Singly-linked list/Element insertion: Difference between revisions

m
m (→‎{{header|Wren}}: Minor tidy)
 
(43 intermediate revisions by 26 users not shown)
Line 4:
 
{{Template:See also lists}}
<br><br>
 
=={{header|360 Assembly}}==
The program uses one ASSIST macro (XPRNT) to keep the code as short as possible.
<langsyntaxhighlight lang="360asm">* Singly-linked list - Insert after 01/02/2017
LISTSINA CSECT
USING LISTSINA,R13 base register
Line 92 ⟶ 94:
NEXT DS A
YREGS
END LISTSINA</langsyntaxhighlight>
{{out}}
<pre>
Line 99 ⟶ 101:
C
</pre>
 
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits}}
<syntaxhighlight lang="aarch64 assembly">
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program insertList64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ NBELEMENTS, 100 // list size
 
/*******************************************/
/* Structures */
/********************************************/
/* structure linkedlist*/
.struct 0
llist_next: // next element
.struct llist_next + 8
llist_value: // element value
.struct llist_value + 8
llist_fin:
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessInitListe: .asciz "List initialized.\n"
szCarriageReturn: .asciz "\n"
/* datas error display */
szMessErreur: .asciz "Error detected.\n"
/* datas message display */
szMessResult: .asciz "Element No : @ value : @ \n"
sZoneConv: .skip 100
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
lList1: .skip llist_fin * NBELEMENTS // list memory place
 
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main:
ldr x0,qAdrlList1
mov x1,#0 // list init
str x1,[x0,#llist_next]
ldr x0,qAdrszMessInitListe
bl affichageMess
ldr x0,qAdrlList1
mov x1,#2
bl insertElement // add element value 2
ldr x0,qAdrlList1
mov x1,#5
bl insertElement // add element value 5
//
ldr x3,qAdrlList1
mov x2,#0 // ident element
1:
ldr x0,[x3,#llist_next] // end list ?
cmp x0,#0
beq 100f // yes
add x2,x2,#1
mov x0,x2 // display No element and value
ldr x1,qAdrsZoneConv
bl conversion10S
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc
mov x5,x0 // address of new string
ldr x0,[x3,#llist_value]
ldr x1,qAdrsZoneConv
bl conversion10S
mov x0,x5 // new address of message
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc
bl affichageMess
ldr x3,[x3,#llist_next] // next element
b 1b // and loop
 
100: // standard end of the program
mov x8, #EXIT // request to exit program
svc 0 // perform system call
qAdrszMessInitListe: .quad szMessInitListe
qAdrszMessErreur: .quad szMessErreur
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrlList1: .quad lList1
qAdrszMessResult: .quad szMessResult
qAdrsZoneConv: .quad sZoneConv
 
/******************************************************************/
/* insert element at end of list */
/******************************************************************/
/* x0 contains the address of the list */
/* x1 contains the value of element */
/* x0 returns address of element or - 1 if error */
insertElement:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x2,#llist_fin * NBELEMENTS
add x2,x2,x0 // compute address end list
1: // start loop
ldr x3,[x0,#llist_next] // load next pointer
cmp x3,#0 // = zero
csel x0,x3,x0,ne
bne 1b // no -> loop with pointer
add x3,x0,#llist_fin // yes -> compute next free address
cmp x3,x2 // > list end
bge 99f // yes -> error
str x3,[x0,#llist_next] // store next address in current pointer
str x1,[x0,#llist_value] // store element value
mov x1,#0
str x1,[x3,#llist_next] // init next pointer in next address
b 100f
99: // error
mov x0,-1
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
</syntaxhighlight>
 
=={{header|ACL2}}==
<langsyntaxhighlight Lisplang="lisp">(defun insert-after (x e xs)
(cond ((endp xs)
nil)
Line 108 ⟶ 239:
(cons e (rest xs))))
(t (cons (first xs)
(insert-after x e (rest xs))))))</langsyntaxhighlight>
 
Example:
<pre>&gt;(insert-after 'A 'C '(A B))
(A C B)</pre>
 
=={{header|Action!}}==
The user must type in the monitor the following command after compilation and before running the program!<pre>SET EndProg=*</pre>
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">CARD EndProg ;required for ALLOCATE.ACT
 
INCLUDE "D2:ALLOCATE.ACT" ;from the Action! Tool Kit. You must type 'SET EndProg=*' from the monitor after compiling, but before running this program!
 
DEFINE PTR="CARD"
DEFINE NODE_SIZE="3"
TYPE ListNode=[CHAR data PTR nxt]
 
ListNode POINTER listBegin
 
PROC AddBegin(CHAR v)
ListNode POINTER n
 
n=Alloc(NODE_SIZE)
n.data=v
n.nxt=listBegin
listBegin=n
RETURN
 
PROC AddAfter(CHAR v ListNode POINTER node)
ListNode POINTER n
 
IF node=0 THEN
PrintE("The node is null!") Break()
ELSE
n=Alloc(NODE_SIZE)
n.data=v
n.nxt=node.nxt
node.nxt=n
FI
RETURN
 
PROC Clear()
ListNode POINTER n,next
 
n=listBegin
WHILE n
DO
next=n.nxt
Free(n,NODE_SIZE)
n=next
OD
listBegin=0
RETURN
 
PROC PrintList()
ListNode POINTER n
 
n=listBegin
Print("(")
WHILE n
DO
Put(n.data)
IF n.nxt THEN
Print(", ")
FI
n=n.nxt
OD
PrintE(")")
RETURN
 
PROC TestAddBegin(CHAR v)
AddBegin(v)
PrintF("Add '%C' at the begin:%E",v)
PrintList()
RETURN
 
PROC TestAddAfter(CHAR v ListNode POINTER node)
AddAfter(v,node)
PrintF("Add '%C' after '%C':%E",v,node.data)
PrintList()
RETURN
 
PROC TestClear()
Clear()
PrintE("Clear the list:")
PrintList()
RETURN
 
PROC Main()
Put(125) PutE() ;clear screen
AllocInit(0)
listBegin=0
 
PrintList()
TestAddBegin('A)
TestAddAfter('B,listBegin)
TestAddAfter('C,listBegin)
TestClear()
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Singly-linked_list_element_insertion.png Screenshot from Atari 8-bit computer]
<pre>
()
Add 'A' at the begin:
(A)
Add 'B' after 'A':
(A, B)
Add 'C' after 'A':
(A, C, B)
Clear the list:
()
</pre>
 
=={{header|ActionScript}}==
Insertion method:
<langsyntaxhighlight ActionScriptlang="actionscript">package
{
public class Node
Line 129 ⟶ 368:
}
}
}</langsyntaxhighlight>
Usage:
<langsyntaxhighlight ActionScriptlang="actionscript">import Node;
 
var A:Node = new Node(1);
Line 137 ⟶ 376:
var C:Node = new Node(3);
A.insert(B);
A.insert(C);</langsyntaxhighlight>
 
