Sierpinski triangle/Graphical: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 1,630: Line 1,630:
Should work with most versions of Processing
Should work with most versions of Processing


Recursive Sierpinski triangle
Recursive Sierpinski triangles

===2D versions===

<lang Processing>
<lang Processing>
PVector [] coord = {new PVector(0, 0), new PVector(150, 300), new PVector(300, 0)};
PVector [] coord = {new PVector(0, 0), new PVector(150, 300), new PVector(300, 0)};
Line 1,650: Line 1,653:
for (int v=0; v<3; v++) {
for (int v=0; v<3; v++) {
sierpinski(new PVector((cPoint.x+coord[v].x)/2, (cPoint.y+coord[v].y)/2), cDepth-1);
sierpinski(new PVector((cPoint.x+coord[v].x)/2, (cPoint.y+coord[v].y)/2), cDepth-1);
}
}
</lang>

====Animated====
<lang Processing>
int depth = 5;
int interval = 50;

int currentTime;
int lastTime;
int progress = 0;
int lastProgress = 0;
//int finished = int(pow(3,depth));
boolean intervalExpired = false;

void setup() {
size(410, 230);
background(255);
fill(0);
lastTime = millis();
}

void draw() {
currentTime = millis();
triangle (10, 25, 100, depth);
}

void triangle (int x, int y, int l, int n) {
if (n == 0) {
checkIfIntervalExpired();
if (intervalExpired && progress == lastProgress) {
text("*", x, y);
lastProgress++;
intervalExpired = false;
}
progress++;
} else {
triangle(x, y+l, l/2, n-1);
triangle(x+l, y, l/2, n-1);
triangle(x+l*2, y+l, l/2, n-1);
}
}

void checkIfIntervalExpired() {
if (currentTime-lastTime > interval) {
lastTime = currentTime;
progress = 0;
intervalExpired = true;
}
}

void keyReleased() {
if (key==' ') { // reset
progress = 0;
lastProgress = 0;
background(255);
}
}
</lang>

===3D version===
<lang Processing>
import peasy.*;

int depth = 6; // recursion depth
int dWidth = 600;
int dHeight = 600;

color pyramidColor = color( 0 );
color bgColor = color( 255 );

// 3D Sierpinski tetrahedron vertices
PVector [] coord = {
new PVector( 0, 0, 0),
new PVector( 300, 0, 0),
new PVector( 150, 0, -260),
new PVector( 150, -245, -86.6)
};
int verts = coord.length;
float boxSize = 600/pow(3, depth);

// "random" start point (mid point)
PVector startPoint = new PVector(150, 183.7, 173.2);

PeasyCam cam;

void settings()
{
size(dWidth, dHeight, P3D);
}

void setup()
{
cam = new PeasyCam(this, startPoint.x, startPoint.y, startPoint.z, 400);
cam.setMaximumDistance(3000);
fill(pyramidColor);
stroke(pyramidColor);
}

void draw()
{
background(bgColor);
sierpinski(startPoint, depth);
}

void sierpinski(PVector currentPoint, int currentDepth)
{
if (currentDepth == 0) {
pushMatrix();
translate(currentPoint.x, 245+currentPoint.y, 260+currentPoint.z);
box(boxSize);
popMatrix();
return;
}
for (int v=0; v<verts; v++) {
sierpinski(new PVector(
(currentPoint.x+coord[v].x)/2,
(currentPoint.y+coord[v].y)/2,
(currentPoint.z+coord[v].z)/2),
currentDepth-1);
}
}
}
}

Revision as of 16:17, 6 September 2020

Task
Sierpinski triangle/Graphical
You are encouraged to solve this task according to the task description, using any language you may know.

Produce a graphical representation of a Sierpinski triangle of order N in any orientation.

An example of Sierpinski's triangle (order = 8) looks like this:

ActionScript

SierpinskiTriangle class: <lang ActionScript3> package {

   import flash.display.GraphicsPathCommand;
   import flash.display.Sprite;
   
   /**
    * A Sierpinski triangle.
    */
   public class SierpinskiTriangle extends Sprite {
       
       /**
        * Creates a new SierpinskiTriangle object.
        * 
        * @param n The order of the Sierpinski triangle.
        * @param c1 The background colour.
        * @param c2 The foreground colour.
        * @param width The width of the triangle.
        * @param height The height of the triangle.
        */
       public function SierpinskiTriangle(n:uint, c1:uint, c2:uint, width:Number, height:Number):void {
           _init(n, c1, c2, width, height);
       }
       
       /**
        * Generates the triangle.
        * 
        * @param n The order of the Sierpinski triangle.
        * @param c1 The background colour.
        * @param c2 The foreground colour.
        * @param width The width of the triangle.
        * @param height The height of the triangle.
        * @private
        */
       private function _init(n:uint, c1:uint, c2:uint, width:Number, height:Number):void {
           
           if ( n <= 0 )
               return;
               
           // Draw the outer triangle.
           
           graphics.beginFill(c1);
           graphics.moveTo(width / 2, 0);
           graphics.lineTo(0, height);
           graphics.lineTo(width, height);
           graphics.lineTo(width / 2, 0);
           
           // Draw the inner triangle.
           
           graphics.beginFill(c2);
           graphics.moveTo(width / 4, height / 2);
           graphics.lineTo(width * 3 / 4, height / 2);
           graphics.lineTo(width / 2, height);
           graphics.lineTo(width / 4, height / 2);
           
           if ( n == 1 )
               return;
           
           // Recursively generate three Sierpinski triangles of half the size and order n - 1 and position them appropriately.    
           
           var sub1:SierpinskiTriangle = new SierpinskiTriangle(n - 1, c1, c2, width / 2, height / 2);
           var sub2:SierpinskiTriangle = new SierpinskiTriangle(n - 1, c1, c2, width / 2, height / 2);
           var sub3:SierpinskiTriangle = new SierpinskiTriangle(n - 1, c1, c2, width / 2, height / 2);
           
           sub1.x = width / 4;
           sub1.y = 0;
           sub2.x = 0;
           sub2.y = height / 2;
           sub3.x = width / 2;
           sub3.y = height / 2;
           
           addChild(sub1);
           addChild(sub2);
           addChild(sub3);
           
       }
       
   } 

} </lang>

Document class: <lang ActionScript3> package {

   import flash.display.Sprite;
   import flash.events.Event;
   
   public class Main extends Sprite {
       
       public function Main():void {
           if ( stage ) init();
           else addEventListener(Event.ADDED_TO_STAGE, init);
       }
       
       private function init(e:Event = null):void {
           var s:SierpinskiTriangle = new SierpinskiTriangle(5, 0x0000FF, 0xFFFF00, 300, 150 * Math.sqrt(3));
           // Equilateral triangle (blue and yellow)
           s.x = s.y = 20;
           addChild(s);
       }
       
   }

} </lang>

Asymptote

This simple-minded recursive apporach doesn't scale well to large orders, but neither would your PostScript viewer, so there's nothing to gain from a more efficient algorithm. Thus are the perils of vector graphics.

<lang asymptote>path subtriangle(path p, real node) {

   return
       point(p, node) --
       point(p, node + 1/2) --
       point(p, node - 1/2) --
       cycle;

}

void sierpinski(path p, int order) {

   if (order == 0)
       fill(p);
   else {
       sierpinski(subtriangle(p, 0), order - 1);
       sierpinski(subtriangle(p, 1), order - 1);
       sierpinski(subtriangle(p, 2), order - 1);
   }

}

sierpinski((0, 0) -- (5 inch, 1 inch) -- (2 inch, 6 inch) -- cycle, 10);</lang>

ATS

Library: SDL

<lang ATS>// patscc -O2 -flto -D_GNU_SOURCE -DATS_MEMALLOC_LIBC sierpinski.dats -o sierpinski -latslib -lSDL2

  1. include "share/atspre_staload.hats"

typedef point = (int, int)

extern fun midpoint(A: point, B: point): point = "mac#"

extern fun sierpinski_draw(n: int, A: point, B: point, C: point): void = "mac#"

extern fun triangle_remove(A: point, B: point, C: point): void = "mac#"

extern fun sdl_drawline(x1: int, y1: int, x2: int, y2: int): void = "ext#sdl_drawline"

extern fun line(A: point, B: point): void

extern fun ats_tredraw(): void = "mac#ats_tredraw"

implement midpoint(A, B) = (xmid, ymid) where {

 val xmid = (A.0 + B.0) / 2
 val ymid = (A.1 + B.1) / 2

}

implement triangle_remove(A, B, C) = (

 line(A, B);
 line(B, C);
 line(C, A);

)

implement sierpinski_draw(n, A, B, C) =

 if n > 0 then
   let
     val AB = midpoint(A, B)
     val BC = midpoint(B, C)
     val CA = midpoint(C, A)
   in
     triangle_remove(AB, BC, CA);
     sierpinski_draw(n-1, A, AB, CA);
     sierpinski_draw(n-1, B, BC, AB);
     sierpinski_draw(n-1, C, CA, BC);
   end

implement line(A, B) = sdl_drawline(A.0, A.1, B.0, B.1)

extern fun SDL_Init(): void = "ext#sdl_init" extern fun SDL_Quit(): void = "ext#sdl_quit" extern fun SDL_Loop(): void = "ext#sdl_loop"

implement ats_tredraw() = sierpinski_draw(7, (320, 0), (0, 480), (640, 480))

implement main0() = (

 SDL_Init();
 SDL_Loop();
 SDL_Quit();

)

%{

  1. include <SDL2/SDL.h>
  2. include <unistd.h>

extern void ats_tredraw(); SDL_Window *sdlwin; SDL_Renderer *sdlren; void sdl_init() {

 if (SDL_Init(SDL_INIT_VIDEO)) {
   exit(1);
 }
 if ((sdlwin = SDL_CreateWindow("sierpinski triangles", 100, 100, 640, 480, SDL_WINDOW_SHOWN)) == NULL) {
   SDL_Quit();
   exit(2);
 }
 if ((sdlren = SDL_CreateRenderer(sdlwin, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC)) == NULL) {
   SDL_DestroyWindow(sdlwin);
   SDL_Quit();
   exit(3);
 }

} void sdl_clear() {

 SDL_SetRenderDrawColor(sdlren, 0, 0, 0, SDL_ALPHA_OPAQUE);
 SDL_RenderClear(sdlren);
 SDL_SetRenderDrawColor(sdlren, 255, 255, 255, SDL_ALPHA_OPAQUE);

} void sdl_loop() {

 SDL_Event event;
 while (1) {
   sdl_clear();
   ats_tredraw();
   SDL_RenderPresent(sdlren);
   while (SDL_PollEvent(&event)) {
     if (event.type == SDL_QUIT) {
       return;
     }
   }
 }

} void sdl_quit() {

   SDL_DestroyRenderer(sdlren);
   SDL_DestroyWindow(sdlwin);
   SDL_Quit();

}

void sdl_drawline(int x1, int y1, int x2, int y2) {

 SDL_RenderDrawLine(sdlren, x1, y1, x2, y2);

