Sequence: nth number with exactly n divisors: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 615: Line 615:


=={{header|Phix}}==
=={{header|Phix}}==
{{libheader|mpfr}}
Certainly not the fastest way to do it, hence the relatively small limit of 24, which takes less than 0.4s,<br>
Certainly not the fastest way to do it, hence the relatively small limit of 24, which takes less than 0.4s,<br>
whereas a limit of 25 would need to invoke factors() 52 million times which would no doubt take a fair while.
whereas a limit of 25 would need to invoke factors() 52 million times which would no doubt take a fair while.

Revision as of 21:37, 2 June 2019

Sequence: nth number with exactly n divisors is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Calculate the sequence where each term an is the nth that has n divisors.

Task

Show here, on this page, at least the first 15 terms of the sequence.

See also
Related tasks

Go

This makes use of the relationship: a[p] = prime[p]^(p-1) if p is prime, mentioned in the blurb for A073916 (and also on the talk page) to calculate the larger terms, some of which require big.Int in Go. It also makes use of another hint on the talk page that all odd terms are square numbers.

The remaining terms (up to the 33rd) are not particularly large and so are calculated by brute force. <lang go>package main

import (

   "fmt"
   "math"
   "math/big"

)

var bi = new(big.Int)

func isPrime(n int) bool {

   bi.SetUint64(uint64(n))
   return bi.ProbablyPrime(0)

}

func generateSmallPrimes(n int) []int {

   primes := make([]int, n)
   primes[0] = 2
   for i, count := 3, 1; count < n; i += 2 {
       if isPrime(i) {
           primes[count] = i
           count++
       }
   }
   return primes

}

func countDivisors(n int) int {

   count := 1
   for n%2 == 0 {
       n >>= 1
       count++
   }
   for d := 3; d*d <= n; d += 2 {
       q, r := n/d, n%d
       if r == 0 {
           dc := 0
           for r == 0 {
               dc += count
               n = q
               q, r = n/d, n%d
           }
           count += dc
       }
   }
   if n != 1 {
       count *= 2
   }
   return count

}

func main() {

   const max = 33
   primes := generateSmallPrimes(max)
   z := new(big.Int)
   p := new(big.Int)
   fmt.Println("The first", max, "terms in the sequence are:")
   for i := 1; i <= max; i++ {
       if isPrime(i) {
           z.SetUint64(uint64(primes[i-1]))
           p.SetUint64(uint64(i - 1))
           z.Exp(z, p, nil)
           fmt.Printf("%2d : %d\n", i, z)
       } else {
           count := 0
           for j := 1; ; j++ {
               if i%2 == 1 {
                   sq := int(math.Sqrt(float64(j)))
                   if sq*sq != j {
                       continue
                   }
               }
               if countDivisors(j) == i {
                   count++
                   if count == i {
                       fmt.Printf("%2d : %d\n", i, j)
                       break
                   }
               }
           }
       }
   }

}</lang>

Output:
The first 33 terms in the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14641
 6 : 44
 7 : 24137569
 8 : 70
 9 : 1089
10 : 405
11 : 819628286980801
12 : 160
13 : 22563490300366186081
14 : 2752
15 : 9801
16 : 462
17 : 21559177407076402401757871041
18 : 1044
19 : 740195513856780056217081017732809
20 : 1520
21 : 141376
22 : 84992
23 : 1658509762573818415340429240403156732495289
24 : 1170
25 : 52200625
26 : 421888
27 : 52900
28 : 9152
29 : 1116713952456127112240969687448211536647543601817400964721
30 : 6768
31 : 1300503809464370725741704158412711229899345159119325157292552449
32 : 3990
33 : 12166144

The following much faster version (runs in less than 90 seconds on my 1.6GHz Celeron) uses three further optimizations:

1. Apart from the 2nd and 10th terms, all the even terms are themselves even.

2. A sieve is used to generate all prime divisors needed. This doesn't take up much time or memory but speeds up the counting of all divisors considerably.

