Roots of a quadratic function: Difference between revisions

From Rosetta Code
Content added Content deleted
mNo edit summary
Line 816: Line 816:
procedure solve(a,b,c)
procedure solve(a,b,c)
d := sqrt(b*b - 4.0*a*c)
d := sqrt(b*b - 4.0*a*c)
roots := if b < 0 then [r1 := (-b+d)/2.0*a, c/(a*r1)]
roots := if b < 0 then [r1 := (-b+d)/(2.0*a), c/(a*r1)]
else [r1 := (-b-d)/2.0*a, c/(a*r1)]
else [r1 := (-b-d)/(2.0*a), c/(a*r1)]
write(a,"*x^2 + ",b,"*x + ",c," has roots ",roots[1]," and ",roots[2])
write(a,"*x^2 + ",b,"*x + ",c," has roots ",roots[1]," and ",roots[2])
end</lang>
end</lang>

Revision as of 17:32, 13 August 2020

Task
Roots of a quadratic function
You are encouraged to solve this task according to the task description, using any language you may know.
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.

Write a program to find the roots of a quadratic equation, i.e., solve the equation . Your program must correctly handle non-real roots, but it need not check that .

The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with , , and . (For double-precision floats, set .) Consider the following implementation in Ada: <lang ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;

procedure Quadratic_Equation is

  type Roots is array (1..2) of Float;
  function Solve (A, B, C : Float) return Roots is
     SD : constant Float := sqrt (B**2 - 4.0 * A * C);
     AA : constant Float := 2.0 * A;
  begin
     return ((- B + SD) / AA, (- B - SD) / AA);
  end Solve;
  R : constant Roots := Solve (1.0, -10.0E5, 1.0);

begin

  Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2)));

end Quadratic_Equation;</lang>

Output:
X1 = 1.00000E+06 X2 = 0.00000E+00

As we can see, the second root has lost all significant figures. The right answer is that X2 is about . The naive method is numerically unstable.

Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters and

and the two roots of the quardratic are: and


Task: do it better. This means that given , , and , both of the roots your program returns should be greater than . Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle . Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.

Ada

<lang ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;

procedure Quadratic_Equation is

  type Roots is array (1..2) of Float;
  function Solve (A, B, C : Float) return Roots is
     SD : constant Float := sqrt (B**2 - 4.0 * A * C);
     X  : Float;
  begin
     if B < 0.0 then
        X := (- B + SD) / (2.0 * A);
        return (X, C / (A * X));
     else
        X := (- B - SD) / (2.0 * A);
        return (C / (A * X), X);
     end if;
  end Solve;
  R : constant Roots := Solve (1.0, -10.0E5, 1.0);

begin

  Put_Line ("X1 =" & Float'Image (R (1)) & " X2 =" & Float'Image (R (2))); 

end Quadratic_Equation;</lang> Here precision loss is prevented by checking signs of operands. On errors, Constraint_Error is propagated on numeric errors and when roots are complex.

Output:
X1 = 1.00000E+06 X2 = 1.00000E-06

ALGOL 68

Translation of: Ada
Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>quadratic equation: BEGIN

 MODE ROOTS  = UNION([]REAL, []COMPL);
 MODE QUADRATIC = STRUCT(REAL a,b,c);
 PROC solve  = (QUADRATIC q)ROOTS:
 BEGIN
   REAL a = a OF q, b = b OF q, c = c OF q;
   REAL sa = b**2 - 4*a*c;
   IF sa >=0 THEN # handle the +ve case as REAL #
     REAL sqrt sa = ( b<0 | sqrt(sa) | -sqrt(sa));
     REAL r1 = (-b + sqrt sa)/(2*a),
          r2 = (-b - sqrt sa)/(2*a);
     []REAL((r1,r2))
   ELSE # handle the -ve case as COMPL conjugate pairs #
     COMPL compl sqrt sa = ( b<0 | complex sqrt(sa) | -complex sqrt(sa));
     COMPL r1 = (-b + compl sqrt sa)/(2*a),
           r2 = (-b - compl sqrt sa)/(2*a);
     []COMPL (r1, r2)
   FI
 END # solve #;

 PROC real  evaluate = (QUADRATIC q, REAL x )REAL:  (a OF q*x + b OF q)*x + c OF q;
 PROC compl evaluate = (QUADRATIC q, COMPL x)COMPL: (a OF q*x + b OF q)*x + c OF q;
 # only a very tiny difference between the 2 examples #
 []QUADRATIC test = ((1, -10e5, 1), (1, 0, 1), (1,-3,2), (1,3,2), (4,0,4), (3,4,5));

 FORMAT real fmt = $g(-0,8)$;
 FORMAT compl fmt = $f(real fmt)"+"f(real fmt)"i"$;
 FORMAT quadratic fmt = $f(real fmt)" x**2 + "f(real fmt)" x + "f(real fmt)" = 0"$;
 FOR index TO UPB test DO
   QUADRATIC quadratic = test[index];
   ROOTS r = solve(quadratic);

  1. Output the two different scenerios #
   printf(($"Quadratic: "$, quadratic fmt, quadratic, $l$));
   CASE r IN
     ([]REAL r): 
       printf(($"REAL x1 = "$, real fmt, r[1],
                  $", x2 = "$, real fmt, r[2],  $"; "$,
               $"REAL y1 = "$, real fmt, real evaluate(quadratic,r[1]),
                  $", y2 = "$, real fmt, real evaluate(quadratic,r[2]), $";"ll$
       )),
     ([]COMPL c):
       printf(($"COMPL x1,x2 = "$, real fmt, re OF c[1], $"+/-"$, 
                                   real fmt, ABS im OF c[1], $"; "$,
                 $"COMPL y1 = "$, compl fmt, compl evaluate(quadratic,c[1]),
                     $", y2 = "$, compl fmt, compl evaluate(quadratic,c[2]), $";"ll$
       ))
   ESAC
 OD

END # quadratic_equation #</lang>

Output:
Quadratic: 1.00000000 x**2 + -1000000.00000000 x + 1.00000000 = 0
REAL x1 = 999999.99999900, x2 = .00000100; REAL y1 = -.00000761, y2 = -.00000761;

Quadratic: 1.00000000 x**2 + .00000000 x + 1.00000000 = 0
COMPL x1,x2 = .00000000+/-1.00000000; COMPL y1 = .00000000+.00000000i, y2 = .00000000+.00000000i;

Quadratic: 1.00000000 x**2 + -3.00000000 x + 2.00000000 = 0
REAL x1 = 2.00000000, x2 = 1.00000000; REAL y1 = .00000000, y2 = .00000000;

Quadratic: 1.00000000 x**2 + 3.00000000 x + 2.00000000 = 0
REAL x1 = -2.00000000, x2 = -1.00000000; REAL y1 = .00000000, y2 = .00000000;

Quadratic: 4.00000000 x**2 + .00000000 x + 4.00000000 = 0
COMPL x1,x2 = .00000000+/-1.00000000; COMPL y1 = .00000000+.00000000i, y2 = .00000000+.00000000i;

Quadratic: 3.00000000 x**2 + 4.00000000 x + 5.00000000 = 0
COMPL x1,x2 = -.66666667+/-1.10554160; COMPL y1 = .00000000+.00000000i, y2 = .00000000+-.00000000i;

AutoHotkey

ahk forum: discussion <lang AutoHotkey>MsgBox % quadratic(u,v, 1,-3,2) ", " u ", " v MsgBox % quadratic(u,v, 1,3,2) ", " u ", " v MsgBox % quadratic(u,v, -2,4,-2) ", " u ", " v MsgBox % quadratic(u,v, 1,0,1) ", " u ", " v SetFormat FloatFast, 0.15e MsgBox % quadratic(u,v, 1,-1.0e8,1) ", " u ", " v

quadratic(ByRef x1, ByRef x2, a,b,c) { ; -> #real roots {x1,x2} of ax²+bx+c

  If (a = 0)
     Return -1 ; ERROR: not quadratic
  d := b*b - 4*a*c
  If (d < 0) {
     x1 := x2 := ""
     Return 0
  }
  If (d = 0) {
     x1 := x2 := -b/2/a
     Return 1
  }
  x1 := (-b - (b<0 ? -sqrt(d) : sqrt(d)))/2/a
  x2 := c/a/x1
  Return 2

}</lang>

BBC BASIC

<lang bbcbasic> FOR test% = 1 TO 7

       READ a$, b$, c$
       PRINT "For a = " ; a$ ", b = " ; b$ ", c = " ; c$ TAB(32) ;
       PROCsolvequadratic(EVAL(a$), EVAL(b$), EVAL(c$))
     NEXT
     END
     
     DATA 1, -1E9, 1
     DATA 1, 0, 1
     DATA 2, -1, -6
     DATA 1, 2, -2
     DATA 0.5, SQR(2), 1
     DATA 1, 3, 2
     DATA 3, 4, 5
     