} %}</lang>

AutoHotkey

Library: GDIP

<lang AutoHotkey>#NoEnv

  1. SingleInstance, Force

SetBatchLines, -1

Parameters

Width := 512, Height := Width/2*3**0.5, n := 8 ; iterations = 8

Uncomment if Gdip.ahk is not in your standard library
  1. Include ..\lib\Gdip.ahkl

If !pToken := Gdip_Startup() ; Start gdi+ { MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system ExitApp }

I've added a simple new function here, just to ensure if anyone is having any problems then to make sure they are using the correct library version

if (Gdip_LibraryVersion() < 1.30) { MsgBox, 48, Version error!, Please download the latest version of the gdi+ library ExitApp } OnExit, Exit

Create a layered window (+E0x80000
must be used for UpdateLayeredWindow to work!) that is always on top (+AlwaysOnTop), has no taskbar entry or caption

Gui, -Caption +E0x80000 +LastFound +OwnDialogs +Owner +AlwaysOnTop Gui, Show hwnd1 := WinExist() OnMessage(0x201, "WM_LBUTTONDOWN")

, hbm := CreateDIBSection(Width, Height) , hdc := CreateCompatibleDC() , obm := SelectObject(hdc, hbm) , G := Gdip_GraphicsFromHDC(hdc) , Gdip_SetSmoothingMode(G, 4)

Sierpinski triangle by subtracting triangles

, pBrushBlack := Gdip_BrushCreateSolid(0xff000000) , rectangle := 0 "," 0 "|" 0 "," Height "|" Width "," Height "|" Width "," 0 , Gdip_FillPolygon(G, pBrushBlack, rectangle, FillMode=0)

, pBrushBlue := Gdip_BrushCreateSolid(0xff0000ff) , triangle := Width/2 "," 0 "|" 0 "," Height "|" Width "," Height , Gdip_FillPolygon(G, pBrushBlue, triangle, FillMode=0) , Gdip_DeleteBrush(pBrushBlue)

, UpdateLayeredWindow(hwnd1, hdc, (A_ScreenWidth-Width)/2, (A_ScreenHeight-Height)/2, Width, Height)

, k:=2, x:=0, y:=0, i:=1 Loop, % n { Sleep 0.5*1000 While x*y<Width*Height { triangle := x "," y "|" x+Width/2/k "," y+Height/k "|" x+Width/k "," y , Gdip_FillPolygon(G, pBrushBlack, triangle, FillMode=0) , x += Width/k , (x >= Width) ? (x := i*Width/2/k, y += Height/k, i:=!i) : "" } UpdateLayeredWindow(hwnd1, hdc, (A_ScreenWidth-Width)/2, (A_ScreenHeight-Height)/2, Width, Height) , k*=2, x:=0, y:=0, i:=1 }

Gdip_DeleteBrush(pBrushBlack)

, UpdateLayeredWindow(hwnd1, hdc, (A_ScreenWidth-Width)/2, (A_ScreenHeight-Height)/2, Width, Height) Sleep, 1*1000

Bonus
Sierpinski triangle by random dots

Gdip_GraphicsClear(G, 0xff000000) , pBrushBlue := Gdip_BrushCreateSolid(0xff0000ff) , x1:=Width/2, y1:=0, x2:=0, y2:=Height, x3:=Width, y3:=Height , x:= Width/2, y:=Height/2 ; I'm to lazy to pick a random point. Loop, % n { Loop, % 10*10**(A_Index/2) { Random, rand, 1, 3 x := abs(x+x%rand%)/2 , y := abs(y+y%rand%)/2 , Gdip_FillEllipse(G, pBrushBlue, x, y, 1, 1) } UpdateLayeredWindow(hwnd1, hdc, (A_ScreenWidth-Width)/2, (A_ScreenHeight-Height)/2, Width, Height) Sleep, 0.5*1000 } SelectObject(hdc, obm) , DeleteObject(hbm) , DeleteDC(hdc) , Gdip_DeleteGraphics(G) Return

Exit: Gdip_Shutdown(pToken) ExitApp

WM_LBUTTONDOWN() { If (A_Gui = 1) PostMessage, 0xA1, 2 }</lang>

BBC BASIC

<lang bbcbasic> order% = 8

     size% = 2^order%
     VDU 23,22,size%;size%;8,8,16,128
     FOR Y% = 0 TO size%-1
       FOR X% = 0 TO size%-1
         IF (X% AND Y%)=0 PLOT X%*2,Y%*2
       NEXT
     NEXT Y%

</lang>

C

Code lifted from Dragon curve. Given a depth n, draws a triangle of size 2^n in a PNM file to the standard output. Usage: gcc -lm stuff.c -o sierp; ./sierp 9 > triangle.pnm. Sample image generated with depth 9. Generated image's size depends on the depth: it plots dots, but does not draw lines, so a large size with low depth is not possible.

<lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>
  3. include <math.h>

long long x, y, dx, dy, scale, clen, cscale; typedef struct { double r, g, b; } rgb; rgb ** pix;

void sc_up() { scale *= 2; x *= 2; y *= 2; cscale *= 3; }

void h_rgb(long long x, long long y) { rgb *p = &pix[y][x];

  1. define SAT 1

double h = 6.0 * clen / cscale; double VAL = 1; double c = SAT * VAL; double X = c * (1 - fabs(fmod(h, 2) - 1));

switch((int)h) { case 0: p->r += c; p->g += X; return; case 1: p->r += X; p->g += c; return; case 2: p->g += c; p->b += X; return; case 3: p->g += X; p->b += c; return; case 4: p->r += X; p->b += c; return; default: p->r += c; p->b += X; } }

void iter_string(const char * str, int d) { long long len; while (*str != '\0') { switch(*(str++)) { case 'X': if (d) iter_string("XHXVX", d - 1); else{ clen ++; h_rgb(x/scale, y/scale); x += dx; y -= dy; } continue; case 'V': len = 1LLU << d; while (len--) { clen ++; h_rgb(x/scale, y/scale); y += dy; } continue; case 'H': len = 1LLU << d; while(len --) { clen ++; h_rgb(x/scale, y/scale); x -= dx; } continue; } } }

void sierp(long leng, int depth) { long i; long h = leng + 20, w = leng + 20;

/* allocate pixel buffer */ rgb *buf = malloc(sizeof(rgb) * w * h); pix = malloc(sizeof(rgb *) * h); for (i = 0; i < h; i++) pix[i] = buf + w * i; memset(buf, 0, sizeof(rgb) * w * h);

       /* init coords; scale up to desired; exec string */

x = y = 10; dx = leng; dy = leng; scale = 1; clen = 0; cscale = 3; for (i = 0; i < depth; i++) sc_up(); iter_string("VXH", depth);

/* write color PNM file */ unsigned char *fpix = malloc(w * h * 3); double maxv = 0, *dbuf = (double*)buf;

for (i = 3 * w * h - 1; i >= 0; i--) if (dbuf[i] > maxv) maxv = dbuf[i]; for (i = 3 * h * w - 1; i >= 0; i--) fpix[i] = 255 * dbuf[i] / maxv;

printf("P6\n%ld %ld\n255\n", w, h); fflush(stdout); /* printf and fwrite may treat buffer differently */ fwrite(fpix, h * w * 3, 1, stdout); }

int main(int c, char ** v) { int size, depth;

depth = (c > 1) ? atoi(v[1]) : 10; size = 1 << depth;

fprintf(stderr, "size: %d depth: %d\n", size, depth); sierp(size, depth + 2);

return 0; }</lang>

C++

<lang cpp>

  1. include <windows.h>
  2. include <string>
  3. include <iostream>

const int BMP_SIZE = 612;

class myBitmap { public:

   myBitmap() : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) {}
   ~myBitmap() {
       DeleteObject( pen ); DeleteObject( brush );
       DeleteDC( hdc ); DeleteObject( bmp );
   }
   bool create( int w, int h ) {
       BITMAPINFO bi;
       ZeroMemory( &bi, sizeof( bi ) );
       bi.bmiHeader.biSize        = sizeof( bi.bmiHeader );
       bi.bmiHeader.biBitCount    = sizeof( DWORD ) * 8;
       bi.bmiHeader.biCompression = BI_RGB;
       bi.bmiHeader.biPlanes      = 1;
       bi.bmiHeader.biWidth       =  w;
       bi.bmiHeader.biHeight      = -h;
       HDC dc = GetDC( GetConsoleWindow() );
       bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
       if( !bmp ) return false;
       hdc = CreateCompatibleDC( dc );
       SelectObject( hdc, bmp );
       ReleaseDC( GetConsoleWindow(), dc );
       width = w; height = h;
       return true;
   }
   void clear( BYTE clr = 0 ) {
       memset( pBits, clr, width * height * sizeof( DWORD ) );
   }
   void setBrushColor( DWORD bClr ) {
       if( brush ) DeleteObject( brush );
       brush = CreateSolidBrush( bClr );
       SelectObject( hdc, brush );
   }
   void setPenColor( DWORD c ) {
       clr = c; createPen();
   }
   void setPenWidth( int w ) {
       wid = w; createPen();
   }
   void saveBitmap( std::string path ) {
       BITMAPFILEHEADER fileheader;
       BITMAPINFO       infoheader;
       BITMAP           bitmap;
       DWORD            wb;
       GetObject( bmp, sizeof( bitmap ), &bitmap );
       DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
       ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
       ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
       ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
       infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
       infoheader.bmiHeader.biCompression = BI_RGB;
       infoheader.bmiHeader.biPlanes = 1;
       infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
       infoheader.bmiHeader.biHeight = bitmap.bmHeight;
       infoheader.bmiHeader.biWidth = bitmap.bmWidth;
       infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
       fileheader.bfType    = 0x4D42;
       fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
       fileheader.bfSize    = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
       GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
       HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, 
                                 FILE_ATTRIBUTE_NORMAL, NULL );
       WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
       WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
       WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
       CloseHandle( file );
       delete [] dwpBits;
   }
   HDC getDC() const     { return hdc; }
   int getWidth() const  { return width; }
   int getHeight() const { return height; }

private:

   void createPen() {
       if( pen ) DeleteObject( pen );
       pen = CreatePen( PS_SOLID, wid, clr );
       SelectObject( hdc, pen );
   }
   HBITMAP bmp; HDC    hdc;
   HPEN    pen; HBRUSH brush;
   void    *pBits; int    width, height, wid;
   DWORD    clr;

}; class sierpinski { public:

   void draw( int o ) {
       colors[0] = 0xff0000; colors[1] = 0x00ff33; colors[2] = 0x0033ff;
       colors[3] = 0xffff00; colors[4] = 0x00ffff; colors[5] = 0xffffff;
       bmp.create( BMP_SIZE, BMP_SIZE ); HDC dc = bmp.getDC(); 
       drawTri( dc, 0, 0, ( float )BMP_SIZE, ( float )BMP_SIZE, o / 2 );
       bmp.setPenColor( colors[0] ); MoveToEx( dc, BMP_SIZE >> 1, 0, NULL ); 
       LineTo( dc, 0, BMP_SIZE - 1 ); LineTo( dc, BMP_SIZE - 1, BMP_SIZE - 1 );
       LineTo( dc, BMP_SIZE >> 1, 0 ); bmp.saveBitmap( "./st.bmp" );
   }

private:

   void drawTri( HDC dc, float l, float t, float r, float b, int i ) {
       float w = r - l, h = b - t, hh = h / 2.f, ww = w / 4.f; 
       if( i ) {
           drawTri( dc, l + ww, t, l + ww * 3.f, t + hh, i - 1 );
           drawTri( dc, l, t + hh, l + w / 2.f, t + h, i - 1 );
           drawTri( dc, l + w / 2.f, t + hh, l + w, t + h, i - 1 );
       }
       bmp.setPenColor( colors[i % 6] );
       MoveToEx( dc, ( int )( l + ww ),          ( int )( t + hh ), NULL );
       LineTo  ( dc, ( int )( l + ww * 3.f ),    ( int )( t + hh ) );
       LineTo  ( dc, ( int )( l + ( w / 2.f ) ), ( int )( t + h ) );
       LineTo  ( dc, ( int )( l + ww ),          ( int )( t + hh ) );
   }
   myBitmap bmp;
   DWORD colors[6];

}; int main(int argc, char* argv[]) {

   sierpinski s; s.draw( 12 );
   return 0;

} </lang>

D

The output image is the same as the Go version. This requires the module from the Grayscale image Task.