3. While searching for the nth number with exactly n divisors, where feasible a record is kept of any numbers found to have exactly k divisors (k > n) so that the search for these numbers can start from a higher base.

<lang go>package main

import (

   "fmt"
   "math"
   "math/big"

)

type record struct{ num, count int }

var (

   bi     = new(big.Int)
   primes = []int{2}

)

func isPrime(n int) bool {

   bi.SetUint64(uint64(n))
   return bi.ProbablyPrime(0)

}

func sieve(limit int) {

   c := make([]bool, limit+1) // composite = true
   // no need to process even numbers
   p := 3
   for {
       p2 := p * p
       if p2 > limit {
           break
       }
       for i := p2; i <= limit; i += 2 * p {
           c[i] = true
       }
       for {
           p += 2
           if !c[p] {
               break
           }
       }
   }
   for i := 3; i <= limit; i += 2 {
       if !c[i] {
           primes = append(primes, i)
       }
   }

}

func countDivisors(n int) int {

   count := 1
   for i, p := 0, primes[0]; p*p <= n; i, p = i+1, primes[i+1] {
       if n%p != 0 {
           continue
       }
       n /= p
       count2 := 1
       for n%p == 0 {
           n /= p
           count2++
       }
       count *= (count2 + 1)
       if n == 1 {
           return count
       }
   }
   if n != 1 {
       count *= 2
   }
   return count

}

func isOdd(x int) bool {

   return x%2 == 1

}

func main() {

   sieve(22000)
   const max = 45
   records := [max + 1]record{}
   z := new(big.Int)
   p := new(big.Int)
   fmt.Println("The first", max, "terms in the sequence are:")
   for i := 1; i <= max; i++ {
       if isPrime(i) {
           z.SetUint64(uint64(primes[i-1]))
           p.SetUint64(uint64(i - 1))
           z.Exp(z, p, nil)
           fmt.Printf("%2d : %d\n", i, z)
       } else {
           count := records[i].count
           if count == i {
               fmt.Printf("%2d : %d\n", i, records[i].num)
               continue
           }
           odd := isOdd(i)
           k := records[i].num
           l := 1
           if !odd && i != 2 && i != 10 {
               l = 2
           }
           for j := k + l; ; j += l {
               if odd {
                   sq := int(math.Sqrt(float64(j)))
                   if sq*sq != j {
                       continue
                   }
               }
               cd := countDivisors(j)
               if cd == i {
                   count++
                   if count == i {
                       fmt.Printf("%2d : %d\n", i, j)
                       break
                   }
               } else if cd > i && cd <= max && records[cd].count < cd &&
                   j > records[cd].num && (l == 1 || (l == 2 && !isOdd(cd))) {
                   records[cd].num = j
                   records[cd].count++
               }
           }
       }
   }

}</lang>

Output:
The first 45 terms in the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14641
 6 : 44
 7 : 24137569
 8 : 70
 9 : 1089
10 : 405
11 : 819628286980801
12 : 160
13 : 22563490300366186081
14 : 2752
15 : 9801
16 : 462
17 : 21559177407076402401757871041
18 : 1044
19 : 740195513856780056217081017732809
20 : 1520
21 : 141376
22 : 84992
23 : 1658509762573818415340429240403156732495289
24 : 1170
25 : 52200625
26 : 421888
27 : 52900
28 : 9152
29 : 1116713952456127112240969687448211536647543601817400964721
30 : 6768
31 : 1300503809464370725741704158412711229899345159119325157292552449
32 : 3990
33 : 12166144
34 : 9764864
35 : 446265625
36 : 5472
37 : 11282036144040442334289838466416927162302790252609308623697164994458730076798801
38 : 43778048
39 : 90935296
40 : 10416
41 : 1300532588674810624476094551095787816112173600565095470117230812218524514342511947837104801
42 : 46400
43 : 635918448514386699807643535977466343285944704172890141356181792680152445568879925105775366910081
44 : 240640
45 : 327184

