I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Safe primes and unsafe primes

Safe primes and unsafe primes
You are encouraged to solve this task according to the task description, using any language you may know.
Definitions
•   A   safe prime   is a prime   p   and where   (p-1)/2   is also prime.
•   The corresponding prime  (p-1)/2   is known as a   Sophie Germain   prime.
•   An   unsafe prime   is a prime   p   and where   (p-1)/2   isn't   a prime.
•   An   unsafe prime   is a prime that   isn't   a   safe   prime.

•   Find and display (on one line) the first   35   safe primes.
•   Find and display the   count   of the safe primes below   1,000,000.
•   Find and display the   count   of the safe primes below 10,000,000.
•   Find and display (on one line) the first   40   unsafe primes.
•   Find and display the   count   of the unsafe primes below   1,000,000.
•   Find and display the   count   of the unsafe primes below 10,000,000.
•   (Optional)   display the   counts   and   "below numbers"   with commas.

Show all output here.

Also see

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
`# find and count safe and unsafe primes                                       ## safe primes are primes p such that ( p - 1 ) / 2 is also prime              ## unsafe primes are primes that are not safe                                  #PR heap=128M PR # set heap memory size for Algol 68G                          ## returns a string representation of n with commas                            #PROC commatise = ( INT n )STRING:     BEGIN        STRING result      := "";        STRING unformatted  = whole( n, 0 );        INT    ch count    := 0;        FOR c FROM UPB unformatted BY -1 TO LWB unformatted DO            IF   ch count <= 2 THEN ch count +:= 1            ELSE                    ch count  := 1; "," +=: result            FI;            unformatted[ c ] +=: result        OD;        result     END # commatise # ;# sieve values                                                                #CHAR prime     = "P"; # unclassified prime                                    #CHAR safe      = "S"; # safe prime                                            #CHAR unsafe    = "U"; # unsafe prime                                          #CHAR composite = "C"; # non-prime                                             ## sieve of Eratosthenes: sets s[i] to prime if i is a prime,                  ##                                     composite otherwise                     #PROC sieve = ( REF[]CHAR s )VOID:     BEGIN        # start with everything flagged as prime                              #        FOR i TO UPB s DO s[ i ] := prime OD;        # sieve out the non-primes                                            #        s[ 1 ] := composite;        FOR i FROM 2 TO ENTIER sqrt( UPB s ) DO            IF s[ i ] = prime THEN FOR p FROM i * i BY i TO UPB s DO s[ p ] := composite OD FI        OD     END # sieve # ; INT max number = 10 000 000;# construct a sieve of primes up to the maximum number                        #[ 1 : max number ]CHAR primes;sieve( primes );# classify the primes                                                         ## ( p - 1 ) OVER 2 is non-zero for p >= 3, thus we know 2 is unsafe           #primes[ 2 ] := unsafe;FOR p FROM 3 TO UPB primes DO    IF primes[ p ] = prime THEN        primes[ p ] := IF primes[ ( p - 1 ) OVER 2 ] = composite THEN unsafe ELSE safe FI    FIOD;# count the primes of each type                                               #INT safe1   := 0, safe10   := 0;INT unsafe1 := 0, unsafe10 := 0;FOR p FROM LWB primes TO UPB primes DO    IF   primes[ p ] = safe  THEN        safe10   +:= 1;        IF p < 1 000 000 THEN safe1   +:= 1 FI    ELIF primes[ p ] = unsafe THEN        unsafe10 +:= 1;        IF p < 1 000 000 THEN unsafe1 +:= 1 FI    FIOD;INT safe count    := 0;print( ( "first 35 safe   primes:", newline ) );FOR p WHILE safe count   < 35 DO IF primes[ p ] = safe   THEN print( ( " ", whole( p, 0 ) ) ); safe count +:= 1 FI OD;print( ( newline ) );print( ( "safe   primes below   1,000,000: ", commatise(    safe1 ), newline ) );print( ( "safe   primes below  10,000,000: ", commatise(   safe10 ), newline ) );print( ( "first 40 unsafe primes:", newline ) );INT unsafe count := 0;FOR p WHILE unsafe count < 40 DO IF primes[ p ] = unsafe THEN print( ( " ", whole( p, 0 ) ) ); unsafe count +:= 1 FI OD;print( ( newline ) );print( ( "unsafe primes below   1,000,000: ", commatise(  unsafe1 ), newline ) );print( ( "unsafe primes below  10,000,000: ", commatise( unsafe10 ), newline ) )`
Output:
```first 35 safe   primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
safe   primes below   1,000,000: 4,324
safe   primes below  10,000,000: 30,657
first 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
unsafe primes below   1,000,000: 74,174
unsafe primes below  10,000,000: 633,922
```

AppleScript

`-- Heavy-duty Sieve of Eratosthenes handler.-- Returns a list containing either just the primes up to a given limit ('crossingsOut' = false) or, as in this task,-- both the primes and 'missing values' representing the "crossed out" non-primes ('crossingsOut' = true).on sieveForPrimes given limit:limit, crossingsOut:keepingZaps    if (limit < 1) then return {}    -- Build a list initially containing only 'missing values'. For speed, and to reduce the likelihood of hanging,    -- do this by building sublists of at most 5000 items and concatenating them afterwards.    script o        property sublists : {}        property numberList : {}    end script    set sublistSize to 5000    set mv to missing value -- Use a single 'missing value' instance for economy.    repeat sublistSize times        set end of o's numberList to mv    end repeat    -- Start with a possible < 5000-item sublist.    if (limit mod sublistSize > 0) then set end of o's sublists to items 1 thru (limit mod sublistSize) of o's numberList    -- Then any 5000-item sublists needed.    if (limit ≥ sublistSize) then        set end of o's sublists to o's numberList        repeat (limit div sublistSize - 1) times            set end of o's sublists to o's numberList's items        end repeat    end if    -- Concatenate them more-or-less evenly.    set subListCount to (count o's sublists)    repeat until (subListCount is 1)        set o's numberList to {}        repeat with i from 2 to subListCount by 2            set end of o's numberList to (item (i - 1) of o's sublists) & (item i of o's sublists)        end repeat        if (i < subListCount) then set last item of o's numberList to (end of o's numberList) & (end of o's sublists)        set o's sublists to o's numberList        set subListCount to subListCount div 2    end repeat    set o's numberList to beginning of o's sublists     -- Set the relevant list positions to 2, 3, 5, and numbers which aren't multiples of them.    if (limit > 1) then set item 2 of o's numberList to 2    if (limit > 2) then set item 3 of o's numberList to 3    if (limit > 4) then set item 5 of o's numberList to 5    if (limit < 36) then        set n to -23    else        repeat with n from 7 to (limit - 29) by 30            set item n of o's numberList to n            tell (n + 4) to set item it of o's numberList to it            tell (n + 6) to set item it of o's numberList to it            tell (n + 10) to set item it of o's numberList to it            tell (n + 12) to set item it of o's numberList to it            tell (n + 16) to set item it of o's numberList to it            tell (n + 22) to set item it of o's numberList to it            tell (n + 24) to set item it of o's numberList to it        end repeat    end if    repeat with n from (n + 30) to limit        if ((n mod 2 > 0) and (n mod 3 > 0) and (n mod 5 > 0)) then set item n of o's numberList to n    end repeat     -- "Cross out" inserted numbers which are multiples of others.    set inx to {0, 4, 6, 10, 12, 16, 22, 24}    repeat with n from 7 to ((limit ^ 0.5) div 1) by 30        repeat with inc in inx            tell (n + inc)                if (item it of o's numberList is it) then                    repeat with multiple from (it * it) to limit by it                        set item multiple of o's numberList to mv                    end repeat                end if            end tell        end repeat    end repeat     if (keepingZaps) then return o's numberList    return o's numberList's numbersend sieveForPrimes -- Task code:on doTask()    set {safeQuantity, unsafeQuantity, max1, max2} to {35, 40, 1000000 - 1, 10000000 - 1}    set {safePrimes, unsafePrimes, safeCount1, safeCount2, unsafeCount1, unsafeCount2} to {{}, {}, 0, 0, 0, 0}    -- Get a list of 9,999,999 primes and "crossed out" non-primes! Also one with just the primes.    script o        property primesAndZaps : sieveForPrimes with crossingsOut given limit:max2        property primesOnly : my primesAndZaps's numbers    end script    -- Work through the primes-only list, using the other as an indexable look-up to check the related numbers.    set SophieGermainLimit to (max2 - 1) div 2    repeat with n in o's primesOnly        set n to n's contents        if (n ≤ SophieGermainLimit) then            tell (n * 2 + 1)                if (item it of o's primesAndZaps is it) then                    if (safeCount2 < safeQuantity) then set end of safePrimes to it                    if (it < max1) then set safeCount1 to safeCount1 + 1                    set safeCount2 to safeCount2 + 1                end if            end tell        end if        if ((n is 2) or (item ((n - 1) div 2) of o's primesAndZaps is missing value)) then            if (unsafeCount2 < unsafeQuantity) then set end of unsafePrimes to n            if (n < max1) then set unsafeCount1 to unsafeCount1 + 1            set unsafeCount2 to unsafeCount2 + 1        end if    end repeat    -- Format and output the results.    set output to {}    set astid to AppleScript's text item delimiters    set AppleScript's text item delimiters to ", "    set end of output to "First 35 safe primes:"    set end of output to safePrimes as text    set end of output to "There are " & safeCount1 & " safe primes < 1,000,000 and " & safeCount2 & " < 10,000,000."    set end of output to ""    set end of output to "First 40 unsafe primes:"    set end of output to unsafePrimes as text    set end of output to "There are " & unsafeCount1 & " unsafe primes < 1,000,000 and " & unsafeCount2 & " < 10,000,000."    set AppleScript's text item delimiters to linefeed    set output to output as text    set AppleScript's text item delimiters to astid     return outputend doTask return doTask()`
Output:
`"First 35 safe primes:5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619There are 4324 safe primes < 1,000,000 and 30657 < 10,000,000. First 40 unsafe primes:2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233There are 74174 unsafe primes < 1,000,000 and 633922 < 10,000,000."`

AWK

` # syntax: GAWK -f SAFE_PRIMES_AND_UNSAFE_PRIMES.AWKBEGIN {    for (i=1; i<1E7; i++) {      if (is_prime(i)) {        arr[i] = ""      }    }# safe:    stop1 = 35 ; stop2 = 1E6 ; stop3 = 1E7    count1 = count2 = count3 = 0    printf("The first %d safe primes:",stop1)    for (i=3; count1<stop1; i+=2) {      if (i in arr && ((i-1)/2 in arr)) {        count1++        printf(" %d",i)      }    }    printf("\n")    for (i=3; i<stop3; i+=2) {      if (i in arr && ((i-1)/2 in arr)) {        count3++        if (i < stop2) {          count2++        }      }    }    printf("Number below %d: %d\n",stop2,count2)    printf("Number below %d: %d\n",stop3,count3)# unsafe:    stop1 = 40 ; stop2 = 1E6 ; stop3 = 1E7    count1 = count2 = count3 = 1 # since (2-1)/2 is not prime    printf("The first %d unsafe primes: 2",stop1)    for (i=3; count1<stop1; i+=2) {      if (i in arr && !((i-1)/2 in arr)) {        count1++        printf(" %d",i)      }    }    printf("\n")    for (i=3; i<stop3; i+=2) {      if (i in arr && !((i-1)/2 in arr)) {        count3++        if (i < stop2) {          count2++        }      }    }    printf("Number below %d: %d\n",stop2,count2)    printf("Number below %d: %d\n",stop3,count3)    exit(0)}function is_prime(n,  d) {    d = 5    if (n < 2) { return(0) }    if (n % 2 == 0) { return(n == 2) }    if (n % 3 == 0) { return(n == 3) }    while (d*d <= n) {      if (n % d == 0) { return(0) }      d += 2      if (n % d == 0) { return(0) }      d += 4    }    return(1)} `
Output:
```The first 35 safe primes: 5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
Number below 1000000: 4324
Number below 10000000: 30657
The first 40 unsafe primes: 2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Number below 1000000: 74174
Number below 10000000: 633922
```