Translation of: Go

<lang d>void main() {

   import grayscale_image;
   enum order = 8,
        margin = 10,
        width = 2 ^^ order;
   auto im = new Image!Gray(width + 2 * margin, width + 2 * margin);
   im.clear(Gray.white);
   foreach (immutable y; 0 .. width)
       foreach (immutable x; 0 .. width)
           if ((x & y) == 0)
               im[x + margin, y + margin] = Gray.black;
   im.savePGM("sierpinski.pgm");

}</lang>

Erlang

<lang Erlang> -module(sierpinski). -author("zduchac"). -export([start/0]).

sierpinski(DC, Order) ->

   Size = 1 bsl Order,
   sierpinski(DC, Order, Size, 0, 0).

sierpinski(_, _, Size, _, Y) when Y =:= Size ->

   ok;

sierpinski(DC, Order, Size, X, Y) when X =:= Size ->

   sierpinski(DC, Order, Size, 0, Y + 1);

sierpinski(DC, Order, Size, X, Y) when X band Y =:= 0 ->

   wxDC:drawPoint(DC, {X, Y}),
   sierpinski(DC, Order, Size, X + 1, Y);

sierpinski(DC, Order, Size, X, Y) ->

   sierpinski(DC, Order, Size, X + 1, Y).

start() ->

   Wx = wx:new(),
   Frame = wxFrame:new(Wx, -1, "Raytracer", []),
   wxFrame:connect(Frame, paint, [{callback,

fun(_Evt, _Obj) -> DC = wxPaintDC:new(Frame), sierpinski(DC, 8), wxPaintDC:destroy(DC) end }]),

   wxFrame:show(Frame).

</lang>

ERRE

<lang ERRE> PROGRAM SIERPINSKY

!$INCLUDE="PC.LIB"

BEGIN

  ORDER%=8
  SIZE%=2^ORDER%
  SCREEN(9)
  GR_WINDOW(0,0,520,520)
  FOR Y%=0 TO SIZE%-1 DO
    FOR X%=0 TO SIZE%-1 DO
       IF (X% AND Y%)=0 THEN PSET(X%*2,Y%*2,2) END IF
    END FOR
  END FOR
  GET(K$)

END PROGRAM </lang>

Factor

<lang factor>USING: accessors images images.loader kernel literals math math.bits math.functions make sequences ; IN: rosetta-code.sierpinski-triangle-graphical

CONSTANT: black B{ 33 33 33 255 } CONSTANT: white B{ 255 255 255 255 } CONSTANT: size $[ 2 8 ^ ]  ! edit 8 to change order

! Generate Sierpinksi's triangle sequence. This is sequence ! A001317 in OEIS.

sierpinski ( n -- seq )
   [ [ 1 ] dip [ dup , dup 2 * bitxor ] times ] { } make nip ;

! Convert a number to binary, then append a black pixel for each ! set bit or a white pixel for each unset bit to the image being ! built by make.

expand ( n -- ) make-bits [ black white ? % ] each ;

! Append white pixels until the end of the row in the image ! being built by make.

pad ( n -- ) [ size ] dip 1 + - [ white % ] times ;

! Generate the image data for a sierpinski triangle of a given ! size in pixels. The image is square so its dimensions are ! n x n.

sierpinski-img ( n -- seq )
   sierpinski [ [ [ expand ] dip pad ] each-index ] B{ } make ;
main ( -- )
   <image>
   ${ size size }      >>dim
   BGRA                >>component-order
   ubyte-components    >>component-type
   size sierpinski-img >>bitmap
   "sierpinski-triangle.png" save-graphic-image ;

MAIN: main</lang>

Output:

[1]

Forth

Works with: 4tH v3.62

<lang forth>include lib/graphics.4th \ graphics support is needed

520 pic_width ! \ width of the image 520 pic_height ! \ height of the image

9 constant order \ Sierpinski's triangle order

black 255 whiteout \ black ink, white background grayscale_image \ we're making a gray scale image

                                      \ do we set a pixel or not?
?pixel over over and if drop drop else set_pixel then ;
triangle 1 order lshift dup 0 do dup 0 do i j ?pixel loop loop drop ;

triangle s" triangle.ppm" save_image \ done, save the image</lang>

Output:

Because Rosetta code doesn't allow file uploads, the output can't be shown.

FreeBASIC

<lang FreeBASIC>' version 06-07-2015 ' compile with: fbc -s console or with: fbc -s gui

  1. Define black 0
  2. Define white RGB(255,255,255)

Dim As Integer x, y Dim As Integer order = 9 Dim As Integer size = 2 ^ order

ScreenRes size, size, 32 Line (0,0) - (size -1, size -1), black, bf

For y = 0 To size -1

   For x = 0 To size -1
       If (x And y) = 0 Then PSet(x, y)    ' ,white
   Next

Next

' empty keyboard buffer While Inkey <> "" : Wend WindowTitle "Hit any key to end program" Sleep End</lang>

gnuplot

Generating X,Y coordinates by the ternary digits of parameter t.

<lang gnuplot># triangle_x(n) and triangle_y(n) return X,Y coordinates for the

  1. Sierpinski triangle point number n, for integer n.

triangle_x(n) = (n > 0 ? 2*triangle_x(int(n/3)) + digit_to_x(int(n)%3) : 0) triangle_y(n) = (n > 0 ? 2*triangle_y(int(n/3)) + digit_to_y(int(n)%3) : 0) digit_to_x(d) = (d==0 ? 0 : d==1 ? -1 : 1) digit_to_y(d) = (d==0 ? 0 : 1)

  1. Plot the Sierpinski triangle to "level" many replications.
  2. "trange" and "samples" are chosen so the parameter t runs through
  3. integers t=0 to 3**level-1, inclusive.

level=6 set trange [0:3**level-1] set samples 3**level set parametric set key off plot triangle_x(t), triangle_y(t) with points</lang>

Go

Output png
Translation of: Icon and Unicon

<lang go>package main

import (

   "fmt"
   "image"
   "image/color"
   "image/draw"
   "image/png"
   "os"

)

func main() {

   const order = 8
   const width = 1 << order
   const margin = 10
   bounds := image.Rect(-margin, -margin, width+2*margin, width+2*margin)
   im := image.NewGray(bounds)
   gBlack := color.Gray{0}
   gWhite := color.Gray{255}
   draw.Draw(im, bounds, image.NewUniform(gWhite), image.ZP, draw.Src)
   for y := 0; y < width; y++ {
       for x := 0; x < width; x++ {
           if x&y == 0 {
               im.SetGray(x, y, gBlack)
           }
       }
   }
   f, err := os.Create("sierpinski.png")
   if err != nil {
       fmt.Println(err)
       return
   }
   if err = png.Encode(f, im); err != nil {
       fmt.Println(err)
   }
   if err = f.Close(); err != nil {
       fmt.Println(err)
   }

}</lang>

Haskell

This program uses the diagrams package to produce the Sierpinski triangle. The package implements an embedded DSL for producing vector graphics. Depending on the command-line arguments, the program can generate SVG, PNG, PDF or PostScript output.

For fun, we take advantage of Haskell's layout rules, and the operators provided by the diagrams package, to give the reduce function the shape of a triangle. It could also be written as reduce t = t === (t ||| t).

The command to produce the SVG output is sierpinski -o Sierpinski-Haskell.svg.

Sierpinski Triangle

<lang haskell>import Diagrams.Prelude import Diagrams.Backend.Cairo.CmdLine

triangle = eqTriangle # fc black # lw 0

reduce t = t

             ===
          (t ||| t)

sierpinski = iterate reduce triangle

main = defaultMain $ sierpinski !! 7 </lang>

Icon and Unicon

The following code is adapted from a program by Ralph Griswold that demonstrates an interesting way to draw the Sierpinski Triangle. Given an argument of the order it will calculate the canvas size needed with margin. It will not stop you from asking for a triangle larger than you display. For an explanation, see "Chaos and Fractals", Heinz-Otto Peitgen, Harmut Jurgens, and Dietmar Saupe, Springer-Verlag, 1992, pp. 132-134.

Sample Output for order=8

<lang Icon>link wopen

procedure main(A)

  local width, margin, x, y
  
  width := 2 ^ (order := (0 < integer(\A[1])) | 8)
  wsize := width + 2 * (margin := 30 )
  WOpen("label=Sierpinski", "size="||wsize||","||wsize) | 
     stop("*** cannot open window")
  every y := 0 to width - 1 do
     every x := 0 to width - 1 do
        if iand(x, y) = 0 then DrawPoint(x + margin, y + margin)
 Event()

end</lang>

Original source IPL Graphics/sier1.

