Roots of unity: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 2: Line 2:


=={{header|Ada}}==
=={{header|Ada}}==
<ada>
<lang ada>
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
Line 37: Line 37:
end loop;
end loop;
end Roots_Of_Unity;
end Roots_Of_Unity;
</ada>
</lang>
[[Ada]] provides a direct implementation of polar composition of complex numbers ''x e''<sup>2&pi;''i y''</sup>. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2&pi;, N is used. Sample output:
[[Ada]] provides a direct implementation of polar composition of complex numbers ''x e''<sup>2&pi;''i y''</sup>. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2&pi;, N is used. Sample output:
<pre style="height:30ex;overflow:scroll">
<pre style="height:30ex;overflow:scroll">
Line 147: Line 147:


=={{header|C}}==
=={{header|C}}==
<c> #include <stdio.h>
<lang c> #include <stdio.h>
#include <math.h>
#include <math.h>
Line 176: Line 176:
}
}
}
}
</c>
</lang>


=={{header|C++}}==
=={{header|C++}}==
<cpp>#include <complex>
<lang cpp>#include <complex>
#include <cmath>
#include <cmath>
#include <iostream>
#include <iostream>
Line 194: Line 194:
std::cout << std::endl;
std::cout << std::endl;
}
}
}</cpp>
}</lang>
=={{header|Common Lisp}}==
=={{header|Common Lisp}}==


Line 201: Line 201:
collect (cis (* pi (/ (* 2 i) n)))))
collect (cis (* pi (/ (* 2 i) n)))))


The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is <code>(cis (/ (* 2 pi i) n))</code>.
The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is <tt>(cis (/ (* 2 pi i) n))</tt>.


=={{header|D}}==
=={{header|D}}==
{{works with|D|2.012}}
{{works with|D|2.012}}
{{works with|D|1.028}}
{{works with|D|1.028}}
<d>module nthroots ;
<lang d>module nthroots ;
import std.stdio, std.math ;
import std.stdio, std.math ;


Line 218: Line 218:
for(int i = 1; i <= 8 ; i++)
for(int i = 1; i <= 8 ; i++)
writefln("%2dth : %5.2f", i, nthroots(i)) ;
writefln("%2dth : %5.2f", i, nthroots(i)) ;
}</d>
}</lang>


=={{header|Forth}}==
=={{header|Forth}}==
Line 326: Line 326:
=={{header|Java}}==
=={{header|Java}}==
Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for <tt>Double</tt>s). Instead, they are simply represented as 0. To remove those checks (for very high <tt>n</tt>'s), remove both if statements.
Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for <tt>Double</tt>s). Instead, they are simply represented as 0. To remove those checks (for very high <tt>n</tt>'s), remove both if statements.
<java>public static void unity(int n){
<lang java>public static void unity(int n){
//all the way around the circle at even intervals
//all the way around the circle at even intervals
for(double angle = 0;angle < 2 * Math.PI;angle += (2 * Math.PI) / n){
for(double angle = 0;angle < 2 * Math.PI;angle += (2 * Math.PI) / n){
Line 335: Line 335:
System.out.print(real + " + " + imag + "i\t"); //tab-separated answers
System.out.print(real + " + " + imag + "i\t"); //tab-separated answers
}
}
}</java>
}</lang>


=={{header|OCaml}}==
=={{header|OCaml}}==
<ocaml>open Complex
<lang ocaml>open Complex


let pi = 4. *. atan 1.
let pi = 4. *. atan 1.
Line 350: Line 350:
done;
done;
print_newline ()
print_newline ()
done</ocaml>
done</lang>


=={{header|Perl}}==
=={{header|Perl}}==
{{works with|Perl|5.8.8}}
{{works with|Perl|5.8.8}}
{{libheader|Math::Complex}}
{{libheader|Math::Complex}}
<perl>use Math::Complex;
<lang perl>use Math::Complex;
foreach $n (2 .. 10) {
foreach $n (2 .. 10) {
Line 365: Line 365:
}
}
print "\n";
print "\n";
}</perl>
}</lang>
Output:
Output:
<pre>
<pre>
Line 381: Line 381:
=={{header|Python}}==
=={{header|Python}}==
{{works with|Python|2.5.1}}
{{works with|Python|2.5.1}}
<python>
<lang python>
import cmath
import cmath
class Complex(complex):
class Complex(complex):
Line 403: Line 403:
for nr in range(2,11):
for nr in range(2,11):
print nr, list(croots(nr))
print nr, list(croots(nr))
</python>
</lang>
Output:
Output:
<pre>
<pre>
Line 419: Line 419:
=={{header|Ruby}}==
=={{header|Ruby}}==
Hopefully someone will fix the formatting
Hopefully someone will fix the formatting
<ruby>require 'complex'
<lang ruby>require 'complex'
for n in 2..10
for n in 2..10
printf "%2d ", n
printf "%2d ", n
puts (0..n-1).map { |k| Complex.polar(1, 2 * Math::PI * k / n) }.join(" ")
puts (0..n-1).map { |k| Complex.polar(1, 2 * Math::PI * k / n) }.join(" ")
end</ruby>
end</lang>
Output:
Output:
<pre>
<pre>
Line 473: Line 473:


=={{header|Scheme}}==
=={{header|Scheme}}==
<scheme>(define pi (* 4 (atan 1)))
<lang scheme>(define pi (* 4 (atan 1)))


(do ((n 2 (+ n 1)))
(do ((n 2 (+ n 1)))
Line 482: Line 482:
(display " ")
(display " ")
(display (make-polar 1 (* 2 pi (/ k n)))))
(display (make-polar 1 (* 2 pi (/ k n)))))
(newline))</scheme>
(newline))</lang>

Revision as of 15:49, 3 February 2009

Task
Roots of unity
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task is to explore working with complex numbers. Given n, find the n-th roots of unity.

Ada

<lang ada> with Ada.Text_IO; use Ada.Text_IO; with Ada.Float_Text_IO; use Ada.Float_Text_IO; with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;

procedure Roots_Of_Unity is

  Root : Complex;

begin

  for N in 2..10 loop
     Put_Line ("N =" & Integer'Image (N));
     for K in 0..N - 1 loop
        Root :=
            Compose_From_Polar
            (  Modulus  => 1.0,
               Argument => Float (K),
               Cycle    => Float (N)
            );
           -- Output
        Put ("   k =" & Integer'Image (K) & ", ");
        if Re (Root) < 0.0 then
           Put ("-");
        else
           Put ("+");
        end if;
        Put (abs Re (Root), Fore => 1, Exp => 0);
        if Im (Root) < 0.0 then
           Put ("-");
        else
           Put ("+");
        end if;
        Put (abs Im (Root), Fore => 1, Exp => 0);
        Put_Line ("i");
     end loop;
  end loop;

end Roots_Of_Unity; </lang> Ada provides a direct implementation of polar composition of complex numbers x ei y. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2π, N is used. Sample output:

N = 2
   k = 0, +1.00000+0.00000i
   k = 1, -1.00000+0.00000i
N = 3
   k = 0, +1.00000+0.00000i
   k = 1, -0.50000+0.86603i
   k = 2, -0.50000-0.86603i
N = 4
   k = 0, +1.00000+0.00000i
   k = 1, +0.00000+1.00000i
   k = 2, -1.00000+0.00000i
   k = 3, +0.00000-1.00000i
N = 5
   k = 0, +1.00000+0.00000i
   k = 1, +0.30902+0.95106i
   k = 2, -0.80902+0.58779i
   k = 3, -0.80902-0.58779i
   k = 4, +0.30902-0.95106i
N = 6
   k = 0, +1.00000+0.00000i
   k = 1, +0.50000+0.86603i
   k = 2, -0.50000+0.86603i
   k = 3, -1.00000+0.00000i
   k = 4, -0.50000-0.86603i
   k = 5, +0.50000-0.86603i
N = 7
   k = 0, +1.00000+0.00000i
   k = 1, +0.62349+0.78183i
   k = 2, -0.22252+0.97493i
   k = 3, -0.90097+0.43388i
   k = 4, -0.90097-0.43388i
   k = 5, -0.22252-0.97493i
   k = 6, +0.62349-0.78183i
N = 8
   k = 0, +1.00000+0.00000i
   k = 1, +0.70711+0.70711i
   k = 2, +0.00000+1.00000i
   k = 3, -0.70711+0.70711i
   k = 4, -1.00000+0.00000i
   k = 5, -0.70711-0.70711i
   k = 6, +0.00000-1.00000i
   k = 7, +0.70711-0.70711i
N = 9
   k = 0, +1.00000+0.00000i
   k = 1, +0.76604+0.64279i
   k = 2, +0.17365+0.98481i
   k = 3, -0.50000+0.86603i
   k = 4, -0.93969+0.34202i
   k = 5, -0.93969-0.34202i
   k = 6, -0.50000-0.86603i
   k = 7, +0.17365-0.98481i
   k = 8, +0.76604-0.64279i
N = 10
   k = 0, +1.00000+0.00000i
   k = 1, +0.80902+0.58779i
   k = 2, +0.30902+0.95106i
   k = 3, -0.30902+0.95106i
   k = 4, -0.80902+0.58779i
   k = 5, -1.00000+0.00000i
   k = 6, -0.80902-0.58779i
   k = 7, -0.30902-0.95106i
   k = 8, +0.30902-0.95106i
   k = 9, +0.80902-0.58779i