=={{header|Ada}}==
We must create a context clause making the predefined generic procedure Ada.Unchecked_Deallocation visible to this program.
<langsyntaxhighlight lang="ada">with Ada.Unchecked_Deallocation;
-- Define the link type
procedure Singly_Linked is
Line 174 ⟶ 413:
Free(B);
Free(C);
end Singly_Linked;</langsyntaxhighlight>
 
=={{header|ALGOL 68}}==
Linked lists are not built into ALGOL 68 ''per se'', nor any available
standard library. However Linked lists are presented in standard text
book examples. Or can be manually constructed, eg:
<langsyntaxhighlight lang="algol68">MODE STRINGLIST = STRUCT(STRING value, REF STRINGLIST next);
 
STRINGLIST list := ("Big",
Line 203 ⟶ 443:
node := next OF node
OD;
print((newline))</langsyntaxhighlight>
Output:<pre>Big fjords vex VERY quick waltz nymph </pre>
 
=={{header|ALGOL W}}==
<langsyntaxhighlight lang="algolw"> % inserts a new value after the specified element of a list %
procedure insert( reference(ListI) value list
; integer value newValue
Line 220 ⟶ 460:
 
% insert a new value into the list %
insert( next(head), 4077 );</langsyntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
/* ARM assembly Raspberry PI */
/* program insertList.s */
 
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ READ, 3
.equ WRITE, 4
 
.equ NBELEMENTS, 100 @ list size
 
 
/*******************************************/
/* Structures */
/********************************************/
/* structure linkedlist*/
.struct 0
llist_next: @ next element
.struct llist_next + 4
llist_value: @ element value
.struct llist_value + 4
llist_fin:
/* Initialized data */
.data
szMessInitListe: .asciz "List initialized.\n"
szCarriageReturn: .asciz "\n"
/* datas error display */
szMessErreur: .asciz "Error detected.\n"
/* datas message display */
szMessResult: .ascii "Element No :"
sNumElement: .space 12,' '
.ascii " value : "
sValue: .space 12,' '
.asciz "\n"
 
/* UnInitialized data */
.bss
lList1: .skip llist_fin * NBELEMENTS @ list memory place
/* code section */
.text
.global main
main:
ldr r0,iAdrlList1
mov r1,#0 @ list init
str r1,[r0,#llist_next]
ldr r0,iAdrszMessInitListe
bl affichageMess
ldr r0,iAdrlList1
mov r1,#2
bl insertElement @ add element value 2
ldr r0,iAdrlList1
mov r1,#5
bl insertElement @ add element value 5
ldr r3,iAdrlList1
mov r2,#0 @ ident element
1:
ldr r0,[r3,#llist_next] @ end list ?
cmp r0,#0
beq 100f @ yes
add r2,#1
mov r0,r2 @ display No element and value
ldr r1,iAdrsNumElement
bl conversion10S
ldr r0,[r3,#llist_value]
ldr r1,iAdrsValue
bl conversion10S
ldr r0,iAdrszMessResult
bl affichageMess
ldr r3,[r3,#llist_next] @ next element
b 1b @ and loop
100: @ standard end of the program
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessInitListe: .int szMessInitListe
iAdrszMessErreur: .int szMessErreur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrlList1: .int lList1
iAdrszMessResult: .int szMessResult
iAdrsNumElement: .int sNumElement
iAdrsValue: .int sValue
 
/******************************************************************/
/* insert element at end of list */
/******************************************************************/
/* r0 contains the address of the list */
/* r1 contains the value of element */
/* r0 returns address of element or - 1 if error */
insertElement:
push {r1-r3,lr} @ save registers
mov r2,#llist_fin * NBELEMENTS
add r2,r0 @ compute address end list
1: @ start loop
ldr r3,[r0,#llist_next] @ load next pointer
cmp r3,#0 @ = zero
movne r0,r3 @ no -> loop with pointer
bne 1b
add r3,r0,#llist_fin @ yes -> compute next free address
cmp r3,r2 @ > list end
movge r0,#-1 @ yes -> error
bge 100f
str r3,[r0,#llist_next] @ store next address in current pointer
str r1,[r0,#llist_value] @ store element value
mov r1,#0
str r1,[r3,#llist_next] @ init next pointer in next address
 
100:
pop {r1-r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call system
pop {r0,r1,r2,r7,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* Converting a register to a signed decimal */
/***************************************************/
/* r0 contains value and r1 area address */
conversion10S:
push {r0-r4,lr} @ save registers
mov r2,r1 @ debut zone stockage
mov r3,#'+' @ par defaut le signe est +
cmp r0,#0 @ negative number ?
movlt r3,#'-' @ yes
mvnlt r0,r0 @ number inversion
addlt r0,#1
mov r4,#10 @ length area
1: @ start loop
bl divisionpar10U
add r1,#48 @ digit
strb r1,[r2,r4] @ store digit on area
sub r4,r4,#1 @ previous position
cmp r0,#0 @ stop if quotient = 0
bne 1b
 
strb r3,[r2,r4] @ store signe
subs r4,r4,#1 @ previous position
blt 100f @ if r4 < 0 -> end
 
mov r1,#' ' @ space
2:
strb r1,[r2,r4] @store byte space
subs r4,r4,#1 @ previous position
bge 2b @ loop if r4 > 0
100:
pop {r0-r4,lr} @ restaur registers
bx lr
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
//mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3
//movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
</syntaxhighlight>
 
=={{header|ATS}}==
 
I repeated the [[Singly-linked_list/Element_definition#ATS|‘Rosetta Code linear list type’]] here, so you can simply copy
the code below, compile it, and run it.
 
Also I put the executable parts in initialization rather than the main program,
to avoid being forced to ‘consume’ the list (free its memory). I felt that would be a distraction.
 
Notice that the insertion routine proves that the resulting list is either of
the same length as or one longer than the original list. Also there is proof
that the insertion routine will terminate.
 
<syntaxhighlight lang="ats">(*------------------------------------------------------------------*)
 
(* The Rosetta Code linear list type can contain any vt@ype.
(The ‘@’ means it doesn’t have to be the size of a pointer.
You can read {0 <= n} as ‘for all non-negative n’. *)
dataviewtype rclist_vt (vt : vt@ype+, n : int) =
| rclist_vt_nil (vt, 0)
| {0 <= n} rclist_vt_cons (vt, n + 1) of (vt, rclist_vt (vt, n))
 
(* A lemma one will need: lists never have negative lengths. *)
extern prfun {vt : vt@ype}
lemma_rclist_vt_param
{n : int}
(lst : !rclist_vt (vt, n)) :<prf> [0 <= n] void
 
(* Proof of the lemma. *)
primplement {vt}
lemma_rclist_vt_param lst =
case+ lst of
| rclist_vt_nil () => ()
| rclist_vt_cons _ => ()
 
(*------------------------------------------------------------------*)
 
(* For simplicity, the Rosetta Code linear list insertion routine will
be specifically for lists of ‘int’. We shall not take advantage of
the template system. *)
 
(* Some things that will be needed. *)
#include "share/atspre_staload.hats"
 