IS-BASIC

<lang IS-BASIC>100 PROGRAM "Triangle.bas" 110 SET VIDEO MODE 1:SET VIDEO COLOR 0:SET VIDEO X 40:SET VIDEO Y 27 120 OPEN #101:"video:" 130 DISPLAY #101:AT 1 FROM 1 TO 27 140 CALL SIERP(896,180,50) 150 DEF SIERP(W,X,Y) 160 IF W>28 THEN 170 CALL SIERP(W/2,X,Y) 180 CALL SIERP(W/2,X+W/4,Y+W/2) 190 CALL SIERP(W/2,X+W/2,Y) 200 ELSE 210 PLOT X,Y;X+W/2,Y+W;X+W,Y;X,Y 220 END IF 230 END DEF</lang>

J

Solution: <lang j> load 'viewmat'

  'rgb'viewmat--. |. (~:_1&|.)^:(<@#) (2^8){.1

</lang>

or

<lang j> load'viewmat' viewmat(,~,.~)^:8,1 </lang>

Java

Solution: <lang java>import javax.swing.*; import java.awt.*;

/**

  • SierpinskyTriangle.java
  • Draws a SierpinskyTriangle in a JFrame
  • The order of complexity is given from command line, but
  • defaults to 3
  • @author Istarnion
  • /

class SierpinskyTriangle {

public static void main(String[] args) { int i = 3; // Default to 3 if(args.length >= 1) { try { i = Integer.parseInt(args[0]); } catch(NumberFormatException e) { System.out.println("Usage: 'java SierpinskyTriangle [level]'\nNow setting level to "+i); } } final int level = i;

JFrame frame = new JFrame("Sierpinsky Triangle - Java"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel() { @Override public void paintComponent(Graphics g) { g.setColor(Color.BLACK); drawSierpinskyTriangle(level, 20, 20, 360, (Graphics2D)g); } };

panel.setPreferredSize(new Dimension(400, 400));

frame.add(panel); frame.pack(); frame.setResizable(false); frame.setLocationRelativeTo(null); frame.setVisible(true); }

private static void drawSierpinskyTriangle(int level, int x, int y, int size, Graphics2D g) { if(level <= 0) return;

g.drawLine(x, y, x+size, y); g.drawLine(x, y, x, y+size); g.drawLine(x+size, y, x, y+size);

drawSierpinskyTriangle(level-1, x, y, size/2, g); drawSierpinskyTriangle(level-1, x+size/2, y, size/2, g); drawSierpinskyTriangle(level-1, x, y+size/2, size/2, g); } }</lang>

Animated version

Works with: Java version 8

<lang java>import java.awt.*; import java.awt.event.ActionEvent; import java.awt.geom.Path2D; import javax.swing.*;

public class SierpinskiTriangle extends JPanel {

   private final int dim = 512;
   private final int margin = 20;
   private int limit = dim;
   public SierpinskiTriangle() {
       setPreferredSize(new Dimension(dim + 2 * margin, dim + 2 * margin));
       setBackground(Color.white);
       setForeground(Color.green.darker());
       new Timer(2000, (ActionEvent e) -> {
           limit /= 2;
           if (limit <= 2)
               limit = dim;
           repaint();
       }).start();
   }
   void drawTriangle(Graphics2D g, int x, int y, int size) {
       if (size <= limit) {
           Path2D p = new Path2D.Float();
           p.moveTo(x, y);
           p.lineTo(x + size / 2, y + size);
           p.lineTo(x - size / 2, y + size);
           g.fill(p);
       } else {
           size /= 2;
           drawTriangle(g, x, y, size);
           drawTriangle(g, x + size / 2, y + size, size);
           drawTriangle(g, x - size / 2, y + size, size);
       }
   }
   @Override
   public void paintComponent(Graphics gg) {
       super.paintComponent(gg);
       Graphics2D g = (Graphics2D) gg;
       g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
               RenderingHints.VALUE_ANTIALIAS_ON);
       g.translate(margin, margin);
       drawTriangle(g, dim / 2, 0, dim);
   }
   public static void main(String[] args) {
       SwingUtilities.invokeLater(() -> {
           JFrame f = new JFrame();
           f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
           f.setTitle("Sierpinski Triangle");
           f.setResizable(false);
           f.add(new SierpinskiTriangle(), BorderLayout.CENTER);
           f.pack();
           f.setLocationRelativeTo(null);
           f.setVisible(true);
       });
   }

}</lang>

JavaScript

Note
  • "Order" to calculate a size of resulting plot/matrix is not used in this algorithm, Instead, construction is done in accordance to a square   m x m matrix. In our case it should be equal to a size of the square canvas.
  • Change canvas setting from size "640" to "1280". You will discover that density of dots in plotted triangle is stable for this algorithm. Size of the plotted figure is constantly increasing in the S-E direction. Also, the number of all triangles in N-W triangular part of the canvas is always the same.
  • So, in this case it could be called: "Sierpinski ever-expanding field of triangles".


Translation of: PARI/GP
Works with: Chrome
File:SierpTRjs.png
Output SierpTRjs.png

<lang html> <html> <head><title>Sierpinski Triangle Fractal</title> <script> // HF#1 Like in PARI/GP: return random number 0..max-1 function randgp(max) {return Math.floor(Math.random()*max)} // HF#2 Random hex color function randhclr() {

 return "#"+
 ("00"+randgp(256).toString(16)).slice(-2)+
 ("00"+randgp(256).toString(16)).slice(-2)+
 ("00"+randgp(256).toString(16)).slice(-2)

} // HFJS#3: Plot any matrix mat (filled with 0,1) function pmat01(mat, color) {

 // DCLs
 var cvs = document.getElementById('cvsId');
 var ctx = cvs.getContext("2d");
 var w = cvs.width; var h = cvs.height;
 var m = mat[0].length; var n = mat.length;
 // Cleaning canvas and setting plotting color
 ctx.fillStyle="white"; ctx.fillRect(0,0,w,h);
 ctx.fillStyle=color;
 // MAIN LOOP
 for(var i=0; i<m; i++) {
   for(var j=0; j<n; j++) {
     if(mat[i][j]==1) { ctx.fillRect(i,j,1,1)};
   }//fend j
 }//fend i

}//func end

// Prime function // Plotting Sierpinski triangle. aev 4/9/17 // ord - order, fn - file name, ttl - plot title, clr - color function pSierpinskiT() {

 var cvs=document.getElementById("cvsId");
 var ctx=cvs.getContext("2d");
 var w=cvs.width, h=cvs.height;
 var R=new Array(w);
 for (var i=0; i<w; i++) {R[i]=new Array(w)
   for (var j=0; j<w; j++) {R[i][j]=0}
 }
 ctx.fillStyle="white"; ctx.fillRect(0,0,w,h);
 for (var y=0; y<w; y++) {
   for (var x=0; x<w; x++) {
     if((x & y) == 0 ) {R[x][y]=1}
 }}
 pmat01(R, randhclr());

} </script></head> <body style="font-family: arial, helvatica, sans-serif;">

 Please click to start and/or change color: 
 <input type="button" value=" Plot it! " onclick="pSierpinskiT();">  

Sierpinski triangle fractal

 <canvas id="cvsId" width="640" height="640" style="border: 2px inset;"></canvas>

</body></html> </lang>

Output:
Page with Sierpinski triangle fractal. Plotting color is changing randomly.
Right clicking on canvas with image allows you to save it as png-file, for example.

Julia

Produces a png graphic on a transparent background. The brushstroke used for fill might need to be modified for a white background. <lang julia> using Luxor

function sierpinski(txy, levelsyet)

   nxy = zeros(6)
   if levelsyet > 0
       for i in 1:6
           pos = i < 5 ? i + 2 : i - 4
           nxy[i] = (txy[i] + txy[pos]) / 2.0
       end
       sierpinski([txy[1],txy[2],nxy[1],nxy[2],nxy[5],nxy[6]], levelsyet-1)
       sierpinski([nxy[1],nxy[2],txy[3],txy[4],nxy[3],nxy[4]], levelsyet-1)
       sierpinski([nxy[5],nxy[6],nxy[3],nxy[4],txy[5],txy[6]], levelsyet-1)
   else
       poly([Point(txy[1],txy[2]),Point(txy[3],txy[4]),Point(txy[5],txy[6])], :fill ,close=true)
   end

end

Drawing(800, 800) sierpinski([400., 100., 700., 500., 100., 500.], 7) finish() preview() </lang>

Kotlin

From Java code: <lang scala>import java.awt.* import javax.swing.JFrame import javax.swing.JPanel

fun main(args: Array<String>) {

   var i = 8     // Default
   if (args.any()) {
       try {
           i = args.first().toInt()
       } catch (e: NumberFormatException) {
           i = 8
           println("Usage: 'java SierpinskyTriangle [level]'\nNow setting level to $i")
       }
   }
   object : JFrame("Sierpinsky Triangle - Kotlin") {
       val panel = object : JPanel() {
           val size = 800
           init {
               preferredSize = Dimension(size, size)
           }
           public override fun paintComponent(g: Graphics) {
               g.color = Color.BLACK
               if (g is Graphics2D) {
                   g.drawSierpinskyTriangle(i, 20, 20, size - 40)
               }
           }
       }
       init {
           defaultCloseOperation = JFrame.EXIT_ON_CLOSE
           add(panel)
           pack()
           isResizable = false
           setLocationRelativeTo(null)
           isVisible = true
       }
   }

}

internal fun Graphics2D.drawSierpinskyTriangle(level: Int, x: Int, y: Int, size: Int) {

   if (level > 0) {
       drawLine(x, y, x + size, y)
       drawLine(x, y, x, y + size)
       drawLine(x + size, y, x, y + size)
       drawSierpinskyTriangle(level - 1, x, y, size / 2)
       drawSierpinskyTriangle(level - 1, x + size / 2, y, size / 2)
       drawSierpinskyTriangle(level - 1, x, y + size / 2, size / 2)
   }

}</lang>

Liberty BASIC

The ability of LB to handle very large integers makes the Pascal triangle method very attractive. If you alter the rem'd line you can ask it to print the last, central term... <lang lb> nomainwin

open "test" for graphics_nsb_fs as #gr

  1. gr "trapclose quit"
  2. gr "down; home"
  3. gr "posxy cx cy"

order =10

w =cx *2: h =cy *2

dim a( h, h) 'line, col

  1. gr "trapclose quit"
  2. gr "down; home"

a( 1, 1) =1

for i = 2 to 2^order -1

   scan
   a( i, 1) =1
   a( i, i) =1
   for j = 2 to i -1
       'a(i,j)=a(i-1,j-1)+a(i-1,j)         'LB is quite capable for crunching BIG numbers
       a( i, j) =(a( i -1, j -1) +a( i -1, j)) mod 2  'but for this task, last bit is enough (and it much faster)
   next
   for j = 1 to i
       if a( i, j) mod 2 then #gr "set "; cx +j -i /2; " "; i
   next

next

  1. gr "flush"

wait

sub quit handle$

   close #handle$
   end

end sub </lang> Up to order 10 displays on a 1080 vertical pixel screen.