Java

Translation of: Go

<lang java>import java.util.ArrayList; import java.math.BigInteger; import static java.lang.Math.sqrt;

public class OEIS_A073916 {

   static boolean is_prime(int n) {
       return BigInteger.valueOf(n).isProbablePrime(10);
   }
   static ArrayList<Integer> generate_small_primes(int n) {
       ArrayList<Integer> primes = new ArrayList<Integer>();
       primes.add(2);
       for (int i = 3; primes.size() < n; i += 2) {
           if (is_prime(i)) primes.add(i);
       }
       return primes;
   }
   static int count_divisors(int n) {
       int count = 1;
       while (n % 2 == 0) {
           n >>= 1;
           ++count;
       }
       for (int d = 3; d * d <= n; d += 2) {
           int q = n / d;
           int r = n % d;
           if (r == 0) {
               int dc = 0;
               while (r == 0) {
                   dc += count;
                   n = q;
                   q = n / d;
                   r = n % d;
               }
               count += dc;
           }
       }
       if (n != 1) count *= 2;
       return count;
   }
   public static void main(String[] args) {
       final int max = 33;
       ArrayList<Integer> primes = generate_small_primes(max);
       System.out.printf("The first %d terms of the sequence are:\n", max);
       for (int i = 1; i <= max; ++i) {
           if (is_prime(i)) {
               BigInteger z = BigInteger.valueOf(primes.get(i - 1));
               z = z.pow(i - 1);
               System.out.printf("%2d : %d\n", i, z);
           } else {
               for (int j = 1, count = 0; ; ++j) {
                   if (i % 2 == 1) {
                       int sq = (int)sqrt(j);
                       if (sq * sq != j) continue;
                   }
                   if (count_divisors(j) == i) {
                       if (++count == i) {
                           System.out.printf("%2d : %d\n", i, j);
                           break;
                       }
                   }
               }
           }
       }
   }

}</lang>

Output:
The first 33 terms of the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14641
 6 : 44
 7 : 24137569
 8 : 70
 9 : 1089
10 : 405
11 : 819628286980801
12 : 160
13 : 22563490300366186081
14 : 2752
15 : 9801
16 : 462
17 : 21559177407076402401757871041
18 : 1044
19 : 740195513856780056217081017732809
20 : 1520
21 : 141376
22 : 84992
23 : 1658509762573818415340429240403156732495289
24 : 1170
25 : 52200625
26 : 421888
27 : 52900
28 : 9152
29 : 1116713952456127112240969687448211536647543601817400964721
30 : 6768
31 : 1300503809464370725741704158412711229899345159119325157292552449
32 : 3990
33 : 12166144

Kotlin

Translation of: Go

<lang scala>// Version 1.3.21

import java.math.BigInteger import kotlin.math.sqrt

const val MAX = 33

fun isPrime(n: Int) = BigInteger.valueOf(n.toLong()).isProbablePrime(10)

fun generateSmallPrimes(n: Int): List<Int> {

   val primes = mutableListOf<Int>()
   primes.add(2)
   var i = 3
   while (primes.size < n) {
       if (isPrime(i)) {
           primes.add(i)
       }
       i += 2
   }
   return primes

}

fun countDivisors(n: Int): Int {

   var nn = n
   var count = 1
   while (nn % 2 == 0) {
       nn = nn shr 1
       count++
   }
   var d = 3
   while (d * d <= nn) {
       var q = nn / d
       var r = nn % d
       if (r == 0) {
           var dc = 0
           while (r == 0) {
               dc += count
               nn = q
               q = nn / d
               r = nn % d
           }
           count += dc
       }
       d += 2
   }
   if (nn != 1) count *= 2
   return count

}

fun main() {

   var primes = generateSmallPrimes(MAX)
   println("The first $MAX terms in the sequence are:")
   for (i in 1..MAX) {
       if (isPrime(i)) {
           var z = BigInteger.valueOf(primes[i - 1].toLong())
           z = z.pow(i - 1)
           System.out.printf("%2d : %d\n", i, z)
       } else {
           var count = 0
           var j = 1
           while (true) {
               if (i % 2 == 1) {
                   val sq = sqrt(j.toDouble()).toInt()
                   if (sq * sq != j) {
                       j++
                       continue
                   }
               }
               if (countDivisors(j) == i) {
                   if (++count == i) {
                       System.out.printf("%2d : %d\n", i, j)
                       break
                   }
               }
               j++
           }
       }
   }

