Sine wave: Difference between revisions

10,364 bytes added ,  1 month ago
Added Uiua solution
(Added Uiua solution)
 
(17 intermediate revisions by 6 users not shown)
Line 9:
::# play sound
 
=={{header|AmigaBASIC}}==
<syntaxhighlight lang="basic">SOUND 440,77</syntaxhighlight>
The maximum allowed sound duration parameter in AmigaBASIC is 77 units. Since a second equals 18.2 sound units, this tone will only play for 4.23 seconds.
 
=={{header|BASIC256}}==
<syntaxhighlight lang BASIC256="basic256">sound 440, 5000</langsyntaxhighlight>
 
=={{header|C}}==
{{trans|Python}}
<syntaxhighlight lang="c">#include <stdio.h>
#include <math.h>
#include <stdlib.h>
 
// AU header (CD-quality audio)
int header[] = {46, 115, 110, 100, 0, 0, 0, 24,
255, 255, 255, 255, 0, 0, 0, 3,
0, 0, 172, 68, 0, 0, 0, 1};
 
int main(int argc, char *argv[]){
float freq, dur;
long i, v;
 
if (argc < 3) {
printf("Usage:\n");
printf(" csine <frequency> <duration>\n");
exit(1);
}
freq = atof(argv[1]);
dur = atof(argv[2]);
for (i = 0; i < 24; i++)
putchar(header[i]);
for (i = 0; i < dur * 44100; i++) {
v = (long) round(32000. * sin(2. * M_PI * freq * i / 44100.));
v = v % 65536;
putchar(v >> 8);
putchar(v % 256);
}
}</syntaxhighlight>
Test:
<syntaxhighlight lang="bash">gcc -o csine csine.c -lm
./csine 440 5 | play - # Now either pipe output into SoX to play
./csine 440 5 > test.au # or redirect output to a file.</syntaxhighlight>
 
=={{header|Delphi}}==
Line 19 ⟶ 57:
{{libheader| Winapi.MMSystem}}
Copy of Andreas Rejbrand example found here [https://stackoverflow.com/questions/7742377/how-can-i-generate-continuous-tones-of-varying-frequencies].
<syntaxhighlight lang="delphi">
<lang Delphi>
program Sine_wave;
 
Line 120 ⟶ 158:
end;
end;
end.</langsyntaxhighlight>
 
=={{header|Emacs Lisp}}==
Note that this code does not work on Windows because playing sound from Emacs Lisp data variables is not supported there.
 
<lang lisp>(defun play-sine (freq dur)
===8-bit samples===
<syntaxhighlight lang="lisp">(defun play-sine (freq dur)
"Play a sine wave for dur seconds."
(setq header (unibyte-string ; AU header:
Line 138 ⟶ 178:
(play-sound `(sound :data ,s)))
 
(play-sine 440 5)</langsyntaxhighlight>
While the generated AU sound file is 16 bit, the samples themselves are 8 bit because only their high byte is set by the sine function. Therefore you will hear some faint hiss in the background due to the higher noise floor of 8-bit audio.
 
===16-bit samples===
This (slightly slower) version of the function creates proper 16-bit samples by setting both high and low bytes, resulting in less playback noise.
<syntaxhighlight lang="lisp">(defun play-sine16 (freq dur)
"Play a sine wave for dur seconds."
(setq header (unibyte-string ; AU header:
46 115 110 100 ; ".snd" magic number
0 0 0 24 ; start of data bytes
255 255 255 255 ; file size is unknown
0 0 0 3 ; 16 bit PCM samples
0 0 172 68 ; 44,100 samples/s
0 0 0 1)) ; mono
(setq v (mapcar (lambda (x)
(mod (round (* 32000 (sin (* 2 pi freq x (/ 44100.0))))) 65536))
(number-sequence 0 (* dur 44100))))
(setq s (apply #'concat header (flatten-list (mapcar (lambda (x)
(list (unibyte-string (ash x -8))
(unibyte-string (mod x 256))))
v))))
(play-sound `(sound :data ,s)))
 
(play-sine16 440 5)</syntaxhighlight>
 
=={{header|FreeBASIC}}==
This subroutine is able to generate complex sounds using only Windows API.
 