(* The list is passed by reference and will be replaced by the new
list. The old list is invalidated. *)
extern fun
rclist_int_insert
{m : int} (* ‘for all list lengths m’ *)
(lst : &rclist_vt (int, m) >> (* & = pass by reference *)
(* The new type will be a list of the same
length (if no match were found) or a list
one longer. *)
[n : int | n == m || n == m + 1]
rclist_vt (int, n),
after : int,
x : int) :<!wrt> void
 
implement
rclist_int_insert {m} (lst, after, x) =
{
(* A recursive nested function that finds the matching element
and inserts the new node. *)
fun
find {k : int | 0 <= k}
.<k>. (* Means: ‘k must uniformly decrease towards zero.’
If so, that is proof that ‘find’ terminates. *)
(lst : &rclist_vt (int, k) >>
[j : int | j == k || j == k + 1]
rclist_vt (int, j),
after : int,
x : int) :<!wrt> void =
case+ lst of
| rclist_vt_nil () => () (* Not found. Do nothing *)
| @ rclist_vt_cons (head, tail) when head = after =>
{
val _ = tail := rclist_vt_cons (x, tail)
prval _ = fold@ lst (* I need this unfolding and refolding
stuff to make ‘tail’ a reference
rather than a value, so I can
assign to it. *)
}
| @ rclist_vt_cons (head, tail) =>
{
val _ = find (tail, after, x)
prval _ = fold@ lst
}
 
(* The following is needed to prove that the initial k above
satisfies 0 <= k. *)
prval _ = lemma_rclist_vt_param lst
 
val _ = find (lst, after, x)
}
 
(* Now let’s try it. *)
 
(* Some convenient notation. *)
#define NIL rclist_vt_nil ()
#define :: rclist_vt_cons
overload insert with rclist_int_insert
 
val A = 123
val B = 789
val C = 456
 
(* ‘var’ to make lst a mutable variable rather than a
value (‘val’). *)
var lst = A :: B :: NIL
 
(* Do the insertion. *)
val () = insert (lst, A, C)
 
fun
loop {k : int | 0 <= k} .<k>.
(p : !rclist_vt (int, k)) : void =
case+ p of
| NIL => ()
| head :: tail =>
begin
println! (head);
loop tail
end
prval () = lemma_rclist_vt_param lst
val () = loop lst
 
(*------------------------------------------------------------------*)
 
implement
main0 () = ()</syntaxhighlight>
 
{{out}}
<pre>$ patscc -DATS_MEMALLOC_LIBC singly_linked_list_insertion.dats && ./a.out
123
456
789</pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">a = 1
<lang AutoHotkey>a = 1
a_next = b
b = 2
Line 239 ⟶ 799:
%old%_next := new
%new%_next := temp
}</langsyntaxhighlight>
 
=={{header|Axe}}==
<langsyntaxhighlight lang="axe">Lbl INSERT
{r₁+2}ʳ→{r₂+2}ʳ
r₂→{r₁+2}ʳ
r₁
Return</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> DIM node{pNext%, iData%}
DIM a{} = node{}, b{} = node{}, c{} = node{}
Line 265 ⟶ 825:
here.pNext% = new{}
ENDPROC
</syntaxhighlight>
</lang>
 
=={{header|C}}==
Line 271 ⟶ 831:
Define the method:
 
<langsyntaxhighlight lang="c">void insert_append (struct link *anchor, struct link *newlink) {
newlink->next = anchor->next;
anchor->next = newlink;
}</langsyntaxhighlight>
 
Note that in a production implementation, one should check anchor and newlink to ensure they're valid values. (I.e., not NULL.)
Line 281 ⟶ 841:
 
Create our links.
<langsyntaxhighlight lang="c">struct link *a, *b, *c;
a = malloc(sizeof(link));
b = malloc(sizeof(link));
Line 287 ⟶ 847:
a->data = 1;
b->data = 2;
c->data = 3;</langsyntaxhighlight>
 
Prepare our initial list
<syntaxhighlight lang ="c"> insert_append (a, b);</langsyntaxhighlight>
 
Insert element c after element a
<syntaxhighlight lang ="c"> insert_append (a, c);</langsyntaxhighlight>
 
Remember to free the memory once we're done.
<langsyntaxhighlight lang="c"> free (a);
free (b);
free (c);</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
Uses the generic version of the node type located [[Singly-linked_list/Element_definition#C#|here]].
 
Creates nodes and inserts them from the data passed.
<syntaxhighlight lang="csharp">static void InsertAfter<T>(LinkedListNode<T> prev, T value)
{
prev.Next = new Link() { Value = value, Next = prev.Next };
}</syntaxhighlight>
 
<syntaxhighlight lang="csharp">static void Main()
{
//Create A(5)->B(7)
var A = new LinkedListNode<int>() { Value = 5 };
InsertAfter(A, 7);
//Insert C between A and B
InsertAfter(A, 15);
}</syntaxhighlight>
 
=={{header|C++}}==
This uses the generic version of the link node. Of course, normally this would be just some implementation detail inside some list class, not to be used directly by client code.
 
<langsyntaxhighlight lang="cpp">template<typename T> void insert_after(link<T>* list_node, link<T>* new_node)
{
new_node->next = list_node->next;
list_node->next = new_node;
};</langsyntaxhighlight>
 
Here's the example code using that method:
 
The following code creates the links. As numeric values I've just taken the corresponding character values.
<langsyntaxhighlight lang="cpp">link<int>* a = new link<int>('A', new link<int>('B'));
link<int>* c = new link<int>('C');</langsyntaxhighlight>
 
Now insert c after a:
<syntaxhighlight lang ="cpp"> insert_after(a, c);</langsyntaxhighlight>
 
Finally destroy the list:
<langsyntaxhighlight lang="cpp">while (a)
{
link<int>* tmp = a;
a = a->next;
delete tmp;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
Creates nodes and inserts them from the data passed.
<lang csharp>static void InsertAfter(Link prev, int i)
{
prev.next = new Link() { item = i, next = prev.next };
}</lang>
<lang csharp>static void Main()
{
//Create A(5)->B(7)
var A = new Link() { item = 5 };
InsertAfter(A, 7);
//Insert C between A and B
InsertAfter(A, 15);
}</lang>
 
=={{header|Clojure}}==
 
<langsyntaxhighlight lang="lisp">(defn insert-after [new old ls]
(cond (empty? ls) ls
(= (first ls) old) (cons old (cons new (rest ls)))
:else (cons (first ls) (insert-after new old (rest ls)))))</langsyntaxhighlight>
 
And the test:
<langsyntaxhighlight lang="lisp">user=> (insert-after 'c 'a '(a b))
(a c b)</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
Line 356 ⟶ 919:
For many list manipulations in Common Lisp, there are both destructive and non-destructive versions. <code>insert-after</code> is non-destructive, copying the structure of list up to and including the occurrence of the old-element, and sharing the list structure afterward. <code>ninsert-after</code> may modify the structure of the input list.
 