ALGOL 68

This example is incorrect. Please fix the code and remove this message.

Details: It should print all n roots, either individually or by explicitly labeling conjugate pairs (x ± yi).

FORMAT complex fmt=$g(-6,4)"⊥"g(-6,4)$;
FOR root FROM 2 TO 10 DO
  printf(($g(4)$,root));
  FOR n TO root OVER 2 DO
    printf(($xf(complex fmt)$,complex exp( 0 I 2*pi*n/root)))
  OD;
  printf($l$)
OD

Output:

 +2 -1.000⊥0.0000
 +3 -.5000⊥0.8660
 +4 0.0000⊥1.0000 -1.000⊥0.0000
 +5 0.3090⊥0.9511 -.8090⊥0.5878
 +6 0.5000⊥0.8660 -.5000⊥0.8660 -1.000⊥0.0000
 +7 0.6235⊥0.7818 -.2225⊥0.9749 -.9010⊥0.4339
 +8 0.7071⊥0.7071 0.0000⊥1.0000 -.7071⊥0.7071 -1.000⊥0.0000
 +9 0.7660⊥0.6428 0.1736⊥0.9848 -.5000⊥0.8660 -.9397⊥0.3420
+10 0.8090⊥0.5878 0.3090⊥0.9511 -.3090⊥0.9511 -.8090⊥0.5878 -1.000⊥0.0000

BASIC

Works with: QuickBasic version 4.5
Translation of: Java

For high n's, this may repeat the root of 1 + 0*i.

CLS
PI = 3.1415926#
n = 5 'this can be changed for any desired n
angle = 0 'start at angle 0
DO
	real = COS(angle) 'real axis is the x axis
	IF (ABS(real) < 10 ^ -5) THEN real = 0 'get rid of annoying sci notation
	imag = SIN(angle) 'imaginary axis is the y axis
	IF (ABS(imag) < 10 ^ -5) THEN imag = 0 'get rid of annoying sci notation
	PRINT real; "+"; imag; "i" 'answer on every line
	angle = angle + (2 * PI) / n
'all the way around the circle at even intervals
LOOP WHILE angle < 2 * PI

C

<lang c> #include <stdio.h>

#include <math.h>

#define PI 3.1415926

int main (int argc, char *argv[])
{
  char sign;
  int i, n;
  float rpart, ipart, angle;

  for (n = 2; n <= 10; n++)
  {
    angle = 0.0;
    printf("%d: ", n); 
    for (i = 1; i <= n; i++)
    {
      rpart = cos(angle);
      ipart = sin(angle);
      if (ipart < 0)
        sign = '-';
      else
        sign = '+';
      printf("%5.4f%cj%5.4f  ", rpart, sign, fabs(ipart));
      angle = angle + 2.0*PI/(float)n;
    }
    printf("\n");
  }
}

</lang>

C++

<lang cpp>#include <complex>

  1. include <cmath>
  2. include <iostream>

double const pi = 4 * std::atan(1);

int main() {

 for (int n = 2; n <= 10; ++n)
 {
   std::cout << n << ": ";
   for (int k = 0; k < n; ++k)
     std::cout << std::polar(1, 2*pi*k/n) << " ";
   std::cout << std::endl;
 }

}</lang>

Common Lisp

(defun roots-of-unity (n)
  (loop for i below n
        collect (cis (* pi (/ (* 2 i) n)))))

The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is (cis (/ (* 2 pi i) n)).

D

Works with: D version 2.012
Works with: D version 1.028

<lang d>module nthroots ; import std.stdio, std.math ;

creal[] nthroots(int n) {

 creal[] res ;
 for(int k = 1 ; k <= n ; k++)
   res ~= expi(PI*2*k/n) ;
 return res ;

} void main() {

 for(int i = 1; i <= 8 ; i++)
   writefln("%2dth : %5.2f", i, nthroots(i)) ;

}</lang>

Forth

Complex numbers are not a native type in Forth, so we calculate the roots by hand.