}</lang>

Output:
The first 33 terms in the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14641
 6 : 44
 7 : 24137569
 8 : 70
 9 : 1089
10 : 405
11 : 819628286980801
12 : 160
13 : 22563490300366186081
14 : 2752
15 : 9801
16 : 462
17 : 21559177407076402401757871041
18 : 1044
19 : 740195513856780056217081017732809
20 : 1520
21 : 141376
22 : 84992
23 : 1658509762573818415340429240403156732495289
24 : 1170
25 : 52200625
26 : 421888
27 : 52900
28 : 9152
29 : 1116713952456127112240969687448211536647543601817400964721
30 : 6768
31 : 1300503809464370725741704158412711229899345159119325157292552449
32 : 3990
33 : 12166144

Perl

Library: ntheory
Translation of: Perl 6

<lang perl>use strict; use warnings; use bigint; use ntheory <nth_prime is_prime divisors>;

my $limit = 20;

print "First $limit terms of OEIS:A073916\n";

for my $n (1..$limit) {

   if ($n > 4 and is_prime($n)) {
       print nth_prime($n)**($n-1) . ' ';
   } else {
       my $i = my $x = 0;
       while (1) {
           my $nn = $n%2 ? ++$x**2 : ++$x;
           next unless $n == divisors($nn) and ++$i == $n;
           print "$nn " and last;
     }
   }

}</lang>

Output:
First 20 terms of OEIS:A073916
1 3 25 14 14641 44 24137569 70 1089 405 819628286980801 160 22563490300366186081 2752 9801 462 21559177407076402401757871041 1044 740195513856780056217081017732809 1520

Perl 6

Works with: Rakudo version 2019.03

Try it online!

<lang perl6>sub div-count (\x) {

   return 2 if x.is-prime;
   +flat (1 .. x.sqrt.floor).map: -> \d {
       unless x % d { my \y = x div d; y == d ?? y !! (y, d) }
   }

}

my $limit = 20;

my @primes = grep { .is-prime }, 1..*; @primes[$limit]; # prime the array. SCNR

put "First $limit terms of OEIS:A073916"; put (1..$limit).hyper(:2batch).map: -> $n {

   ($n > 4 and $n.is-prime) ??
   exp($n - 1, @primes[$n - 1]) !!
   do {
       my $i = 0;
       my $iterator = $n %% 2 ?? (1..*) !! (1..*).map: *²;
       $iterator.first: {
           next unless $n == .&div-count;
           next unless ++$i == $n;
           $_
       }
   }

};</lang>

First 20 terms of OEIS:A073916
1 3 25 14 14641 44 24137569 70 1089 405 819628286980801 160 22563490300366186081 2752 9801 462 21559177407076402401757871041 1044 740195513856780056217081017732809 1520

Phix

Library: mpfr

Certainly not the fastest way to do it, hence the relatively small limit of 24, which takes less than 0.4s,
whereas a limit of 25 would need to invoke factors() 52 million times which would no doubt take a fair while. <lang Phix>constant LIMIT = 24 include mpfr.e mpz z = mpz_init()

sequence fn = 1&repeat(0,LIMIT-1),

        primes = {2,3}

integer k = 1 printf(1,"The first %d terms in the sequence are:\n",LIMIT) for i=1 to LIMIT do

   sequence f = factors(i,1)
   if length(f)=2 then     -- i is prime (f is {1,i})
       while length(primes)<i do
           integer p = primes[$]+2
           while prime_factors(p)!={} do p += 2 end while
           primes = append(primes,p)
       end while
       mpz_ui_pow_ui(z,primes[i],i-1)
       printf(1,"%2d : %s\n",{i,mpz_get_str(z)})
   else
       while fn[i]<i do
           k += 1
           integer l = length(factors(k,1))
           if l<=LIMIT and fn[l]<l then
               fn[l] = iff(fn[l]+1<l?fn[l]+1:k)
           end if
       end while
       printf(1,"%2d : %d\n",{i,fn[i]})
   end if