BASIC256

Translation of: FreeBASIC
`arraybase 1max = 1000000sc1 = 0: usc1 = 0: sc2 = 0: usc2 = 0safeprimes\$ =""unsafeprimes\$ = "" redim criba(max)# False = prime, True = no primecriba[0] = Truecriba[1] = True for i = 4 to max step 2  criba[i] = 1next ifor i = 3 to sqr(max) +1 step 2  if criba[i] = False then    for j = i * i to max step i * 2      criba[j] = True    next j  end ifnext usc1 = 1unsafeprimes\$ = "2"for i = 3 to 3001 step 2  if criba[i] = False then    if criba[i \ 2] = False then      sc1 += 1      if sc1 <= 35 then safeprimes\$ += " " + string(i)    else      usc1 += 1      if usc1 <= 40 then unsafeprimes\$ +=  " " + string(i)    end if  end ifnext i for i = 3003 to max \ 10 step 2  if criba[i] = False then    if criba[i \ 2] = False then      sc1 += 1    else      usc1 += 1    end if  end ifnext i sc2 = sc1usc2 = usc1for i = max \ 10 + 1 to max step 2  if criba[i] = False then    if criba[i \ 2] = False  then      sc2 += 1    else      usc2 += 1    end if  end ifnext i print "the first 35 Safeprimes are: "; safeprimes\$printprint "the first 40 Unsafeprimes are:  "; unsafeprimes\$printprint "     Safeprimes   Unsafeprimes"print "  Below  -------------------------"print max \ 10, sc1, usc1print max   , sc2, usc2end`

C

`#include <stdbool.h>#include <stdio.h> int primes[] = {    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,    211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331};#define PCOUNT (sizeof(primes) / sizeof(int)) bool isPrime(int n) {    int i;     if (n < 2) {        return false;    }     for (i = 0; i < PCOUNT; i++) {        if (n == primes[i]) {            return true;        }        if (n % primes[i] == 0) {            return false;        }        if (n < primes[i] * primes[i]) {            return true;        }    }     for (i = primes[PCOUNT - 1] + 2; i * i <= n; i += 2) {        if (n % i == 0) {            return false;        }    }     return true;} int main() {    int beg, end;    int i, count;     // safe primes    ///////////////////////////////////////////    beg = 2;    end = 1000000;    count = 0;    printf("First 35 safe primes:\n");    for (i = beg; i < end; i++) {        if (isPrime(i) && isPrime((i - 1) / 2)) {            if (count < 35) {                printf("%d ", i);            }            count++;        }    }    printf("\nThere are  %d safe primes below  %d\n", count, end);     beg = end;    end = end * 10;    for (i = beg; i < end; i++) {        if (isPrime(i) && isPrime((i - 1) / 2)) {            count++;        }    }    printf("There are %d safe primes below %d\n", count, end);     // unsafe primes    ///////////////////////////////////////////    beg = 2;    end = 1000000;    count = 0;    printf("\nFirst 40 unsafe primes:\n");    for (i = beg; i < end; i++) {        if (isPrime(i) && !isPrime((i - 1) / 2)) {            if (count < 40) {                printf("%d ", i);            }            count++;        }    }    printf("\nThere are  %d unsafe primes below  %d\n", count, end);     beg = end;    end = end * 10;    for (i = beg; i < end; i++) {        if (isPrime(i) && !isPrime((i - 1) / 2)) {            count++;        }    }    printf("There are %d unsafe primes below %d\n", count, end);     return 0;}`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are  4324 safe primes below  1000000
There are 30657 safe primes below 10000000

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are  74174 unsafe primes below  1000000
There are 633922 unsafe primes below 10000000```

C#

Works with: C sharp version 7
`using static System.Console;using System;using System.Collections;using System.Collections.Generic;using System.Linq; public static class SafePrimes{    public static void Main() {        HashSet<int> primes = Primes(10_000_000).ToHashSet();        WriteLine("First 35 safe primes:");        WriteLine(string.Join(" ", primes.Where(IsSafe).Take(35)));        WriteLine(\$"There are {primes.TakeWhile(p => p < 1_000_000).Count(IsSafe):n0} safe primes below {1_000_000:n0}");        WriteLine(\$"There are {primes.TakeWhile(p => p < 10_000_000).Count(IsSafe):n0} safe primes below {10_000_000:n0}");        WriteLine("First 40 unsafe primes:");        WriteLine(string.Join(" ", primes.Where(IsUnsafe).Take(40)));        WriteLine(\$"There are {primes.TakeWhile(p => p < 1_000_000).Count(IsUnsafe):n0} unsafe primes below {1_000_000:n0}");        WriteLine(\$"There are {primes.TakeWhile(p => p < 10_000_000).Count(IsUnsafe):n0} unsafe primes below {10_000_000:n0}");         bool IsSafe(int prime) => primes.Contains(prime / 2);        bool IsUnsafe(int prime) => !primes.Contains(prime / 2);    }     //Method from maths library    static IEnumerable<int> Primes(int bound) {        if (bound < 2) yield break;        yield return 2;         BitArray composite = new BitArray((bound - 1) / 2);        int limit = ((int)(Math.Sqrt(bound)) - 1) / 2;        for (int i = 0; i < limit; i++) {            if (composite[i]) continue;            int prime = 2 * i + 3;            yield return prime;            for (int j = (prime * prime - 2) / 2; j < composite.Count; j += prime) composite[j] = true;        }        for (int i = limit; i < composite.Count; i++) {            if (!composite[i]) yield return 2 * i + 3;        }    } }`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are 4,324 safe primes below 1,000,000
There are 30,657 safe primes below 10,000,000
First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are 74,174 unsafe primes below 1,000,000
There are 633,922 unsafe primes below 10,000,000```

C++

`#include <algorithm>#include <iostream>#include <iterator>#include <locale>#include <vector>#include "prime_sieve.hpp" const int limit1 = 1000000;const int limit2 = 10000000; class prime_info {public:    explicit prime_info(int max) : max_print(max) {}    void add_prime(int prime);    void print(std::ostream& os, const char* name) const;private:    int max_print;    int count1 = 0;    int count2 = 0;    std::vector<int> primes;}; void prime_info::add_prime(int prime) {    ++count2;    if (prime < limit1)        ++count1;    if (count2 <= max_print)        primes.push_back(prime);} void prime_info::print(std::ostream& os, const char* name) const {    os << "First " << max_print << " " << name << " primes: ";    std::copy(primes.begin(), primes.end(), std::ostream_iterator<int>(os, " "));    os << '\n';    os << "Number of " << name << " primes below " << limit1 << ": " << count1 << '\n';    os << "Number of " << name << " primes below " << limit2 << ": " << count2 << '\n';} int main() {    // find the prime numbers up to limit2    prime_sieve sieve(limit2);     // write numbers with groups of digits separated according to the system default locale    std::cout.imbue(std::locale(""));     // count and print safe/unsafe prime numbers    prime_info safe_primes(35);    prime_info unsafe_primes(40);    for (int p = 2; p < limit2; ++p) {        if (sieve.is_prime(p)) {            if (sieve.is_prime((p - 1)/2))                safe_primes.add_prime(p);            else                unsafe_primes.add_prime(p);        }    }    safe_primes.print(std::cout, "safe");    unsafe_primes.print(std::cout, "unsafe");    return 0;}`

Contents of prime_sieve.hpp:

`#ifndef PRIME_SIEVE_HPP#define PRIME_SIEVE_HPP #include <algorithm>#include <vector> /** * A simple implementation of the Sieve of Eratosthenes. * See https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes. */class prime_sieve {public:    explicit prime_sieve(size_t);    bool is_prime(size_t) const;private:    std::vector<bool> is_prime_;}; /** * Constructs a sieve with the given limit. * * @param limit the maximum integer that can be tested for primality */inline prime_sieve::prime_sieve(size_t limit) {    limit = std::max(size_t(3), limit);    is_prime_.resize(limit/2, true);    for (size_t p = 3; p * p <= limit; p += 2) {        if (is_prime_[p/2 - 1]) {            size_t inc = 2 * p;            for (size_t q = p * p; q <= limit; q += inc)                is_prime_[q/2 - 1] = false;        }    }} /** * Returns true if the given integer is a prime number. The integer * must be less than or equal to the limit passed to the constructor. * * @param n an integer less than or equal to the limit passed to the * constructor * @return true if the integer is prime */inline bool prime_sieve::is_prime(size_t n) const {    if (n == 2)        return true;    if (n < 2 || n % 2 == 0)        return false;    return is_prime_.at(n/2 - 1);} #endif`
Output:
```First 35 safe primes: 5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
Number of safe primes below 1,000,000: 4,324
Number of safe primes below 10,000,000: 30,657
First 40 unsafe primes: 2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Number of unsafe primes below 1,000,000: 74,174
Number of unsafe primes below 10,000,000: 633,922
```

CLU

`isqrt = proc (s: int) returns (int)    x0: int := s/2    if x0=0 then return(s) end    x1: int := (x0 + s/x0)/2    while x1 < x0 do        x0 := x1        x1 := (x0 + s/x0)/2    end    return(x0)end isqrt sieve = proc (n: int) returns (array[bool])    prime: array[bool] := array[bool]\$fill(0,n+1,true)    prime[0] := false    prime[1] := false    for p: int in int\$from_to(2, isqrt(n)) do        if prime[p] then            for c: int in int\$from_to_by(p*p,n,p) do                prime[c] := false            end        end    end    return(prime)end sieve start_up = proc ()    primeinfo = record [        name: string,        ps: array[int],        maxps, n_1e6, n_1e7: int    ]     po: stream := stream\$primary_output()    prime: array[bool] := sieve(10000000)     safe: primeinfo := primeinfo\${        name: "safe",        ps: array[int]\$[],        maxps: 35,        n_1e6: 0,        n_1e7: 0    }     unsafe: primeinfo := primeinfo\${        name: "unsafe",        ps: array[int]\$[],        maxps: 40,        n_1e6: 0,        n_1e7: 0    }     for p: int in int\$from_to(2, 10000000) do        if ~prime[p] then continue end        ir: primeinfo         if prime[(p-1)/2]             then ir := safe             else ir := unsafe        end         if array[int]\$size(ir.ps) < ir.maxps then            array[int]\$addh(ir.ps,p)        end        if p<1000000 then ir.n_1e6 := ir.n_1e6 + 1 end        if p<10000000 then ir.n_1e7 := ir.n_1e7 + 1 end    end     for ir: primeinfo in array[primeinfo]\$elements(                       array[primeinfo]\$[safe, unsafe]) do        stream\$putl(po, "First " || int\$unparse(ir.maxps)                   || " " || ir.name || " primes:")        for i: int in array[int]\$elements(ir.ps) do            stream\$puts(po, int\$unparse(i) || " ")        end        stream\$putl(po, "\nThere are " || int\$unparse(ir.n_1e6)                      || " " || ir.name || " primes < 1,000,000.")        stream\$putl(po, "There are " || int\$unparse(ir.n_1e7)                      || " " || ir.name || " primes < 1,000,000.\n")    endend start_up`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are 4324 safe primes < 1,000,000.
There are 30657 safe primes < 1,000,000.

