 1 ] ) { #No special case needed for min, since there will always be at least 1 = min ( $poles[ $i ] )..( $poles[ $i + 1 ] + 1 ) | ForEach-Object { Write-Output ( $i + $min ) } } } #Output the results in pipeline fashion 1..( $poles[ $max - $min ] ) | ForEach-Object { Write-Output $max #No special case needed for max, since there will always be at least 1 = max } } else { Write-Output $indata } }

$l = 100; BeadSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( -( $l - 1 ), $l - 1 ) } )</lang>

PureBasic

<lang PureBasic>#MAXNUM=100

Dim MyData(Random(15)+5) Global Dim Abacus(0,0)

Declare BeadSort(Array InData(1)) Declare PresentData(Array InData(1))

If OpenConsole()

 Define i
 ;- Generate a random array
 For i=0 To ArraySize(MyData())
   MyData(i)=Random(#MAXNUM)
 Next i
 PresentData(MyData())
 ;
 ;- Sort the array
 BeadSort(MyData())
 PresentData(MyData())
 ;
 Print("Press ENTER to exit"): Input()

EndIf

Procedure LetFallDown(x)

 Protected y=ArraySize(Abacus(),2)-1
 Protected ylim=y
 While y>=0
   If Abacus(x,y) And Not Abacus(x,y+1)
     Swap Abacus(x,y), Abacus(x,y+1)
     If y<ylim: y+1: Continue: EndIf
   Else
     y-1
   EndIf
 Wend

EndProcedure

Procedure BeadSort(Array n(1))

 Protected i, j, k
 NewList T()
 Dim Abacus(#MAXNUM,ArraySize(N()))
 ;- Set up the abacus
 For i=0 To ArraySize(Abacus(),2)
   For j=1 To N(i)
     Abacus(j,i)=#True
   Next
 Next
 ;- sort it in threads to simulate free beads falling down
 For i=0 To #MAXNUM
   AddElement(T()): T()=CreateThread(@LetFallDown(),i)
 Next
 ForEach T()
   WaitThread(T())
 Next
 ;- send it back to a normal array
 For j=0 To ArraySize(Abacus(),2)
   k=0
   For i=0 To ArraySize(Abacus())
     k+Abacus(i,j)
   Next
   N(j)=k
 Next

EndProcedure

Procedure PresentData(Array InData(1))

 Protected n, m, sum
 PrintN(#CRLF$+"The array is;")
 For n=0 To ArraySize(InData())
   m=InData(n): sum+m
   Print(Str(m)+" ")
 Next
 PrintN(#CRLF$+"And its sum= "+Str(sum))

EndProcedure</lang>

The array is;
4 38 100 25 69 69 16 8 59 71 53 33
And its sum= 545

The array is;
4 8 16 25 33 38 53 59 69 69 71 100
And its sum= 545

Python

Translation of: Haskell

<lang python>def beadsort(l):

 return map(len, columns(columns([[1] * e for e in l])))

def columns(l):

 try:
   from itertools import zip_longest
 except:
   zip_longest = lambda *args: map(None, *args)
 return [filter(None, x) for x in zip_longest(*l)]
  1. Demonstration code:

beadsort([5,3,1,7,4,1,1])</lang>

Output:

=> [7, 5, 4, 3, 1, 1, 1]

REXX

The REXX language has the advantage of implenting (true) sparse arrays and with that feature,
implementing a bead sort is trivial, the major drawback is if the spread (difference between
the lowest and highest values) is quite large.
Negative and duplicate numbers (values) are no problem. <lang rexx> /*REXX program sorts a list of integers using a bead sort. */


            /*get some grassHopper numbers.                            */

grasshopper=, 1 4 10 12 22 26 30 46 54 62 66 78 94 110 126 134 138 158 162 186 190 222 254 270


            /*GreeenGrocer numbers are also called hexagonal pyramidal */
            /*             numbers.                                    */

greengrocer=, 0 4 16 40 80 140 224 336 480 660 880 1144 1456 1820 2240 2720 3264 3876 4560


            /*get some Bernoulli numerator numbers.                    */

bernN='1 -1 1 0 -1 0 1 0 -1 0 5 0 -691 0 7 0 -3617 0 43867 0 -174611 0 854513'