This will draw a graphical Sierpinski gasket using turtle graphics. <lang logo>to sierpinski :n :length

 if :n = 0 [stop]
 repeat 3 [sierpinski :n-1 :length/2  fd :length rt 120]

end seth 30 sierpinski 5 200</lang>

Lua

Library: LÖVE

<lang Lua>-- The argument 'tri' is a list of co-ords: {x1, y1, x2, y2, x3, y3} function sierpinski (tri, order)

   local new, p, t = {}
   if order > 0 then
       for i = 1, #tri do
           p = i + 2
           if p > #tri then p = p - #tri end
           new[i] = (tri[i] + tri[p]) / 2
       end
       sierpinski({tri[1],tri[2],new[1],new[2],new[5],new[6]}, order-1)
       sierpinski({new[1],new[2],tri[3],tri[4],new[3],new[4]}, order-1)
       sierpinski({new[5],new[6],new[3],new[4],tri[5],tri[6]}, order-1)
   else
       love.graphics.polygon("fill", tri)
   end

end

-- Callback function used to draw on the screen every frame function love.draw ()

   sierpinski({400, 100, 700, 500, 100, 500}, 7)

end</lang>

Mathematica

<lang Mathematica>Sierpinski[n_] :=

Nest[Join @@ Table[With[{a = #i, 1, b = #i, 2,  c = #i, 3},
  {{a, (a + b)/2, (c + a)/2}, {(a + b)/2, b, (b + c)/2}, {(c + a)/2, (b + c)/2, c}}],
{i, Length[#]}] &, {{{0, 0}, {1/2, 1}, {1, 0}}}, n]

Graphics[{Black, Polygon /@ Sierpinski[8]}]</lang> Another faster version <lang Mathematica>cf = Compile[[[:Template:A, Real, 2]],

  With[{a = A1, b = A2, c = A3}, 
   With[{ab = (a + b)/2, bc = (b + c)/2, ca = (a + c)/2},
    {{a, ab, ca}, {ab, b, bc}, {ca, bc, c}}]], 
      RuntimeAttributes -> {Listable}
  ];

n = 3; pts = Flatten[Nest[cf, N@{{{0, 0}, {1, 0}, {1/2, √3/2}}}, n], n]; Graphics[Polygon /@ pts]</lang>

MATLAB

Basic Version

<lang MATLAB>[x, x0] = deal(cat(3, [1 0]', [-1 0]', [0 sqrt(3)]')); for k = 1 : 6

 x = x(:,:) + x0 * 2 ^ k / 2;

end patch('Faces', reshape(1 : 3 * 3 ^ k, 3, )', 'Vertices', x(:,:)')</lang>

Output:

Fail to upload output image, use the one of PostScript:

Bit Operator Version

<lang MATLAB>t = 0 : 2^16 - 1; plot(t, bitand(t, bitshift(t, -8)), 'k.')</lang>

Objeck

<lang objeck>use Game.SDL2; use Game.Framework;

class Test {

 @framework : GameFramework;
 @colors : Color[];
 @step : Int;
 
 function : Main(args : String[]) ~ Nil {
   Test->New()->Run();
 }
 
 New() {
   @framework := GameFramework->New(GameConsts->SCREEN_WIDTH, GameConsts->SCREEN_HEIGHT, "Sierpinski Triangle");
   @framework->SetClearColor(Color->New(0,0,0));
   @colors := Color->New[1];
   @colors[0] := Color->New(178,34,34);
 }
 
 method : Run() ~ Nil {
   if(@framework->IsOk()) {
     e := @framework->GetEvent();
     
     quit := false;
     while(<>quit) {
       # process input
       while(e->Poll() <> 0) {
         if(e->GetType() = EventType->SDL_QUIT) {
           quit := true;
         };
       };
       @framework->FrameStart();
       @framework->Clear();
       Render(8, 20, 20, 450);
       @framework->Show();        
       @framework->FrameEnd();
     };
   }
   else {
     "--- Error Initializing Environment ---"->ErrorLine();
     return;
   };
   leaving {
     @framework->Quit();
   };
 }
 method : Render(level : Int, x : Int, y : Int, size : Int) ~ Nil {
   if(level > -1) {
     renderer := @framework->GetRenderer();
     
     renderer->LineColor(x, y, x+size, y, @colors[0]);
     renderer->LineColor(x, y, x, y+size, @colors[0]);
     renderer->LineColor(x+size, y, x, y+size, @colors[0]);
     Render(level-1, x, y, size/2);
     Render(level-1, x+size/2, y, size/2);
     Render(level-1, x, y+size/2, size/2);
   };
 }

}

consts GameConsts {

 SCREEN_WIDTH := 640,
 SCREEN_HEIGHT := 480

} </lang>

OCaml

<lang ocaml>open Graphics

let round v =

 int_of_float (floor (v +. 0.5))

let middle (x1, y1) (x2, y2) =

 ((x1 +. x2) /. 2.0,
  (y1 +. y2) /. 2.0)

let draw_line (x1, y1) (x2, y2) =

 moveto (round x1) (round y1);
 lineto (round x2) (round y2);

let draw_triangle (p1, p2, p3) =

 draw_line p1 p2;
 draw_line p2 p3;
 draw_line p3 p1;

let () =

 open_graph "";
 let width = float (size_x ()) in
 let height = float (size_y ()) in
 let pad = 20.0 in
 let initial_triangle =
   ( (pad, pad),
     (width -. pad, pad),
     (width /. 2.0, height -. pad) )
 in
 let rec loop step tris =
   if step <= 0 then tris else
     loop (pred step) (
       List.fold_left (fun acc (p1, p2, p3) ->
         let m1 = middle p1 p2
         and m2 = middle p2 p3
         and m3 = middle p3 p1 in
         let tri1 = (p1, m1, m3)
         and tri2 = (p2, m2, m1)
         and tri3 = (p3, m3, m2) in
         tri1 :: tri2 :: tri3 :: acc
       ) [] tris
     )
 in
 let res = loop 6 [ initial_triangle ] in
 List.iter draw_triangle res;
 ignore (read_key ())</lang>

run with:

ocaml graphics.cma sierpinski.ml

PARI/GP

Works with: PARI/GP version 2.7.4 and above
File:SierpT9.png
Output SierpT9.png

<lang parigp> \\ Sierpinski triangle fractal \\ Note: plotmat() can be found here on \\ http://rosettacode.org/wiki/Brownian_tree#PARI.2FGP page. \\ 6/3/16 aev pSierpinskiT(n)={ my(sz=2^n,M=matrix(sz,sz),x,y); for(y=1,sz, for(x=1,sz, if(!bitand(x,y),M[x,y]=1);));\\fends plotmat(M); } {\\ Test: pSierpinskiT(9); \\ SierpT9.png } </lang>

Output:
> pSierpinskiT(9); \\ SierpT9.png
 *** matrix(512x512) 19682 DOTS

Perl

Translation of: Raku

<lang perl>my $levels = 6; my $side = 512; my $height = get_height($side);

sub get_height { my($side) = @_; $side * sqrt(3) / 2 }

sub triangle {

   my($x1, $y1, $x2, $y2, $x3, $y3, $fill, $animate) = @_;
   my $svg;
   $svg .= qq{<polygon points="$x1,$y1 $x2,$y2 $x3,$y3"};
   $svg .= qq{ style="fill: $fill; stroke-width: 0;"} if $fill;
   $svg .= $animate
       ? qq{>\n  <animate attributeType="CSS" attributeName="opacity"\n  values="1;0;1" keyTimes="0;.5;1" dur="20s" repeatCount="indefinite" />\n</polygon>\n}
       : ' />';
   return $svg;

}

sub fractal {

   my( $x1, $y1, $x2, $y2, $x3, $y3, $r ) = @_;
   my $svg;
   $svg .= triangle( $x1, $y1, $x2, $y2, $x3, $y3 );
   return $svg unless --$r;
   my $side = abs($x3 - $x2) / 2;
   my $height = get_height($side);
   $svg .= fractal( $x1, $y1-$height*2, $x1-$side/2, $y1-3*$height, $x1+$side/2, $y1-3*$height, $r);
   $svg .= fractal( $x2, $y1, $x2-$side/2, $y1-$height, $x2+$side/2, $y1-$height, $r);
   $svg .= fractal( $x3, $y1, $x3-$side/2, $y1-$height, $x3+$side/2, $y1-$height, $r);

}

open my $fh, '>', 'run/sierpinski_triangle.svg'; print $fh <<'EOD', <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="100%" height="100%" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs>

 <radialGradient id="basegradient" cx="50%" cy="65%" r="50%" fx="50%" fy="65%">
   <stop offset="10%" stop-color="#ff0" />
   <stop offset="60%" stop-color="#f00" />
   <stop offset="99%" stop-color="#00f" />
 </radialGradient>

</defs> EOD

triangle( $side/2, 0, 0, $height, $side, $height, 'url(#basegradient)' ), triangle( $side/2, 0, 0, $height, $side, $height, '#000', 'animate' ), '<g style="fill: #fff; stroke-width: 0;">', fractal( $side/2, $height, $side*3/4, $height/2, $side/4, $height/2, $levels ), '</g></svg>';</lang> See sierpinski_triangle (offsite .svg image)

Phix

Can resize, and change the level from 1 to 12 (press +/-).

Library: Phix/pGUI

<lang Phix>-- demo\rosetta\SierpinskyTriangle.exw include pGUI.e

Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas

procedure SierpinskyTriangle(integer level, atom x, atom y, atom w, atom h)

   atom w2 = w/2, w4 = w/4, h2 = h/2
   if level=1 then
       cdCanvasBegin(cddbuffer,CD_CLOSED_LINES)
       cdCanvasVertex(cddbuffer, x, y)
       cdCanvasVertex(cddbuffer, x+w2, y+h)
       cdCanvasVertex(cddbuffer, x+w, y)
       cdCanvasEnd(cddbuffer)
   else
       SierpinskyTriangle(level-1, x,    y,    w2, h2)
       SierpinskyTriangle(level-1, x+w4, y+h2, w2, h2)
       SierpinskyTriangle(level-1, x+w2, y,    w2, h2)
   end if

end procedure

integer level = 7

function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)

   integer {w, h} = IupGetIntInt(canvas, "DRAWSIZE")
   cdCanvasActivate(cddbuffer)
   cdCanvasClear(cddbuffer)
   SierpinskyTriangle(level, w*0.05, h*0.05, w*0.9, h*0.9)
   cdCanvasFlush(cddbuffer)
   IupSetStrAttribute(dlg, "TITLE", "Sierpinsky Triangle (level %d)",{level})
   return IUP_DEFAULT

end function

function map_cb(Ihandle ih)

   cdcanvas = cdCreateCanvas(CD_IUP, ih)
   cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
   cdCanvasSetBackground(cddbuffer, CD_WHITE)
   cdCanvasSetForeground(cddbuffer, CD_GRAY)
   return IUP_DEFAULT

end function

function esc_close(Ihandle /*ih*/, atom c)

   if c=K_ESC then return IUP_CLOSE end if
   if find(c,"+-") then
       level = max(1,min(12,level+','-c))
       IupRedraw(canvas)
   end if
   return IUP_CONTINUE

end function

procedure main()

   IupOpen()
   canvas = IupCanvas(NULL)
   IupSetAttribute(canvas, "RASTERSIZE", "640x640")
   IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
   IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
   dlg = IupDialog(canvas)
   IupSetAttribute(dlg, "TITLE", "Sierpinsky Triangle")
   IupSetCallback(dlg, "K_ANY",     Icallback("esc_close"))
   IupShow(dlg)
   IupSetAttribute(canvas, "RASTERSIZE", NULL)
   IupMainLoop()
   IupClose()

end procedure main()</lang>

PicoLisp

Slight modification of the text version, requires ImageMagick's display: <lang PicoLisp>(de sierpinski (N)