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are 74174 unsafe primes < 1,000,000.
There are 633922 unsafe primes < 1,000,000.```

D

`import std.stdio; immutable PRIMES = [    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,    211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331]; bool isPrime(const int n) {    if (n < 2) {        return false;    }     foreach (p; PRIMES) {        if (n == p) {            return true;        }        if (n % p == 0) {            return false;        }        if (n < p * p) {            return true;        }    }     int i = (PRIMES[\$ - 1] / 6) * 6 - 1;    while (i * i <= n) {        if (n % i == 0) {            return false;        }        i += 2;        if (n % i == 0) {            return false;        }        i += 4;    }     return true;} void main() {    int beg = 2;    int end = 1_000_000;    int count = 0;     // safe primes    ///////////////////////////////////////////     writeln("First 35 safe primes:");    foreach (i; beg..end) {        if (isPrime(i) && isPrime((i - 1) / 2)) {            if (count < 35) {                write(i, ' ');            }            count++;        }    }    writefln("\nThere are %5d safe primes below %8d", count, end);     beg = end;    end *= 10;    foreach (i; beg..end) {        if (isPrime(i) && isPrime((i - 1) / 2)) {            count++;        }    }    writefln("There are %5d safe primes below %8d", count, end);     // unsafe primes    ///////////////////////////////////////////     beg = 2;    end = 1_000_000;    count = 0;    writeln("\nFirst 40 unsafe primes:");    foreach (i; beg..end) {        if (isPrime(i) && !isPrime((i - 1) / 2)) {            if (count < 40) {                write(i, ' ');            }            count++;        }    }    writefln("\nThere are %6d unsafe primes below %9d", count, end);     beg = end;    end *= 10;    foreach (i; beg..end) {        if (isPrime(i) && !isPrime((i - 1) / 2)) {            count++;        }    }    writefln("There are %6d unsafe primes below %9d", count, end);}`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are  4324 safe primes below  1000000
There are 30657 safe primes below 10000000

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are  74174 unsafe primes below   1000000
There are 633922 unsafe primes below  10000000```

F#

This task uses Extensible Prime Generator (F#)
` pCache |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.take 35 |> Seq.iter (printf "%d ") `
Output:
```5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
```
` printfn "There are %d safe primes less than 1000000" (pCache |> Seq.takeWhile(fun n->n<1000000) |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.length) `
Output:
```There are 4324 safe primes less than 10000000
```
` printfn "There are %d safe primes less than 10000000" (pCache |> Seq.takeWhile(fun n->n<10000000) |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.length) `
Output:
```There are 30657 safe primes less than 10000000
```
` pCache |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.take 40 |> Seq.iter (printf "%d ") `
Output:
```2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
```
` printfn "There are %d unsafe primes less than 1000000" (pCache |> Seq.takeWhile(fun n->n<1000000) |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.length);; `
Output:
```There are 74174 unsafe primes less than 1000000
```
` printfn "There are %d unsafe primes less than 10000000" (pCache |> Seq.takeWhile(fun n->n<10000000) |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.length);; `
Output:
```There are 633922 unsafe primes less than 10000000
```

Factor

Much like the Raku example, this program uses an in-built primes generator to efficiently obtain the first ten million primes. If memory is a concern, it wouldn't be unreasonable to perform primality tests on the (odd) numbers below ten million, however.

`USING: fry interpolate kernel literals math math.primessequences tools.memory.private ;IN: rosetta-code.safe-primes CONSTANT: primes \$[ 10,000,000 primes-upto ] : safe/unsafe ( -- safe unsafe )    primes [ 1 - 2/ prime? ] partition ; : count< ( seq n -- str ) '[ _ < ] count commas ; : seq>commas ( seq -- str ) [ commas ] map " " join ; : stats ( seq n -- head count1 count2 )    '[ _ head seq>commas ] [ 1e6 count< ] [ 1e7 count< ] tri ; safe/unsafe [ 35 ] [ 40 ] bi* [ stats ] [email protected] [IFirst 35 safe primes:\${5}Safe prime count below  1,000,000: \${4}Safe prime count below 10,000,000: \${3} First 40 unsafe primes:\${2}Unsafe prime count below  1,000,000: \${1}Unsafe prime count below 10,000,000: \${}I]`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
Safe prime count below  1,000,000: 4,324
Safe prime count below 10,000,000: 30,657

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Unsafe prime count below  1,000,000: 74,174
Unsafe prime count below 10,000,000: 633,922
```

FreeBASIC

`' version 19-01-2019' compile with: fbc -s console Const As UInteger max = 10000000Dim As UInteger i, j, sc1, usc1, sc2, usc2Dim As String safeprimes, unsafeprimesDim As UByte sieve() ReDim sieve(max)' 0 = prime, 1 = no primesieve(0) = 1 : sieve(1) = 1 For i = 4 To max Step 2    sieve(i) = 1NextFor i = 3 To Sqr(max) +1 Step 2    If sieve(i) = 0 Then        For j = i * i To max Step i * 2            sieve(j) = 1        Next    End IfNext usc1 = 1 : unsafeprimes = "2"For i = 3 To 3001 Step 2    If sieve(i) = 0 Then        If sieve(i \ 2) = 0 Then            sc1 += 1            If sc1 <= 35 Then                safeprimes += " " + Str(i)            End If        Else            usc1 += 1            If usc1 <= 40 Then                unsafeprimes +=  " " + Str(i)            End If        End If    End IfNext For i = 3003 To max \ 10 Step 2    If sieve(i) = 0 Then        If sieve(i \ 2) = 0 Then            sc1 += 1        Else            usc1 += 1        End If    End IfNext sc2 = sc1 : usc2 = usc1For i = max \ 10 +1 To max Step 2    If sieve(i) = 0 Then        If sieve(i \ 2) = 0  Then            sc2 += 1        Else            usc2 += 1        End If    End IfNext Print "the first 35 Safeprimes are: "; safeprimesPrintPrint "the first 40 Unsafeprimes are:  "; unsafeprimesPrintPrint "                  Safeprimes     Unsafeprimes"Print "    Below         ---------------------------"Print Using "##########,      ";  max \ 10; sc1; usc1Print Using "##########,      ";  max     ; sc2; usc2 ' empty keyboard bufferWhile Inkey <> "" : WendPrint : Print "hit any key to end program"SleepEnd`
Output:
```the first 35 Safeprimes are:  5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

the first 40 Unsafeprimes are:  2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

Safeprimes     Unsafeprimes
Below         ---------------------------
1,000,000            4,324           74,174
10,000,000           30,657          633,922```

Frink

` safePrimes[end=undef] := select[primes[5,end], {|p| isPrime[(p-1)/2] }]unsafePrimes[end=undef] := select[primes[2,end], {|p| p<5 or isPrime[(p-1)/2] }] println["First 35 safe primes:  " + first[safePrimes[], 35]]println["Safe primes below  1,000,000: " + length[safePrimes[1_000_000]]]println["Safe primes below 10,000,000: " + length[safePrimes[10_000_000]]] println["First 40 unsafe primes:  " + first[unsafePrimes[], 40]]println["Unsafe primes below  1,000,000: " + length[unsafePrimes[1_000_000]]]println["Unsafe primes below 10,000,000: " + length[unsafePrimes[10_000_000]]] `
Output:
```First 35 safe primes:  [5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
Safe primes below  1,000,000: 4324
Safe primes below 10,000,000: 30657
First 40 unsafe primes:  [2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233]
Unsafe primes below  1,000,000: 74174
Unsafe primes below 10,000,000: 633922
```

Go

`package main import "fmt" func sieve(limit uint64) []bool {    limit++    // True denotes composite, false denotes prime.    c := make([]bool, limit) // all false by default    c[0] = true    c[1] = true    // apart from 2 all even numbers are of course composite    for i := uint64(4); i < limit; i += 2 {        c[i] = true    }    p := uint64(3) // Start from 3.    for {        p2 := p * p        if p2 >= limit {            break        }        for i := p2; i < limit; i += 2 * p {            c[i] = true        }        for {            p += 2            if !c[p] {                break            }        }    }    return c} func commatize(n int) string {    s := fmt.Sprintf("%d", n)    if n < 0 {        s = s[1:]    }    le := len(s)    for i := le - 3; i >= 1; i -= 3 {        s = s[0:i] + "," + s[i:]    }    if n >= 0 {        return s    }    return "-" + s} func main() {    // sieve up to 10 million    sieved := sieve(1e7)    var safe = make([]int, 35)    count := 0    for i := 3; count < 35; i += 2 {        if !sieved[i] && !sieved[(i-1)/2] {            safe[count] = i            count++        }    }    fmt.Println("The first 35 safe primes are:\n", safe, "\n")     count = 0    for i := 3; i < 1e6; i += 2 {        if !sieved[i] && !sieved[(i-1)/2] {            count++        }    }    fmt.Println("The number of safe primes below 1,000,000 is", commatize(count), "\n")     for i := 1000001; i < 1e7; i += 2 {        if !sieved[i] && !sieved[(i-1)/2] {            count++        }    }    fmt.Println("The number of safe primes below 10,000,000 is", commatize(count), "\n")     unsafe := make([]int, 40)    unsafe[0] = 2 // since (2 - 1)/2 is not prime    count = 1    for i := 3; count < 40; i += 2 {        if !sieved[i] && sieved[(i-1)/2] {            unsafe[count] = i            count++        }    }    fmt.Println("The first 40 unsafe primes are:\n", unsafe, "\n")     count = 1    for i := 3; i < 1e6; i += 2 {        if !sieved[i] && sieved[(i-1)/2] {            count++        }    }    fmt.Println("The number of unsafe primes below 1,000,000 is", commatize(count), "\n")     for i := 1000001; i < 1e7; i += 2 {        if !sieved[i] && sieved[(i-1)/2] {            count++        }    }    fmt.Println("The number of unsafe primes below 10,000,000 is", commatize(count), "\n")}`
Output:
```The first 35 safe primes are:
[5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619]

The number of safe primes below 1,000,000 is 4,324

The number of safe primes below 10,000,000 is 30,657

The first 40 unsafe primes are:
[2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233]

The number of unsafe primes below 1,000,000 is 74,174

The number of unsafe primes below 10,000,000 is 633,922
```

` import Text.Printf (printf)import Data.Numbers.Primes (isPrime, primes) main = do   printf "First 35 safe primes: %s\n" (show \$ take 35 safe)  printf "There are %d safe primes below 100,000.\n" (length \$ takeWhile (<1000000) safe)  printf "There are %d safe primes below 10,000,000.\n\n" (length \$ takeWhile (<10000000) safe)   printf "First 40 unsafe primes: %s\n" (show \$ take 40 unsafe)  printf "There are %d unsafe primes below 100,000.\n" (length \$ takeWhile (<1000000) unsafe)  printf "There are %d unsafe primes below 10,000,000.\n\n" (length \$ takeWhile (<10000000) unsafe)   where safe = filter (\n -> isPrime ((n-1) `div` 2)) primes        unsafe = filter (\n -> not (isPrime((n-1) `div` 2))) primes `
Output:
```First 35 safe primes: [5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619]
There are 4324 safe primes below 100,000.
There are 30657 safe primes below 10,000,000.

First 40 unsafe primes: [2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233]
There are 74174 unsafe primes below 100,000.
There are 633922 unsafe primes below 10,000,000.
```

J

```   NB. play around a bit to get primes less than ten million
p:inv 10000000
664579

p:664579
10000019

PRIMES =: p:i.664579
10 {. PRIMES
2 3 5 7 11 13 17 19 23 29

{: PRIMES
9999991

primeQ =: 1&p:
safeQ =: [email protected]:-:@:<:
Filter =: (#~`)(`:6)

SAFE =: safeQ Filter PRIMES

NB. first thirty-five safe primes
(32+3) {. SAFE
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

NB. first forty unsafe primes
(33+7) {. PRIMES -. SAFE
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

NB. tally of safe primes less than ten million
# SAFE
30657

NB. tally of safe primes below a million
# 1000000&>Filter SAFE
4324

NB. tally of perilous primes below ten million
UNSAFE =: PRIMES -. SAFE

# UNSAFE
633922

NB. tally of these below one million
K =: 1 : 'm * 1000'
+/ UNSAFE < 1 K K
74174

```

Essentially we have

` primeQ =: 1&p:safeQ =: [email protected]:-:@:<: Filter =: (#~`)(`:6)K =: adverb def 'm * 1000'PRIMES =: i.&.:(p:inv) 10 K KSAFE =: safeQ Filter PRIMESUNSAFE =: PRIMES -. SAFE `

The rest of the display is mere window dressing.