            /*Psi is also called the Reduced Totient function,  and    */
            /*    is also called Carmichale lambda, or LAMBDA function.*/

psi=, 1 1 2 2 4 2 6 2 6 4 10 2 12 6 4 4 16 6 18 4 6 10 22 2 20 12 18 6 28 4 30 8 10 16


list=grasshopper greengrocer bernN psi /*combine the four lists into one*/


call showL 'before sort',list /*show list before sorting. */ $=beadSort(list) /*invoke the bead sort. */ call showL ' after sort',$ /*show after array elements*/ exit


/*─────────────────────────────────────SHOW@ subroutine────────────*/ beadSort: procedure expose @.; parse arg z $= /*this'll be the sorted list*/ low=999999999; high=-low /*define the low and high #s*/ @.=0 /*define all beads to zero. */


 do j=1 until z==                   /*pick the meat off the bone*/
 parse var z x z
 if \datatype(x,'Whole') then do
                              say; say '*** error! ***'; say
                              say 'element' j "in list isn't numeric:" x
                              say
                              exit 13
                              end
 x=x/1                                /*normalize number, it could*/
                                      /*be:  +4  007  5.  2e3 etc.*/
  @.x=@.x+1                           /*indicate this bead has a #*/
  low=min(low,x)                      /*keep track of the lowest #*/
 high=max(high,x)                     /* "     "    "  "  highest#*/
 end   /*j*/
                                      /*now, collect the beads and*/
 do m=low to high                     /*let them fall (to zero).  */
 if @.m==0 then iterate               /*No bead here? Keep looking*/
   do n=1 for @.m                     /*let the beads fall to  0. */
   $=$ m                              /*add it to the sorted list.*/
   end
 end

return $


/*─────────────────────────────────────SHOW@ subroutine────────────*/ showL: widthH=length(words(arg(2))) /*maximum width of the index*/

 do j=1 for words(arg(2))
 say 'element' right(j,widthH) arg(1)":" right(word(arg(2),j),10)
 end

say copies('─',80) /*show a seperator line. */ return </lang> Output:

element   1 before sort:          1
element   2 before sort:          4
element   3 before sort:         10
element   4 before sort:         12
element   5 before sort:         22
element   6 before sort:         26
element   7 before sort:         30
element   8 before sort:         46
element   9 before sort:         54
element  10 before sort:         62
element  11 before sort:         66
element  12 before sort:         78
element  13 before sort:         94
element  14 before sort:        110
element  15 before sort:        126
element  16 before sort:        134
element  17 before sort:        138
element  18 before sort:        158
element  19 before sort:        162
element  20 before sort:        186
element  21 before sort:        190
element  22 before sort:        222
element  23 before sort:        254
element  24 before sort:        270
element  25 before sort:          0
element  26 before sort:          4
element  27 before sort:         16
element  28 before sort:         40
element  29 before sort:         80
element  30 before sort:        140
element  31 before sort:        224
element  32 before sort:        336
element  33 before sort:        480
element  34 before sort:        660
element  35 before sort:        880
element  36 before sort:       1144
element  37 before sort:       1456
element  38 before sort:       1820
element  39 before sort:       2240
element  40 before sort:       2720
element  41 before sort:       3264
element  42 before sort:       3876
element  43 before sort:       4560
element  44 before sort:          1
element  45 before sort:         -1
element  46 before sort:          1
element  47 before sort:          0
element  48 before sort:         -1
element  49 before sort:          0
element  50 before sort:          1
element  51 before sort:          0
element  52 before sort:         -1
element  53 before sort:          0
element  54 before sort:          5
element  55 before sort:          0
element  56 before sort:       -691
element  57 before sort:          0
element  58 before sort:          7
element  59 before sort:          0
element  60 before sort:      -3617
element  61 before sort:          0
element  62 before sort:      43867
element  63 before sort:          0
element  64 before sort:    -174611
element  65 before sort:          0
element  66 before sort:     854513
element  67 before sort:          1
element  68 before sort:          1
element  69 before sort:          2
element  70 before sort:          2
element  71 before sort:          4
element  72 before sort:          2
element  73 before sort:          6
element  74 before sort:          2
element  75 before sort:          6
element  76 before sort:          4
element  77 before sort:         10
element  78 before sort:          2
element  79 before sort:         12
element  80 before sort:          6
element  81 before sort:          4
element  82 before sort:          4
element  83 before sort:         16
element  84 before sort:          6
element  85 before sort:         18
element  86 before sort:          4
element  87 before sort:          6
element  88 before sort:         10
element  89 before sort:         22
element  90 before sort:          2
element  91 before sort:         20
element  92 before sort:         12
element  93 before sort:         18
element  94 before sort:          6
element  95 before sort:         28
element  96 before sort:          4
element  97 before sort:         30
element  98 before sort:          8
element  99 before sort:         10
element 100 before sort:         16
────────────────────────────────────────────────────────────────────────────────
element   1  after sort:    -174611
element   2  after sort:      -3617
element   3  after sort:       -691
element   4  after sort:         -1
element   5  after sort:         -1
element   6  after sort:         -1
element   7  after sort:          0
element   8  after sort:          0
element   9  after sort:          0
element  10  after sort:          0
element  11  after sort:          0
element  12  after sort:          0
element  13  after sort:          0
element  14  after sort:          0
element  15  after sort:          0
element  16  after sort:          0
element  17  after sort:          0
element  18  after sort:          1
element  19  after sort:          1
element  20  after sort:          1
element  21  after sort:          1
element  22  after sort:          1
element  23  after sort:          1
element  24  after sort:          2
element  25  after sort:          2
element  26  after sort:          2
element  27  after sort:          2
element  28  after sort:          2
element  29  after sort:          2
element  30  after sort:          4
element  31  after sort:          4
element  32  after sort:          4
element  33  after sort:          4
element  34  after sort:          4
element  35  after sort:          4
element  36  after sort:          4
element  37  after sort:          4
element  38  after sort:          5
element  39  after sort:          6
element  40  after sort:          6
element  41  after sort:          6
element  42  after sort:          6
element  43  after sort:          6
element  44  after sort:          6
element  45  after sort:          7
element  46  after sort:          8
element  47  after sort:         10
element  48  after sort:         10
element  49  after sort:         10
element  50  after sort:         10
element  51  after sort:         12
element  52  after sort:         12
element  53  after sort:         12
element  54  after sort:         16
element  55  after sort:         16
element  56  after sort:         16
element  57  after sort:         18
element  58  after sort:         18
element  59  after sort:         20
element  60  after sort:         22
element  61  after sort:         22
element  62  after sort:         26
element  63  after sort:         28
element  64  after sort:         30
element  65  after sort:         30
element  66  after sort:         40
element  67  after sort:         46
element  68  after sort:         54
element  69  after sort:         62
element  70  after sort:         66
element  71  after sort:         78
element  72  after sort:         80
element  73  after sort:         94
element  74  after sort:        110
element  75  after sort:        126
element  76  after sort:        134
element  77  after sort:        138
element  78  after sort:        140
element  79  after sort:        158
element  80  after sort:        162
element  81  after sort:        186
element  82  after sort:        190
element  83  after sort:        222
element  84  after sort:        224
element  85  after sort:        254
element  86  after sort:        270
element  87  after sort:        336
element  88  after sort:        480
element  89  after sort:        660
element  90  after sort:        880
element  91  after sort:       1144
element  92  after sort:       1456
element  93  after sort:       1820
element  94  after sort:       2240
element  95  after sort:       2720
element  96  after sort:       3264
element  97  after sort:       3876
element  98  after sort:       4560
element  99  after sort:      43867
element 100  after sort:     854513
────────────────────────────────────────────────────────────────────────────────

Ruby

Translation of: Haskell

<lang ruby>class Array def beadsort self.map {|e| [1] * e}.columns.columns.map {|e| e.length} end

def columns y = self.length x = self.map {|l| l.length}.max

Array.new(x) do |row| Array.new(y) { |column| self[column][row] }.compact # Remove nulls. end end end

  1. Demonstration code:

[5,3,1,7,4,1,1].beadsort</lang>

Output:

=> [7, 5, 4, 3, 1, 1, 1]

Tcl

<lang tcl>package require Tcl 8.5

proc beadsort numList {

   # Special case: empty list is empty when sorted.
   if {![llength $numList]} return
   # Set up the abacus...
   foreach n $numList {

for {set i 0} {$i<$n} {incr i} { dict incr vals $i }

   }
   # Make the beads fall...
   foreach n [dict values $vals] {

for {set i 0} {$i<$n} {incr i} { dict incr result $i }

   }
   # And the result is...
   dict values $result

}

  1. Demonstration code

puts [beadsort {5 3 1 7 4 1 1}]</lang> Output:

7 5 4 3 1 1 1