end for</lang>

Output:
The first 24 terms in the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14641
 6 : 44
 7 : 24137569
 8 : 70
 9 : 1089
10 : 405
11 : 819628286980801
12 : 160
13 : 22563490300366186081
14 : 2752
15 : 9801
16 : 462
17 : 21559177407076402401757871041
18 : 1044
19 : 740195513856780056217081017732809
20 : 1520
21 : 141376
22 : 84992
23 : 1658509762573818415340429240403156732495289
24 : 1170

REXX

Programming note:   this REXX version has minor optimization, and all terms of the sequence are determined (found) in order.

little optimization

<lang rexx>/*REXX program finds and displays the Nth number with exactly N divisors. */ parse arg N . /*obtain optional argument from the CL.*/ if N== | N=="," then N= 15 /*Not specified? Then use the default.*/ w= 50 /*W: width of the 2nd column of output*/ say '─divisors─' center("the Nth number with exactly N divisors", w, '─') /*title.*/ @.1= 2; Ps= 1 /*1st prime; number of primes (so far)*/

       do p=3  until Ps==N                      /* [↓]  gen N primes, store in @ array.*/
       if \isPrime(p)  then iterate;     Ps= Ps + 1;        @.Ps= p
       end   /*gp*/

!.= /*the  ! array is used for memoization*/

       do i=1  for N;      odd= i//2            /*step through a number of divisors.   */
       if odd  then  if isPrime(i)  then do;  _= pPow();            w= max(w, length(_) )
                                              call tell  commas(_);              iterate
                                         end
       #= 0;            even= \odd              /*the number of occurrences for #div.  */
           do j=1;      jj= j                   /*now, search for a number that ≡ #divs*/
           if odd  then jj= j*j                 /*Odd and non-prime?  Calculate square.*/
           if !.jj==.  then iterate             /*has this number already been found?  */
           d= #divs(jj)                         /*get # divisors;  Is not equal?  Skip.*/
           if even  then if d<i  then do;  !.j=.;  iterate;  end   /*Too low?  Flag it.*/
           if d\==i  then iterate               /*Is not equal?  Then skip this number.*/
           #= # + 1                             /*bump number of occurrences for #div. */
           if #\==i  then iterate               /*Not correct occurrence? Keep looking.*/
           call tell  commas(jj)                /*display Nth number with #divs*/
           leave                                /*found a number, so now get the next I*/
           end   /*j*/
       end       /*i*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do j=length(_)-3 to 1 by -3; _=insert(',', _, j); end; return _ pPow: numeric digits 1000; return @.i**(i-1) /*temporarily increase decimal digits. */ /*──────────────────────────────────────────────────────────────────────────────────────*/

  1. divs: procedure; parse arg x 1 y /*X and Y: both set from 1st argument.*/
      if x<7  then do                           /*handle special cases for numbers < 7.*/
                   if x<3   then return x       /*   "      "      "    "  one and two.*/
                   if x<5   then return x - 1   /*   "      "      "    "  three & four*/
                   if x==5  then return 2       /*   "      "      "    "  five.       */
                   if x==6  then return 4       /*   "      "      "    "  six.        */
                   end
      odd= x // 2                               /*check if   X   is  odd  or not.      */
      if odd  then do;  #= 1;             end   /*Odd?   Assume  Pdivisors  count of 1.*/
              else do;  #= 3;    y= x%2;  end   /*Even?     "        "        "    " 3.*/
                                                /* [↑]   start with known num of Pdivs.*/
                 do k=3  for x%2-3  by 1+odd  while k<y  /*for odd numbers, skip evens.*/
                 if x//k==0  then do            /*if no remainder, then found a divisor*/
                                  #=#+2;  y=x%k /*bump  #  Pdivs,  calculate limit  Y. */
                                  if k>=y  then do;  #= #-1;  leave;  end      /*limit?*/
                                  end                                          /*  ___ */
                             else if k*k>x  then leave        /*only divide up to √ x  */
                 end   /*k*/                    /* [↑]  this form of DO loop is faster.*/
      return #+1                                /*bump "proper divisors" to "divisors".*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ isPrime: procedure; parse arg #; if wordpos(#, '2 3 5 7 11 13')\==0 then return 1