     DEF PROCsolvequadratic(a, b, c)
     LOCAL d, f
     d = b^2 - 4*a*c
     CASE SGN(d) OF
       WHEN 0:
         PRINT "the single root is " ; -b/2/a
       WHEN +1:
         f = (1 + SQR(1-4*a*c/b^2))/2
         PRINT "the real roots are " ; -f*b/a " and " ; -c/b/f
       WHEN -1:
         PRINT "the complex roots are " ; -b/2/a " +/- " ; SQR(-d)/2/a "*i"
     ENDCASE
     ENDPROC</lang>
Output:
For a = 1, b = -1E9, c = 1      the real roots are 1E9 and 1E-9
For a = 1, b = 0, c = 1         the complex roots are 0 +/- 1*i
For a = 2, b = -1, c = -6       the real roots are 2 and -1.5
For a = 1, b = 2, c = -2        the real roots are -2.73205081 and 0.732050808
For a = 0.5, b = SQR(2), c = 1  the single root is -1.41421356
For a = 1, b = 3, c = 2         the real roots are -2 and -1
For a = 3, b = 4, c = 5         the complex roots are -0.666666667 +/- 1.1055416*i

C

Code that tries to avoid floating point overflow and other unfortunate loss of precissions: (compiled with gcc -std=c99 for complex, though easily adapted to just real numbers) <lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <complex.h>
  3. include <math.h>

typedef double complex cplx;

void quad_root (double a, double b, double c, cplx * ra, cplx *rb) { double d, e; if (!a) { *ra = b ? -c / b : 0; *rb = 0; return; } if (!c) { *ra = 0; *rb = -b / a; return; }

b /= 2; if (fabs(b) > fabs(c)) { e = 1 - (a / b) * (c / b); d = sqrt(fabs(e)) * fabs(b); } else { e = (c > 0) ? a : -a; e = b * (b / fabs(c)) - e; d = sqrt(fabs(e)) * sqrt(fabs(c)); }

if (e < 0) { e = fabs(d / a); d = -b / a; *ra = d + I * e; *rb = d - I * e; return; }

d = (b >= 0) ? d : -d; e = (d - b) / a; d = e ? (c / e) / a : 0; *ra = d; *rb = e; return; }

int main() { cplx ra, rb; quad_root(1, 1e12 + 1, 1e12, &ra, &rb); printf("(%g + %g i), (%g + %g i)\n", creal(ra), cimag(ra), creal(rb), cimag(rb));

quad_root(1e300, -1e307 + 1, 1e300, &ra, &rb); printf("(%g + %g i), (%g + %g i)\n", creal(ra), cimag(ra), creal(rb), cimag(rb));

return 0; }</lang>

Output:
(-1e+12 + 0 i), (-1 + 0 i)
(1.00208e+07 + 0 i), (9.9792e-08 + 0 i)

<lang c>#include <stdio.h>

  1. include <math.h>
  2. include <complex.h>

void roots_quadratic_eq(double a, double b, double c, complex double *x) {

 double delta;
 delta = b*b - 4.0*a*c;
 x[0] = (-b + csqrt(delta)) / (2.0*a);
 x[1] = (-b - csqrt(delta)) / (2.0*a);

}</lang>

Translation of: C++

<lang c>void roots_quadratic_eq2(double a, double b, double c, complex double *x) {

 b /= a;
 c /= a;
 double delta = b*b - 4*c;
 if ( delta < 0 ) {
   x[0] = -b/2 + I*sqrt(-delta)/2.0;
   x[1] = -b/2 - I*sqrt(-delta)/2.0;
 } else {
   double root = sqrt(delta);
   double sol = (b>0) ? (-b - root)/2.0 : (-b + root)/2.0;
   x[0] = sol;
   x[1] = c/sol;
 }

}</lang>

<lang c>int main() {

 complex double x[2];
 roots_quadratic_eq(1, -1e20, 1, x);
 printf("x1 = (%.20le, %.20le)\nx2 = (%.20le, %.20le)\n\n",

creal(x[0]), cimag(x[0]), creal(x[1]), cimag(x[1]));

 roots_quadratic_eq2(1, -1e20, 1, x);
 printf("x1 = (%.20le, %.20le)\nx2 = (%.20le, %.20le)\n\n",

creal(x[0]), cimag(x[0]), creal(x[1]), cimag(x[1]));

 return 0;

}</lang>

x1 = (1.00000000000000000000e+20, 0.00000000000000000000e+00)
x2 = (0.00000000000000000000e+00, 0.00000000000000000000e+00)

x1 = (1.00000000000000000000e+20, 0.00000000000000000000e+00)
x2 = (9.99999999999999945153e-21, 0.00000000000000000000e+00)

C#

<lang csharp>using System; using System.Numerics;

class QuadraticRoots {

   static Tuple<Complex, Complex> Solve(double a, double b, double c)
   {
       var q = -(b + Math.Sign(b) * Complex.Sqrt(b * b - 4 * a * c)) / 2;
       return Tuple.Create(q / a, c / q);
   }
   static void Main()
   {
       Console.WriteLine(Solve(1, -1E20, 1));
   }

}</lang>

Output:
((1E+20, 0), (1E-20, 0))

C++

<lang cpp>#include <iostream>

  1. include <utility>
  2. include <complex>

typedef std::complex<double> complex;

std::pair<complex, complex>

solve_quadratic_equation(double a, double b, double c)

{

 b /= a;
 c /= a;
 double discriminant = b*b-4*c;
 if (discriminant < 0)
   return std::make_pair(complex(-b/2, std::sqrt(-discriminant)/2),
                         complex(-b/2, -std::sqrt(-discriminant)/2));
 double root = std::sqrt(discriminant);
 double solution1 = (b > 0)? (-b - root)/2
                           : (-b + root)/2;
 return std::make_pair(solution1, c/solution1);

}

int main() {

 std::pair<complex, complex> result = solve_quadratic_equation(1, -1e20, 1);
 std::cout << result.first << ", " << result.second << std::endl;

}</lang>

Output:
(1e+20,0), (1e-20,0)

Clojure

<lang clojure>(defn quadratic

 "Compute the roots of a quadratic in the form ax^2 + bx + c = 1.
  Returns any of nil, a float, or a vector."
 [a b c]
 (let [sq-d (Math/sqrt (- (* b b) (* 4 a c)))
       f    #(/ (% b sq-d) (* 2 a))]
   (cond
      (neg? sq-d)  nil
      (zero? sq-d) (f +)
      (pos? sq-d)  [(f +) (f -)]
      :else nil))) ; maybe our number ended up as NaN</lang>
Output:

<lang clojure>user=> (quadratic 1.0 1.0 1.0) nil user=> (quadratic 1.0 2.0 1.0) 1.0 user=> (quadratic 1.0 3.0 1.0) [2.618033988749895 0.3819660112501051] </lang>

Common Lisp

<lang lisp>(defun quadratic (a b c)

 (list
  (/ (+ (- b) (sqrt (- (expt b 2) (* 4 a c)))) (* 2 a))
  (/ (- (- b) (sqrt (- (expt b 2) (* 4 a c)))) (* 2 a))))</lang>

D

<lang d>import std.math, std.traits;

CommonType!(T1, T2, T3)[] naiveQR(T1, T2, T3)

                                (in T1 a, in T2 b, in T3 c)

pure nothrow if (isFloatingPoint!T1) {

   alias ReturnT = typeof(typeof(return).init[0]);
   if (a == 0)
       return [ReturnT(c / b)]; // It's a linear function.
   immutable ReturnT det = b ^^ 2 - 4 * a * c;
   if (det < 0)
       return []; // No real number root.
   immutable SD = sqrt(det);
   return [(-b + SD) / 2 * a, (-b - SD) / 2 * a];

}

CommonType!(T1, T2, T3)[] cautiQR(T1, T2, T3)

                                (in T1 a, in T2 b, in T3 c)

pure nothrow if (isFloatingPoint!T1) {

   alias ReturnT = typeof(typeof(return).init[0]);
   if (a == 0)
       return [ReturnT(c / b)]; // It's a linear function.
   immutable ReturnT det = b ^^ 2 - 4 * a * c;
   if (det < 0)
       return []; // No real number root.
   immutable SD = sqrt(det);
   if (b * a < 0) {
       immutable x = (-b + SD) / 2 * a;
       return [x, c / (a * x)];
   } else {
       immutable x = (-b - SD) / 2 * a;
       return [c / (a * x), x];
   }

}

void main() {

   import std.stdio;
   writeln("With 32 bit float type:");
   writefln("   Naive: [%(%g, %)]", naiveQR(1.0f, -10e5f, 1.0f));
   writefln("Cautious: [%(%g, %)]", cautiQR(1.0f, -10e5f, 1.0f));
   writeln("\nWith 64 bit double type:");
   writefln("   Naive: [%(%g, %)]", naiveQR(1.0, -10e5, 1.0));
   writefln("Cautious: [%(%g, %)]", cautiQR(1.0, -10e5, 1.0));
   writeln("\nWith real type:");
   writefln("   Naive: [%(%g, %)]", naiveQR(1.0L, -10e5L, 1.0L));
   writefln("Cautious: [%(%g, %)]", cautiQR(1.0L, -10e5L, 1.0L));

}</lang>

Output:
With 32 bit float type:
   Naive: [1e+06, 0]
Cautious: [1e+06, 1e-06]