Original code programmed by Angelo Rosina
[https://www.freebasic.net/forum/viewtopic.php?t=12733]
<syntaxhighlight lang="freebasic">Enum FLAGS
_ASYNC = &h000001
_NODEFAULT = &h000002
_MEMORY = &h000004
_LOOP = &h000008
_NOSTOP = &h000010
_PURGE = &h000040
_APPLICATION = &h000080
_NOWAIT = &h002000
_ALIAS = &h010000
_FILENAME = &h020000
_RESOURCE = &h040000 Or _MEMORY
_ALIAS_ID = &h100000 Or _ALIAS
End Enum
 
#define PLAYFLAG _NOWAIT Or _NOSTOP Or _MEMORY Or _ASYNC
#define SNDPLAYFLAG _NOSTOP Or _MEMORY Or _ASYNC
#define FCC(c) *(cptr(Uinteger Ptr,@##c))
Declare Function PlayMemory Alias "PlaySoundA" (Byval As Any Ptr, Byval hModule As Any Ptr = 0, Byval flag As Integer = PLAYFLAG) As Integer
Declare Function sndPlayMemory Alias "sndPlaySoundA" (Byval As Any Ptr, Byval flag As Uinteger = SNDPLAYFLAG) As Integer
#inclib "winmm"
 
Sub PrepareBuffer(Byval lpBuffer As Any Ptr, _
Byval nSamples As Uinteger, _
Byval nRate As Uinteger = 44100, _
Byval nBits As Uinteger = 16, _
Byval nChannels As Uinteger = 2)
Dim As Uinteger Ptr h = lpBuffer
Dim As Uinteger BlkAlign = (nBits\8) * nChannels
Dim As Uinteger DataSize = BlkAlign * nSamples
h[ 0]=FCC("RIFF") ' RIFF chunk
h[ 1]=36 + DataSize ' size of WAVE chunk + data size
h[ 2]=FCC("WAVE") ' WAVE chunk
h[ 3]=FCC("fmt ") ' fmt chunk
h[ 4]=16 ' size of fmt chunk
h[ 5]=(nChannels Shl 16) Or 1 ' channels + PCM_FORMAT flag
h[ 6]=nRate ' playback rate
h[ 7]=BlkAlign*nRate ' bytes per sec.
h[ 8]=(nBits Shl 16) Or BlkAlign ' bits per sample + blockalign
h[ 9]=FCC("data") ' data chunk
h[10]=DataSize ' size of data chunk
End Sub
 