        if #<2  then return 0;    if #//2==0 | #//3==0 | #//5==0 | #//7==0  then return 0
                                        if # // 2==0 | # // 3    ==0  then return 0
          do j=11  by 6  until j*j>#;   if # // j==0 | # // (J+2)==0  then return 0
          end   /*j*/                           /*           ___                       */
        return 1                                /*Exceeded  √ #  ?    Then # is prime. */

/*──────────────────────────────────────────────────────────────────────────────────────*/ tell: parse arg _; say center(i, 10) right(_, max(w, length(_) ) )

        if i//5==0  then say;     return        /*display a separator for the eyeballs.*/</lang>
output   when using the input:     45
─divisors─ ───────────────────────────────────────────the Nth number with exactly N divisors──────────────────────────────────────────────
    1                                                                                                                                    1
    2                                                                                                                                    3
    3                                                                                                                                   25
    4                                                                                                                                   14
    5                                                                                                                               14,641
    6                                                                                                                                   44
    7                                                                                                                           24,137,569
    8                                                                                                                                   70
    9                                                                                                                                1,089
    10                                                                                                                                 405
    11                                                                                                                 819,628,286,980,801
    12                                                                                                                                 160
    13                                                                                                          22,563,490,300,366,186,081
    14                                                                                                                               2,752
    15                                                                                                                               9,801
    16                                                                                                                                 462
    17                                                                                              21,559,177,407,076,402,401,757,871,041
    18                                                                                                                               1,044
    19                                                                                         740,195,513,856,780,056,217,081,017,732,809
    20                                                                                                                               1,520
    21                                                                                                                             141,376
    22                                                                                                                              84,992
    23                                                                           1,658,509,762,573,818,415,340,429,240,403,156,732,495,289
    24                                                                                                                               1,170
    25                                                                                                                          52,200,625
    26                                                                                                                             421,888
    27                                                                                                                              52,900
    28                                                                                                                               9,152
    29                                                       1,116,713,952,456,127,112,240,969,687,448,211,536,647,543,601,817,400,964,721
    30                                                                                                                               6,768
    31                                               1,300,503,809,464,370,725,741,704,158,412,711,229,899,345,159,119,325,157,292,552,449
    32                                                                                                                               3,990
    33                                                                                                                          12,166,144
    34                                                                                                                           9,764,864
    35                                                                                                                         446,265,625
    36                                                                                                                               5,472
    37                          11,282,036,144,040,442,334,289,838,466,416,927,162,302,790,252,609,308,623,697,164,994,458,730,076,798,801
    38                                                                                                                          43,778,048
    39                                                                                                                          90,935,296
    40                                                                                                                              10,416
    41           1,300,532,588,674,810,624,476,094,551,095,787,816,112,173,600,565,095,470,117,230,812,218,524,514,342,511,947,837,104,801
    42                                                                                                                              46,400
    43     635,918,448,514,386,699,807,643,535,977,466,343,285,944,704,172,890,141,356,181,792,680,152,445,568,879,925,105,775,366,910,081
    44                                                                                                                             240,640
    45                                                                                                                             327,184

more optimization

Programming note:   this REXX version has major optimization, and the logic flow is:

  •   build a table of prime numbers (this also helps winnow the numbers being tested).
  •   the generation of the sequence is broken into three parts:
  •   odd prime numbers.
  •   odd non-prime numbers.
  •   even numbers.