Java

`public class SafePrimes {    public static void main(String... args) {        // Use Sieve of Eratosthenes to find primes        int SIEVE_SIZE = 10_000_000;        boolean[] isComposite = new boolean[SIEVE_SIZE];        // It's really a flag indicating non-prime, but composite usually applies        isComposite[0] = true;        isComposite[1] = true;        for (int n = 2; n < SIEVE_SIZE; n++) {            if (isComposite[n]) {                continue;            }            for (int i = n * 2; i < SIEVE_SIZE; i += n) {                isComposite[i] = true;            }        }         int oldSafePrimeCount = 0;        int oldUnsafePrimeCount = 0;        int safePrimeCount = 0;        int unsafePrimeCount = 0;        StringBuilder safePrimes = new StringBuilder();        StringBuilder unsafePrimes = new StringBuilder();        int safePrimesStrCount = 0;        int unsafePrimesStrCount = 0;        for (int n = 2; n < SIEVE_SIZE; n++) {            if (n == 1_000_000) {                oldSafePrimeCount = safePrimeCount;                oldUnsafePrimeCount = unsafePrimeCount;            }            if (isComposite[n]) {                continue;            }            boolean isUnsafe = isComposite[(n - 1) >>> 1];            if (isUnsafe) {                if (unsafePrimeCount < 40) {                    if (unsafePrimeCount > 0) {                        unsafePrimes.append(", ");                    }                    unsafePrimes.append(n);                    unsafePrimesStrCount++;                }                unsafePrimeCount++;            }            else {                if (safePrimeCount < 35) {                    if (safePrimeCount > 0) {                        safePrimes.append(", ");                    }                    safePrimes.append(n);                    safePrimesStrCount++;                }                safePrimeCount++;            }        }         System.out.println("First " + safePrimesStrCount + " safe primes: " + safePrimes.toString());        System.out.println("Number of safe primes below 1,000,000: " + oldSafePrimeCount);        System.out.println("Number of safe primes below 10,000,000: " + safePrimeCount);        System.out.println("First " + unsafePrimesStrCount + " unsafe primes: " + unsafePrimes.toString());        System.out.println("Number of unsafe primes below 1,000,000: " + oldUnsafePrimeCount);        System.out.println("Number of unsafe primes below 10,000,000: " + unsafePrimeCount);         return;    }}`
Output:
```First 35 safe primes: 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619
Number of safe primes below 1,000,000: 4324
Number of safe primes below 10,000,000: 30657
First 40 unsafe primes: 2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233
Number of unsafe primes below 1,000,000: 74174
Number of unsafe primes below 10,000,000: 633922```

jq

Works with: jq

To save memory, we use a memory-less `is_prime` algorithm, but with a long preamble.

` def is_prime:  . as \$n  | if (\$n < 2)         then false    elif (\$n % 2 == 0)  then \$n == 2    elif (\$n % 3 == 0)  then \$n == 3    elif (\$n % 5 == 0)  then \$n == 5    elif (\$n % 7 == 0)  then \$n == 7    elif (\$n % 11 == 0) then \$n == 11    elif (\$n % 13 == 0) then \$n == 13    elif (\$n % 17 == 0) then \$n == 17    elif (\$n % 19 == 0) then \$n == 19    elif (\$n % 23 == 0) then \$n == 23    elif (\$n % 29 == 0) then \$n == 29    elif (\$n % 31 == 0) then \$n == 31    else 37         | until( (. * .) > \$n or (\$n % . == 0); . + 2)         | . * . > \$n    end; def task:   # a helper function for keeping count:  def record(\$p; counter6; counter7):    if \$p < 10000000    then counter7 += 1    | if \$p < 1000000       then counter6 += 1      else .      end    else .    end;   # a helper function for recording up to \$max values  def recordValues(\$max; \$p; a; done):     if done then .     elif a|length < \$max     then a += [\$p] | done = (\$max == (a|length))     else .     end;   10000000 as \$n  | reduce (2, range(3;\$n;2)) as \$p ({};      if \$p|is_prime      then if ((\$p - 1) / 2) | is_prime           then recordValues(35; \$p; .safeprimes; .safedone)           | record(\$p; .nsafeprimes6; .nsafeprimes7)           else  recordValues(40; \$p; .unsafeprimes; .unsafedone)           | record(\$p; .nunsafeprimes6; .nunsafeprimes7)           end      else .      end )  | "The first 35 safe primes are: ", .safeprimes[0:35],    "\nThere are \(.nsafeprimes6) safe primes less than 1 million.",    "\nThere are \(.nsafeprimes7) safe primes less than 10 million.",    "",    "\nThe first 40 unsafe primes are:", .unsafeprimes[0:40],    "\nThere are \(.nunsafeprimes6) unsafe primes less than 1 million.",    "\nThere are \(.nunsafeprimes7) unsafe primes less than 10 million."; task`
Output:
```The first 35 safe primes are:
[5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619]

There are 4324 safe primes less than 1 million.

There are 30657 safe primes less than 10 million.

The first 40 unsafe primes are:
[2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233]

There are 74174 unsafe primes less than 1 million.

There are 633922 unsafe primes less than 10 million.

```

Julia

`using Primes, Formatting function parseprimelist()    primelist = primes(2, 10000000)    safeprimes = Vector{Int64}()    unsafeprimes = Vector{Int64}()    for p in primelist        if isprime(div(p - 1, 2))            push!(safeprimes, p)        else            push!(unsafeprimes, p)        end    end    println("The first 35 unsafe primes are: ", safeprimes[1:35])    println("There are ", format(sum(map(x -> x < 1000000, safeprimes)), commas=true), " safe primes less than 1 million.")    println("There are ", format(length(safeprimes), commas=true), " safe primes less than 10 million.")        println("The first 40 unsafe primes are: ", unsafeprimes[1:40])    println("There are ", format(sum(map(x -> x < 1000000, unsafeprimes)), commas=true), " unsafe primes less than 1 million.")    println("There are ", format(length(unsafeprimes), commas=true), " unsafe primes less than 10 million.")end parseprimelist() `
Output:
```
The first 35 unsafe primes are: [5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
There are 4,324 safe primes less than 1 million.
There are 30,657 safe primes less than 10 million.
The first 40 unsafe primes are: [2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233]
There are 74,174 unsafe primes less than 1 million.
There are 633,922 unsafe primes less than 10 million.

```

Kotlin

Translation of: Go
`// Version 1.2.70 fun sieve(limit: Int): BooleanArray {    // True denotes composite, false denotes prime.    val c = BooleanArray(limit + 1) // all false by default    c[0] = true    c[1] = true    // apart from 2 all even numbers are of course composite    for (i in 4..limit step 2) c[i] = true    var p = 3 // start from 3    while (true) {        val p2 = p * p        if (p2 > limit) break        for (i in p2..limit step 2 * p) c[i] = true        while (true) {            p += 2            if (!c[p]) break        }    }    return c} fun main(args: Array<String>) {    // sieve up to 10 million    val sieved = sieve(10_000_000)    val safe = IntArray(35)    var count = 0    var i = 3    while (count < 35) {        if (!sieved[i] && !sieved[(i - 1) / 2]) safe[count++] = i        i += 2    }    println("The first 35 safe primes are:")    println(safe.joinToString(" ","[", "]\n"))     count = 0    for (j in 3 until 1_000_000 step 2) {        if (!sieved[j] && !sieved[(j - 1) / 2]) count++    }    System.out.printf("The number of safe primes below 1,000,000 is %,d\n\n", count)     for (j in 1_000_001 until 10_000_000 step 2) {        if (!sieved[j] && !sieved[(j - 1) / 2]) count++    }    System.out.printf("The number of safe primes below 10,000,000 is %,d\n\n", count)     val unsafe = IntArray(40)    unsafe[0] = 2  // since (2 - 1)/2 is not prime    count = 1    i = 3    while (count < 40) {        if (!sieved[i] && sieved[(i - 1) / 2]) unsafe[count++] = i        i += 2    }    println("The first 40 unsafe primes are:")    println(unsafe.joinToString(" ","[", "]\n"))     count = 1    for (j in 3 until 1_000_000 step 2) {        if (!sieved[j] && sieved[(j - 1) / 2]) count++    }    System.out.printf("The number of unsafe primes below 1,000,000 is %,d\n\n", count)     for (j in 1_000_001 until 10_000_000 step 2) {        if (!sieved[j] && sieved[(j - 1) / 2]) count++    }    System.out.printf("The number of unsafe primes below 10,000,000 is %,d\n\n", count)}`
Output:
```The first 35 safe primes are:
[5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619]

The number of safe primes below 1,000,000 is 4,324

The number of safe primes below 10,000,000 is 30,657

The first 40 unsafe primes are:
[2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233]

The number of unsafe primes below 1,000,000 is 74,174

The number of unsafe primes below 10,000,000 is 633,922
```

Ksh

` #!/bin/ksh # Safe primes and unsafe primes #	# Variables:#integer safecnt=0 safedisp=35 safecnt1M=0integer unsacnt=0 unsadisp=40 unsacnt1M=0typeset -a safeprime unsafeprime #	# Functions:# #	# Function _isprime(n) return 1 for prime, 0 for not prime#function _isprime {	typeset _n ; integer _n=\$1	typeset _i ; integer _i 	(( _n < 2 )) && return 0	for (( _i=2 ; _i*_i<=_n ; _i++ )); do		(( ! ( _n % _i ) )) && return 0	done	return 1} #	# Function _issafe(p) return 1 for safe prime, 0 for not#function _issafe {	typeset _p ; integer _p=\$1 	_isprime \$(( (_p - 1) / 2 ))	return \$?}  ####### main # ###### for ((n=3; n<=10000000; n++)); do	_isprime \${n}	(( ! \$? )) && continue	_issafe \${n}	if (( \$? )); then		(( safecnt++ ))		(( safecnt < safedisp)) && safeprime+=( \${n} )		(( n <= 999999 )) && safecnt1M=\${safecnt}	else		(( unsacnt++ ))		(( unsacnt < unsadisp)) && unsafeprime+=( \${n} )		(( n <= 999999 )) && unsacnt1M=\${unsacnt}	fidone print "Safe primes:\n\${safeprime[*]}"print "There are \${safecnt1M} under 1,000,000"print "There are \${safecnt} under 10,000,000\n" print "Unsafe primes:\n\${unsafeprime[*]}"print "There are \${unsacnt1M} under 1,000,000"print "There are \${unsacnt} under 10,000,000" `
Output:
```
Safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are 4324 under 1,000,000
There are 30657 under 10,000,000
Unsafe primes:
3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are 74173 under 1,000,000