With 64 bit double type:
   Naive: [1e+06, 1.00001e-06]
Cautious: [1e+06, 1e-06]

With real type:
   Naive: [1e+06, 1e-06]
Cautious: [1e+06, 1e-06]

Elixir

<lang elixir>defmodule Quadratic do

 def roots(a, b, c) do
   IO.puts "Roots of a quadratic function (#{a}, #{b}, #{c})"
   d = b * b - 4 * a * c
   a2 = a * 2
   cond do
     d > 0 ->
       sd = :math.sqrt(d)
       IO.puts "  the real roots are #{(- b + sd) / a2} and #{(- b - sd) / a2}"
     d == 0 ->
       IO.puts "  the single root is #{- b / a2}"
     true ->
       sd = :math.sqrt(-d)
       IO.puts "  the complex roots are #{- b / a2} +/- #{sd / a2}*i"
   end
 end

end

Quadratic.roots(1, -2, 1) Quadratic.roots(1, -3, 2) Quadratic.roots(1, 0, 1) Quadratic.roots(1, -1.0e10, 1) Quadratic.roots(1, 2, 3) Quadratic.roots(2, -1, -6)</lang>

Output:
Roots of a quadratic function (1, -2, 1)
  the single root is 1.0
Roots of a quadratic function (1, -3, 2)
  the real roots are 2.0 and 1.0
Roots of a quadratic function (1, 0, 1)
  the complex roots are 0.0 +/- 1.0*i
Roots of a quadratic function (1, -1.0e10, 1)
  the real roots are 1.0e10 and 0.0
Roots of a quadratic function (1, 2, 3)
  the complex roots are -1.0 +/- 1.4142135623730951*i
Roots of a quadratic function (2, -1, -6)
  the real roots are 2.0 and -1.5

ERRE

<lang>PROGRAM QUADRATIC

PROCEDURE SOLVE_QUADRATIC

 D=B*B-4*A*C
 IF ABS(D)<1D-6 THEN D=0 END IF
 CASE SGN(D) OF
   0->
      PRINT("the single root is ";-B/2/A)
   END ->
   1->
      F=(1+SQR(1-4*A*C/(B*B)))/2
      PRINT("the real roots are ";-F*B/A;"and ";-C/B/F)
   END ->
   -1->
      PRINT("the complex roots are ";-B/2/A;"+/-";SQR(-D)/2/A;"*i")
   END ->
 END CASE

END PROCEDURE

BEGIN

 PRINT(CHR$(12);) ! CLS
 FOR TEST%=1 TO 7 DO
    READ(A,B,C)
    PRINT("For a=";A;",b=";B;",c=";C;TAB(32);)
    SOLVE_QUADRATIC
 END FOR
 DATA(1,-1E9,1)
 DATA(1,0,1)
 DATA(2,-1,-6)
 DATA(1,2,-2)
 DATA(0.5,1.4142135,1)
 DATA(1,3,2)
 DATA(3,4,5)

END PROGRAM</lang>

Output:
For a= 1 ,b=-1E+09 ,c= 1       the real roots are  1E+09 and  1E-09
For a= 1 ,b= 0 ,c= 1           the complex roots are  0 +/- 1 *i
For a= 2 ,b=-1 ,c=-6           the real roots are  2 and -1.5
For a= 1 ,b= 2 ,c=-2           the real roots are -2.732051 and  .7320508
For a= .5 ,b= 1.414214 ,c= 1   the single root is -1.414214
For a= 1 ,b= 3 ,c= 2           the real roots are -2 and -1
For a= 3 ,b= 4 ,c= 5           the complex roots are -.6666667 +/- 1.105542 *i

Factor

Translation of: Ada

<lang factor>:: quadratic-equation ( a b c -- x1 x2 )

   b sq a c * 4 * - sqrt :> sd
   b 0 <
   [ b neg sd + a 2 * / ]
   [ b neg sd - a 2 * / ] if :> x
   x c a x * / ;</lang>

<lang factor>( scratchpad ) 1 -1.e20 1 quadratic-equation --- Data stack: 1.0e+20 9.999999999999999e-21</lang>

Middlebrook method <lang factor>:: quadratic-equation2 ( a b c -- x1 x2 )

a c * sqrt b / :> q 
1 4 q sq * - sqrt 0.5 * 0.5 + :> f
b neg a / f * c neg b / f / ; 

</lang>


<lang factor>( scratchpad ) 1 -1.e20 1 quadratic-equation --- Data stack: 1.0e+20 1.0e-20</lang>

Forth

Without locals: <lang forth>: quadratic ( fa fb fc -- r1 r2 )

 frot frot
 ( c a b )
 fover 3 fpick f* -4e f*  fover fdup f* f+
 ( c a b det )
 fdup f0< if abort" imaginary roots" then
 fsqrt
 fover f0< if fnegate then
 f+ fnegate
 ( c a b-det )
 2e f/ fover f/  
 ( c a r1 )
 frot frot f/ fover f/ ;</lang>

With locals: <lang forth>: quadratic { F: a F: b F: c -- r1 r2 }

 b b f*  4e a f* c f* f-
 fdup f0< if abort" imaginary roots" then
 fsqrt
 b f0< if fnegate then b f+ fnegate 2e f/ a f/
 c a f/ fover f/ ;

\ test 1 set-precision 1e -1e6 1e quadratic fs. fs. \ 1e-6 1e6</lang>

Fortran

Fortran 90

Works with: Fortran version 90 and later

<lang fortran>PROGRAM QUADRATIC

IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(15)
REAL(dp) :: a, b, c, e, discriminant, rroot1, rroot2
COMPLEX(dp) :: croot1, croot2
WRITE(*,*) "Enter the coefficients of the equation ax^2 + bx + c"
WRITE(*, "(A)", ADVANCE="NO") "a = "
READ *, a
WRITE(*,"(A)", ADVANCE="NO") "b = "
READ *, b
WRITE(*,"(A)", ADVANCE="NO") "c = "
READ *, c

WRITE(*,"(3(A,E23.15))") "Coefficients are: a = ", a, "   b = ", b, "   c = ", c
e = 1.0e-9_dp
discriminant = b*b - 4.0_dp*a*c

IF (ABS(discriminant) < e) THEN
   rroot1 = -b / (2.0_dp * a)
   WRITE(*,*) "The roots are real and equal:"
   WRITE(*,"(A,E23.15)") "Root = ", rroot1
ELSE IF (discriminant > 0) THEN
   rroot1 = -(b + SIGN(SQRT(discriminant), b)) / (2.0_dp * a)
   rroot2 = c / (a * rroot1)
   WRITE(*,*) "The roots are real:"
   WRITE(*,"(2(A,E23.15))") "Root1 = ", rroot1, "  Root2 = ", rroot2
ELSE
   croot1 = (-b + SQRT(CMPLX(discriminant))) / (2.0_dp*a) 
   croot2 = CONJG(croot1)
   WRITE(*,*) "The roots are complex:" 
   WRITE(*,"(2(A,2E23.15,A))") "Root1 = ", croot1, "j ", "  Root2 = ", croot2, "j"
END IF</lang>
Output:
Coefficients are: a =   0.300000000000000E+01   b =   0.400000000000000E+01   c =   0.133333333330000E+01
The roots are real and equal:
Root =  -0.666666666666667E+00

Coefficients are: a =   0.300000000000000E+01   b =   0.200000000000000E+01   c =  -0.100000000000000E+01
The roots are real:
Root1 =  -0.100000000000000E+01  Root2 =   0.333333333333333E+00

Coefficients are: a =   0.300000000000000E+01   b =   0.200000000000000E+01   c =   0.100000000000000E+01
The roots are complex:
Root1 =  -0.333333333333333E+00  0.471404512723287E+00j   Root2 =  -0.333333333333333E+00 -0.471404512723287E+00j

Coefficients are: a =   0.100000000000000E+01   b =  -0.100000000000000E+07   c =   0.100000000000000E+01
The roots are real:
Root1 =   0.999999999999000E+06  Root2 =   0.100000000000100E-05

Fortran I

Source code written in FORTRAN I (october 1956) for the IBM 704. <lang fortran> COMPUTE ROOTS OF A QUADRATIC FUNCTION - 1956

     READ 100,A,B,C
100  FORMAT(3F8.3)
     PRINT 100,A,B,C
     DISC=B**2-4.*A*C
     IF(DISC),1,2,3
1    XR=-B/(2.*A)
     XI=SQRT(-DISC)/(2.*A)
     XJ=-XI
     PRINT 311
     PRINT 312,XR,XI,XR,XJ
311  FORMAT(13HCOMPLEX ROOTS)
312  FORMAT(4HX1=(,2E12.4,6H),X2=(,2E12.4,1H))
     GO TO 999
2    X1=-B/(2.*A)
     X2=X1
     PRINT 321
     PRINT 332,X1,X2
321  FORMAT(16HEQUAL REAL ROOTS)
     GO TO 999
3    X1= (-B+SQRT(DISC)) / (2.*A)
     X2= (-B-SQRT(DISC)) / (2.*A)
     PRINT 331
     PRINT 332,X1,X2
331  FORMAT(10HREAL ROOTS)
332  FORMAT(3HX1=,E12.5,4H,X2=,E12.5)
999  STOP