<langsyntaxhighlight lang="lisp">(defun insert-after (new-element old-element list &key (test 'eql))
"Return a list like list, but with new-element appearing after the
first occurence of old-element. If old-element does not appear in
Line 374 ⟶ 937:
((or (null next) (funcall test old-element (car prev)))
(rplacd prev (cons new-element next))
list))))</langsyntaxhighlight>
 
A simpler implementation that traverses the list a bit more can also be written. This takes advantage of the fact that member returns the tail of the list beginning with the first occurrence of an item, and that ldiff copies as much of its list argument as necessary.
 
<langsyntaxhighlight lang="lisp">(defun simple-insert-after (new-element old-element list &key (test 'eql))
(let ((tail (rest (member old-element list :test test))))
(nconc (ldiff list tail)
(cons new-element tail))))</langsyntaxhighlight>
 
Lastly, here is a recursive version. Case 3 could be optimized by only doing the rplacd operation when the recursive call returns a tail whose first cell is now different compared to that of the previous tail. (I.e. the recursive call has immediately hit case 1 or 2 which allocate new structure.)
 
<langsyntaxhighlight lang="lisp">(defun insert-after (list new existing &key (test #'eql))
"Insert item new into list, before existing, or at the end if existing
is not present. The default comparison test function is EQL. This
Line 399 ⟶ 962:
;; and make that list the new rest.
(t (rplacd list (insert-before (cdr list) new existing :test test))
list)))</langsyntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">struct SLinkedNode(T) {
T data;
typeof(this)* next;
Line 422 ⟶ 985:
 
// The GC will collect the memory.
}</langsyntaxhighlight>
 
=={{header|Delphi}}==
Line 428 ⟶ 991:
A simple insertion into a one way list. I use a generic pointer for the data that way it can point to any structure, individual variable or whatever. '''NOTE:''' For original versions of Turbo Pascal, substitute the MemAvail Function for the Try Except block as this does not exist in this version of the pascal language. Also, Turbo Pascal doesn't have C++-style comments, therefore those have to be replaced with Pascal style comments, i.e. { ... } or (* ... *).
 
<langsyntaxhighlight lang="delphi">// Using the same type defs from the one way list example.
 
Type
Line 485 ⟶ 1,048:
CurrentNode.Next := result ;
end;
end;</langsyntaxhighlight>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def insertAfter(head :LinkedList ? (!head.null()),
new :LinkedList ? (new.next().null())) {
new.setNext(head.next())
Line 506 ⟶ 1,069:
println(x.value())
x := x.next()
}</langsyntaxhighlight>
 
=={{header|EchoLisp}}==
Lists are mutable, and we use the destructive - and dangerous - set-cdr! operator which modifies the 'rest' part of a list or sub-list.
<langsyntaxhighlight lang="lisp">
(define (insert-after lst target item)
(when (null? lst) (error "cannot insert in" null))
Line 522 ⟶ 1,085:
(insert-after L 'x 'y)
L → (a c b y)
</syntaxhighlight>
</lang>
 
=={{header|Elena}}==
<syntaxhighlight lang="elena">singleton linkHelper
{
insertAfter(Link prev, IntNumber i)
{
prev.Next := new Link(i, prev.Next)
}
}</syntaxhighlight>
 
=={{header|Erlang}}==
Lists are builtin, but Erlang is single assignment. Here we need mutable link to next element. Mutable in Erlang usually means a process, so:
<syntaxhighlight lang="erlang">
<lang Erlang>
-module( singly_linked_list ).
 
Line 578 ⟶ 1,150:
loop_foreach( _Fun, nonext ) -> ok;
loop_foreach( Fun, Next ) -> Next ! {foreach, Fun}.
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 588 ⟶ 1,160:
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">: list-append ( previous new -- )
[ swap next>> >>next drop ] [ >>next drop ] 2bi ;
 
Line 596 ⟶ 1,168:
[ C <linked-list> list-append ] keep
[ B <linked-list> list-append ] keep
.</langsyntaxhighlight>
Output:
<pre>
Line 614 ⟶ 1,186:
Extending Node class from [[Singly-Linked_List_(element)]]:
 
<langsyntaxhighlight lang="fantom">
class Node
{
Line 649 ⟶ 1,221:
}
}
</syntaxhighlight>
</lang>
 
Output:
Line 661 ⟶ 1,233:
 
Using the linked list concept described in the [[Singly-Linked_List_(element)]] topic:
<langsyntaxhighlight lang="forth">\ Create the list and some list elements
create A 0 , char A ,
create B 0 , char B ,
create C 0 , char C ,</langsyntaxhighlight>
 
Now insert b after a and c after b, giving a->b->c
<langsyntaxhighlight lang="forth">B A chain
C B chain</langsyntaxhighlight>
 
Here is an abbreviated version of the definition of 'chain' from the other article:
<langsyntaxhighlight lang="forth"> : chain ( a b -- ) 2dup @ swap ! ! ;</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 95 or later:
<langsyntaxhighlight lang="fortran">elemental subroutine addAfter(nodeBefore,value)
type (node), intent(inout) :: nodeBefore
real, intent(in) :: value
Line 684 ⟶ 1,256:
newNode%next => nodeBefore%next
nodeBefore%next => newNode
end subroutine addAfter</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
Assumes you already have the ll_int data type, defined [[Singly-linked_list/Element_definition#FreeBASIC|here]].
<syntaxhighlight lang="freebasic">sub insert_ll_int( anchor as ll_int ptr, ins as ll_int ptr)
ins->nxt = anchor->nxt
anchor->nxt = ins
end sub</syntaxhighlight>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 724 ⟶ 1,303:
h.insert("C")
h.printList()
}</langsyntaxhighlight>
Output:
<pre>
Line 733 ⟶ 1,312:
=={{header|Groovy}}==
Solution (uses ListNode from [[Singly-Linked List (element)#Groovy]]):
<langsyntaxhighlight lang="groovy">class NodeList {
private enum Flag { FRONT }
private ListNode head
Line 752 ⟶ 1,331:
}
String toString() { "${head}" }
}</langsyntaxhighlight>
 
Test:
<langsyntaxhighlight lang="groovy">def list = new NodeList()
list.insert('B')
list.insert('A')
Line 761 ⟶ 1,340:
 
list.insert('C', 'A')
println list</langsyntaxhighlight>
 
Output:
Line 769 ⟶ 1,348:
=={{header|Haskell}}==
This kind of list manipulation is [[unidiomatic]] Haskell. But you can try the following:
<langsyntaxhighlight lang="haskell">insertAfter a b (c:cs) | a==c = a : b : cs
| otherwise = c : insertAfter a b cs
insertAfter _ _ [] = error "Can't insert"</langsyntaxhighlight>
 
==Icon and Unicon==
Line 779 ⟶ 1,358:
==={{header|Icon}}===
 
<syntaxhighlight lang="icon">
<lang Icon>
record Node (value, successor)
 
Line 786 ⟶ 1,365:
node.successor := newNode
end
</syntaxhighlight>
</lang>
 
==={{header|Unicon}}===
 
<syntaxhighlight lang="unicon">
<lang Unicon>
class Node (value, successor)
 