: f0. ( f -- )
  fdup 0e 0.001e f~ if fdrop 0e then f. ;
: .roots ( n -- )
  dup 1 do
    pi i 2* 0 d>f f* dup 0 d>f f/          ( F: radians )
    fsincos cr ." real " f0. ." imag " f0.
  loop drop ;

3 set-precision
5 .roots

Fortran

Works with: Fortran version 90 and later

<lang fortran>

PROGRAM Roots

  COMPLEX :: root 
  INTEGER :: i, n
  REAL :: angle, pi

  pi = 4.0 * ATAN(1.0)
  DO n = 2, 7
    angle = 0.0
    WRITE(*,"(I1,A)", ADVANCE="NO") n,": "
    DO i = 1, n
      root = CMPLX(COS(angle), SIN(angle))
      WRITE(*,"(SP,2F7.4,A)", ADVANCE="NO") root, "j  "
      angle = angle + (2.0*pi / REAL(n))
    END DO
    WRITE(*,*)
  END DO

END PROGRAM Roots

</lang> Output

2: +1.0000+0.0000j  -1.0000+0.0000j   
3: +1.0000+0.0000j  -0.5000+0.8660j  -0.5000-0.8660j   
4: +1.0000+0.0000j  +0.0000+1.0000j  -1.0000+0.0000j  +0.0000-1.0000j   
5: +1.0000+0.0000j  +0.3090+0.9511j  -0.8090+0.5878j  -0.8090-0.5878j  +0.3090-0.9511j   
6: +1.0000+0.0000j  +0.5000+0.8660j  -0.5000+0.8660j  -1.0000+0.0000j  -0.5000-0.8660j  +0.5000-0.8660j 
7: +1.0000+0.0000j  +0.6235+0.7818j  -0.2225+0.9749j  -0.9010+0.4339j  -0.9010-0.4339j  -0.2225-0.9749j  +0.6235-0.7818j

Haskell

import Data.Complex

rootsOfUnity n = [mkPolar 1.0 (2*pi*k/n) | k <- [1..n]]

Output:

*Main> rootsOfUnity 3
[(-0.4999999999999998) :+ 0.8660254037844387,
 (-0.5000000000000004) :+ (-0.8660254037844384),
 1.0 :+ (-2.4492127076447545e-16)]

Icon

While icon does have complex type, it does not know about polar

procedure main()
   roots(10)
end

procedure roots(n)
   every n := 2 to 10 do
       every writes(n | (str_rep((0 to (n-1)) * 2 * &pi / n)) | "\n")
end

procedure str_rep(k)
  return " " || cos(k) || "+" || sin(k) || "i"
end

IDL

For some example n:

 n = 5
 print,  exp( dcomplex( 0, 2*!pi/n) ) ^ ( 1 + indgen(n) )

Outputs:

 ( 0.30901696, 0.95105653)( -0.80901704, 0.58778520)( -0.80901693, -0.58778534)( 0.30901713, -0.95105647)( 1.0000000, 1.7484556e-007)

J

   rou=: [: ^ i. * (o. 0j2) % ]

   rou 4
1 0j1 _1 0j_1

   rou 5
1 0.309017j0.951057 _0.809017j0.587785 _0.809017j_0.587785 0.309017j_0.951057

The computation can also be written as a loop, shown here for comparison only.

rou1=: 3 : 0
 z=. 0 $ r=. ^ o. 0j2 % y [ e=. 1
 for. i.y do.
  z=. z,e
  e=. e*r
 end.
 z
)

Java

Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for Doubles). Instead, they are simply represented as 0. To remove those checks (for very high n's), remove both if statements. <lang java>public static void unity(int n){ //all the way around the circle at even intervals for(double angle = 0;angle < 2 * Math.PI;angle += (2 * Math.PI) / n){ double real = Math.cos(angle); //real axis is the x axis if(Math.abs(real) < 1.0E-3) real = 0.0; //get rid of annoying sci notation double imag = Math.sin(angle); //imaginary axis is the y axis if(Math.abs(imag) < 1.0E-3) imag = 0.0; //get rid of annoying sci notation System.out.print(real + " + " + imag + "i\t"); //tab-separated answers } }</lang>

OCaml

<lang ocaml>open Complex

let pi = 4. *. atan 1.