</lang>

GAP

<lang gap>QuadraticRoots := function(a, b, c)

 local d;
 d := Sqrt(b*b - 4*a*c);
 return [ (-b+d)/(2*a), (-b-d)/(2*a) ];

end;

  1. Hint : E(12) is a 12th primitive root of 1

QuadraticRoots(2, 2, -1);

  1. [ 1/2*E(12)^4-1/2*E(12)^7+1/2*E(12)^8+1/2*E(12)^11,
  2. 1/2*E(12)^4+1/2*E(12)^7+1/2*E(12)^8-1/2*E(12)^11 ]
  1. This works also with floating-point numbers

QuadraticRoots(2.0, 2.0, -1.0);

  1. [ 0.366025, -1.36603 ]</lang>

Go

<lang go>package main

import (

   "fmt"
   "math"

)

func qr(a, b, c float64) ([]float64, []complex128) {

   d := b*b-4*a*c
   switch {
   case d == 0:
       // single root
       return []float64{-b/(2*a)}, nil
   case d > 0:
       // two real roots
       if b < 0 {
           d = math.Sqrt(d)-b
       } else {
           d = -math.Sqrt(d)-b
       }
       return []float64{d/(2*a), (2*c)/d}, nil
   case d < 0:
       // two complex roots
       den := 1/(2*a)
       t1 := complex(-b*den, 0)
       t2 := complex(0, math.Sqrt(-d)*den)
       return nil, []complex128{t1+t2, t1-t2}
   }
   // otherwise d overflowed or a coefficient was NAN
   return []float64{d}, nil

}

func test(a, b, c float64) {

   fmt.Print("coefficients: ", a, b, c, " -> ")
   r, i := qr(a, b, c)
   switch len(r) {
   case 1:
       fmt.Println("one real root:", r[0])
   case 2:
       fmt.Println("two real roots:", r[0], r[1])
   default:
       fmt.Println("two complex roots:", i[0], i[1])
   }

}

func main() {

   for _, c := range [][3]float64{
       {1, -2, 1},
       {1, 0, 1},
       {1, -10, 1},
       {1, -1000, 1},
       {1, -1e9, 1},
   } {
       test(c[0], c[1], c[2])
   }

}</lang>

Output:
coefficients: 1 -2 1 -> one real root: 1
coefficients: 1 0 1 -> two complex roots: (0+1i) (-0-1i)
coefficients: 1 -10 1 -> two real roots: 9.898979485566356 0.10102051443364381
coefficients: 1 -1000 1 -> two real roots: 999.998999999 0.001000001000002
coefficients: 1 -1e+09 1 -> two real roots: 1e+09 1e-09

Haskell

<lang haskell>import Data.Complex (Complex, realPart)

type CD = Complex Double

quadraticRoots :: (CD, CD, CD) -> (CD, CD) quadraticRoots (a, b, c) =

 if realPart b > 0
   then ((2 * c) / (-b - d), (-b - d) / (2 * a))
   else ((-b + d) / (2 * a), (2 * c) / (-b + d))
 where
   d = sqrt $ b ^ 2 - 4 * a * c

main :: IO () main =

 mapM_
   (print . quadraticRoots)
   [(3, 4, 4 / 3), (3, 2, -1), (3, 2, 1), (1, -10e5, 1), (1, -10e9, 1)]</lang>
Output:
((-0.6666666666666666) :+ 0.0,(-0.6666666666666666) :+ 0.0)
(0.3333333333333333 :+ 0.0,(-1.0) :+ 0.0)
((-0.33333333333333326) :+ 0.4714045207910316,(-0.3333333333333333) :+ (-0.47140452079103173))
(999999.999999 :+ 0.0,1.000000000001e-6 :+ 0.0)
(1.0e10 :+ 0.0,1.0e-10 :+ 0.0)

Icon and Unicon

Translation of: Ada

Works in both languages. <lang unicon>procedure main()

   solve(1.0, -10.0e5, 1.0)

end

procedure solve(a,b,c)

   d := sqrt(b*b - 4.0*a*c)
   roots := if b < 0 then [r1 := (-b+d)/(2.0*a), c/(a*r1)]
                     else [r1 := (-b-d)/(2.0*a), c/(a*r1)]
   write(a,"*x^2 + ",b,"*x + ",c," has roots ",roots[1]," and ",roots[2])

end</lang>

Output:
->rqf 1.0 -0.000000001 1.0
1.0*x^2 + -1000000.0*x + 1.0 has roots 999999.999999 and 1.000000000001e-06
->

IDL

<lang idl>compile_OPT IDL2

print, "input a, press enter, input b, press enter, input c, press enter" read,a,b,c Promt='Enter values of a,b,c and hit enter'

a0=0.0 b0=0.0 c0=0.0 ;make them floating point variables

x=-b+sqrt((b^2)-4*a*c) y=-b-sqrt((b^2)-4*a*c) z=2*a d= x/z e= y/z

print, d,e</lang>

IS-BASIC

<lang IS-BASIC> 100 PROGRAM "Quadratic.bas" 110 PRINT "Enter coefficients a, b and c:":INPUT PROMPT "a= ,b= ,c= ":A,B,C 120 IF A=0 THEN 130 PRINT "The coefficient of x^2 can not be 0." 140 ELSE 150 LET D=B^2-4*A*C 160 SELECT CASE SGN(D) 170 CASE 0 180 PRINT "The single root is ";-B/2/A 190 CASE 1 200 PRINT "The real roots are ";(-B+SQR(D))/(2*A);"and ";(-B-SQR(D))/(2*A) 210 CASE -1 220 PRINT "The complex roots are ";-B/2/A;"+/- ";STR$(SQR(-D)/2/A);"*i" 230 END SELECT 240 END IF</lang>

J

Solution use J's built-in polynomial solver:

   p.

Example using inputs from other solutions and the unstable example from the task description:

<lang j> coeff =. _3 |.\ 3 4 4r3 3 2 _1 3 2 1 1 _1e6 1 1 _1e9 1

  > {:"1 p. coeff
        _0.666667           _0.666667
               _1            0.333333

_0.333333j0.471405 _0.333333j_0.471405

              1e6                1e_6
              1e9                1e_9</lang>

Of course p. generalizes to polynomials of arbitrary order (which isn't as great as that might sound, because of practical limitations). Given the coefficients p. returns the multiplier and roots of the polynomial. Given the multiplier and roots it returns the coefficients. For example using the cubic : <lang j> p. 0 16 _12 2 NB. return multiplier ; roots +-+-----+ |2|4 2 0| +-+-----+

  p. 2 ; 4 2 0    NB. return coefficients

0 16 _12 2</lang>

Exploring the limits of precision:

<lang j> 1{::p. 1 _1e5 1 NB. display roots 100000 1e_5

  1 _1e5 1 p. 1{::p. 1 _1e5 1       NB. test roots

_3.38436e_7 0

  1 _1e5 1 p. 1e5 1e_5              NB. test displayed roots

1 9.99999e_11

  1e5 1e_5 - 1{::p. 1 _1e5 1        NB. find difference

1e_5 _1e_15

  1 _1e5 1 p. 1e5 1e_5-1e_5 _1e_15  NB. test displayed roots with adjustment

_3.38436e_7 0</lang>

When these "roots" are plugged back into the original polynomial, the results are nowhere near zero. However, double precision floating point does not have enough bits to represent the (extremely close) answers that would give a zero result.

Middlebrook formula implemented in J

<lang j>q_r=: verb define

 'a b c' =. y
 q=. b %~ %: a * c
 f=. 0.5 + 0.5 * %:(1-4*q*q)
 (-b*f%a),(-c%b*f)

)

  q_r 1 _1e6 1

1e6 1e_6</lang>

Java

<lang java>public class QuadraticRoots {

   private static class Complex {
       double re, im;
       public Complex(double re, double im) {
           this.re = re;
           this.im = im;
       }
       @Override
       public boolean equals(Object obj) {
           if (obj == this) {return true;}
           if (!(obj instanceof Complex)) {return false;}
           Complex other = (Complex) obj;
           return (re == other.re) && (im == other.im);
       }
       @Override
       public String toString() {
           if (im == 0.0) {return String.format("%g", re);}
           if (re == 0.0) {return String.format("%gi", im);}
           return String.format("%g %c %gi", re,
               (im < 0.0 ? '-' : '+'), Math.abs(im));
       }
   }
   private static Complex[] quadraticRoots(double a, double b, double c) {
       Complex[] roots = new Complex[2];
       double d = b * b - 4.0 * a * c;  // discriminant
       double aa = a + a;
       if (d < 0.0) {
           double re = -b / aa;
           double im = Math.sqrt(-d) / aa;
           roots[0] = new Complex(re, im);
           roots[1] = new Complex(re, -im);
       } else if (b < 0.0) {
           // Avoid calculating -b - Math.sqrt(d), to avoid any
           // subtractive cancellation when it is near zero.
           double re = (-b + Math.sqrt(d)) / aa;
           roots[0] = new Complex(re, 0.0);
           roots[1] = new Complex(c / (a * re), 0.0);
       } else {
           // Avoid calculating -b + Math.sqrt(d).
           double re = (-b - Math.sqrt(d)) / aa;
           roots[1] = new Complex(re, 0.0);
           roots[0] = new Complex(c / (a * re), 0.0);
       }
       return roots;
   }
   public static void main(String[] args) {
       double[][] equations = {
           {1.0, 22.0, -1323.0},   // two distinct real roots
           {6.0, -23.0, 20.0},     //   with a != 1.0
           {1.0, -1.0e9, 1.0},     //   with one root near zero
           {1.0, 2.0, 1.0},        // one real root (double root)
           {1.0, 0.0, 1.0},        // two imaginary roots
           {1.0, 1.0, 1.0}         // two complex roots
       };
       for (int i = 0; i < equations.length; i++) {
           Complex[] roots = quadraticRoots(
               equations[i][0], equations[i][1], equations[i][2]);
           System.out.format("%na = %g   b = %g   c = %g%n",
               equations[i][0], equations[i][1], equations[i][2]);
           if (roots[0].equals(roots[1])) {
               System.out.format("X1,2 = %s%n", roots[0]);
           } else {
               System.out.format("X1 = %s%n", roots[0]);
               System.out.format("X2 = %s%n", roots[1]);
           }
       }
   }