  (let (D '("1")  S "0")
     (do N
        (setq
           D (conc
              (mapcar '((X) (pack S X S)) D)
              (mapcar '((X) (pack X "0" X)) D) )
           S (pack S S) ) )
     D ) )

(out '(display -)

  (let Img (sierpinski 7)
     (prinl "P1")
     (prinl (length (car Img)) " " (length Img))
     (mapc prinl Img) ) )

</lang>

PostScript

<lang PostScript>%!PS

/sierp { % level ax ay bx by cx cy

   6 cpy triangle
   sierpr

} bind def

/sierpr {

   12 cpy
   10 -4 2 {
       5 1 roll exch 4 -1 roll
       add 0.5 mul 3 1 roll
       add 0.5 mul 3 -1 roll
       2 roll
   } for       % l a b c bc ac ab
   13 -1 roll dup 0 gt {
       1 sub
       dup 4 cpy 18 -2 roll sierpr
       dup 7 index 7 index 2 cpy 16 -2 roll sierpr
       9 3 roll 1 index 1 index 2 cpy 13 4 roll sierpr
   } { 13 -6 roll 7 { pop } repeat } ifelse
   triangle

} bind def

/cpy { { 5 index } repeat } bind def

/triangle {

   newpath moveto lineto lineto closepath stroke

} bind def

6 50 100 550 100 300 533 sierp showpage</lang>

Processing

Works with: Processing version 3.5.4

Should work with most versions of Processing

Recursive Sierpinski triangles

2D versions

<lang Processing> PVector [] coord = {new PVector(0, 0), new PVector(150, 300), new PVector(300, 0)};

void setup() {

 size(400,400);
 background(32);  
 sierpinski(new PVector(150,150), 8);
 noLoop();

}

void sierpinski(PVector cPoint, int cDepth) {

 if (cDepth == 0) {
   set(50+int(cPoint.x), (height-50)-int(cPoint.y), color(192));
   return;
 }
 for (int v=0; v<3; v++) {
   sierpinski(new PVector((cPoint.x+coord[v].x)/2, (cPoint.y+coord[v].y)/2), cDepth-1);
 }

} </lang>

Animated

<lang Processing> int depth = 5; int interval = 50;

int currentTime; int lastTime; int progress = 0; int lastProgress = 0; //int finished = int(pow(3,depth)); boolean intervalExpired = false;

void setup() {

 size(410, 230);
 background(255);
 fill(0);
 lastTime = millis();

}

void draw() {

 currentTime = millis();
 triangle (10, 25, 100, depth);

}

void triangle (int x, int y, int l, int n) {

 if (n == 0) {
   checkIfIntervalExpired();
   if (intervalExpired && progress == lastProgress) {
     text("*", x, y);
     lastProgress++;
     intervalExpired = false;
   }
   progress++;
 } else {
   triangle(x, y+l, l/2, n-1);
   triangle(x+l, y, l/2, n-1);
   triangle(x+l*2, y+l, l/2, n-1);
 }

}

void checkIfIntervalExpired() {

 if (currentTime-lastTime > interval) {
   lastTime = currentTime;
   progress = 0;
   intervalExpired = true;
 }

}

void keyReleased() {

 if (key==' ') {  // reset
   progress = 0;
   lastProgress = 0;
   background(255);
 }

} </lang>

3D version

<lang Processing> import peasy.*;

int depth = 6; // recursion depth int dWidth = 600; int dHeight = 600;

color pyramidColor = color( 0 ); color bgColor = color( 255 );

// 3D Sierpinski tetrahedron vertices PVector [] coord = {

 new PVector(   0, 0, 0), 
 new PVector( 300, 0, 0), 
 new PVector( 150, 0, -260), 
 new PVector( 150, -245, -86.6)

}; int verts = coord.length; float boxSize = 600/pow(3, depth);

// "random" start point (mid point) PVector startPoint = new PVector(150, 183.7, 173.2);

PeasyCam cam;

void settings() {

 size(dWidth, dHeight, P3D);

}

void setup() {

 cam = new PeasyCam(this, startPoint.x, startPoint.y, startPoint.z, 400);
 cam.setMaximumDistance(3000);
 fill(pyramidColor);
 stroke(pyramidColor);

}

void draw() {

 background(bgColor);
 sierpinski(startPoint, depth);

}

void sierpinski(PVector currentPoint, int currentDepth) {

 if (currentDepth == 0) {
   pushMatrix();
   translate(currentPoint.x, 245+currentPoint.y, 260+currentPoint.z);
   box(boxSize);
   popMatrix();
   return;
 }
 for (int v=0; v<verts; v++) {
   sierpinski(new PVector(
       (currentPoint.x+coord[v].x)/2,
       (currentPoint.y+coord[v].y)/2,
       (currentPoint.z+coord[v].z)/2),
     currentDepth-1);
 }

} </lang>

Prolog

Works with SWI-Prolog and XPCE.

Recursive version

Works up to sierpinski(13). <lang Prolog>sierpinski(N) :- sformat(A, 'Sierpinski order ~w', [N]), new(D, picture(A)), draw_Sierpinski(D, N, point(350,50), 600), send(D, size, size(690,690)), send(D, open).

draw_Sierpinski(Window, 1, point(X, Y), Len) :- X1 is X - round(Len/2), X2 is X + round(Len/2), Y1 is Y + Len * sqrt(3) / 2, send(Window, display, new(Pa, path)),

       (

send(Pa, append, point(X, Y)), send(Pa, append, point(X1, Y1)), send(Pa, append, point(X2, Y1)), send(Pa, closed, @on), send(Pa, fill_pattern, colour(@default, 0, 0, 0)) ).


draw_Sierpinski(Window, N, point(X, Y), Len) :- Len1 is round(Len/2), X1 is X - round(Len/4), X2 is X + round(Len/4), Y1 is Y + Len * sqrt(3) / 4, N1 is N - 1, draw_Sierpinski(Window, N1, point(X, Y), Len1), draw_Sierpinski(Window, N1, point(X1, Y1), Len1), draw_Sierpinski(Window, N1, point(X2, Y1), Len1).</lang>

Iterative version

<lang Prolog>:- dynamic top/1.

sierpinski_iterate(N) :- retractall(top(_)), sformat(A, 'Sierpinski order ~w', [N]), new(D, picture(A)), draw_Sierpinski_iterate(D, N, point(550, 50)), send(D, open).

draw_Sierpinski_iterate(Window, N, point(X,Y)) :- assert(top([point(X,Y)])), NbTours is 2 ** (N - 1), % Size is given here to preserve the "small" triangles when N is big Len is 10, forall(between(1, NbTours, _I), ( retract(top(Lst)), assert(top([])), forall(member(P, Lst), draw_Sierpinski(Window, P, Len)))).

draw_Sierpinski(Window, point(X, Y), Len) :- X1 is X - round(Len/2), X2 is X + round(Len/2), Y1 is Y + round(Len * sqrt(3) / 2), send(Window, display, new(Pa, path)),

       (

send(Pa, append, point(X, Y)), send(Pa, append, point(X1, Y1)), send(Pa, append, point(X2, Y1)), send(Pa, closed, @on), send(Pa, fill_pattern, colour(@default, 0, 0, 0)) ), retract(top(Lst)), ( member(point(X1, Y1), Lst) -> select(point(X1,Y1), Lst, Lst1) ; Lst1 = [point(X1, Y1)|Lst]),

( member(point(X2, Y1), Lst1) -> select(point(X2,Y1), Lst1, Lst2) ; Lst2 = [point(X2, Y1)|Lst1]),

assert(top(Lst2)).</lang>

Python

Library: Turtle

<lang python>

  1. likely the simplest possible version?

import turtle as t def sier(n,length):

   if (n==0):
       return
   for i in range(3):
       sier(n-1, length/2)
       t.fd(length)
       t.rt(120)

</lang>

Library: NumPy
Library: Turtle

<lang python>#!/usr/bin/env python

  1. a very complicated version
  2. import necessary modules
  3. ------------------------

from numpy import * import turtle

  1. Functions defining the drawing actions
  2. (used by the function DrawSierpinskiTriangle).
  3. ----------------------------------------------

def Left(turn, point, fwd, angle, turt): turt.left(angle) return [turn, point, fwd, angle, turt] def Right(turn, point, fwd, angle, turt): turt.right(angle) return [turn, point, fwd, angle, turt] def Forward(turn, point, fwd, angle, turt): turt.forward(fwd) return [turn, point, fwd, angle, turt] </lang> <lang python>##########################################################################################

  1. The drawing function
  2. --------------------
  3. level level of Sierpinski triangle (minimum value = 1)
  4. ss screensize (Draws on a screen of size ss x ss. Default value = 400.)
  5. -----------------------------------------------------------------------------------------

def DrawSierpinskiTriangle(level, ss=400): # typical values turn = 0 # initial turn (0 to start horizontally) angle=60.0 # in degrees

# Initialize the turtle turtle.hideturtle() turtle.screensize(ss,ss) turtle.penup() turtle.degrees()

# The starting point on the canvas fwd0 = float(ss) point=array([-fwd0/2.0, -fwd0/2.0])

# Setting up the Lindenmayer system # Assuming that the triangle will be drawn in the following way: # 1.) Start at a point # 2.) Draw a straight line - the horizontal line (H) # 3.) Bend twice by 60 degrees to the left (--) # 4.) Draw a straight line - the slanted line (X) # 5.) Bend twice by 60 degrees to the left (--) # 6.) Draw a straight line - another slanted line (X) # This produces the triangle in the first level. (so the axiom to begin with is H--X--X) # 7.) For the next level replace each horizontal line using # X->XX # H -> H--X++H++X--H # The lengths will be halved.


decode = {'-':Left, '+':Right, 'X':Forward, 'H':Forward} axiom = 'H--X--X'

# Start the drawing turtle.goto(point[0], point[1]) turtle.pendown() turtle.hideturtle() turt=turtle.getpen() startposition=turt.clone()

# Get the triangle in the Lindenmayer system fwd = fwd0/(2.0**level) path = axiom for i in range(0,level): path=path.replace('X','XX') path=path.replace('H','H--X++H++X--H')

# Draw it. for i in path: [turn, point, fwd, angle, turt]=decode[i](turn, point, fwd, angle, turt)

DrawSierpinskiTriangle(5) </lang>

R

Note: Find plotmat() here on RC R Helper Functions page.