Type PCM_SAMPLE Field = 2
As Short l, r ' left and right channel
End Type
 
Sub Sound (Frequency As Double, Duration As Single, MaxVol As Integer = 128,_
ca As Single = 0, cd As Single = 0, csl As Single = 1, cr As Single = 0,_
MFrequency As Double = 0, ModStart As Double = 0, MaxModulator As Double = 0,_
ma As Single = 0, md As Single = 0, msl As Single = 1, mr As Single = 0)
Const nBuffers = 2
Var nSamples = 44100*Int(Duration/18.2) ' seconds
Var CS = 1 - CA - CD - CR
Var MS = 1 - MA - MD - MR
Dim As Double CEnvelopeInc, CEnvelopeDecD, CEnvelopeDecR
CEnvelopeInc = 100 * MaxVol / (nSamples * CA + 1)
CEnvelopeDecD = 100 * MaxVol * (1 - CSL) / (nSamples * CD + 1)
CEnvelopeDecR = 100 * MaxVol * CSL / (nSamples * CR + 1)
CD = CD + CA : CS = CS + CD : CR = CR + CS
Dim As Double MEnvelopeInc, MEnvelopeDecD, MEnvelopeDecR
MEnvelopeInc = MaxModulator / (nSamples * MA + 1)
MEnvelopeDecD = MaxModulator * (1 - MSL) / (nSamples * MD + 1)
MEnvelopeDecR = MaxModulator * MSL / (nSamples * MR + 1)
MD = MD + MA : MS = MS + MD : MR = MR + MS
Dim As PCM_SAMPLE PlayBuffers(nBuffers-1, -22 To nSamples-1)
For i As Integer = 0 To nBuffers-1
PrepareBuffer(@PlayBuffers(i,-22), nSamples)
Next
Dim Waveform As Single
Dim Modulator As Single
Dim As Integer buffer,ret
Dim Volume As Double = 0
Dim MAmp As Double = 0
' fill the first buffer with sine wave
For i As Integer = 0 To nSamples-1
If i <= CA * nSamples Then
Volume = Volume + CEnvelopeInc
Elseif i < CD * nSamples Then
Volume = Volume - CEnvelopeDecD
Elseif i < CS * nSamples Then
Elseif i < CR * nSamples Then
Volume = Volume - CEnvelopeDecR
End If
If i <= MA * nSamples Then
Mamp = Mamp + MEnvelopeInc
Elseif i < MD * nSamples Then
Mamp = Mamp - MEnvelopeDecD
Elseif i < MS * nSamples Then
Elseif i < MR * nSamples Then
Mamp = Mamp - MEnvelopeDecR
End If
Modulator = Cos(6.28/44100 * i * MFrequency + ModStart) * MAmp
Waveform = Sin(6.28/44100 * i * Frequency + Modulator) * Volume
PlayBuffers(buffer,i).l = Waveform
PlayBuffers(buffer,i).r = Waveform
Next
ret = PlayMemory(@PlayBuffers(buffer, -22))
End Sub
 
 
Sound 440, 5000
'This is the base syntax, works exactly like in QB
'Sound Frequency, Duration , Volume, A, D, S, R, ModFreq, ModStart, ModAmplitude, MA, MD, MS, MR
</syntaxhighlight>
 
=={{header|Go}}==
Line 144 ⟶ 331:
<br>
Go lacks audio support in its standard library and, whilst there are third party packages that could be used, an easier approach is to invoke the SoX utility's 'play' command as was done in the second Kotlin example.
<langsyntaxhighlight lang="go">package main
 
import (
Line 160 ⟶ 347:
fmt.Println(err)
}
}</langsyntaxhighlight>
 
=={{header|J}}==
Approximately 1751 Hz (slightly flat A, two octaves above middle C), five seconds duration:
<syntaxhighlight lang="j"> require'media/wav'
4 wavplay wavmake <.1e3*1 o.i.55e3
</syntaxhighlight>
 
For simplicity, we use rely on a default wav sample rate of 11khz. Also, for simplicity, we are taking the sine of integer values (0, 1, 2, 3, 4, 5, 6), which gives us slightly more than six samples per cycle. 1e3 here represents the amplitude of our wave, which is interpreted as a signed 16 bit integer. So we're about 30 decibels below max volume (a factor of 10 in amplitude is a difference of 20 decibels):
 
<syntaxhighlight lang="j"> 20*10 ^. (2^15) % 1e3, 2^15
30.309 0</syntaxhighlight>
 
=={{header|JavaScript}}==
<langsyntaxhighlight lang="javascript">let ctx = new (window.AudioContext || window.webkitAudioContext)();
let osc = ctx.createOscillator();
osc.frequency.setValueAtTime(440, ctx.currentTime);
osc.connect(ctx.destination);
osc.start();
osc.stop(ctx.currentTime + 5);</langsyntaxhighlight>
 
=={{header|Julia}}==
PortAudio library version.
<langsyntaxhighlight lang="julia">using PortAudio
 
function paudio()
Line 190 ⟶ 388:
 
play(paudio(), 440.0, 5.0)
</syntaxhighlight>
</lang>
 
=={{header|Kotlin}}==
===Using Java Sound API===
<langsyntaxhighlight lang="scala">// Version 1.2.41
 
import javax.sound.sampled.AudioFormat
Line 224 ⟶ 422:
close()
}
}</langsyntaxhighlight>
 