}</lang>

Output:
a = 1.00000   b = 22.0000   c = -1323.00
X1 = 27.0000
X2 = -49.0000

a = 6.00000   b = -23.0000   c = 20.0000
X1 = 2.50000
X2 = 1.33333

a = 1.00000   b = -1.00000e+09   c = 1.00000
X1 = 1.00000e+09
X2 = 1.00000e-09

a = 1.00000   b = 2.00000   c = 1.00000
X1,2 = -1.00000

a = 1.00000   b = 0.00000   c = 1.00000
X1 = 1.00000i
X2 = -1.00000i

a = 1.00000   b = 1.00000   c = 1.00000
X1 = -0.500000 + 0.866025i
X2 = -0.500000 - 0.866025i

jq

Works with: jq version 1.4

Currently jq does not include support for complex number operations, so a small library is included in the first section.

The second section defines quadratic_roots(a;b;c), which emits a stream of 0 or two solutions, or the value true if a==b==c==0.

The third section defines a function for producing a table showing (i, error, solution) for solutions to x^2 - 10^i + 1 = 0 for various values of i.

Section 1: Complex numbers (scrolling window)

<lang jq># Complex numbers as points [x,y] in the Cartesian plane def real(z): if (z|type) == "number" then z else z[0] end;

def imag(z): if (z|type) == "number" then 0 else z[1] end;

def plus(x; y):

   if (x|type) == "number" then
      if  (y|type) == "number" then [ x+y, 0 ]
      else [ x + y[0], y[1]]
      end
   elif (y|type) == "number" then plus(y;x)
   else [ x[0] + y[0], x[1] + y[1] ]
   end;

def multiply(x; y):

   if (x|type) == "number" then
      if  (y|type) == "number" then [ x*y, 0 ]
      else [x * y[0], x * y[1]]
      end
   elif (y|type) == "number" then multiply(y;x)
   else [ x[0] * y[0] - x[1] * y[1],  x[0] * y[1] + x[1] * y[0]]
   end;

def negate(x): multiply(-1; x);

def minus(x; y): plus(x; multiply(-1; y));

def conjugate(z):

 if (z|type) == "number" then [z, 0]
 else  [z[0], -(z[1]) ]
 end;

def invert(z):

 if (z|type) == "number" then [1/z, 0]
 else
   ( (z[0] * z[0]) + (z[1] * z[1]) ) as $d
  # use "0 + ." to convert -0 back to 0
   | [ z[0]/$d, (0 + -(z[1]) / $d)]
 end;

def divide(x;y): multiply(x; invert(y));

def magnitude(z):

 real( multiply(z; conjugate(z))) | sqrt;
  1. exp^z

def complex_exp(z):

 def expi(x): [ (x|cos), (x|sin) ];
 if (z|type) == "number" then z|exp
 elif z[0] == 0 then expi(z[1])  # for efficiency
 else multiply( (z[0]|exp); expi(z[1]) )
 end ;

def complex_sqrt(z):

 if imag(z) == 0 and real(z) >= 0 then [(real(z)|sqrt), 0]
 else
   magnitude(z) as $r
   | if $r == 0 then [0,0]
     else
     (real(z)/$r) as $a
     | (imag(z)/$r) as $b
     | $r | sqrt as $r
     | (($a | acos) / 2) 
     | [ ($r * cos), ($r * sin)]
     end
end ;</lang>

Section 2: quadratic_roots(a;b;c) <lang jq># If there are infinitely many solutions, emit true;

  1. if none, emit empty;
  2. otherwise always emit two.
  3. For numerical accuracy, Middlebrook's approach is adopted:

def quadratic_roots(a; b; c):

 if a == 0 and b == 0 then
    if c == 0 then true # infinitely many
    else empty          # none
    end
 elif a == 0 then [-c/b, 0]
 elif b == 0 then (complex_sqrt(1/a) | (., negate(.)))
 else
   divide( plus(1.0; complex_sqrt( minus(1.0; (4 * a * c / (b*b))))); 2) as $f
   | negate(divide(multiply(b; $f); a)),
     negate(divide(c; multiply(b; $f)))
 end
</lang>

Section 3: Produce a table showing [i, error, solution] for solutions to x^2 - 10^i + 1 = 0 <lang jq>def example:

 def pow(i): . as $in | reduce range(0;i) as $i (1; . * $in);
 def poly(a;b;c): plus( plus( multiply(a; multiply(.;.)); multiply(b;.)); c);
 def abs: if . < 0 then -. else . end;
 def zero(z):
   if z == 0 then 0
   else (magnitude(z)|abs) as $zero
   | if $zero < 1e-10 then "+0" else $zero end
   end;
 def lpad(n): tostring | (n - length) * " " + .;
 range(0; 13) as $i
 | (- (10|pow($i))) as $b
 | quadratic_roots(1; $b; 1) as $x
 | $x | poly(1; $b; 1) as $zero
 | "\($i|lpad(4)): error = \(zero($zero)|lpad(18)) x=\($x)" 

example</lang>

Output:

(scrolling window)

<lang sh> $ jq -M -r -n -f Roots_of_a_quadratic_function.jq

  0: error =                 +0 x=[0.5,0.8660254037844386]
  0: error =                 +0 x=[0.5000000000000001,-0.8660254037844387]
  1: error =                 +0 x=[9.898979485566356,0]
  1: error =                 +0 x=[0.10102051443364382,-0]
  2: error =                 +0 x=[99.98999899979995,0]
  2: error =                 +0 x=[0.010001000200050014,-0]
  3: error = 1.1641532182693481e-10 x=[999.998999999,0]
  3: error =                 +0 x=[0.0010000010000019998,-0]
  4: error =                 +0 x=[9999.999899999999,0]
  4: error =                 +0 x=[0.00010000000100000003,-0]
  5: error =                 +0 x=[99999.99999,0]
  5: error =                 +0 x=[1.0000000001e-05,-0]
  6: error =    0.0001220703125 x=[999999.9999989999,0]
  6: error =                 +0 x=[1.000000000001e-06,-0]
  7: error =           0.015625 x=[9999999.9999999,0]
  7: error =                 +0 x=[1.0000000000000101e-07,-0]
  8: error =                  1 x=[99999999.99999999,0]
  8: error =                 +0 x=[1e-08,-0]
  9: error =                  1 x=[1000000000,0]
  9: error =                 +0 x=[1e-09,-0]
 10: error =                  1 x=[10000000000,0]
 10: error =                 +0 x=[1e-10,-0]
 11: error =                  1 x=[100000000000,0]
 11: error =                 +0 x=[1e-11,-0]
 12: error =                  1 x=[1000000000000,0]
12: error = +0 x=[1e-12,-0]</lang>

Julia

This solution is an implementation of algorithm from the Goldberg paper cited in the task description. It does check for a=0 and returns the linear solution in that case. Julia's sqrt throws a domain error for negative real inputs, so negative discriminants are converted to complex by adding 0im prior to taking the square root.

Alternative solutions might make use of Julia's Polynomials or Roots packages.