There are 633921 under 10,000,000```

Lua

`-- FUNCS:local function T(t) return setmetatable(t, {__index=table}) endtable.filter = function(t,f) local s=T{} for _,v in ipairs(t) do if f(v) then s[#s+1]=v end end return s endtable.map = function(t,f,...) local s=T{} for _,v in ipairs(t) do s[#s+1]=f(v,...) end return s endtable.firstn = function(t,n) local s=T{} n=n>#t and #t or n for i = 1,n do s[i]=t[i] end return s end -- SIEVE:local sieve, safe, unsafe, floor, N = {}, T{}, T{}, math.floor, 10000000for i = 2,N do sieve[i]=true endfor i = 2,N do if sieve[i] then for j=i*i,N,i do sieve[j]=nil end end endfor i = 2,N do if sieve[i] then local t=sieve[floor((i-1)/2)] and safe or unsafe t[#t+1]=i end end -- TASKS:local function commafy(i) return tostring(i):reverse():gsub("(%d%d%d)","%1,"):reverse():gsub("^,","") endprint("First 35 safe primes        :  " .. safe:firstn(35):map(commafy):concat(" "))print("# safe primes < 1,000,000   :  " .. commafy(#safe:filter(function(v) return v<1e6 end)))print("# safe primes < 10,000,000  :  " .. commafy(#safe))print("First 40 unsafe primes      :  " .. unsafe:firstn(40):map(commafy):concat(" "))print("# unsafe primes < 1,000,000 :  " .. commafy(#unsafe:filter(function(v) return v<1e6 end)))print("# unsafe primes < 10,000,000:  " .. commafy(#unsafe))`
Output:
```First 35 safe primes        :  5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
# safe primes < 1,000,000   :  4,324
# safe primes < 10,000,000  :  30,657
First 40 unsafe primes      :  2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
# unsafe primes < 1,000,000 :  74,174
# unsafe primes < 10,000,000:  633,922```

Maple

`showSafePrimes := proc(n::posint) local prime_list, k; prime_list := [5]; for k to n - 1 do   prime_list := [op(prime_list), NumberTheory:-NextSafePrime(prime_list[-1])]; end do; return prime_list; end proc; showUnsafePrimes := proc(n::posint)local prime_num, k;prime_num := [2];for k to n-1 do  prime_num := [op(prime_num), nextprime(prime_num[-1])];end do;return remove(x -> member(x, showSafePrimes(n)), prime_num);end proc: countSafePrimes := proc(n::posint) local counts, prime; counts := 0; prime := 5; while prime < n do prime := NumberTheory:-NextSafePrime(prime);   counts := counts + 1; end do; return counts; end proc; countUnsafePrimes := proc(n::posint)local safe_counts, total; safe_counts := countSafePrimes(n); total := NumberTheory:-PrimeCounting(n); return total - safe_counts; end proc; showSafePrimes(35);showUnsafePrimes(40);countSafePrimes(1000000);                        countSafePrimes(10000000);countUnsafePrimes(1000000);countUnsafePrimes(10000000);`
Output:
```[5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
[2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173]
4324
30657
74174
633922```

Mathematica/Wolfram Language

`ClearAll[SafePrimeQ, UnsafePrimeQ]SafePrimeQ[n_Integer] := PrimeQ[n] \[And] PrimeQ[(n - 1)/2]UnsafePrimeQ[n_Integer] := PrimeQ[n] \[And] ! PrimeQ[(n - 1)/2] res = {};i = 1;While[Length[res] < 35, test = SafePrimeQ[Prime[i]]; If[test, AppendTo[res, Prime[i]]]; i++ ]res Count[Range[PrimePi[10^6]], _?(Prime /* SafePrimeQ)]Count[Range[PrimePi[10^7]], _?(Prime /* SafePrimeQ)] res = {};i = 1;While[Length[res] < 40, test = UnsafePrimeQ[Prime[i]]; If[test, AppendTo[res, Prime[i]]]; i++ ]res Count[Range[PrimePi[10^6]], _?(Prime /* UnsafePrimeQ)]Count[Range[PrimePi[10^7]], _?(Prime /* UnsafePrimeQ)]`
Output:
```{5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619}
4324
30657
{2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233}
74174
633922```

Nim

`import sequtils, strutils const N = 10_000_000 # Erathostene's Sieve. Only odd values are represented. False value means prime.var sieve: array[N div 2 + 1, bool]sieve[0] = true   # 1 is not prime. for i in 1..sieve.high:  if not sieve[i]:    let n = 2 * i + 1    for k in countup(n * n, N, 2 * n):      sieve[k shr 1] = true  proc isprime(n: Positive): bool =  ## Check if a number is prime.  n == 2 or (n and 1) != 0 and not sieve[n shr 1]  proc classifyPrimes(): tuple[safe, unsafe: seq[int]] =  ## Classify prime numbers in safe and unsafe numbers.  for n in 2..N:    if n.isprime():      if (n shr 1).isprime():        result[0].add n      else:        result[1].add n when isMainModule:   let (safe, unsafe) = classifyPrimes()   echo "First 35 safe primes:"  echo safe[0..<35].join(" ")  echo "Count of safe primes below  1_000_000:",      (\$safe.filterIt(it < 1_000_000).len).insertSep(',').align(7)  echo "Count of safe primes below 10_000_000:",      (\$safe.filterIt(it < 10_000_000).len).insertSep(',').align(7)   echo "First 40 unsafe primes:"  echo unsafe[0..<40].join(" ")  echo "Count of unsafe primes below  1_000_000:",      (\$unsafe.filterIt(it < 1_000_000).len).insertSep(',').align(8)  echo "Count of unsafe primes below 10_000_000:",      (\$unsafe.filterIt(it < 10_000_000).len).insertSep(',').align(8)`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
Count of safe primes below  1_000_000:  4,324
Count of safe primes below 10_000_000: 30,657
First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Count of unsafe primes below  1_000_000:  74,174
Count of unsafe primes below 10_000_000: 633,922```

Pascal

Works with: Free Pascal

Using unit mp_prime of Wolfgang Erhardt ( RIP ) , of which I use two sieve, to simplify things. Generating small primes and checked by the second, which starts to run 2x ahead.Sieving of consecutive prime number is much faster than primality check.

`program Sophie;{ Find and count Sophie Germain primes }{ uses unit mp_prime out of mparith of Wolfgang Ehrhardt* http://wolfgang-ehrhardt.de/misc_en.html#mparith  http://wolfgang-ehrhardt.de/mp_intro.html }{\$APPTYPE CONSOLE}uses mp_prime,sysutils; var  pS0,pS1:TSieve;  procedure SafeOrNoSavePrimeOut(totCnt:NativeInt;CntSafe:boolean);var  cnt,pr,pSG,testPr : NativeUint;begin  prime_sieve_reset(pS0,1);  prime_sieve_reset(pS1,1);  cnt := 0;// memorize prime of the sieve, because sometimes prime_sieve_next(pS1) is to far ahead.  testPr := prime_sieve_next(pS1);  IF CntSafe then    Begin    writeln('First ',totCnt,' safe primes');      repeat      pr := prime_sieve_next(pS0);      pSG := 2*pr+1;      while testPr< pSG do        testPr := prime_sieve_next(pS1);      if pSG = testPr then      begin        write(pSG,',');        inc(cnt);      end;     until cnt >= totCnt  end    else  Begin    writeln('First ',totCnt,' unsafe primes');      repeat      pr := prime_sieve_next(pS0);      pSG := (pr-1) DIV 2;      while testPr< pSG do        testPr := prime_sieve_next(pS1);      if pSG <> testPr then      begin        write(pr,',');        inc(cnt);      end;     until cnt >= totCnt;   end;    writeln(#8,#32);  end;  function CountSafePrimes(Limit:NativeInt):NativeUint;var  cnt,pr,pSG,testPr : NativeUint;begin  prime_sieve_reset(pS0,1);  prime_sieve_reset(pS1,1);  cnt := 0;  testPr := 0;  repeat    pr := prime_sieve_next(pS0);    pSG := 2*pr+1;    while testPr< pSG do      testPr := prime_sieve_next(pS1);    if pSG = testPr then      inc(cnt);  until pSG >= Limit;   CountSafePrimes := cnt;end;  procedure CountSafePrimesOut(Limit:NativeUint);Begin  writeln('there are ',CountSafePrimes(limit),' safe primes out of ',          primepi32(limit),' primes up to ',Limit);end; procedure CountUnSafePrimesOut(Limit:NativeUint);var  prCnt: NativeUint;Begin  prCnt := primepi32(limit);  writeln('there are ',prCnt-CountSafePrimes(limit),' unsafe primes out of ',          prCnt,' primes up to ',Limit);end; var  T1,T0 : INt64;begin  T0 :=gettickcount64;   prime_sieve_init(pS0,1);  prime_sieve_init(pS1,1);//Find and display (on one line) the first  35  safe primes.    SafeOrNoSavePrimeOut(35,true);//Find and display the  count  of the safe primes below  1,000,000.   CountSafePrimesOut(1000*1000);//Find and display the  count  of the safe primes below 10,000,000.    CountSafePrimesOut(10*1000*1000);  //Find and display (on one line) the first  40  unsafe primes.    SafeOrNoSavePrimeOut(40,false);//Find and display the  count  of the unsafe primes below  1,000,000.  CountUnSafePrimesOut(1000*1000);//Find and display the  count  of the unsafe primes below 10,000,000.    CountUnSafePrimesOut(10*1000*1000);  writeln;  CountSafePrimesOut(1000*1000*1000);          T1 :=gettickcount64;   writeln('runtime ',T1-T0,' ms');end.`
Output:
```First 35 safe primes
5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619
there are 4324 safe primes out of 78498 primes up to 1000000
there are 30657 safe primes out of 664579 primes up to 10000000
First 40 unsafe primes
2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233
there are 74174 unsafe primes out of 78498 primes up to 1000000
there are 633922 unsafe primes out of 664579 primes up to 10000000
there are 1775676 safe primes out of 50847534 primes up to 1000000000
runtime 2797 ms
```

Perl

The module `ntheory` does fast prime generation and testing.

Library: ntheory
`use ntheory qw(forprimes is_prime); my \$upto = 1e7;my %class = ( safe => [], unsafe => [2] ); forprimes {    push @{\$class{ is_prime((\$_-1)>>1) ? 'safe' : 'unsafe' }}, \$_;} 3, \$upto; for (['safe', 35], ['unsafe', 40]) {    my(\$type, \$quantity) = @\$_;    print  "The first \$quantity \$type primes are:\n";    print join(" ", map { comma(\$class{\$type}->[\$_-1]) } 1..\$quantity), "\n";    for my \$q (\$upto/10, \$upto) {        my \$n = scalar(grep { \$_ <= \$q } @{\$class{\$type}});        printf "The number of \$type primes up to %s: %s\n", comma(\$q), comma(\$n);    }} sub comma {    (my \$s = reverse shift) =~ s/(.{3})/\$1,/g;    \$s =~ s/,(-?)\$/\$1/;    \$s = reverse \$s;}`
Output:
```The first 35 safe primes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
The number of safe primes up to 1,000,000: 4,324
The number of safe primes up to 10,000,000: 30,657
The first 40 unsafe primes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
The number of unsafe primes up to 1,000,000: 74,174
The number of unsafe primes up to 10,000,000: 633,922```

Phix

```with javascript_semantics
sequence safe = {}, unsafe = {}
function filter_range(integer lo, hi)
while true do
integer p = get_prime(lo)
if p>hi then return lo end if
if p>2 and is_prime((p-1)/2) then
safe &= p
else
unsafe &= p
end if
lo += 1
end while
end function
integer lo = filter_range(1,1_000_000),
ls = length(safe),
lu = length(unsafe)
{} = filter_range(lo,10_000_000)
printf(1,"The first 35 safe primes: %v\n",{safe[1..35]})
printf(1,"Count of safe primes below 1,000,000: %,d\n",ls)
printf(1,"Count of safe primes below 10,000,000: %,d\n",length(safe))
printf(1,"The first 40 unsafe primes: %v\n",{unsafe[1..40]})
printf(1,"Count of unsafe primes below 1,000,000: %,d\n",lu)
printf(1,"Count of unsafe primes below 10,000,000: %,d\n",length(unsafe))
```
Output:
```The first 35 safe primes: {5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619}
Count of safe primes below 1,000,000: 4,324
Count of safe primes below 10,000,000: 30,657
The first 40 unsafe primes: {2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233}
Count of unsafe primes below 1,000,000: 74,174
Count of unsafe primes below 10,000,000: 633,922
```