Line 802 ⟶ 1,381:
self.successor := successor
end
</syntaxhighlight>
</lang>
 
=={{header|J}}==
 
<langsyntaxhighlight Jlang="j">list=: 1 65,:_ 66
A=:0 NB. reference into list
B=:1 NB. reference into list
Line 816 ⟶ 1,395:
localNewNode=: (localOldLinkRef { localListValue), localNewValue
(localListName)=: (localNewLinkRef localOldLinkRef} localListValue), localNewNode
)</langsyntaxhighlight>
 
With these definitions:
Line 828 ⟶ 1,407:
=={{header|Java}}==
Extending [[Singly-Linked_List_(element)#Java]]
<langsyntaxhighlight Javalang="java">void insertNode(Node<T> anchor_node, Node<T> new_node)
{
new_node.next = anchor_node.next;
anchor_node.next = new_node;
}</langsyntaxhighlight>
{{works with|Java|1.5+}}
Java allows the use of generics to allow the data type to be determined at compile time. This will only work on reference types, not primitive types like int or float (wrapper classes like Integer and Float are available).
Line 838 ⟶ 1,417:
=={{header|JavaScript}}==
Extending [[Singly-Linked_List_(element)#JavaScript]]
<langsyntaxhighlight lang="javascript">LinkedList.prototype.insertAfter = function(searchValue, nodeToInsert) {
if (this._value == searchValue) {
nodeToInsert.next(this.next());
Line 849 ⟶ 1,428:
}
var list = createLinkedListFromArray(['A','B']);
list.insertAfter('A', new LinkedList('C', null));</langsyntaxhighlight>
 
=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
For context and a definition of `is_singly_linked_list`,
see [[Singly-linked_list/Element_definition#jq]].
 
<syntaxhighlight lang="jq"> def new($item; $next):
if $next | (.==null or is_singly_linked_list)
then {$item, $next}
else "new(_;_) called with invalid SLL: \($next)" | error
end;
 
# A constructor:
def new($x): new($x; null);
 
def insert($x):
if is_empty_singly_linked_list then {item: $x, next: null}
else .next |= new($x; .)
end;</syntaxhighlight>
'''An example''':
<syntaxhighlight lang="jq">
new(1) | insert(2)
</syntaxhighlight>
{{out}}
<pre>
{
"item": 1,
"next": {
"item": 2,
"next": null
}
}
</pre>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
See the <tt>LinkedList</tt> implemented at [[Singly-linked_list/Element_definition#Julia]].
 
<syntaxhighlight lang="julia">function Base.insert!(ll::LinkedList{T}, index::Integer, item::T) where T
if index == 1
if isempty(ll)
return push!(ll, item)
else
ll.head = Node{T}(item, ll.head)
end
else
nd = ll.head
while index > 2
if nd.next isa EmptyNode
throw(BoundsError())
else
nd = nd.next
index -= 1
end
end
nd.next = Node{T}(item, nd.next)
end
return ll
end</syntaxhighlight>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.2
 
class Node<T: Number>(var data: T, var next: Node<T>? = null) {
Line 878 ⟶ 1,518:
insertAfter(a, c)
println("After insertion : $a")
}</langsyntaxhighlight>
 
{{out}}
Line 887 ⟶ 1,527:
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to insert :after :list :value
localmake "tail member :after :list
if not empty? :tail [.setbf :tail fput :value bf :tail]
Line 893 ⟶ 1,533:
end
 
show insert 5 [3 5 1 8] 2</langsyntaxhighlight>
[3 5 2 1 8]
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">Append[{a, b}, c]
->{a, b, c}</langsyntaxhighlight>
 
Node = {"item": null, "next": null}
Node.init = function(item)
node = new Node
node.item = item
return node
end function
 
=={{header|MiniScript}}==
We're choosing here to use the built-in list type, rather than make our own from scratch, since this is more representative of how one is likely to actually use MiniScript.
<syntaxhighlight lang="miniscript">
> myList = [100, 101, 102]
> myList.push 103
[100, 101, 102, 103]
> myList.insert 0, 99
[99, 100, 101, 102, 103]
> myList.insert 3,101.5
[99, 100, 101, 101.5, 102, 103]
</syntaxhighlight>
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">MODULE SinglyLinkedList EXPORTS Main;
 
TYPE
Line 926 ⟶ 1,585:
InsertAppend(a, b);
InsertAppend(a, c)
END SinglyLinkedList.</langsyntaxhighlight>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">type Node[T] = ref object
next: Node[T]
data: T
Line 945 ⟶ 1,604:
 
a.insertAppend(b)
b.insertAppend(c)</langsyntaxhighlight>
 
=={{header|OCaml}}==
This kind of list manipulation is unidiomatic OCaml. But you can try the following:
<langsyntaxhighlight lang="ocaml">let rec insert_after a b = function
c :: cs when a = c -> a :: b :: cs
| c :: cs -> c :: insert_after a b cs
| [] -> raise Not_found</langsyntaxhighlight>
 
=={{header|Odin}}==
<syntaxhighlight lang="odin">package main
 
Node :: struct {
data: rune,
next: ^Node,
}
 
insert_after :: proc(node, new_node: ^Node) {
new_node.next = node.next
node.next = new_node
}
 
main :: proc() {
a := new(Node)
a.data = 'A'
 
b := new(Node)
b.data = 'B'
 
c := new(Node)
c.data = 'C'
 
insert_after(a, b) // A -> B
insert_after(a, c) // A -> C -> B
 
assert(a.data == 'A')
assert(a.next.data == 'C')
assert(a.next.next.data == 'B')
}</syntaxhighlight>
 
=={{header|Oforth}}==
Line 959 ⟶ 1,648:
Method forEachNext is defined in order to traverse the LinkedList. This method is used by println (as a LinkedLIst is defined as a subclass of Collection).
 
<langsyntaxhighlight Oforthlang="oforth">Collection Class new: LinkedList(data, mutable next)
 
LinkedList method: initialize := next := data ;
Line 974 ⟶ 1,663:
: testLink LinkedList new($A, null) dup add($B) dup add($C) ;
 
testLink println</langsyntaxhighlight>
 
{{out}}
Line 983 ⟶ 1,672:
=={{header|ooRexx}}==
See [[Singly-linked_list/Element_definition#ooRexx|Single-linked list/Element definition]] for full class definition.
<syntaxhighlight lang="oorexx">
<lang ooRexx>
list = .linkedlistlist~new
index = list~insert("abc") -- insert a first item, keeping the index
Call show
list~insert("def") -- adds to the end
Call show
list~insert("123", .nil) -- adds to the begining
Call show
list~insert("456", index) -- inserts between "abc" and "def"
Call show
list~remove(index) -- removes "abc"
Call show
</lang>
exit
show:
s=''
Do x over list
s=s x
end
say s
Return</syntaxhighlight>
{{out]]
<pre> abc
abc def
123 abc def
123 abc 456 def
123 456 def
</pre>
 
=={{header|Pascal}}==
Line 997 ⟶ 1,705:
Since Standard Pascal doesn't know a generic pointer type, and also no generic types, one has to settle for a specific data type for the linked list. Since the task mentions node names "A", "B", "C", here a char is chosen. Of course any data type (including pointers to a specific data type) could have been used here.
 