<lang julia>using Printf

function quadroots(x::Real, y::Real, z::Real)

   a, b, c = promote(float(x), y, z)
   if a ≈ 0.0 return [-c / b] end
   Δ = b ^ 2 - 4a * c
   if Δ ≈ 0.0 return [-sqrt(c / a)] end
   if Δ < 0.0 Δ = complex(Δ) end
   d = sqrt(Δ)
   if b < 0.0
       d -= b
       return [d / 2a, 2c / d]
   else
       d = -d - b
       return [2c / d, d / 2a]
   end

end

a = [1, 1, 1.0, 10] b = [10, 2, -10.0 ^ 9, 1] c = [1, 1, 1, 1]

for (x, y, z) in zip(a, b, c)

   @printf "The roots of %.2fx² + %.2fx + %.2f\n\tx₀ = (%s)\n" x y z join(round.(quadroots(x, y, z), 2), ", ")

end</lang>

Output:
The roots of 1.00x² + 10.00x + 1.00
	x₀ = (-0.1, -9.9)
The roots of 1.00x² + 2.00x + 1.00
	x₀ = (-1.0)
The roots of 1.00x² + -1000000000.00x + 1.00
	x₀ = (1.0e9, 0.0)
The roots of 10.00x² + 1.00x + 1.00
	x₀ = (-0.05 + 0.31im, -0.05 - 0.31im)

Kotlin

Translation of: Java

<lang scala>import java.lang.Math.*

data class Equation(val a: Double, val b: Double, val c: Double) {

   data class Complex(val r: Double, val i: Double) {
       override fun toString() = when {
           i == 0.0 -> r.toString()
           r == 0.0 -> "${i}i"
           else -> "$r + ${i}i"
       }
   }
   data class Solution(val x1: Any, val x2: Any) {
       override fun toString() = when(x1) {
           x2 -> "X1,2 = $x1"
           else -> "X1 = $x1, X2 = $x2"
       }
   }
   val quadraticRoots by lazy {
       val _2a = a + a
       val d = b * b - 4.0 * a * c  // discriminant
        if (d < 0.0) {
           val r = -b / _2a
           val i = sqrt(-d) / _2a
           Solution(Complex(r, i), Complex(r, -i))
       } else {
           // avoid calculating -b +/- sqrt(d), to avoid any
           // subtractive cancellation when it is near zero.
           val r = if (b < 0.0) (-b + sqrt(d)) / _2a else (-b - sqrt(d)) / _2a
           Solution(r, c / (a * r))
       }
   }

}

fun main(args: Array<String>) {

   val equations = listOf(Equation(1.0, 22.0, -1323.0),   // two distinct real roots
                          Equation(6.0, -23.0, 20.0),     //  with a != 1.0
                          Equation(1.0, -1.0e9, 1.0),     //  with one root near zero
                          Equation(1.0, 2.0, 1.0),        // one real root (double root)
                          Equation(1.0, 0.0, 1.0),        // two imaginary roots
                          Equation(1.0, 1.0, 1.0))        // two complex roots
   equations.forEach { println("$it\n" + it.quadraticRoots) }

}</lang>

Output:
Equation(a=1.0, b=22.0, c=-1323.0)
X1 = -49.0, X2 = 27.0
Equation(a=6.0, b=-23.0, c=20.0)
X1 = 2.5, X2 = 1.3333333333333333
Equation(a=1.0, b=-1.0E9, c=1.0)
X1 = 1.0E9, X2 = 1.0E-9
Equation(a=1.0, b=2.0, c=1.0)
X1,2 = -1.0
Equation(a=1.0, b=0.0, c=1.0)
X1 = 1.0i, X2 = -1.0i
Equation(a=1.0, b=1.0, c=1.0)
X1 = -0.5 + 0.8660254037844386i, X2 = -0.5 + -0.8660254037844386i

lambdatalk

<lang scheme> 1) using lambdas:

{def equation

{lambda {:a :b :c}
 {b equation :a*x{sup 2}+:b*x+:c=0}
 {{lambda {:a' :b' :d}
  {if {> :d 0}
  then {{lambda {:b' :d'}          
        {equation.disp {+ :b' :d'} {- :b' :d'} 2 real roots}
       } :b' {/ {sqrt :d} :a'}}
  else {if {< :d 0}
  then {{lambda {:b' :d'} 
        {equation.disp [:b',:d'] [:b',-:d'] 2 complex roots}
       } :b' {/ {sqrt {- :d}} :a'} }
  else {equation.disp :b'  :b' one real double root}
 }}
 } {* 2 :a} {/ {- :b} {* 2 :a}} {- {* :b :b} {* 4 :a :c}} } }} 

2) using let:

{def equation

{lambda {:a :b :c}
 {b equation :a*x{sup 2}+:b*x+:c=0}
 {let { {:a' {* 2 :a}}
        {:b' {/ {- :b} {* 2 :a}}}
        {:d  {- {* :b :b} {* 4 :a :c}}} }
  {if {> :d 0}
   then {let { {:b' :b'}
               {:d' {/ {sqrt :d} :a'}} }
         {equation.disp {+ :b' :d'} {- :b' :d'} 2 real roots} }
   else {if {< :d 0}
   then {let { {:b' :b'}
               {:d' {/ {sqrt {- :d}} :a'}} } 
         {equation.disp [:b',:d'] [:b',-:d'] 2 complex roots} } 
   else  {equation.disp :b' :b' one real double root} }} }}}

3) a function to display results in an HTML table format

{def equation.disp

{lambda {:x1 :x2 :txt}
 {table {@ style="background:#ffa"} 
  {tr {td :txt:    }}
  {tr {td x1 = :x1 }} 
  {tr {td x2 = :x2 }} } }}

4) testing:

equation 1*x2+1*x+-1=0 2 real roots:

x1 = 0.6180339887498949
x2 = -1.618033988749895
   

equation 1*x2+1*x+1=0 2 complex roots:

x1 = [-0.5,0.8660254037844386]
x2 = [-0.5,-0.8660254037844386]

equation 1*x2+-2*x+1=0 one real double root:

x1 = 1
x2 = 1

</lang>

Liberty BASIC

<lang lb>a=1:b=2:c=3

   'assume a<>0
   print quad$(a,b,c)
   end

function quad$(a,b,c)

   D=b^2-4*a*c
   x=-1*b
   if D<0 then
       quad$=str$(x/(2*a));" +i";str$(sqr(abs(D))/(2*a));" , ";str$(x/(2*a));" -i";str$(sqr(abs(D))/abs(2*a))
   else
       quad$=str$(x/(2*a)+sqr(D)/(2*a));" , ";str$(x/(2*a)-sqr(D)/(2*a))
   end if

end function</lang>

<lang logo>to quadratic :a :b :c

 localmake "d sqrt (:b*:b - 4*:a*:c)
 if :b < 0 [make "d minus :d]
 output list (:d-:b)/(2*:a) (2*:c)/(:d-:b)

end</lang>

Lua

In order to correctly handle complex roots, qsolve must be given objects from a suitable complex number library, like that from the Complex Numbers article. However, this should be enough to demonstrate its accuracy:

<lang lua>function qsolve(a, b, c)

 if b < 0 then return qsolve(-a, -b, -c) end
 val = b + (b^2 - 4*a*c)^(1/2) --this never exhibits instability if b > 0
 return -val / (2 * a), -2 * c / val --2c / val is the same as the "unstable" second root

end

for i = 1, 12 do

 print(qsolve(1, 0-10^i, 1))

end</lang> The "trick" lies in avoiding subtracting large values that differ by a small amount, which is the source of instability in the "normal" formula. It is trivial to prove that 2c/(b + sqrt(b^2-4ac)) = (b - sqrt(b^2-4ac))/2a.

Maple

<lang Maple>solve(a*x^2+b*x+c,x);

solve(1.0*x^2-10.0^9*x+1.0,x,explicit,allsolutions);

fsolve(x^2-10^9*x+1,x,complex);</lang>

Output:
                                (1/2)                     (1/2)
                   /          2\             /          2\     
              -b + \-4 a c + b /         b + \-4 a c + b /     
              -----------------------, - ----------------------
                        2 a                       2 a    
      
                                    9                -9
                      1.000000000 10 , 1.000000000 10  

                                    -9                9
                      1.000000000 10  , 1.000000000 10 

Mathematica

Possible ways to do this are (symbolic and numeric examples): <lang Mathematica>Solve[a x^2 + b x + c == 0, x] Solve[x^2 - 10^5 x + 1 == 0, x] Root[#1^2 - 10^5 #1 + 1 &, 1] Root[#1^2 - 10^5 #1 + 1 &, 2] Reduce[a x^2 + b x + c == 0, x] Reduce[x^2 - 10^5 x + 1 == 0, x] FindInstance[x^2 - 10^5 x + 1 == 0, x, Reals, 2] FindRoot[x^2 - 10^5 x + 1 == 0, {x, 0}] FindRoot[x^2 - 10^5 x + 1 == 0, {x, 10^6}]</lang> gives back:

Note that some functions do not really give the answer (like reduce) rather it gives another way of writing it (boolean expression). However note that reduce gives the explicit cases for a zero and nonzero, b zero and nonzero, et cetera. Some functions are numeric by nature, other can handle both symbolic and numeric. In generals the solution will be exact if the input is exact. Any exact result can be approximated to arbitrary precision using the function N[expression,number of digits]. Further notice that some functions give back exact answers in a different form then others, however the answers are both correct, the answers are just written differently.