PureBasic

`#MAX=10000000Global Dim P.b(#MAX) : FillMemory(@P(),#MAX,1,#PB_Byte)Global NewList Primes.i()Global NewList SaveP.i()Global NewList UnSaveP.i() For n=2 To Sqr(#MAX)+1 : If P(n) : m=n*n : While m<=#MAX : P(m)=0 : m+n : Wend : EndIf : NextFor i=2 To #MAX : If p(i) : AddElement(Primes()) : Primes()=i : EndIf : Next ForEach Primes()  If P((Primes()-1)/2) And Primes()>3 : AddElement(SaveP()) : SaveP()=Primes() : If Primes()<1000000 : c1+1 : EndIf  Else     AddElement(UnSaveP()) : UnSaveP()=Primes() : If Primes()<1000000 : c2+1 : EndIf  EndIfNext OpenConsole()PrintN("First 35 safe primes:")If FirstElement(SaveP())  For i=1 To 35 : Print(Str(SaveP())+" ") : NextElement(SaveP()) : NextEndIfPrintN(~"\nThere are "+FormatNumber(c1,0,".","'")+" safe primes below 1'000'000")PrintN("There are "+FormatNumber(ListSize(SaveP()),0,".","'")+" safe primes below 10'000'000")PrintN("")PrintN("First 40 unsafe primes:")If FirstElement(UnSaveP())  For i=1 To 40 : Print(Str(UnSaveP())+" ") : NextElement(UnSaveP()) : NextEndIfPrintN(~"\nThere are "+FormatNumber(c2,0,".","'")+" unsafe primes below 1'000'000")PrintN("There are "+FormatNumber(ListSize(UnSaveP()),0,".","'")+" unsafe primes below 10'000'000")Input()`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are 4'324 safe primes below 1'000'000
There are 30'657 safe primes below 10'000'000

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are 74'174 unsafe primes below 1'000'000
There are 633'922 unsafe primes below 10'000'000
```

Python

` primes =[]sp =[]usp=[]n = 10000000if 2<n:    primes.append(2)for i in range(3,n+1,2):    for j in primes:        if(j>i/2) or (j==primes[-1]):            primes.append(i)            if((i-1)/2) in primes:                sp.append(i)                break            else:                usp.append(i)                break        if (i%j==0):            break print('First 35 safe primes are:\n' , sp[:35])print('There are '+str(len(sp[:1000000]))+' safe primes below 1,000,000')print('There are '+str(len(sp))+' safe primes below 10,000,000')print('First 40 unsafe primes:\n',usp[:40])print('There are '+str(len(usp[:1000000]))+' unsafe primes below 1,000,000')print('There are '+str(len(usp))+' safe primes below 10,000,000') `
Output:
```First 35 safe primes:
[5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619]
There are 4,234 safe primes below 1,000,000
There are 30,657 safe primes below 10,000,000
First 40 unsafe primes:
[2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233]
There are 74,174 unsafe primes below 1,000,000
There are 633,922 unsafe primes below 10,000,000
```

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.08

Raku has a built-in method .is-prime to test for prime numbers. It's great for testing individual numbers or to find/filter a few thousand numbers, but when you are looking for millions, it becomes a drag. No fear, the Raku ecosystem has a fast prime sieve module available which can produce 10 million primes in a few seconds. Once we have the primes, it is just a small matter of filtering and formatting them appropriately.

`sub comma { \$^i.flip.comb(3).join(',').flip } use Math::Primesieve; my \$sieve = Math::Primesieve.new; my @primes = \$sieve.primes(10_000_000); my %filter = @primes.Set; my \$primes = @primes.classify: { %filter{(\$_ - 1)/2} ?? 'safe' !! 'unsafe' }; for 'safe', 35, 'unsafe', 40 -> \$type, \$quantity {    say "The first \$quantity \$type primes are:";     say \$primes{\$type}[^\$quantity]».&comma;     say "The number of \$type primes up to {comma \$_}: ",    comma \$primes{\$type}.first(* > \$_, :k) // +\$primes{\$type} for 1e6, 1e7;     say '';}`
Output:
```The first 35 safe primes are:
(5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619)
The number of safe primes up to 1,000,000: 4,324
The number of safe primes up to 10,000,000: 30,657

The first 40 unsafe primes are:
(2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233)
The number of unsafe primes up to 1,000,000: 74,174
The number of unsafe primes up to 10,000,000: 633,922```

REXX

`/*REXX program lists a sequence  (or a count)  of  ──safe──   or   ──unsafe──   primes. */parse arg N kind _ . 1 . okind;     upper kind   /*obtain optional arguments from the CL*/if N=='' | N==","  then N= 35                    /*Not specified?   Then assume default.*/if kind=='' | kind==","  then kind= 'SAFE'       /* "      "          "     "      "    */if _\==''                             then call ser 'too many arguments specified.'if kind\=='SAFE'  &  kind\=='UNSAFE'  then call ser 'invalid 2nd argument: '   okindif kind =='UNSAFE'  then safe= 0;  else safe= 1  /*SAFE  is a binary value for function.*/w = linesize() - 1                               /*obtain the usable width of the term. */tell= (N>0);    @.=;    N= abs(N)                /*N is negative?   Then don't display. */!.=0;   !.1=2;  !.2=3;  !.3=5;  !.4=7;  !.5=11;  !.6=13;  !.7=17;  !.8=19;    #= 8@.='';  @.2=1;  @.3=1;  @.5=1;  @.7=1;  @.11=1;  @.13=1;  @.17=1;  @.19=1;    start= # + 1m= 0;                         lim=0              /*#  is the number of low primes so far*/\$=;     do i=1  for #   while lim<=N;  j= !.i    /* [↓]  find primes, and maybe show 'em*/        call safeUnsafe;      \$= strip(\$)        /*go see if other part of a KIND prime.*/        end   /*i*/                              /* [↑]  allows faster loop (below).    */                                                 /* [↓]  N:  default lists up to 35 #'s.*/   do j=!.#+2  by 2  while  lim<N                /*continue on with the next odd prime. */   if j // 3 == 0  then iterate                  /*is this integer a multiple of three? */   parse var  j    ''  -1  _                     /*obtain the last decimal digit of  J  */   if _      == 5  then iterate                  /*is this integer a multiple of five?  */   if j // 7 == 0  then iterate                  /* "   "     "    "     "     " seven? */   if j //11 == 0  then iterate                  /* "   "     "    "     "     " eleven?*/   if j //13 == 0  then iterate                  /* "   "     "    "     "     "  13 ?  */   if j //17 == 0  then iterate                  /* "   "     "    "     "     "  17 ?  */   if j //19 == 0  then iterate                  /* "   "     "    "     "     "  19 ?  */                                                 /* [↓]  divide by the primes.   ___    */            do k=start  to #  while !.k * !.k<=j /*divide  J  by other primes ≤ √ J     */            if j // !.k ==0   then iterate j     /*÷ by prev. prime?  ¬prime     ___    */            end   /*k*/                          /* [↑]   only divide up to     √ J     */   #= # + 1                                      /*bump the count of number of primes.  */   !.#= j;                     @.j= 1            /*define a prime  and  its index value.*/   call safeUnsafe                               /*go see if other part of a KIND prime.*/   end   /*j*/                                                 /* [↓]  display number of primes found.*/if \$\==''  then say \$                            /*display any residual primes in \$ list*/sayif tell  then say commas(m)' '     kind    "primes found."         else say commas(m)' '     kind    "primes found below or equal to "    commas(N).exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/add: m= m+1; lim= m; if \tell & j>N  then do; lim= j; m= m-1; end; else call app; return 1app: if tell  then if length(\$ j)>w  then do;  say \$; \$ =j;   end; else \$= \$ j;   return 1ser: say;  say;  say '***error***' arg(1);  say;  say;  exit 13   /*tell error message. */commas: parse arg _;  do jc=length(_)-3  to 1  by -3; _=insert(',', _, jc); end;  return _/*──────────────────────────────────────────────────────────────────────────────────────*/safeUnsafe: ?= (j-1) % 2                         /*obtain the other part of KIND prime. */            if safe  then if @.? == ''  then return 0             /*not a    safe prime.*/                                        else return add()         /*is  "      "    "   */                     else if @.? == ''  then return add()         /*is  an unsafe prime.*/                                        else return 0             /*not  "   "      "   */`

This REXX program makes use of   LINESIZE   REXX program (or BIF) which is used to determine the screen width (or linesize) of the terminal (console).   Some REXXes don't have this BIF.

The   LINESIZE.REX   REXX program is included here   ───►   LINESIZE.REX.

output   when using the default input of:     35

Shown at   5/6   size.)

```5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

35  SAFE primes found.
```
output   when using the input:     -1000000
```4,324  SAFE primes found below or equal to  1,000,000.
```
output   when using the input:     -10000000
```30,657  SAFE primes found below or equal to  10,000,000.
```
output   when using the input:     40   unsafe

(Shown at   5/6   size.)

```2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

40  UNSAFE primes found.
```
output   when using the input:     -1000000   unsafe
```74,174  UNSAFE primes found below or equal to  1,000,000.
```
output   when using the input:     -10000000
```633,922  UNSAFE primes found below or equal to  10,000,000.
```

Ring

` load "stdlib.ring" see "working..." + nl p = 1num = 0limit1 = 36limit2 = 41safe1 = 1000000safe2 = 10000000 see "the first 35 Safeprimes are: " + nlwhile true       p = p + 1      p2 = (p-1)/2      if isprime(p) and isprime(p2)         num = num + 1         if num < limit1            see " " + p         else            exit         ok      okend see nl + "the first 40 Unsafeprimes are: " + nlp = 1num = 0while true       p = p + 1      p2 = (p-1)/2      if isprime(p) and not isprime(p2)         num = num + 1         if num < limit2            see " " + p         else            exit         ok      okend p = 1num1 = 0num2 = 0while true       p = p + 1      p2 = (p-1)/2      if isprime(p) and isprime(p2)         if p < safe1            num1 = num1 + 1         ok         if p < safe2            num2 = num2 + 1         else            exit         ok      okend see nl + "safe primes below 1,000,000: " + num1 + nlsee "safe primes below 10,000,000: " + num2 + nl p = 1num1 = 0num2 = 0while true       p = p + 1      p2 = (p-1)/2      if isprime(p) and not isprime(p2)         if p < safe1            num1 = num1 + 1         ok         if p < safe2            num2 = num2 + 1         else            exit         ok      okend see "unsafe primes below 1,000,000: " + num1 + nlsee "unsafe primes below 10,000,000: " + num2 + nl see "done..." + nl `

Output:

```working...
the first 35 Safeprimes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
the first 40 Unsafeprimes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
safe primes below 1,000,000: 4324
safe primes below 10,000,000: 30657
unsafe primes below 1,000,000: 74174
unsafe primes below 10,000,000: 633922
done...
```

Ruby

`require "prime"class Integer  def safe_prime? #assumes prime    ((self-1)/2).prime?  endend def format_parts(n)  partitions = Prime.each(n).partition(&:safe_prime?).map(&:count)  "There are %d safes and %d unsafes below #{n}."% partitionsend puts "First 35 safe-primes:"p Prime.each.lazy.select(&:safe_prime?).take(35).to_aputs format_parts(1_000_000), "\n"  puts "First 40 unsafe-primes:"p Prime.each.lazy.reject(&:safe_prime?).take(40).to_aputs format_parts(10_000_000) `
Output:
```First 35 safe-primes:
[5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
There are 4324 safes and 74174 unsafes below 1000000.

First 40 unsafe-primes:
[2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233]
There are 30657 safes and 633922 unsafes below 10000000.