<langsyntaxhighlight lang="pascal">type
pCharNode = ^CharNode;
CharNode = record
Line 1,011 ⟶ 1,719:
newnode^.next := listnode^.next;
listnode^.next := newnode;
end;</langsyntaxhighlight>
Usage example:
<langsyntaxhighlight lang="pascal">var
A, B: pCharNode;
begin
Line 1,039 ⟶ 1,747:
dispose(B);
end
end.</langsyntaxhighlight>
 
=={{header|Perl}}==
If you don't really need the constant-time insertion property of singly linked lists, just use an array. You can traverse and splice it any way.
<langsyntaxhighlight lang="perl">my @l = ($A, $B);
push @l, $C, splice @l, 1;</langsyntaxhighlight>
However, if you really need a linked list, or all you got is an algorithm in a foreign language, you can use references to accomplish the translation.
<langsyntaxhighlight lang="perl">sub insert_after {
# first argument: node to insert after
# second argument: node to insert
Line 1,064 ⟶ 1,772:
data => 2,
);
insert_after \%A, \%C;</langsyntaxhighlight>
Note that you don't have to name your new nodes. The following works just as well:
<langsyntaxhighlight lang="perl"> insert_after \%A, { data => 2 };</langsyntaxhighlight>
Note the curly braces instead of round parentheses.
 
It is straightforward to extend the function to take an arbitrary number of list nodes to insert:
<langsyntaxhighlight lang="perl">sub insert_after {
my $node = $_[0];
my $next = $node->{next};
Line 1,080 ⟶ 1,788:
}
$node->{next} = $next;
}</langsyntaxhighlight>
With this, it's rather easy to build a list:
<langsyntaxhighlight lang="perl">my %list = ( data => 'A' );
insert_after \%list, { data => 'B' }, { data => 'C' };</langsyntaxhighlight>
List handling is simplified if the variables themselves contain references. For example:
<langsyntaxhighlight lang="perl">my $list2;
 
# create a new list ('A'. 'B', 'C') and store it in $list2
Line 1,094 ⟶ 1,802:
 
# append new nodes ('A2a', 'A2b') after the second element (which now is 'A2')
insert_after $list2->{next}, { data => 'A2a' }, { data => 'A2b' };</langsyntaxhighlight>
=={{header|Perl 6}}==
<lang perl6>my $letters = 'A' => 'C' => Mu;
 
sub insert-after($list, $after, $new) {
loop (my $l = $list; $l; $l = $l.value) {
if $l.key eqv $after {
$l.value = $new => $l.value;
return;
}
}
die "Element $after not found";
}
 
$letters.&insert-after('A', 'B');</lang>
 
=={{header|Phix}}==
See also [[Singly-linked_list/Traversal#Phix|Traversal]] and [[Singly-linked_list/TraversalElement_removal#Phix|Removal]].
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>enum NEXT,DATA
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
constant empty_sll = {{1}}
<span style="color: #008080;">enum</span> <span style="color: #000000;">NEXT</span><span style="color: #0000FF;">,</span><span style="color: #000000;">DATA</span>
sequence sll = empty_sll
<span style="color: #008080;">constant</span> <span style="color: #000000;">empty_sll</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}}</span>
 
<span style="color: #004080;">sequence</span> <span style="color: #000000;">sll</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">empty_sll</span><span style="color: #0000FF;">)</span>
procedure insert_after(object data, integer pos=length(sll))
sll = append(sll,{sll[pos][NEXT],data})
<span style="color: #008080;">procedure</span> <span style="color: #000000;">insert_after</span><span style="color: #0000FF;">(</span><span style="color: #004080;">object</span> <span style="color: #000000;">data</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">pos</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sll</span><span style="color: #0000FF;">))</span>
sll[pos][NEXT] = length(sll)
<span style="color: #000000;">sll</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sll</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">sll</span><span style="color: #0000FF;">[</span><span style="color: #000000;">pos</span><span style="color: #0000FF;">][</span><span style="color: #000000;">NEXT</span><span style="color: #0000FF;">],</span><span style="color: #000000;">data</span><span style="color: #0000FF;">})</span>
end procedure
<span style="color: #000000;">sll</span><span style="color: #0000FF;">[</span><span style="color: #000000;">pos</span><span style="color: #0000FF;">][</span><span style="color: #000000;">NEXT</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sll</span><span style="color: #0000FF;">)</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
insert_after("ONE")
insert_after("TWO")
<span style="color: #000000;">insert_after</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"ONE"</span><span style="color: #0000FF;">)</span>
insert_after("THREE")
<span style="color: #000000;">insert_after</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"TWO"</span><span style="color: #0000FF;">)</span>
 
<span style="color: #000000;">insert_after</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"THREE"</span><span style="color: #0000FF;">)</span>
?sll</lang>
<span style="color: #0000FF;">?</span><span style="color: #000000;">sll</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 1,133 ⟶ 1,830:
=={{header|PicoLisp}}==
Destructive operation
<langsyntaxhighlight PicoLisplang="picolisp">(de insertAfter (Item Lst New)
(when (member Item Lst)
(con @ (cons New (cdr @))) )
Lst )</langsyntaxhighlight>
Non-destructive operation
<langsyntaxhighlight PicoLisplang="picolisp">(de insertAfter (Item Lst New)
(if (index Item Lst)
(conc (cut @ 'Lst) (cons New Lst))
Lst ) )</langsyntaxhighlight>
Output in both cases:
<pre>: (insertAfter 'A '(A B) 'C)
Line 1,150 ⟶ 1,847:
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
/* Let H be a pointer to a node in a one-way-linked list. */
/* Insert an element, whose value is given by variable V, following that node. */
Line 1,158 ⟶ 1,855:
node.value = V;
H->p = Q; /* Break the list at H, and point it at the new node. */
</syntaxhighlight>
</lang>
 
=={{header|Pop11}}==
Line 1,164 ⟶ 1,861:
In Pop11 one normally uses built-in lists:
 
<langsyntaxhighlight lang="pop11">define insert_into_list(anchor, x);
cons(x, back(anchor)) -> back(anchor);
enddefine;
Line 1,171 ⟶ 1,868:
insert_into_list(l1, "b");
;;; insert c
insert_into_list(l1, "c");</langsyntaxhighlight>
 
If one wants one can use user-defined list node (for convenience we repeat definition of list node):
 
<langsyntaxhighlight lang="pop11">uses objectclass;
define :class ListNode;
slot value = [];
Line 1,188 ⟶ 1,885:
insert_into_List(l2, "b");
;;; insert c
insert_into_List(l2, "c");</langsyntaxhighlight>
 