Translation of: PARI/GP
Works with: R version 3.3.3 and above
File:SierpTRo6.png
Output SierpTRo6.png
File:SierpTRo8.png
Output SierpTRo8.png

<lang r>

    1. Plotting Sierpinski triangle. aev 4/1/17
    2. ord - order, fn - file name, ttl - plot title, clr - color

pSierpinskiT <- function(ord, fn="", ttl="", clr="navy") {

 m=640; abbr="STR"; dftt="Sierpinski triangle";
 n=2^ord; M <- matrix(c(0), ncol=n, nrow=n, byrow=TRUE);
 cat(" *** START", abbr, date(), "\n");
 if(fn=="") {pf=paste0(abbr,"o", ord)} else {pf=paste0(fn, ".png")};
 if(ttl!="") {dftt=ttl}; ttl=paste0(dftt,", order ", ord);
 cat(" *** Plot file:", pf,".png", "title:", ttl, "\n");
 for(y in 1:n) {
   for(x in 1:n) {
     if(bitwAnd(x, y)==0) {M[x,y]=1}
   ##if(bitwAnd(x, y)>0) {M[x,y]=1}   ## Try this for "reversed" ST
 }}
 plotmat(M, pf, clr, ttl);
 cat(" *** END", abbr, date(), "\n");

}

    1. Executing:

pSierpinskiT(6,,,"red"); pSierpinskiT(8); </lang>

Output:
> pSierpinskiT(6,,,"red");
 *** START STR Sat Apr 01 21:45:23 2017 
 *** Plot file: STRo6 .png title: Sierpinski triangle, order 6 
 *** Matrix( 64 x 64 ) 728 DOTS
 *** END STR Sat Apr 01 21:45:23 2017 
> pSierpinskiT(8)
 *** START STR Sat Apr 01 21:59:06 2017 
 *** Plot file: STRo8 .png title: Sierpinski triangle, order 8 
 *** Matrix( 256 x 256 ) 6560 DOTS
 *** END STR Sat Apr 01 21:59:07 2017 

Racket

<lang Racket>

  1. lang racket

(require 2htdp/image) (define (sierpinski n)

 (if (zero? n)
   (triangle 2 'solid 'red)
   (let ([t (sierpinski (- n 1))])
     (freeze (above t (beside t t))))))

</lang> Test: <lang racket>

the following will show the graphics if run in DrRacket

(sierpinski 8)

or use this to dump the image into a file, shown on the right

(require file/convertible) (display-to-file (convert (sierpinski 8) 'png-bytes) "sierpinski.png") </lang>

Raku

(formerly Perl 6)

This is a recursive solution. It is not really practical for more than 8 levels of recursion, but anything more than 7 is barely visible anyway. <lang perl6>my $levels = 8; my $side = 512; my $height = get_height($side);

sub get_height ($side) { $side * 3.sqrt / 2 }

sub triangle ( $x1, $y1, $x2, $y2, $x3, $y3, $fill?, $animate? ) {

   my $svg;
   $svg ~= qq{<polygon points="$x1,$y1 $x2,$y2 $x3,$y3"};
   $svg ~= qq{ style="fill: $fill; stroke-width: 0;"} if $fill;
   $svg ~= $animate
       ?? qq{>\n  <animate attributeType="CSS" attributeName="opacity"\n  values="1;0;1" keyTimes="0;.5;1" dur="20s" repeatCount="indefinite" />\n</polygon>}
       !! ' />';
   return $svg;

}

sub fractal ( $x1, $y1, $x2, $y2, $x3, $y3, $r is copy ) {

   my $svg;
   $svg ~= triangle( $x1, $y1, $x2, $y2, $x3, $y3 );
   return $svg unless --$r;
   my $side = abs($x3 - $x2) / 2;
   my $height = get_height($side);
   $svg ~= fractal( $x1, $y1-$height*2, $x1-$side/2, $y1-3*$height, $x1+$side/2, $y1-3*$height, $r);
   $svg ~= fractal( $x2, $y1, $x2-$side/2, $y1-$height, $x2+$side/2, $y1-$height, $r);
   $svg ~= fractal( $x3, $y1, $x3-$side/2, $y1-$height, $x3+$side/2, $y1-$height, $r);

}

my $fh = open('sierpinski_triangle.svg', :w) orelse .die; $fh.print: qq:to/EOD/, <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="100%" height="100%" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs>

 <radialGradient id="basegradient" cx="50%" cy="65%" r="50%" fx="50%" fy="65%">
   <stop offset="10%" stop-color="#ff0" />
   <stop offset="60%" stop-color="#f00" />
   <stop offset="99%" stop-color="#00f" />
 </radialGradient>

</defs> EOD

triangle( $side/2, 0, 0, $height, $side, $height, 'url(#basegradient)' ), triangle( $side/2, 0, 0, $height, $side, $height, '#000', 'animate' ), '<g style="fill: #fff; stroke-width: 0;">', fractal( $side/2, $height, $side*3/4, $height/2, $side/4, $height/2, $levels ), '</g></svg>';</lang>

Ring

<lang ring> load "guilib.ring"

new qapp

   {
   win1 = new qwidget() {
          setwindowtitle("drawing using qpainter")
          setgeometry(100,100,500,500)
          label1 = new qlabel(win1) {
                   setgeometry(10,10,400,400)
                   settext("")
                   }
          new qpushbutton(win1) {
              setgeometry(200,400,100,30)
              settext("draw")
              setclickevent("draw()")
              }
          show()
          }
          exec()
   }

func draw

    p1 = new qpicture()
         color = new qcolor() {
         setrgb(0,0,255,255)
         }
    pen = new qpen() {
          setcolor(color)
          setwidth(1)
          }
    new qpainter() {
        begin(p1)
        setpen(pen)
        order = 7
        size = pow(2,order)
        for y = 0 to size-1
            for x = 0 to size-1
                if (x & y)=0 drawpoint(x*2,y*2) ok
            next
        next
        endpaint()
        }
        label1 { setpicture(p1) show() }

</lang>

Output:

Ruby

Library: Shoes

<lang ruby>Shoes.app(:height=>540,:width=>540, :title=>"Sierpinski Triangle") do

 def triangle(slot, tri, color)
   x, y, len = tri
   slot.append do
     fill color
     shape do
       move_to(x,y)
       dx = len * Math::cos(Math::PI/3)
       dy = len * Math::sin(Math::PI/3)
       line_to(x-dx, y+dy)
       line_to(x+dx, y+dy)
       line_to(x,y)
     end
   end
 end
 @s = stack(:width => 520, :height => 520) {}
 @s.move(10,10)
 length = 512
 @triangles = length/2,0,length
 triangle(@s, @triangles[0], rgb(0,0,0))
 @n = 1
 animate(1) do
   if @n <= 7
     @triangles = @triangles.inject([]) do |sum, (x, y, len)|
       dx = len/2 * Math::cos(Math::PI/3)
       dy = len/2 * Math::sin(Math::PI/3)
       triangle(@s, [x, y+2*dy, -len/2], rgb(255,255,255))
       sum += [[x, y, len/2], [x-dx, y+dy, len/2], [x+dx, y+dy, len/2]]
     end
   end
   @n += 1
 end
 keypress do |key|
   case key
   when :control_q, "\x11" then exit
   end
 end

end</lang>

Library: RubyGems
Library: JRubyArt

JRubyArt is a port of processing to ruby <lang ruby> T_HEIGHT = sqrt(3) / 2 TOP_Y = 1 / sqrt(3) BOT_Y = sqrt(3) / 6 TRIANGLE_SIZE = 800

def settings

 size(TRIANGLE_SIZE, (T_HEIGHT * TRIANGLE_SIZE))
 smooth

end

def setup

 sketch_title 'Sierpinski Triangle'
 fill(255)
 background(0)
 no_stroke
 draw_sierpinski(width / 2, height / 1.5, TRIANGLE_SIZE)

end

def draw_sierpinski(cx, cy, sz)

 if sz < 5 # Limit no of recursions on size
   draw_triangle(cx, cy, sz) # Only draw terminals
 else
   cx0 = cx
   cy0 = cy - BOT_Y * sz
   cx1 = cx - sz / 4
   cy1 = cy + (BOT_Y / 2) * sz
   cx2 = cx + sz / 4
   cy2 = cy + (BOT_Y / 2) * sz
   draw_sierpinski(cx0, cy0, sz / 2)
   draw_sierpinski(cx1, cy1, sz / 2)
   draw_sierpinski(cx2, cy2, sz / 2)
 end

end

def draw_triangle(cx, cy, sz)

 cx0 = cx
 cy0 = cy - TOP_Y * sz
 cx1 = cx - sz / 2
 cy1 = cy + BOT_Y * sz
 cx2 = cx + sz / 2
 cy2 = cy + BOT_Y * sz
 triangle(cx0, cy0, cx1, cy1, cx2, cy2)

end </lang>

Run BASIC

<lang runbasic>graphic #g, 300,300 order = 8 width = 100 w = width * 11 dim canvas(w,w) canvas(1,1) = 1

for x = 2 to 2^order -1

   canvas(x,1) = 1
   canvas(x,x) = 1
   for y = 2 to x -1
       canvas( x, y) = (canvas(x -1,y -1) + canvas(x -1, y)) mod 2
       if canvas(x,y) mod 2 then #g "set "; width + (order*3) + y - x / 2;" "; x
   next y

next x render #g

  1. g "flush"

wait</lang>

Rust

Output is an SVG file. <lang rust>// [dependencies] // svg = "0.8.0"

const SQRT3_2: f64 = 0.86602540378444;

fn sierpinski_triangle(

   mut document: svg::Document,
   mut x: f64,
   mut y: f64,
   mut side: f64,
   order: usize,

) -> svg::Document {

   use svg::node::element::Polygon;
   if order == 1 {
       let mut points = Vec::new();
       points.push((x, y));
       y += side * SQRT3_2;
       x -= side * 0.5;
       points.push((x, y));
       x += side;
       points.push((x, y));
       let polygon = Polygon::new()
           .set("fill", "black")
           .set("stroke", "none")
           .set("points", points);
       document = document.add(polygon);
   } else {
       side *= 0.5;
       document = sierpinski_triangle(document, x, y, side, order - 1);
       y += side * SQRT3_2;
       x -= side * 0.5;
       document = sierpinski_triangle(document, x, y, side, order - 1);
       x += side;
       document = sierpinski_triangle(document, x, y, side, order - 1);
   }
   document

}

fn write_sierpinski_triangle(file: &str, size: usize, order: usize) -> std::io::Result<()> {

   use svg::node::element::Rectangle;
   let margin = 20.0;
   let side = (size as f64) - 2.0 * margin;
   let y = 0.5 * ((size as f64) - SQRT3_2 * side);
   let x = margin + side * 0.5;
   let rect = Rectangle::new()
       .set("width", "100%")
       .set("height", "100%")
       .set("fill", "white");
   let mut document = svg::Document::new()
       .set("width", size)
       .set("height", size)
       .add(rect);
   document = sierpinski_triangle(document, x, y, side, order);
   svg::save(file, &document)

}

fn main() {

   write_sierpinski_triangle("sierpinski_triangle.svg", 600, 8).unwrap();

}</lang>

Output:

See: sierpinski_triangle.svg (offsite SVG image)

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "draw.s7i";
 include "keybd.s7i";
 include "bin64.s7i";

const proc: main is func

 local
   const integer: order is 8;
   const integer: width is 1 << order;
   const integer: margin is 10;
   var integer: x is 0;
   var integer: y is 0;
 begin
   screen(width + 2 * margin, width + 2 * margin);
   clear(curr_win, white);
   KEYBOARD := GRAPH_KEYBOARD;
   for y range 0 to pred(width) do
     for x range 0 to pred(width) do
       if bin64(x) & bin64(y) = bin64(0) then
         point(margin + x, margin + y, black);
       end if;
     end for;
   end for;
   ignore(getc(KEYBOARD));
 end func;</lang>

Original source: [2]

Sidef

<lang ruby>func sierpinski_triangle(n) -> Array {

 var triangle = ['*']
 { |i|
   var sp = (' ' * 2**i)
   triangle = (triangle.map {|x| sp + x + sp} +
               triangle.map {|x| x + ' ' + x})
 } * n
 triangle

}

class Array {

 method to_png(scale=1, bgcolor='white', fgcolor='black') {
   static gd = require('GD::Simple')
   var width = self.max_by{.len}.len
   self.map!{|r| "%-#{width}s" % r}
   var img = gd.new(width * scale, self.len * scale)
   for i in ^self {
     for j in RangeNum(i*scale, i*scale + scale) {
       img.moveTo(0, j)
       for line in (self[i].scan(/(\s+|\S+)/)) {
         img.fgcolor(line.contains(/\S/) ? fgcolor : bgcolor)
         img.line(scale * line.len)
       }
     }
   }
   img.png
 }

}

var triangle = sierpinski_triangle(8) var raw_png = triangle.to_png(bgcolor:'black', fgcolor:'red') File('triangle.png').write(raw_png, :raw)</lang>

Tcl

This code maintains a queue of triangles to cut out; though a stack works just as well, the observed progress is more visually pleasing when a queue is used.