```

Rust

`fn is_prime(n: i32) -> bool {	for i in 2..n {		if i * i > n {			return true;		}		if n % i == 0 {			return false;		}	}	n > 1} fn is_safe_prime(n: i32) -> bool {	is_prime(n) && is_prime((n - 1) / 2)} fn is_unsafe_prime(n: i32) -> bool {	is_prime(n) && !is_prime((n - 1) / 2)} fn next_prime(n: i32) -> i32 {	for i in (n+1).. {		if is_prime(i) {			return i;		}	}	0} fn main() {	let mut safe = 0;	let mut unsf = 0;	let mut p = 2; 	print!("first 35 safe primes: ");	while safe < 35 {		if is_safe_prime(p) {			safe += 1;			print!("{} ", p);		}		p = next_prime(p);	}	println!(""); 	p = 2; 	print!("first 35 unsafe primes: ");	while unsf < 35 {		if is_unsafe_prime(p) {			unsf += 1;			print!("{} ", p);		}		p = next_prime(p);	}	println!(""); 	p = 2;	safe = 0;	unsf = 0; 	while p < 1000000 {		if is_safe_prime(p) {			safe += 1;		} else {			unsf += 1;		}		p = next_prime(p);	}	println!("safe primes below 1,000,000: {}", safe);	println!("unsafe primes below 1,000,000: {}", unsf); 	while p < 10000000 {		if is_safe_prime(p) {			safe += 1;		} else {			unsf += 1;		}		p = next_prime(p);	}	println!("safe primes below 10,000,000: {}", safe);	println!("unsafe primes below 10,000,000: {}", unsf);}`
```first 35 safe primes: 5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
first 35 unsafe primes: 2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197
safe primes below 1,000,000: 4324
unsafe primes below 1,000,000: 74174
safe primes below 10,000,000: 30657
unsafe primes below 10,000,000: 633922
```

Shale

`#!/usr/local/bin/shale // Safe and unsafe primes.//// Safe prime p: (p - 1) / 2 is prime// Unsafe prime: any prime that is not a safe prime primes library init dup var {  pl sieve type primes::()  10000000 0 pl generate primes::()} = isSafe dup var {  1 - 2 / pl isprime primes::()} = comma dup var {  n dup var swap =  t dup var n 1000 / =  b dup var n 1000 % =   t 0 == {    b print  } {    t.value comma() b ",%03d" printf  } if} = go dup var {  n var  c1 var  c10 var  i var  p var   "The first 35 safe primes are:" print  n 0 =  c1 0 =  c10 0 =  i 0 =  { i count pl:: < } {    p i pl get primes::() =    p isSafe() {      n 35 < {        p " %d" printf        n++        n 35 == { "" println } ifthen      } ifthen       p 1000000 < { c1++ } ifthen       c10++    } ifthen     i++  } while  "Number of safe primes below  1,000,000 is " print c1.value comma() "" println  "Number of safe primes below 10,000,000 is " print c10.value comma() "" println   "The first 40 unsafe primes are:" print  n 0 =  c1 0 =  c10 0 =  i 0 =  { i count pl:: < } {    p i pl get primes::() =    p isSafe() not {      n 40 < {        p " %d" printf        n++        n 40 == { "" println } ifthen      } ifthen       p 1000000 < { c1++ } ifthen       c10++    } ifthen     i++  } while  "Number of unsafe primes below  1,000,000 is " print c1.value comma() "" println  "Number of unsafe primes below 10,000,000 is " print c10.value comma() "" println} = init()go() `
Output:
```The first 35 safe primes are: 5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
Number of safe primes below  1,000,000 is 4,324
Number of safe primes below 10,000,000 is 30,657
The first 40 unsafe primes are: 2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Number of unsafe primes below  1,000,000 is 74,174
Number of unsafe primes below 10,000,000 is 633,922
```

Sidef

`func is_safeprime(p) {    is_prime(p) && is_prime((p-1)/2)} func is_unsafeprime(p) {    is_prime(p) && !is_prime((p-1)/2)} func safeprime_count(from, to) {    from..to -> count_by(is_safeprime)} func unsafeprime_count(from, to) {    from..to -> count_by(is_unsafeprime)} say "First 35 safe-primes:"say (1..Inf -> lazy.grep(is_safeprime).first(35).join(' '))say ''say "First 40 unsafe-primes:"say (1..Inf -> lazy.grep(is_unsafeprime).first(40).join(' '))say ''say "There are #{safeprime_count(1, 1e6)} safe-primes bellow 10^6"say "There are #{unsafeprime_count(1, 1e6)} unsafe-primes bellow 10^6"say ''say "There are #{safeprime_count(1, 1e7)} safe-primes bellow 10^7"say "There are #{unsafeprime_count(1, 1e7)} unsafe-primes bellow 10^7"`
Output:
```First 35 safe-primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

First 40 unsafe-primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

There are 4324 safe-primes bellow 10^6
There are 74174 unsafe-primes bellow 10^6

There are 30657 safe-primes bellow 10^7
There are 633922 unsafe-primes bellow 10^7
```

Simula

` BEGIN     CLASS BOOLARRAY(N); INTEGER N;    BEGIN        BOOLEAN ARRAY DATA(0:N-1);    END BOOLARRAY;     CLASS INTARRAY(N); INTEGER N;    BEGIN        INTEGER ARRAY DATA(0:N-1);    END INTARRAY;     REF(BOOLARRAY) PROCEDURE SIEVE(LIMIT);        INTEGER LIMIT;    BEGIN        REF(BOOLARRAY) C;        INTEGER P, P2;        LIMIT := LIMIT+1;        COMMENT TRUE DENOTES COMPOSITE, FALSE DENOTES PRIME. ;        C :- NEW BOOLARRAY(LIMIT); COMMENT ALL FALSE BY DEFAULT ;        C.DATA(0) := TRUE;        C.DATA(1) := TRUE;        COMMENT APART FROM 2 ALL EVEN NUMBERS ARE OF COURSE COMPOSITE ;        FOR I := 4 STEP 2 UNTIL LIMIT-1 DO            C.DATA(I) := TRUE;        COMMENT START FROM 3. ;        P := 3;        WHILE TRUE DO BEGIN            P2 := P * P;            IF P2 >= LIMIT THEN BEGIN                GO TO OUTER_BREAK;            END;            I := P2;            WHILE I < LIMIT DO BEGIN                C.DATA(I) := TRUE;                I := I + 2 * P;            END;            WHILE TRUE DO BEGIN                P := P + 2;                IF NOT C.DATA(P) THEN BEGIN                    GO TO INNER_BREAK;                END;            END;            INNER_BREAK:        END;        OUTER_BREAK:        SIEVE :- C;    END SIEVE;     COMMENT MAIN BLOCK ;     REF(BOOLARRAY) SIEVED;    REF(INTARRAY) UNSAFE, SAFE;    INTEGER I, COUNT;     COMMENT SIEVE UP TO 10 MILLION ;    SIEVED :- SIEVE(10000000);     SAFE :- NEW INTARRAY(35);    COUNT := 0;    I := 3;    WHILE COUNT < 35 DO BEGIN        IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN BEGIN            SAFE.DATA(COUNT) := I;            COUNT := COUNT+1;        END;        I := I+2;    END;    OUTTEXT("THE FIRST 35 SAFE PRIMES ARE:");    OUTIMAGE;    OUTCHAR('[');    FOR I := 0 STEP 1 UNTIL 35-1 DO BEGIN        IF I>0 THEN OUTCHAR(' ');        OUTINT(SAFE.DATA(I), 0);    END;    OUTCHAR(']');    OUTIMAGE;    OUTIMAGE;     COUNT := 0;    FOR I := 3 STEP 2 UNTIL 1000000 DO BEGIN        IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN BEGIN            COUNT := COUNT+1;        END;    END;    OUTTEXT("THE NUMBER OF SAFE PRIMES BELOW 1,000,000 IS ");    OUTINT(COUNT, 0);    OUTIMAGE;    OUTIMAGE;     FOR I := 1000001 STEP 2 UNTIL 10000000 DO BEGIN        IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN            COUNT := COUNT+1;    END;    OUTTEXT("THE NUMBER OF SAFE PRIMES BELOW 10,000,000 IS ");    OUTINT(COUNT, 0);    OUTIMAGE;    OUTIMAGE;     UNSAFE :- NEW INTARRAY(40);    UNSAFE.DATA(0) := 2; COMMENT SINCE (2 - 1)/2 IS NOT PRIME ;    COUNT := 1;    I := 3;    WHILE COUNT < 40 DO BEGIN        IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN BEGIN            UNSAFE.DATA(COUNT) := I;            COUNT := COUNT+1;        END;        I := I+2;    END;    OUTTEXT("THE FIRST 40 UNSAFE PRIMES ARE:");    OUTIMAGE;    OUTCHAR('[');    FOR I := 0 STEP 1 UNTIL 40-1 DO BEGIN        IF I>0 THEN OUTCHAR(' ');        OUTINT(UNSAFE.DATA(I), 0);    END;    OUTCHAR(']');    OUTIMAGE;    OUTIMAGE;     COUNT := 1;    FOR I := 3 STEP 2 UNTIL 1000000 DO BEGIN        IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN            COUNT := COUNT+1;    END;    OUTTEXT("THE NUMBER OF UNSAFE PRIMES BELOW 1,000,000 IS ");    OUTINT(COUNT, 0);    OUTIMAGE;    OUTIMAGE;     FOR I := 1000001 STEP 2 UNTIL 10000000 DO BEGIN        IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN            COUNT := COUNT+1;    END;    OUTTEXT("THE NUMBER OF UNSAFE PRIMES BELOW 10,000,000 IS ");    OUTINT(COUNT, 0);    OUTIMAGE;  END `
Output:
```THE FIRST 35 SAFE PRIMES ARE:
[5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839
863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619]

THE NUMBER OF SAFE PRIMES BELOW 1,000,000 IS 4324

THE NUMBER OF SAFE PRIMES BELOW 10,000,000 IS 30657

THE FIRST 40 UNSAFE PRIMES ARE:
[2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137
139 149 151 157 163 173 181 191 193 197 199 211 223 229 233]

THE NUMBER OF UNSAFE PRIMES BELOW 1,000,000 IS 74174

THE NUMBER OF UNSAFE PRIMES BELOW 10,000,000 IS 633922
```

Smalltalk

Works with: Smalltalk/X
`[    | isSafePrime printFirstNElements |     isSafePrime := [:p | ((p-1)//2) isPrime].    printFirstNElements :=         [:coll :n |             (coll to:n)                 do:[:p | Transcript show:p]                 separatedBy:[Transcript space]        ].    (Iterator on:[:b | Integer primesUpTo:10000000 do:b])        partition:isSafePrime        into:[:savePrimes :unsavePrimes |            |nSaveBelow1M nSaveBelow10M nUnsaveBelow1M nUnsaveBelow10M|             nSaveBelow1M := savePrimes count:[:p | p < 1000000].            nSaveBelow10M := savePrimes size.             nUnsaveBelow1M := unsavePrimes count:[:p | p < 1000000].            nUnsaveBelow10M := unsavePrimes size.             Transcript showCR: 'first 35 safe primes:'.            printFirstNElements value:savePrimes value:35.            Transcript cr.             Transcript show: 'safe primes below 1,000,000: '.            Transcript showCR:nSaveBelow1M printStringWithThousandsSeparator.             Transcript show: 'safe primes below 10,000,000: '.            Transcript showCR:nSaveBelow10M printStringWithThousandsSeparator.             Transcript showCR: 'first 40 unsafe primes:'.            printFirstNElements value:unsavePrimes value:40.            Transcript cr.             Transcript show: 'unsafe primes below 1,000,000: '.            Transcript showCR:nUnsaveBelow1M printStringWithThousandsSeparator.             Transcript show: 'unsafe primes below 10,000,000: '.            Transcript showCR:nUnsaveBelow10M printStringWithThousandsSeparator.        ] ] benchmark:'runtime: safe primes'`
Output:
```first 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
safe primes below 1,000,000: 4,324
safe primes below 10,000,000: 30,657
first 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
unsafe primes below 1,000,000: 74,174
unsafe primes below 10,000,000: 633,922
runtime: safe primes: 996ms
```

Notes:
1) partition:into: is a method in collection which is a combined select+reject.
2) instead if the Iterator, I could have also used "(Integer primesUpTo:10000000) partition...", but that would use a few additional Mb of temporary memory for the primes collection, whereas the iterator simply computes and enumerates them (without actually collecting them). But, who cares, these days ;-)
3) time is on a 2012 MacBook 2.5Ghz i5; interpreted not jitted. Compiled/jitted time is 738ms.