Note that user-defined case differs from built-in case only because of names.
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">Procedure insertAfter(Value, *node.MyData = #Null)
Protected *newNode.MyData = AllocateMemory(SizeOf(MyData))
If *newNode
Line 1,209 ⟶ 1,907:
*SL_List = insertAfter(a) ;start the list
insertAfter(b, *SL_List) ;insert after head of list
insertAfter(c, *SL_List) ;insert after head of list and before tail</langsyntaxhighlight>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">def chain_insert(lst, at, item):
while lst is not None:
if lst[0] == at:
Line 1,223 ⟶ 1,921:
chain = ['A', ['B', None]]
chain_insert(chain, 'A', 'C')
print chain</langsyntaxhighlight>
Output:
<langsyntaxhighlight lang="python">['A', ['C', ['B', None]]]</langsyntaxhighlight>
 
=={{header|Racket}}==
 
<syntaxhighlight lang="racket">
<lang Racket>
#lang racket
 
Line 1,241 ⟶ 1,939:
(insert-after! l 2 2.5)
l ; -> (mcons 1 (mcons 2 (mcons 2.5 (mcons 3))))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
 
Extending <tt>class Cell</tt> from [[Singly-linked_list/Element_definition#Raku]]:
 
<syntaxhighlight lang="raku" line> method insert ($value) {
$.next = Cell.new(:$value, :$.next)
}</syntaxhighlight>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program demonstrates how to create and show a single-linked list. */
@.=0/* and how to insert an element /*define a null linked list. */
call set@ 3z.=0 /*linked list:define a 12null Prothlinked primesz. */
Call set_list 3 /* linked list: 12 Proth primes */
call set@ 5
Call set_list 5 /*see https://mathworld.wolfram.com/ProthPrime.html*/
call set@ 13
Call set_list 13
call set@ 17
Call set_list 17
call set@ 41
Call set_list 41
call set@ 97
Call set_list 97
call set@ 113
Call set_list 113
call set@ 193
Call set_list 193
call set@ 241
Call set_list 241
call set@ 257
Call set_list 257
call set@ 353
Call set_list 353
call set@ 449
Call set_list 449
call list@
Call show_list
after = 97 /* ◄──── REXX code to do insert. */
newValnewval=100 /* ◄──── Insert this "value " " " " */
#after=@..after 97 /* ◄──── " " " " after the "element with this value */
nnn=z..after call ins@ #,newVal /* ◄──── " "position of z´this "value " " */
Call ins_list nnn,newval /* perform the insertion */
say
Say ''
say 'a new value of' newval "has been inserted after element value:" after
Say 'a new value of' newval 'has been inserted',
call list@
exit 'after element having the /*stick a fork in it, wevalue:'re done.*/after
Call show_list
/*──────────────────────────────────INS@ subroutine─────────────────────*/
Exit /* stick a fork in it, we're done.*/
ins@: procedure expose @.; parse arg #,y
 
@._last=@._last+1 /*bump number of list elements. */
set_list: Procedure Expose z.
_=@._last
@._._value=y Parse Arg value /* get element /*defineto newbe valueadded to list element. */
last=z.0 /* set the previous last element. */
@._._next=@.#._next
new=z.0+1 /* set the new ast element. */
@.#._next=_
@. z.y0=_ new /*set adefine locatornext pointeritem toin self.linked list*/
@ z.max_width=max(@last.max_width,length(y))0next=new /* set maximumthe width ofnext any pointer value. */
return z.new.0value=value /*return toset invokeritem ofto thisthe sub.value specified*/
z.new.0next=0 /* set the next pointer value. */
/*──────────────────────────────────LIST@ subroutine────────────────────*/
z..value=new /* set a locator pointer to self. */
list@: say; w=max(7, @.max_width ) /*use the max width of nums or 7.*/
z.0width=max(z.0width,length(value)) /*set maximum width of any value*/
say center('item',6) center('value',w) center('next',6)
Return
say center('' ,6,'─') center('' ,w,'─') center('' ,6,'─')
 
p=1
ins_list: Procedure Expose z.
do j=1 until p==0 /*show all entries of linked list*/
Parse Arg nnn,value
say right(j,6) right(@.p._value,w) right(@.p._next,6)
z.0=z.0+1 /* bump number of list elements. */
p=@.p._next
last=z.0 /* position of the new value */
end /*j*/
z.last.0value=value /* store the new value */
return
z.last.0next=z.nnn.0next /* uptate the pointers to the */
/*──────────────────────────────────SET@ subroutine─────────────────────*/
set@: procedure expose @z.;nnn.0next=last parse arg y /*get next element to be added to list */
_=@._last z..value=last /* store position /*setof the previous last element.new value*/
z.0width=max(z.0width,length(value)) /*set maximum width of any value*/
n=_+1 /*bump last ptr in linked list. */
Return
@._._next=n /*set the next pointer value. */
 
@._last=n /*define next item in linked list*/
show_list:
@.n._value=y /*set item to the value specified*/
Say
@.n._next=0 /*set the next pointer value. */
@..y=n w=max(7,z.0width) /* use the max width of nums or /*set a locator pointer to self7. */
Say center('item',6) 'position' center('value',w) center('next',6)
@.max_width=max(@.max_width,length(y)) /*set maximum width of any value.*/
Say center('',6,'-') '--------' center('',w,'-') center('',6,'-')
return /*return to invoker of this sub. */</lang>
p=1
Do j=1 Until p==0 /* show all entries of linked list*/
Say right(j,6) right(p,8) right(z.p.0value,w) right(z.p.0next,6)
p=z.p.0next
End /* j */
Return</syntaxhighlight>
'''output'''
<pre>
item position value next
------ -------- ------- ------
────── ─────── ──────
1 1 3 2
2 2 5 3
3 3 13 4
4 4 17 5
5 5 41 6
6 6 97 7
7 7 113 8
8 8 193 9
9 9 241 10
10 10 257 11
11 11 353 12
12 12 449 0
 
a new value of 100 has been inserted after element having the value: 97
 
item position value next
------ -------- ------- ------
────── ─────── ──────
1 1 3 2
2 2 5 3
3 3 13 4
4 4 17 5
5 5 41 6
6 6 97 13
7 13 100 7
8 7 113 8
9 8 193 9
10 9 241 10
11 10 257 11
12 11 353 12
13 12 449 0</pre>
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">class ListNode
def insert_after(search_value, new_value)
if search_value == value
Line 1,348 ⟶ 2,060:
 
list = ListNode.new(:a, ListNode.new(:b))
list.insert_after(:a, :c)</langsyntaxhighlight>
 
=={{header|Rust}}==
 
Extending [[Singly-Linked List (element)#Rust]]. Please see that page for the Linked List struct declarations.
<langsyntaxhighlight lang="rust">impl<T> List<T> {
pub fn new() -> Self {
List { head: None }
Line 1,364 ⟶ 2,076:
});
self.head = Some(new_node);
}</langsyntaxhighlight>
 
=={{header|Scala}}==
In Scala (and functional programming) we create a new list instead of modifying existing one.
Placing the method in a companion object (like a static method in Java)
<syntaxhighlight lang ="scala">object Node {
/*
def insert(a: Node, c: Node) = {
Here is a basic list definition
c.next = a.next
 
a.next = c
sealed trait List[+A]
}
case class Cons[+A](head: A, tail: List[A]) extends List[A]
case object Nil extends List[Nothing]
*/
 
object List {
def add[A](as: List[A], a: A): List[A] = Cons(a, as)
}
</syntaxhighlight>
</lang>
 