===Invoking SoX===
An easier approach invoking the SoX utility's 'play' command which has this stuff built-in. The following was tested on Ubuntu 16.04.
<langsyntaxhighlight lang="scala">// Version 1.2.41
 
fun main(args:Array<String>) {
Line 238 ⟶ 436:
val proc = pb.start()
proc.waitFor()
}</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">EmitSound[Play[Sin[440 2 Pi t], {t, 0, 5}]]</langsyntaxhighlight>
 
=={{header|Nim}}==
Using Sox external player.
<langsyntaxhighlight Nimlang="nim">import osproc, strutils
 
proc getIntValue(msg: string; minval, maxval: int): int =
Line 267 ⟶ 465:
let kind = "sine"
let args = ["-n", "synth", $duration, $kind, $freq]
echo execProcess("play", args = args, options = {poStdErrToStdOut, poUsePath})</langsyntaxhighlight>
 
=={{header|OCaml}}==
Line 274 ⟶ 472:
{{libheader|ocaml-sfml}}
 
<langsyntaxhighlight lang="ocaml">module BA = Bigarray
module BA1 = Bigarray.Array1
 
Line 301 ⟶ 499:
while true do
SFTime.sleep (SFTime.of_milliseconds 100_l);
done</langsyntaxhighlight>
 
To run this code in script mode you can add this at the beginning of the file:
 
<langsyntaxhighlight lang="ocaml">#directory "+sfml"
#load "bigarray.cma"
#load "sfml_system.cma"
#load "sfml_audio.cma"</langsyntaxhighlight>
Then run:
<pre>ocaml sine_wave.ml</pre>
Line 318 ⟶ 516:
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">use Audio::NoiseGen qw(play sine);
 
Audio::NoiseGen::init() || die 'No access to sound hardware?';
 
alarm 5;
play( gen => sine( freq => 440 ) );</langsyntaxhighlight>
 
=={{header|Phix}}==
<!--<langsyntaxhighlight Phixlang="phix">(notonline)-->
<span style="color: #008080;">without</span> <span style="color: #008080;">js</span> <span style="color: #000080;font-style:italic;">-- (dll/c_proc, system, prompt_number)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">k32</span><span style="color: #0000FF;">=</span><span style="color: #004600;">NULL</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">xBeep</span>
Line 343 ⟶ 541:
<span style="color: #000000;">beep</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">prompt_number</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"Enter Frequency (100..10000 recommended):"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">0x25</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0x7FFF</span><span style="color: #0000FF;">}))</span>
<!--</langsyntaxhighlight>-->
 
=={{header|Processing}}==
Requires Processing Sound library.
<syntaxhighlight lang="java">
import processing.sound.*;
 
SinOsc sine;
 
size(500,500);
 
sine = new SinOsc(this);
sine.freq(500);
sine.play();
 
delay(5000);
</syntaxhighlight>
 
=={{header|Python}}==
{{trans|Emacs Lisp}}
<syntaxhighlight lang="python">#!/usr/bin/env python
 
import os
from math import pi, sin
 
# AU file header
au_header = bytearray(
[46, 115, 110, 100, # ".snd" magic number
0, 0, 0, 24, # start of data bytes
255, 255, 255, 255, # file size is unknown
0, 0, 0, 3, # 16 bit PCM samples
0, 0, 172, 68, # 44,100 samples/s
0, 0, 0, 1]) # mono
 
def f(x, freq):
"Compute sine wave as 16-bit integer"
return round(32000 * sin(2 * pi * freq * x / 44100)) % 65536
 
def play_sine(freq=440, duration=5, oname="pysine.au"):
"Play a sine wave for `duration` seconds"
out = open(oname, 'wb')
out.write(au_header)
v = [f(x, freq) for x in range(duration * 44100 + 1)]
s = []
for i in v:
s.append(i >> 8)
s.append(i % 256)
out.write(bytearray(s))
out.close()
os.system("vlc " + oname) # starts an external media player to play file
 
play_sine()</syntaxhighlight>
Creates an AU file with the sine wave and plays it with VLC.
 