Swift

`import Foundation class PrimeSieve {    var composite: [Bool]     init(size: Int) {        composite = Array(repeating: false, count: size/2)        var p = 3        while p * p <= size {            if !composite[p/2 - 1] {                let inc = p * 2                var q = p * p                while q <= size {                    composite[q/2 - 1] = true                    q += inc                }            }            p += 2        }    }     func isPrime(number: Int) -> Bool {        if number < 2 {            return false        }        if (number & 1) == 0 {            return number == 2        }        return !composite[number/2 - 1]    }} func commatize(_ number: Int) -> String {    let n = NSNumber(value: number)    return NumberFormatter.localizedString(from: n, number: .decimal)} let limit1 = 1000000let limit2 = 10000000 class PrimeInfo {    let maxPrint: Int    var count1: Int    var count2: Int    var primes: [Int]     init(maxPrint: Int) {        self.maxPrint = maxPrint        count1 = 0        count2 = 0        primes = []    }     func addPrime(prime: Int) {        count2 += 1        if prime < limit1 {            count1 += 1        }        if count2 <= maxPrint {            primes.append(prime)        }    }     func printInfo(name: String) {        print("First \(maxPrint) \(name) primes: \(primes)")        print("Number of \(name) primes below \(commatize(limit1)): \(commatize(count1))")        print("Number of \(name) primes below \(commatize(limit2)): \(commatize(count2))")    }} var safePrimes = PrimeInfo(maxPrint: 35)var unsafePrimes = PrimeInfo(maxPrint: 40) let sieve = PrimeSieve(size: limit2) for prime in 2..<limit2 {    if sieve.isPrime(number: prime) {        if sieve.isPrime(number: (prime - 1)/2) {            safePrimes.addPrime(prime: prime)        } else {            unsafePrimes.addPrime(prime: prime)        }    }} safePrimes.printInfo(name: "safe")unsafePrimes.printInfo(name: "unsafe")`
Output:
```First 35 safe primes: [5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
Number of safe primes below 1,000,000: 4,324
Number of safe primes below 10,000,000: 30,657
First 40 unsafe primes: [2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233]
Number of unsafe primes below 1,000,000: 74,174
Number of unsafe primes below 10,000,000: 633,922
```

Visual Basic .NET

Translation of: C#
Dependent on using .NET Core 2.1 or 2.0, or .NET Framework 4.7.2
`Imports System.Console Namespace safety    Module SafePrimes        Dim pri_HS As HashSet(Of Integer) = Primes(10_000_000).ToHashSet()         Sub Main()            For Each UnSafe In {False, True} : Dim n As Integer = If(UnSafe, 40, 35)                WriteLine(\$"The first {n} {If(UnSafe, "un", "")}safe primes are:")                WriteLine(String.Join(" ", pri_HS.Where(Function(p) UnSafe Xor                                                            pri_HS.Contains(p \ 2)).Take(n)))            Next : Dim limit As Integer = 1_000_000 : Do                Dim part = pri_HS.TakeWhile(Function(l) l < limit),                 sc As Integer = part.Count(Function(p) pri_HS.Contains(p \ 2))                WriteLine(\$"Of the primes below {limit:n0}: {sc:n0} are safe, and {part.Count() -                          sc:n0} are unsafe.") : If limit = 1_000_000 Then limit *= 10 Else Exit Do            Loop        End Sub         Private Iterator Function Primes(ByVal bound As Integer) As IEnumerable(Of Integer)            If bound < 2 Then Return            Yield 2            Dim composite As BitArray = New BitArray((bound - 1) \ 2)            Dim limit As Integer = (CInt((Math.Sqrt(bound))) - 1) \ 2            For i As Integer = 0 To limit - 1 : If composite(i) Then Continue For                Dim prime As Integer = 2 * i + 3 : Yield prime                Dim j As Integer = (prime * prime - 2) \ 2                While j < composite.Count : composite(j) = True : j += prime : End While            Next            For i As integer = limit To composite.Count - 1 : If Not composite(i) Then Yield 2 * i + 3            Next        End Function    End ModuleEnd Namespace`
If not using the latest version of the System.Linq namespace, you can implement the Enumerable.ToHashSet() method by adding
`Imports System.Runtime.CompilerServices`
to the top and this module inside the safety namespace:
`    Module Extensions        <Extension()>        Function ToHashSet(Of T)(ByVal src As IEnumerable(Of T), ByVal Optional _                                 IECmp As IEqualityComparer(Of T) = Nothing) As HashSet(Of T)            Return New HashSet(Of T)(src, IECmp)        End Function    End Module`
Output:
```The first 35 safe primes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
The first 40 unsafe primes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Of the primes below 1,000,000: 4,324 are safe, and 74,174 are unsafe.
Of the primes below 10,000,000: 30,657 are safe, and 633,922 are unsafe.
```

Wren

Library: Wren-math
Library: Wren-fmt
`import "/math" for Intimport "/fmt" for Fmt var c = Int.primeSieve(1e7, false) // need primes up to 10 million herevar safe = List.filled(35, 0)var count = 0var i = 3while (count < 35) {    if (!c[i] && !c[(i-1)/2]) {        safe[count] = i        count = count + 1    }    i = i + 2}System.print("The first 35 safe primes are:\n%(safe.join(" "))\n") count = 35while (i < 1e6) {   if (!c[i] && !c[(i-1)/2]) count = count + 1   i = i + 2}Fmt.print("The number of safe primes below 1,000,000 is \$,d.\n", count)   while (i < 1e7) {   if (!c[i] && !c[(i-1)/2]) count = count + 1   i = i + 2}Fmt.print("The number of safe primes below 10,000,000 is \$,d.\n", count) var unsafe = List.filled(40, 0)unsafe[0] = 2count = 1i = 3while (count < 40) {    if (!c[i] && c[(i-1)/2]) {        unsafe[count] = i        count = count + 1    }    i = i + 2} System.print("The first 40 unsafe primes are:\n%(unsafe.join(" "))\n") count = 40while (i < 1e6) {   if (!c[i] && c[(i-1)/2]) count = count + 1   i = i + 2}Fmt.print("The number of unsafe primes below 1,000,000 is \$,d.\n", count)    while (i < 1e7) {   if (!c[i] && c[(i-1)/2]) count = count + 1   i = i + 2}Fmt.print("The number of unsafe primes below 10,000,000 is \$,d.\n", count)`
Output:
```The first 35 safe primes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

The number of safe primes below 1,000,000 is 4,324.

The number of safe primes below 10,000,000 is 30,657.

The first 40 unsafe primes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

The number of unsafe primes below 1,000,000 is 74,174.

The number of unsafe primes below 10,000,000 is 633,922.
```

XPL0

`proc NumOut(Num);       \Output positive integer with commasint  Num, Dig, Cnt;[Cnt:= [0];Num:= Num/10;Dig:= rem(0);Cnt(0):= Cnt(0)+1;if Num then NumOut(Num);Cnt(0):= Cnt(0)-1;ChOut(0, Dig+^0);if rem(Cnt(0)/3)=0 & Cnt(0) then ChOut(0, ^,);]; func IsPrime(N);        \Return 'true' if N is primeint  N, I;[if N <= 2 then return N = 2;if (N&1) = 0 then \even >2\ return false;for I:= 3 to sqrt(N) do    [if rem(N/I) = 0 then return false;    I:= I+1;    ];return true;]; int  N, SafeCnt, UnsafeCnt Unsafes(40);[SafeCnt:= 0;  UnsafeCnt:= 0;Text(0, "First 35 safe primes:^M^J");for N:= 1 to 10_000_000-1 do    [if IsPrime(N) then        [if IsPrime( (N-1)/2 ) then            [SafeCnt:= SafeCnt+1;            if SafeCnt <= 35 then                [NumOut(N);  ChOut(0, ^ )];            ]        else            [Unsafes(UnsafeCnt):= N;            UnsafeCnt:= UnsafeCnt+1;            ];        ];    if N = 999_999 then        [Text(0, "^M^JSafe primes below 1,000,000: ");        NumOut(SafeCnt);        Text(0, "^M^JUnsafe primes below 1,000,000: ");        NumOut(UnsafeCnt);        ];    ];Text(0, "^M^JFirst 40 unsafe primes:^M^J");for N:= 0 to 40-1 do    [NumOut(Unsafes(N));  ChOut(0, ^ )];Text(0, "^M^JSafe primes below 10,000,000: ");NumOut(SafeCnt);Text(0, "^M^JUnsafe primes below 10,000,000: ");NumOut(UnsafeCnt);CrLf(0);]`
Output:
```First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
Safe primes below 1,000,000: 4,324
Unsafe primes below 1,000,000: 74,174
First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Safe primes below 10,000,000: 30,657
Unsafe primes below 10,000,000: 633,922
```

zkl

Using GMP (GNU Multiple Precision Arithmetic Library, probabilistic primes), because it is easy and fast to generate primes.

Extensible prime generator#zkl could be used instead.

`var [const] BI=Import("zklBigNum");  // libGMP// saving 664,578 primes (vs generating them on the fly) seems a bit overkill fcn safePrime(p){ ((p-1)/2).probablyPrime() } // p is a BigInt prime fcn safetyList(sN,nsN){   p,safe,notSafe := BI(2),List(),List();   do{       if(safePrime(p)) safe.append(p.toInt()) else notSafe.append(p.toInt());       p.nextPrime();   }while(safe.len()<sN or notSafe.len()<nsN);   println("The first %d   safe primes are: %s".fmt(sN,safe[0,sN].concat(",")));   println("The first %d unsafe primes are: %s".fmt(nsN,notSafe[0,nsN].concat(",")));}(35,40);`
Output:
```The first 35   safe primes are: 5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619
The first 40 unsafe primes are: 2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233
```

safetyList could also be written as:

`println("The first %d  safe primes are: %s".fmt(N:=35,   Walker(BI(1).nextPrime)  // gyrate (vs Walker.filter) because p mutates     .pump(N,String,safePrime,Void.Filter,String.fp1(","))));println("The first %d unsafe primes are: %s".fmt(N=40,   Walker(BI(1).nextPrime)	// or save as List     .pump(N,List,safePrime,'==(False),Void.Filter,"toInt").concat(",")));`

Time to count:

`fcn safetyCount(N,s=0,ns=0,p=BI(2)){   do{       if(safePrime(p)) s+=1; else ns+=1;      p.nextPrime()   }while(p<N);   println("The number of   safe primes below %10,d is %7,d".fmt(N,s));   println("The number of unsafe primes below %10,d is %7,d".fmt(N,ns));   return(s,ns,p);} s,ns,p := safetyCount(1_000_000);println();safetyCount(10_000_000,s,ns,p);`
Output:
```The number of   safe primes below  1,000,000 is   4,324
The number of unsafe primes below  1,000,000 is  74,174

The number of   safe primes below 10,000,000 is  30,657
The number of unsafe primes below 10,000,000 is 633,922
```