This REXX version (unlike the 1st version),   only goes through the numbers once, instead of looking for numbers that have specific number of divisors. <lang rexx>/*REXX program finds and displays the Nth number with exactly N divisors. */ parse arg N . /*obtain optional argument from the CL.*/ if N== | N=="," then N= 15 /*Not specified? Then use the default.*/ @.1= 2; Ps= 1;  !.= 0;  !.1= 2 /*1st prime; number of primes (so far)*/

       do p=3  until Ps==N**3                   /* [↓]  gen N primes, store in @ array.*/
       if \isPrime(p)  then iterate;     Ps= Ps + 1;    if Ps<=N  then  @.Ps= p;   !.p= 1
       end   /*p*/

zfin.= 0; zcnt. = 0; znum.1= 1; znum.2= 3 /*completed; index; count of items.*/ w= 50 /*──────────handle odd primes──────────*/

    do j=3  by 2  to N;  if \!.j  then iterate  /*Not prime?  Then skip this odd number*/
    zfin.j= 1;   zcnt.j= j;   znum.j= pPow();   /*compute # divisors for this odd prime*/
    w= max(w, length( commas( znum.j) ) )       /*the last prime will be the biggest #.*/
    end   /*j*/                                 /*process a small number of primes ≤ N.*/

dd.=; mx= 200000 /*──────────handle odd non─primes──────*/

    do j=3  by 2  to N;  if !.j  then iterate   /*Is a prime?  Then skip this odd prime*/
       do sq=6;  _= sq*sq                       /*step through squares starting at  36.*/
       if dd._\== then d= dd._                /*maybe use a pre─computed # divisors. */
                    else d= #divs(_)            /*Not defined?  Then calculate # divs. */
       if _<=mx  then dd._= d                   /*use memoization for the  evens  loop.*/
       if d\==j  then iterate                   /*if not the right D, then skip this sq*/
       zcnt.d= zcnt.d+1;         if zcnt.d==d  then zfin.d= 1;        znum.d= _
       if zfin.d  then iterate j                /*if all were found,  then do next odd#*/
       end   /*sq*/
    end      /*j*/
                                                /*──────────handle even numbers.───────*/
    do j=4  by 2; if dd.j\== then d= dd.j     /*maybe use a pre─computed # divisors. */
                               else d= #divs(j) /*Not defined?  Then calculate # divs. */
    if d>N       then iterate                   /*Divisors greater than N?  Then skip. */
    if zfin.d    then iterate                   /*Already populated?          "    "   */
                 else do; zcnt.d= zcnt.d+1;  if zcnt.d==d  then zfin.d= 1;  znum.d= j
                          if done()  then leave  /*j*/    /*Are the even #'s all done? */
                      end
    end       /*j*/

say '─divisors─' center("the Nth number with exactly N divisors", w, '─') /*title.*/

    do s=1  for N;  call tell  s,commas(znum.s) /*display  Nth  number with number divs*/
    end   /*s*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do c=length(_)-3 to 1 by -3; _=insert(',', _, c); end; return _ done: do f=N by -1 for N-3; if \zfin.f then return 0; end; return 1 pPow: numeric digits 2000; return @.j**(j-1) /*temporarily increase decimal digits. */ /*──────────────────────────────────────────────────────────────────────────────────────*/

  1. divs: procedure; parse arg x 1 y /*X and Y: both set from 1st argument.*/
      if x<7  then do                           /*handle special cases for numbers < 7.*/
                   if x<3   then return x       /*   "      "      "    "  one and two.*/
                   if x<5   then return x - 1   /*   "      "      "    "  three & four*/
                   if x==5  then return 2       /*   "      "      "    "  five.       */
                   if x==6  then return 4       /*   "      "      "    "  six.        */
                   end
      odd= x // 2                               /*check if   X   is  odd  or not.      */
      if odd  then do;  #= 1;             end   /*Odd?   Assume  Pdivisors  count of 1.*/
              else do;  #= 3;    y= x%2;  end   /*Even?     "        "        "    " 3.*/
                                                /* [↑]   start with known num of Pdivs.*/
                 do k=3  for x%2-3  by 1+odd  while k<y  /*for odd numbers, skip evens.*/
                 if x//k==0  then do            /*if no remainder, then found a divisor*/
                                  #=#+2;  y=x%k /*bump  #  Pdivs,  calculate limit  Y. */
                                  if k>=y  then do;  #= #-1;  leave;  end      /*limit?*/
                                  end                                          /*  ___ */
                             else if k*k>x  then leave        /*only divide up to √ x  */
                 end   /*k*/                    /* [↑]  this form of DO loop is faster.*/
      return #+1                                /*bump "proper divisors" to "divisors".*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ isPrime: procedure; parse arg # . -1 _