=={{header|Racket}}==
See https://docs.racket-lang.org/rsound/index.html
<syntaxhighlight lang="racket">
<lang Racket>
#lang racket
(require rsound)
; 440 Hz, 50% volume, 5 seconds
(play (make-tone 440 0.50 (* 5 FRAME-RATE)))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
Line 359 ⟶ 609:
What a horribly underspecified task. Ah well, gives me lots of wiggle room to cheat in various ways.
 
<syntaxhighlight lang="raku" perl6line>my ($rows,$cols) = qx/stty size/.words;
my $v = floor $rows / 2;
print "\e[H\e[J", 'Generating sine wave of zero amplitude and zero frequency for 5 seconds...',
Line 382 ⟶ 632:
say 'Oops, too late.';
say 'Still no? Ok how about:';
shell 'play -n -c1 synth 5.0 sin %-12';</langsyntaxhighlight>
 
=={{header|REXX}}==
Note: &nbsp; This REXX program will <u>only</u> work for PC/REXX or Personal REXX.
<langsyntaxhighlight REXXlang="rexx">/*REXX program produces a sine wave (of a specified frequency) for N seconds. */
parse arg freq time . /*obtain optional arguments from the CL*/
if freq=='' | freq=="," then freq= 880 /*Not specified? Then use the default.*/
if time=='' | time=="," then time= 5 /* " " " " " " */
call sound freq, time /*invoke a BIF to generate a sine wave.*/
exit 0 /*stick a fork in it, we're all done. */</langsyntaxhighlight><br><br<
 
=={{header|Scala}}==
<langsyntaxhighlight Scalalang="scala">import javax.sound.sampled.{AudioFormat, AudioSystem, SourceDataLine}
 
import scala.math.{Pi, sin}
Line 418 ⟶ 668:
line.close()
 
}</langsyntaxhighlight>
 
=={{header|Uiua}}==
{{works with|Uiua|0.11.0-dev.1}}
[https://www.uiua.org Uiua Pad] has built-in audio support for suitable arrays, so this will play a standard A for 5 seconds.
<syntaxhighlight lang="Uiua">
∿×τ×440×⟜(÷⟜⇡.×&asr) 5
</syntaxhighlight>
 
=={{header|Wren}}==
Line 424 ⟶ 681:
{{libheader|Wren-sound}}
As Wren-cli doesn't have any built-in audio support, we instead build a .wav file which can then be played using a utility such as rhythmbox or SoX,
<langsyntaxhighlight ecmascriptlang="wren">import "./sound" for Wav
 
var sineWave = Fn.new { |frequency, seconds, sampleRate|
Line 440 ⟶ 697:
var sampleRate = 44000
var buffer = sineWave.call(440, 5, sampleRate)
Wav.create("sinewave.wav", buffer, sampleRate)</langsyntaxhighlight>
 
=={{header|Yabasic}}==
<langsyntaxhighlight Yabasiclang="yabasic">// Rosetta Code problem: http://rosettacode.org/wiki/Sine_wave
// by Galileo, 05/2022
 
Line 458 ⟶ 715:
end sub
 
MyBeep(440)</langsyntaxhighlight>
 
=={{header|zkl}}==
{{trans|Go}}
Running on Mint Linux
<langsyntaxhighlight lang="zkl">fcn sineWave(durationInSec=5, frequency=440){
synthType:="sine";
cmd:="play -n synth %d %s %d".fmt(durationInSec,synthType,frequency);
Line 470 ⟶ 727:
}
 
sineWave();</langsyntaxhighlight>
60

edits