MATLAB / Octave

<lang Matlab>roots([1 -3 2])  % coefficients in decreasing order of power e.g. [x^n ... x^2 x^1 x^0]</lang>

Maxima

<lang maxima>solve(a*x^2 + b*x + c = 0, x);

/* 2 2

           sqrt(b  - 4 a c) + b      sqrt(b  - 4 a c) - b
    [x = - --------------------, x = --------------------]
                   2 a                       2 a              */

fpprec: 40$

solve(x^2 - 10^9*x + 1 = 0, x); /* [x = 500000000 - sqrt(249999999999999999),

   x = sqrt(249999999999999999) + 500000000] */

bfloat(%); /* [x = 1.0000000000000000009999920675269450501b-9,

   x = 9.99999999999999998999999999999999999b8] */</lang>

МК-61/52

<lang>П2 С/П /-/ <-> / 2 / П3 x^2 С/П ИП2 / - Вx <-> КвКор НОП x>=0 28 ИП3 x<0 24 <-> /-/ + / Вx С/П /-/ КвКор ИП3 С/П</lang>

Input: a С/П b С/П c С/П

Output:

x1 - РX; x2 - РY (or error message, if D < 0).

Modula-3

Translation of: Ada

<lang modula3>MODULE Quad EXPORTS Main;

IMPORT IO, Fmt, Math;

TYPE Roots = ARRAY [1..2] OF LONGREAL;

VAR r: Roots;

PROCEDURE Solve(a, b, c: LONGREAL): Roots =

 VAR sd: LONGREAL := Math.sqrt(b * b - 4.0D0 * a * c);
     x: LONGREAL;
 BEGIN
   IF b < 0.0D0 THEN
     x := (-b + sd) / 2.0D0 * a;
     RETURN Roots{x, c / (a * x)};
   ELSE
     x := (-b - sd) / 2.0D0 * a;
     RETURN Roots{c / (a * x), x};
   END;
 END Solve;

BEGIN

 r := Solve(1.0D0, -10.0D5, 1.0D0);
 IO.Put("X1 = " & Fmt.LongReal(r[1]) & " X2 = " & Fmt.LongReal(r[2]) & "\n");

END Quad.</lang>

OCaml

<lang ocaml>type quadroots =

 | RealRoots of float * float
 | ComplexRoots of Complex.t * Complex.t ;;

let quadsolve a b c =

 let d = (b *. b) -. (4.0 *. a *. c) in
 if d < 0.0
 then
   let r = -. b /. (2.0 *. a)
   and i = sqrt(-. d) /. (2.0 *. a) in
   ComplexRoots ({ Complex.re = r; Complex.im = i },
                 { Complex.re = r; Complex.im = (-.i) })
 else
   let r =
     if b < 0.0
     then ((sqrt d) -. b) /. (2.0 *. a)
     else ((sqrt d) +. b) /. (-2.0 *. a)
   in
   RealRoots (r, c /. (r *. a))
</lang>
Output:

<lang ocaml># quadsolve 1.0 0.0 (-2.0) ;; - : quadroots = RealRoots (-1.4142135623730951, 1.4142135623730949)

  1. quadsolve 1.0 0.0 2.0 ;;

- : quadroots = ComplexRoots ({Complex.re = 0.; Complex.im = 1.4142135623730951},

{Complex.re = 0.; Complex.im = -1.4142135623730951})
  1. quadsolve 1.0 (-1.0e5) 1.0 ;;

- : quadroots = RealRoots (99999.99999, 1.0000000001000001e-005)</lang>

Octave

See MATLAB.

PARI/GP

Works with: PARI/GP version 2.8.0+

<lang parigp>roots(a,b,c)=polrootsreal(Pol([a,b,c]))</lang>

Translation of: C

Otherwise, coding directly: <lang parigp>roots(a,b,c)={

 b /= a;
 c /= a;
 my (delta = b^2 - 4*c, root=sqrt(delta));
 if (delta < 0,
   [root-b,-root-b]/2
 ,
   my(sol=if(b>0, -b - root,-b + root)/2);
   [sol,c/sol]
 )

};</lang>

Either way, <lang parigp>roots(1,-1e9,1)</lang> gives one root around 0.000000001000000000000000001 and one root around 999999999.999999999.

Pascal

some parts translated from Modula2 <lang pascal>Program QuadraticRoots;

var

 a, b, c, q, f: double;

begin

 a := 1;
 b := -10e9;
 c := 1;
 q := sqrt(a * c) / b;
 f := (1 + sqrt(1 - 4 * q * q)) / 2;
 writeln ('Version 1:');
 writeln ('x1: ', (-b * f / a):16, ', x2: ', (-c / (b * f)):16);
 writeln ('Version 2:');
 q := sqrt(b * b - 4 * a * c);
 if b < 0 then
 begin
   f :=  (-b + q) / 2 * a;
   writeln ('x1: ', f:16, ', x2: ', (c / (a * f)):16);
 end
 else
 begin
   f := (-b - q) / 2 * a;
   writeln ('x1: ', (c / (a * f)):16, ', x2: ', f:16);
 end;

end. </lang>

Output:
Version 1:
x1:  1.00000000E+010, x2:  1.00000000E-010
Version 2:
x1:  1.00000000E+010, x2:  1.00000000E-010

Perl

When using Math::Complex perl automatically convert numbers when necessary. <lang perl>use Math::Complex;

($x1,$x2) = solveQuad(1,2,3);

print "x1 = $x1, x2 = $x2\n";

sub solveQuad { my ($a,$b,$c) = @_; my $root = sqrt($b**2 - 4*$a*$c); return ( -$b + $root )/(2*$a), ( -$b - $root )/(2*$a); }</lang>

Phix

Translation of: ERRE

<lang Phix>procedure solve_quadratic(sequence t3) atom {a,b,c} = t3 atom d = b*b-4*a*c, f string s = sprintf("for a=%g,b=%g,c=%g",t3), t sequence u

   if abs(d)<1e-6 then d=0 end if
   switch sign(d) do
       case 0: t = "single root is %g"
               u = {-b/2/a}
       case 1: t = "real roots are %g and %g"
               f = (1+sqrt(1-4*a*c/(b*b)))/2
               u = {-f*b/a,-c/b/f}
       case-1: t = "complex roots are %g +/- %g*i"
               u = {-b/2/a,sqrt(-d)/2/a}
   end switch
   printf(1,"%-25s the %s\n",{s,sprintf(t,u)})

end procedure

constant tests = {{1,-1E9,1},

                 {1,0,1},
                 {2,-1,-6},
                 {1,2,-2},
                 {0.5,1.4142135,1},
                 {1,3,2},
                 {3,4,5}}

for i=1 to length(tests) do

   solve_quadratic(tests[i])

end for</lang>

for a=1,b=-1e+9,c=1       the real roots are 1e+9 and 1e-9
for a=1,b=0,c=1           the complex roots are 0 +/- 1*i
for a=2,b=-1,c=-6         the real roots are 2 and -1.5
for a=1,b=2,c=-2          the real roots are -2.73205 and 0.732051
for a=0.5,b=1.41421,c=1   the single root is -1.41421
for a=1,b=3,c=2           the real roots are -2 and -1
for a=3,b=4,c=5           the complex roots are -0.666667 +/- 1.10554*i

PicoLisp

<lang PicoLisp>(scl 40)

(de solveQuad (A B C)

  (let SD (sqrt (- (* B B) (* 4 A C)))
     (if (lt0 B)
        (list
           (*/ (- SD B) A 2.0)
           (*/ C 2.0 (*/ A A (- SD B) `(* 1.0 1.0))) )
        (list
           (*/ C 2.0 (*/ A A (- 0 B SD) `(* 1.0 1.0)))
           (*/ (- 0 B SD) A 2.0) ) ) ) )

(mapcar round

  (solveQuad 1.0 -1000000.0 1.0)
  (6 .) )</lang>
Output:
-> ("999,999.999999" "0.000001")

PL/I

<lang PL/I>

  declare (c1, c2) float complex,
          (a, b, c, x1, x2) float;
  get list (a, b, c);
  if b**2 < 4*a*c then
     do;
        c1 = (-b + sqrt(b**2 - 4+0i*a*c)) / (2*a);
        c2 = (-b - sqrt(b**2 - 4+0i*a*c)) / (2*a);
        put data (c1, c2);
     end;
  else
     do;
        x1 = (-b + sqrt(b**2 - 4*a*c)) / (2*a);
        x2 = (-b - sqrt(b**2 - 4*a*c)) / (2*a);
        put data (x1, x2);
     end;

</lang>

Python

Library: NumPy

This solution compares the naïve method with three "better" methods. <lang python>#!/usr/bin/env python3

import math import cmath import numpy

def quad_discriminating_roots(a,b,c, entier = 1e-5):

   """For reference, the naive algorithm which shows complete loss of
   precision on the quadratic in question.  (This function also returns a
   characterization of the roots.)"""
   discriminant = b*b - 4*a*c
   a,b,c,d =complex(a), complex(b), complex(c), complex(discriminant)
   root1 = (-b + cmath.sqrt(d))/2./a
   root2 = (-b - cmath.sqrt(d))/2./a
   if abs(discriminant) < entier:
       return "real and equal", abs(root1), abs(root1)
   if discriminant > 0:
       return "real", root1.real, root2.real
   return "complex", root1, root2

def middlebrook(a, b, c):

   try:
       q = math.sqrt(a*c)/b
       f = .5+ math.sqrt(1-4*q*q)/2
   except ValueError:
       q = cmath.sqrt(a*c)/b
       f = .5+ cmath.sqrt(1-4*q*q)/2
   return (-b/a)*f, -c/(b*f)

def whatevery(a, b, c):

   try:
       d = math.sqrt(b*b-4*a*c)
   except ValueError:
       d = cmath.sqrt(b*b-4*a*c)
   if b > 0:
       return div(2*c, (-b-d)), div((-b-d), 2*a)
   else:
       return div((-b+d), 2*a), div(2*c, (-b+d))

def div(n, d):