Library: Tk

<lang tcl>package require Tcl 8.5 package require Tk

proc mean args {expr {[::tcl::mathop::+ {*}$args] / [llength $args]}} proc sierpinski {canv coords order} {

   $canv create poly $coords -fill black -outline {}
   set queue [list [list {*}$coords $order]]
   while {[llength $queue]} {

lassign [lindex $queue 0] x1 y1 x2 y2 x3 y3 order set queue [lrange $queue 1 end] if {[incr order -1] < 0} continue set x12 [mean $x1 $x2]; set y12 [mean $y1 $y2] set x23 [mean $x2 $x3]; set y23 [mean $y2 $y3] set x31 [mean $x3 $x1]; set y31 [mean $y3 $y1] $canv create poly $x12 $y12 $x23 $y23 $x31 $y31 -fill white -outline {} update idletasks; # So we can see progress lappend queue [list $x1 $y1 $x12 $y12 $x31 $y31 $order] \ [list $x12 $y12 $x2 $y2 $x23 $y23 $order] \ [list $x31 $y31 $x23 $y23 $x3 $y3 $order]

   }

}

pack [canvas .c -width 400 -height 400 -background white] update; # So we can see progress sierpinski .c {200 10 390 390 10 390} 7</lang>

TI-83 BASIC

<lang ti83b>:1→X:1→Y

Zdecimal
Horizontal 3.1
Vertical -4.5
While 1
X+1→X
DS<(Y,1
While 0
X→Y
1→X
End
If pxl-Test(Y-1,X) xor (pxl-Test(Y,X-1
PxlOn(Y,X
End</lang>

This could be made faster, but I just wanted to use the DS<( command

Wren

Translation of: Kotlin
Library: DOME

<lang ecmascript>import "graphics" for Canvas, Color import "dome" for Window

class Game {

   static init() {
       Window.title = "Sierpinski Triangle"
       var size = 800
       Window.resize(size, size)
       Canvas.resize(size, size)
       Canvas.cls(Color.white)
       var level = 8
       sierpinskiTriangle(level, 20, 20, size - 40)
   }
   static update() {}
   static draw(alpha) {}
   static sierpinskiTriangle(level, x, y, size) {
       if (level > 0) {
           var col = Color.black
           Canvas.line(x, y, x + size, y, col)
           Canvas.line(x, y, x, y + size, col)
           Canvas.line(x + size, y, x, y + size, col)
           var size2 = (size/2).floor
           sierpinskiTriangle(level - 1, x, y, size2)
           sierpinskiTriangle(level - 1, x + size/2, y, size2)
           sierpinskiTriangle(level - 1, x, y + size/2, size2)
       }
   }

}</lang>

XPL0

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations def Order=7, Size=1<<Order; int X, Y; [SetVid($13); \set 320x200 graphics video mode for Y:= 0 to Size-1 do

   for X:= 0 to Size-1 do
       if (X&Y)=0 then Point(X, Y, 4\red\);

X:= ChIn(1); \wait for keystroke SetVid(3); \restore normal text display ]</lang>

Yabasic

Sierpinski Triangle 3D.png

3D version. <lang Yabasic>// Adpated from non recursive sierpinsky.bas for SmallBASIC 0.12.6 [B+=MGA] 2016-05-19 with demo mod 2016-05-29

//Sierpinski triangle gasket drawn with lines from any 3 given points // WITHOUT RECURSIVE Calls


//first a sub, given 3 points of a triangle draw the traiangle within //from the midpoints of each line forming the outer triangle //this is the basic Sierpinski Unit that is repeated at greater depths //3 points is 6 arguments to function plus a depth level

xmax=800:ymax=600 open window xmax,ymax backcolor 0,0,0 color 255,0,0 clear window

sub SierLineTri(x1, y1, x2, y2, x3, y3, maxDepth)

 local mx1, mx2, mx3, my1, my2, my3, ptcount, depth, i, X, Y
 Y = 1

 //load given set of 3 points into oa = outer triangles array, ia = inner triangles array
 ptCount = 3
 depth = 1

 dim oa(ptCount - 1, 1) //the outer points array
 oa(0, X) = x1
 oa(0, Y) = y1
 oa(1, X) = x2
 oa(1, Y) = y2
 oa(2, X) = x3
 oa(2, Y) = y3

 dim ia(3 * ptCount - 1, 1) //the inner points array
 iaIndex = 0

while(depth <= maxDepth)

 for i=0 to ptCount-1 step 3 //draw outer triangles at this level
   if depth = 1 then
     line oa(i,X),     oa(i,Y), oa(i+1,X), oa(i+1,Y)
     line oa(i+1,X), oa(i+1,Y), oa(i+2,X), oa(i+2,Y)
     line oa(i,X),     oa(i,Y), oa(i+2,X), oa(i+2,Y)
   end if

   if oa(i+1,X) < oa(i,X)   then mx1 = (oa(i,X) - oa(i+1,X))/2 + oa(i+1,X) else mx1 = (oa(i+1,X) - oa(i,X))/2 + oa(i,X) endif
   if oa(i+1,Y) < oa(i,Y)   then my1 = (oa(i,Y) - oa(i+1,Y))/2 + oa(i+1,Y) else my1 = (oa(i+1,Y) - oa(i,Y))/2 + oa(i,Y) endif
   if oa(i+2,X) < oa(i+1,X) then mx2 = (oa(i+1,X)-oa(i+2,X))/2 + oa(i+2,X) else mx2 = (oa(i+2,X)-oa(i+1,X))/2 + oa(i+1,X) endif
   if oa(i+2,Y) < oa(i+1,Y) then my2 = (oa(i+1,Y)-oa(i+2,Y))/2 + oa(i+2,Y) else my2 = (oa(i+2,Y)-oa(i+1,Y))/2 + oa(i+1,Y) endif
   if oa(i+2,X) < oa(i,X)   then mx3 = (oa(i,X) - oa(i+2,X))/2 + oa(i+2,X) else mx3 = (oa(i+2,X) - oa(i,X))/2 + oa(i,X) endif
   if oa(i+2,Y) < oa(i,Y)   then my3 = (oa(i,Y) - oa(i+2,Y))/2 + oa(i+2,Y) else my3 = (oa(i+2,Y) - oa(i,Y))/2 + oa(i,Y) endif
  
   //color 9 //testing
   //draw all inner triangles
   line mx1, my1, mx2, my2
   line mx2, my2, mx3, my3
   line mx1, my1, mx3, my3
  
   //x1, y1 with mx1, my1 and mx3, my3
   ia(iaIndex,X) = oa(i,X)
   ia(iaIndex,Y) = oa(i,Y) : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx1
   ia(iaIndex,Y) = my1     : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx3
   ia(iaIndex,Y) = my3     : iaIndex = iaIndex + 1
  
   //x2, y2 with mx1, my1 and mx2, my2
   ia(iaIndex,X) = oa(i+1,X)
   ia(iaIndex,Y) = oa(i+1,Y) : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx1
   ia(iaIndex,Y) = my1       : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx2
   ia(iaIndex,Y) = my2       : iaIndex = iaIndex + 1
  
   //x3, y3 with mx3, my3 and mx2, my2
   ia(iaIndex,X) = oa(i+2,X)
   ia(iaIndex,Y) = oa(i+2,Y) : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx2
   ia(iaIndex,Y) = my2       : iaIndex = iaIndex + 1
   ia(iaIndex,X) = mx3
   ia(iaIndex,Y) = my3       : iaIndex = iaIndex + 1
  
 next i
  
 //update and prepare for next level
 ptCount = ptCount * 3
 depth = depth + 1
 redim oa(ptCount - 1, 1 )
 for i = 0 to ptCount - 1
   oa(i, X) = ia(i, X)
   oa(i, Y) = ia(i, Y)
 next i
 redim ia(3 * ptCount - 1, 1)
 iaIndex = 0

wend end sub

//Test Demo for the sub (NEW as 2016 - 05 - 29 !!!!!) cx=xmax/2 cy=ymax/2 r=cy - 20 N=3 for i = 0 to 2

 color 64+42*i,64+42*i,64+42*i
 SierLineTri(cx, cy, cx+r*cos(2*pi/N*i), cy +r*sin(2*pi/N*i), cx + r*cos(2*pi/N*(i+1)), cy + r*sin(2*pi/N*(i+1)), 5)

next i </lang>

Simple recursive version <lang Yabasic>w = 800 : h = 600 open window w, h window origin "lb"

sub SierpinskyTriangle(level, x, y, w, h)

   local w2, w4, h2
   
   w2 = w/2 : w4 = w/4 : h2 = h/2
   if level=1 then
       new curve
       line to x, y
       line to x+w2, y+h
       line to x+w, y
       line to x, y
   else
       SierpinskyTriangle(level-1, x,    y,    w2, h2)
       SierpinskyTriangle(level-1, x+w4, y+h2, w2, h2)
       SierpinskyTriangle(level-1, x+w2, y,    w2, h2)
   end if

end sub

SierpinskyTriangle(7, w*0.05, h*0.05, w*0.9, h*0.9)</lang>

zkl

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

Translation of: XPL0

<lang zkl>const Order=8, Size=(1).shiftLeft(Order); img:=PPM(300,300); foreach y,x in (Size,Size){ if(x.bitAnd(y)==0) img[x,y]=0xff0000 } img.write(File("sierpinskiTriangle.ppm","wb"));</lang>