let () =

 for n = 1 to 10 do
   Printf.printf "%2d " n;
   for k = 1 to n do
     let ret = polar 1. (2. *. pi *. float_of_int k /. float_of_int n) in
       Printf.printf "(%f + %f i)" ret.re ret.im
   done;
   print_newline ()
 done</lang>

Perl

Works with: Perl version 5.8.8

<lang perl>use Math::Complex;

foreach $n (2 .. 10) {

 printf "%2d", $n;
 foreach $k (0 .. $n-1) {
   $ret = cplxe(1, 2 * pi * $k / $n);
   $ret->display_format('style' => 'cartesian', 'format' => '%.3f');
   print " $ret";
 }
 print "\n";

}</lang> Output:

 2 1.000 -1.000+0.000i
 3 1.000 -0.500+0.866i -0.500-0.866i
 4 1.000 0.000+1.000i -1.000+0.000i -0.000-1.000i
 5 1.000 0.309+0.951i -0.809+0.588i -0.809-0.588i 0.309-0.951i
 6 1.000 0.500+0.866i -0.500+0.866i -1.000+0.000i -0.500-0.866i 0.500-0.866i
 7 1.000 0.623+0.782i -0.223+0.975i -0.901+0.434i -0.901-0.434i -0.223-0.975i 0.623-0.782i
 8 1.000 0.707+0.707i 0.000+1.000i -0.707+0.707i -1.000+0.000i -0.707-0.707i -0.000-1.000i 0.707-0.707i
 9 1.000 0.766+0.643i 0.174+0.985i -0.500+0.866i -0.940+0.342i -0.940-0.342i -0.500-0.866i 0.174-0.985i 0.766-0.643i
10 1.000 0.809+0.588i 0.309+0.951i -0.309+0.951i -0.809+0.588i -1.000+0.000i -0.809-0.588i -0.309-0.951i 0.309-0.951i 0.809-0.588i

Python

Works with: Python version 2.5.1

<lang python> import cmath class Complex(complex):

  def __repr__(self):
     rp = '%7.5f'%self.real if not self.pureImag() else 
     ip = '%7.5fj'%self.imag if not self.pureReal() else 
     conj =  if (self.pureImag() or self.pureReal() or self.imag<0.0) else '+'
     return '0.0' if (self.pureImag() and self.pureReal()) else rp+conj+ip
  def pureImag(self):
     return abs( self.real) < 0.000005
  def pureReal(self):
     return abs( self.imag) < 0.000005


def croots(n):

  if n<=0:
     return None
  return (Complex(cmath.exp(2j*k*cmath.pi/n)) for k in range(n))
  # in Python 2.6+: return (Complex(cmath.rect(1, 2*k*cmath.pi/n)) for k in range(n))

for nr in range(2,11):

  print nr, list(croots(nr))

</lang> Output:

2 [1.00000, -1.00000]
3 [1.00000, -0.50000+0.86603j, -0.50000-0.86603j]
4 [1.00000, 1.00000j, -1.00000, -1.00000j]
5 [1.00000, 0.30902+0.95106j, -0.80902+0.58779j, -0.80902-0.58779j, 0.30902-0.95106j]
6 [1.00000, 0.50000+0.86603j, -0.50000+0.86603j, -1.00000, -0.50000-0.86603j, 0.50000-0.86603j]
7 [1.00000, 0.62349+0.78183j, -0.22252+0.97493j, -0.90097+0.43388j, -0.90097-0.43388j, -0.22252-0.97493j, 0.62349-0.78183j]
8 [1.00000, 0.70711+0.70711j, 1.00000j, -0.70711+0.70711j, -1.00000, -0.70711-0.70711j, -1.00000j, 0.70711-0.70711j]
9 [1.00000, 0.76604+0.64279j, 0.17365+0.98481j, -0.50000+0.86603j, -0.93969+0.34202j, -0.93969-0.34202j, -0.50000-0.86603j, 0.17365-0.98481j, 0.76604-0.64279j]
10 [1.00000, 0.80902+0.58779j, 0.30902+0.95106j, -0.30902+0.95106j, -0.80902+0.58779j, -1.00000, -0.80902-0.58779j, -0.30902-0.95106j, 0.30902-0.95106j, 0.80902-0.58779j]

Ruby

Hopefully someone will fix the formatting <lang ruby>require 'complex'

for n in 2..10

 printf "%2d ", n
 puts (0..n-1).map { |k| Complex.polar(1, 2 * Math::PI * k / n) }.join(" ")

end</lang> Output:

 2 1.0+0.0i -1.0+1.22460635382238e-16i
 3 1.0+0.0i -0.5+0.866025403784439i -0.5-0.866025403784438i
 4 1.0+0.0i 6.12303176911189e-17+1.0i -1.0+1.22460635382238e-16i -1.83690953073357e-16-1.0i
 5 1.0+0.0i 0.309016994374947+0.951056516295154i -0.809016994374947+0.587785252292473i -0.809016994374948-0.587785252292473i 0.309016994374947-0.951056516295154i
 6 1.0+0.0i 0.5+0.866025403784439i -0.5+0.866025403784439i -1.0+1.22460635382238e-16i -0.5-0.866025403784438i 0.5-0.866025403784439i
 7 1.0+0.0i 0.623489801858734+0.78183148246803i -0.222520933956314+0.974927912181824i -0.900968867902419+0.433883739117558i -0.900968867902419-0.433883739117558i -0.222520933956315-0.974927912181824i 0.623489801858733-0.78183148246803i
 8 1.0+0.0i 0.707106781186548+0.707106781186547i 6.12303176911189e-17+1.0i -0.707106781186547+0.707106781186548i -1.0+1.22460635382238e-16i -0.707106781186548-0.707106781186547i -1.83690953073357e-16-1.0i 0.707106781186547-0.707106781186548i
 9 1.0+0.0i 0.766044443118978+0.642787609686539i 0.17364817766693+0.984807753012208i -0.5+0.866025403784439i -0.939692620785908+0.342020143325669i -0.939692620785908-0.342020143325669i -0.5-0.866025403784438i 0.17364817766693-0.984807753012208i 0.766044443118978-0.64278760968654i
10 1.0+0.0i 0.809016994374947+0.587785252292473i 0.309016994374947+0.951056516295154i -0.309016994374947+0.951056516295154i -0.809016994374947+0.587785252292473i -1.0+1.22460635382238e-16i -0.809016994374948-0.587785252292473i -0.309016994374948-0.951056516295154i 0.309016994374947-0.951056516295154i 0.809016994374947-0.587785252292473i

Seed7

$ include "seed7_05.s7i";
  include "float.s7i";
  include "complex.s7i";

const proc: main is func
  local
    var integer: n is 0;
    var integer: k is 0;
  begin
    for n range 2 to 10 do
      write(n lpad 2 <& ": ");
      for k range 0 to pred(n) do
        write(polar(1.0, 2.0 * PI * flt(k) / flt(n)) digits 4 lpad 15 <& " ");
      end for;
      writeln;
    end for;
  end func;

Output:

 2:  1.0000+0.0000i -1.0000+0.0000i
 3:  1.0000+0.0000i -0.5000+0.8660i -0.5000-0.8660i
 4:  1.0000+0.0000i  0.0000+1.0000i -1.0000+0.0000i  0.0000-1.0000i
 5:  1.0000+0.0000i  0.3090+0.9511i -0.8090+0.5878i -0.8090-0.5878i  0.3090-0.9511i
 6:  1.0000+0.0000i  0.5000+0.8660i -0.5000+0.8660i -1.0000+0.0000i -0.5000-0.8660i  0.5000-0.8660i
 7:  1.0000+0.0000i  0.6235+0.7818i -0.2225+0.9749i -0.9010+0.4339i -0.9010-0.4339i -0.2225-0.9749i  0.6235-0.7818i
 8:  1.0000+0.0000i  0.7071+0.7071i  0.0000+1.0000i -0.7071+0.7071i -1.0000+0.0000i -0.7071-0.7071i  0.0000-1.0000i  0.7071-0.7071i
 9:  1.0000+0.0000i  0.7660+0.6428i  0.1736+0.9848i -0.5000+0.8660i -0.9397+0.3420i -0.9397-0.3420i -0.5000-0.8660i  0.1736-0.9848i  0.7660-0.6428i
10:  1.0000+0.0000i  0.8090+0.5878i  0.3090+0.9511i -0.3090+0.9511i -0.8090+0.5878i -1.0000+0.0000i -0.8090-0.5878i -0.3090-0.9511i  0.3090-0.9511i  0.8090-0.5878i

Scheme

<lang scheme>(define pi (* 4 (atan 1)))

(do ((n 2 (+ n 1)))

   ((> n 10))
   (display n)
   (do ((k 0 (+ k 1)))
       ((>= k n))
       (display " ")
       (display (make-polar 1 (* 2 pi (/ k n)))))
   (newline))</lang>