        if #<31  then do;   if wordpos(#, '2 3 5 7 11 13 17 19 23 29')\==0  then return 1
                            if #<2  then return 0
                      end
        if #// 2==0 then return 0; if #// 3==0  then return 0; if     _==5  then return 0
        if #// 7==0 then return 0; if #//11==0  then return 0; if #//11==0  then return 0
        if #//13==0 then return 0; if #//17==0  then return 0; if #//19==0  then return 0
                              do i=23  by 6  until i*i>#;   if #// i   ==0  then return 0
                                                            if #//(i+2)==0  then return 0
                              end   /*i*/       /*           ___                       */
        return 1                                /*Exceeded  √ #  ?    Then # is prime. */

/*──────────────────────────────────────────────────────────────────────────────────────*/ tell: parse arg idx,_; say center(idx, 10) right(_, w)

        if idx//5==0  then say;     return      /*display a separator for the eyeballs.*/</lang>
output   is identical to the 1st REXX version.



Sidef

<lang ruby>func f(n {.is_prime}) {

   n.prime**(n-1)

}

func f(n) {

   n.th { .sigma0 == n }

}

say 20.of { f(_+1) }</lang>

Output:
[1, 3, 25, 14, 14641, 44, 24137569, 70, 1089, 405, 819628286980801, 160, 22563490300366186081, 2752, 9801, 462, 21559177407076402401757871041, 1044, 740195513856780056217081017732809, 1520]

zkl

Translation of: Go

Using GMP (GNU Multiple Precision Arithmetic Library, probabilistic primes), because it is easy and fast to generate primes.

Extensible prime generator#zkl could be used instead. <lang zkl>var [const] BI=Import("zklBigNum"), pmax=25; // libGMP p:=BI(1); primes:=pmax.pump(List(0), p.nextPrime, "copy"); //-->(0,3,5,7,11,13,17,19,...)

fcn countDivisors(n){

  count:=1;
  while(n%2==0){ n/=2; count+=1; }
  foreach d in ([3..*,2]){
     q,r := n/d, n%d;
     if(r==0){

dc:=0; while(r==0){ dc+=count; n,q,r = q, n/d, n%d; } count+=dc;

     }
     if(d*d > n) break;
  }
  if(n!=1) count*=2;
  count

}

println("The first ", pmax, " terms in the sequence are:"); foreach i in ([1..pmax]){

  if(BI(i).probablyPrime()) println("%2d : %,d".fmt(i,primes[i].pow(i-1)));
  else{
     count:=0;
     foreach j in ([1..*]){
        if(i%2==1 and j != j.toFloat().sqrt().toInt().pow(2)) continue;

if(countDivisors(j) == i){ count+=1; if(count==i){ println("%2d : %,d".fmt(i,j)); break; } }

     }
  }

}</lang>

Output:
The first 25 terms in the sequence are:
 1 : 1
 2 : 3
 3 : 25
 4 : 14
 5 : 14,641
 6 : 44
 7 : 24,137,569
 8 : 70
 9 : 1,089
10 : 405
11 : 819,628,286,980,801
12 : 160
13 : 22,563,490,300,366,186,081
14 : 2,752
15 : 9,801
16 : 462
17 : 21,559,177,407,076,402,401,757,871,041
18 : 1,044
19 : 740,195,513,856,780,056,217,081,017,732,809
20 : 1,520
21 : 141,376
22 : 84,992
23 : 1,658,509,762,573,818,415,340,429,240,403,156,732,495,289
24 : 1,170
25 : 52,200,625