=={{header|Scheme}}==
Non-mutating:
<langsyntaxhighlight lang="scheme">(define (insert-after a b lst)
(if (null? lst)
lst ; This should be an error, but we will just return the list untouched
Line 1,385 ⟶ 2,103:
(if (equal? a c)
(cons a (cons b cs))
(cons c (insert-after a b cs))))))</langsyntaxhighlight>
 
Mutating:
<langsyntaxhighlight lang="scheme">(define (insert-after! a b lst)
(let ((pos (member a lst)))
(if pos
(set-cdr! pos (cons b (cdr pos))))))</langsyntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">func insert_after(a,b) {
b{:next} = a{:next};
a{:next} = b;
Line 1,411 ⟶ 2,129:
);
 
insert_after(A, C);</langsyntaxhighlight>
 
=={{header|Stata}}==
 
See [[Singly-linked list/Element definition#Stata]].
 
=={{header|Tcl}}==
<lang tcl># Assume rest of definition is already present
oo::define List method insertAfter element {
$element attach $next
set next $element
}
 
This task is extremely against the nature of the Tool Command Language. There are built-in lists, which are first-class citizens. The command <tt>linsert</tt> for inserting in such a list is already there, but it returns a new list instead of modifying an existing one. To emulate this, the <i>name</i> of the list (instead of its value) has to be handed over to the procedure and the procedure has to be given access to the variable using the <tt>upvar</tt> construction.
set A [List new "A" [List new "B"]]
 
$A insertAfter [List new "C"]</lang>
Additionally, the inserting point is usually given by the <i>index</i> of the element, which is to <i>follow</i> the new element, so the insertion always happens <i>before</i>. Since references and pointers don't exist in Tcl, using an existing element (which can only be a value) to determine the position of insertion, is not a good idea, because any value may appear several times in the list.
 
No error checking is included.
 
<syntaxhighlight lang="tcl">
proc insertIntoList {existingList predecessor newElement} {
upvar $existingList exList
set exList [linsert $exList [expr [lsearch -exact $exList $predecessor] + 1] $newElement]
}
 
set list {A B}
insertIntoList list A C
puts $list
</syntaxhighlight>
{{out}}
<pre>
A C B
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-llist}}
<syntaxhighlight lang="wren">import "./llist" for LinkedList
 
var ll = LinkedList.new(["A", "B"])
ll.insertAfter("A", "C")
System.print(ll)</syntaxhighlight>
 
{{out}}
<pre>
[A -> C -> B]
</pre>
 
=={{header|X86 Assembly}}==
<langsyntaxhighlight lang="x86asm">
; x86_64 Linux NASM
; Linked_List_Insert.asm
Line 1,454 ⟶ 2,202:
 
%endif
</syntaxhighlight>
</lang>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">def \Node\ Link, Data; \linked list element definition
def IntSize = 4; \number of bytes in an integer
 
proc Insert(List, Node); \Insert Node into List
int List, Node;
[Node(Link):= List(Link);
List(Link):= Node;
];
 
int MyNode, MyList;
int A, B, C;
[A:= Reserve(2*IntSize);
B:= Reserve(2*IntSize);
C:= Reserve(2*IntSize);
A(Data):= 1;
B(Data):= 2;
C(Data):= 3;
MyList:= A; \make initial list
A(Link):= 0;
Insert(A, B); \insert node B after A
Insert(A, C); \insert node C after A
MyNode:= MyList; \traverse the linked list
while MyNode # 0 do \display the example data
[IntOut(0, MyNode(Data));
ChOut(0, ^ );
MyNode:= MyNode(Link); \move to next node
];
]</syntaxhighlight>
 
{{out}}
<pre>
1 3 2
</pre>
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">// Rosetta Code problem: http://rosettacode.org/wiki/Singly-linked_list/Element_insertion
// by Galileo, 02/2022
 
FIL = 1 : DATO = 2 : LINK = 3
countNodes = 0 : Nodes = 10
 
dim list(Nodes, 3)
 
 
sub searchNode(node)
local i, prevNode
for i = 1 to countNodes
if i = node break
prevNode = list(prevNode, LINK)
next
return prevNode
end sub
 
sub insertNode(node, newNode, after)
local prevNode, i
prevNode = searchNode(node)
if after prevNode = list(prevNode, LINK)
for i = 1 to Nodes
if not list(i, FIL) break
next
list(i, FIL) = true
list(i, DATO) = newNode
list(i, LINK) = list(prevNode, LINK)
list(prevNode, LINK) = i
countNodes = countNodes + 1
if countNodes = Nodes then Nodes = Nodes + 10 : redim list(Nodes, 3) : end if
end sub
 
 
sub printNode(node)
local prevNode
prevNode = searchNode(node)
node = list(prevNode, LINK)
// print list(node, FIL);
print list(node, DATO);
// print list(node, LINK);
print
end sub
 
 
insertNode(1, 1000, true)
insertNode(1, 2000, true)
insertNode(1, 3000, true)
 
printNode(1)
printNode(2)
printNode(3)</syntaxhighlight>{{out}}
<pre>1000
3000
2000
---Program done, press RETURN---</pre>
 
=={{header|zkl}}==
In place:
<langsyntaxhighlight lang="zkl">L("a","b","c").insert(1,"foo") //-->L("a","foo","b","c")
a:=L("a","b","c"); a.insert(a.find("b"),"foo") //-->L("a","foo","b","c")</langsyntaxhighlight>
Create a new list:
<langsyntaxhighlight lang="zkl">a:=ROList("a","b","c");
n:=a.index("b"); a[0,n].append("foo").extend(a[n,*]) //-->ROList("a","foo","b","c")</langsyntaxhighlight>
 
=={{header|Zig}}==
<syntaxhighlight lang="zig">
const std = @import("std");
 
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
 
const allocator = arena.allocator();
 
pub fn LinkedList(comptime Value: type) type {
return struct {
const This = @This();
 
const Node = struct {
value: Value,
next: ?*Node,
};
 
head: ?*Node,
tail: ?*Node,
 
pub fn init() This {
return LinkedList(Value) {
.head = null,
.tail = null,
};
}
 
pub fn add(this: *This, value: Value) !void {
var newNode = try allocator.create(Node);
 
newNode.* = .{ .value = value, .next = null };
 
if (this.tail) |tail| {
tail.next = newNode;
this.tail = newNode;
} else if (this.head) |head| {
head.next = newNode;
this.tail = newNode;
} else {
this.head = newNode;
}
}
};
}
</syntaxhighlight>
 
Create a new list:
 
<syntaxhighlight lang="zig">
var l1 = LinkedList(i32).init();
</syntaxhighlight>
 
Add element:
 
<syntaxhighlight lang="zig">
try list.add(1);
</syntaxhighlight>
9,479

edits