   """Divide, with a useful interpretation of division by zero."""
   try:
       return n/d
   except ZeroDivisionError:
       if n:
           return n*float('inf')
       return float('nan')

testcases = [

   (3, 4, 4/3),    # real, equal
   (3, 2, -1),     # real, unequal
   (3, 2, 1),      # complex
   (1, -1e9, 1),   # ill-conditioned "quadratic in question" required by task.
   (1, -1e100, 1),
   (1, -1e200, 1),
   (1, -1e300, 1),

]

print('Naive:') for c in testcases:

   print("{} {:.5} {:.5}".format(*quad_discriminating_roots(*c)))

print('\nMiddlebrook:') for c in testcases:

   print(("{:.5} "*2).format(*middlebrook(*c)))

print('\nWhat Every...') for c in testcases:

   print(("{:.5} "*2).format(*whatevery(*c)))

print('\nNumpy:') for c in testcases:

   print(("{:.5} "*2).format(*numpy.roots(c)))</lang>
Output:
Naive:
real and equal 0.66667 0.66667
real 0.33333 -1.0
complex (-0.33333+0.4714j) (-0.33333-0.4714j)
real 1e+09 0.0
real 1e+100 0.0
real nan nan
real nan nan

Middlebrook:
-0.66667 -0.66667 
(-1+0j) (0.33333+0j) 
(-0.33333-0.4714j) (-0.33333+0.4714j) 
1e+09 1e-09 
1e+100 1e-100 
1e+200 1e-200 
1e+300 1e-300 

What Every...
-0.66667 -0.66667 
0.33333 -1.0 
(-0.33333+0.4714j) (-0.33333-0.4714j) 
1e+09 1e-09 
1e+100 1e-100 
inf 0.0 
inf 0.0 

Numpy:
-0.66667 -0.66667 
-1.0 0.33333 
(-0.33333+0.4714j) (-0.33333-0.4714j) 
1e+09 1e-09 
1e+100 1e-100 
1e+200 1e-200 
1e+300 0.0 

R

<lang R>qroots <- function(a, b, c) {

 r <- sqrt(b * b - 4 * a * c + 0i)
 if (abs(b - r) > abs(b + r)) {
   z <- (-b + r) / (2 * a)
 } else {
   z <- (-b - r) / (2 * a)
 }
 c(z, c / (z * a))

}

qroots(1, 0, 2i) [1] -1+1i 1-1i

qroots(1, -1e9, 1) [1] 1e+09+0i 1e-09+0i</lang>

Using the builtin polyroot function (note the order of coefficients is reversed):

<lang R>polyroot(c(2i, 0, 1)) [1] -1+1i 1-1i

polyroot(c(1, -1e9, 1)) [1] 1e-09+0i 1e+09+0i</lang>

Racket

<lang Racket>#lang racket (define (quadratic a b c)

 (let* ((-b (- b))
        (delta (- (expt b 2) (* 4 a c)))
        (denominator (* 2 a)))
   (list
    (/ (+ -b (sqrt delta)) denominator)
    (/ (- -b (sqrt delta)) denominator))))
(quadratic 1 0.0000000000001 -1)
'(0.99999999999995 -1.00000000000005)
(quadratic 1 0.0000000000001 1)
'(-5e-014+1.0i -5e-014-1.0i)</lang>

Raku

(formerly Perl 6)

Raku has complex number handling built in.

<lang perl6>for [1, 2, 1], [1, 2, 3], [1, -2, 1], [1, 0, -4], [1, -10**6, 1] -> @coefficients {

   printf "Roots for %d, %d, %d\t=> (%s, %s)\n",
   |@coefficients, |quadroots(@coefficients);

}

sub quadroots (*[$a, $b, $c]) {

   ( -$b + $_ ) / (2 * $a),
   ( -$b - $_ ) / (2 * $a) 
   given
   ($b ** 2 - 4 * $a * $c ).Complex.sqrt.narrow

}</lang>

Output:
Roots for 1, 2, 1       => (-1, -1)
Roots for 1, 2, 3       => (-1+1.4142135623731i, -1-1.4142135623731i)
Roots for 1, -2, 1      => (1, 1)
Roots for 1, 0, -4      => (2, -2)
Roots for 1, -1000000, 1        => (999999.999999, 1.00000761449337e-06)

REXX

version 1

The REXX language doesn't have a   sqrt   function,   nor does it support complex numbers natively.

Since "unlimited" decimal precision is part of the REXX language, the   numeric digits   was increased
(from a default of   9)   to   200   to accommodate when a root is closer to zero than the other root.

Note that only ten decimal digits (precision) are shown in the   displaying   of the output.

This REXX version supports   complex numbers   for the result. <lang rexx>/*REXX program finds the roots (which may be complex) of a quadratic function.*/ numeric digits 200 /*use enough digits to handle extremes.*/ parse arg a b c . /*obtain the specified arguments: A B C*/ call quadratic a,b,c /*solve quadratic function via the sub.*/ numeric digits 10 /*reduce (output) digits for human eyes*/ r1=r1/1; r2=r2/1; a=a/1; b=b/1; c=c/1 /*normalize numbers to the new digits. */ if r1j\=0 then r1=r1 || left('+',r1j>0)(r1j/1)"i" /*handle complex number.*/ if r2j\=0 then r2=r2 || left('+',r2j>0)(r2j/1)"i" /* " " " */

             say '    a ='   a        /*display the normalized value of   A. */
             say '    b ='   b        /*   "     "       "       "    "   B. */
             say '    c ='   c        /*   "     "       "       "    "   C. */
     say;    say 'root1 ='   r1       /*   "     "       "       "   1st root*/
             say 'root2 ='   r2       /*   "     "       "       "   2nd root*/

exit /*stick a fork in it, we're all done. */ /*────────────────────────────────────────────────────────────────────────────*/ quadratic: parse arg aa,bb,cc /*obtain the specified three arguments.*/

  $=sqrt(bb**2-4*aa*cc);  L=length($) /*compute  SQRT (which may be complex).*/
  r=1/(aa+aa);     ?=right($,1)=='i'  /*compute reciprocal of 2*aa;  Complex?*/
  if ?  then do;  r1= -bb   *r;  r2=r1;        r1j=left($,L-1)*r; r2j=-r1j; end
        else do;  r1=(-bb+$)*r;  r2=(-bb-$)*r; r1j=0;             r2j= 0;   end
  return

/*────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x 1 ox; if x=0 then return 0; d=digits(); m.=9

     numeric digits 9;    numeric form;    h=d+6;    x=abs(x)
     parse value format(x,2,1,,0)  'E0'   with   g 'E' _ .;      g=g *.5'e'_ %2
           do j=0  while h>9;      m.j=h;              h=h%2+1;       end /*j*/
           do k=j+5  to 0  by -1;  numeric digits m.k; g=(g+x/g)*.5;  end /*k*/
     numeric digits d;    return (g/1)left('i',ox<0)  /*make complex if OX<0.*/</lang>

output   when using the input of:   1   -10e5   1

    a = 1
    b = -1000000
    c = 1

root1 = 1000000
root2 = 0.000001

The following output is when Regina 3.9.1 REXX is used.

output   when using the input of:   1   -10e9   1

    a = 1
    b = -10000000000
    c = 1

root1 = 1.000000000E+10
root2 = 1E-10

The following output is when R4 REXX is used.

output   when using the input of:   1   -10e9   1

    a = 1
    b = -1E+10
    c = 1

root1 = 1E+10
root2 = 0.0000000001

output   when using the input of:   3   2   1

    a = 3
    b = 2
    c = 1

root1 = -0.3333333333+0.4714045208i
root2 = -0.3333333333-0.4714045208i

output   when using the input of:   1   0   1

    a = 1
    b = 0
    c = 1

root1 = 0+1i
root2 = 0-1i

Version 2

<lang rexx>/* REXX ***************************************************************

  • 26.07.2913 Walter Pachl
                                                                                                                                            • /
 Numeric Digits 30
 Parse Arg a b c 1 alist
 Select
   When a= | a='?' Then
     Call exit 'rexx qgl a b c solves a*x**2+b*x+c'
   When words(alist)<>3 Then
     Call exit 'three numbers are required'
   Otherwise
     Nop
   End
 gl=a'*x**2'
 Select
   When b<0 Then gl=gl||b'*x'
   When b>0 Then gl=gl||'+'||b'*x'
   Otherwise Nop
   End
 Select
   When c<0 Then gl=gl||c
   When c>0 Then gl=gl||'+'||c
   Otherwise Nop
   End
 Say gl '= 0'
 d=b**2-4*a*c
 If d<0 Then Do
   dd=sqrt(-d)
   r=-b/(2*a)
   i=dd/(2*a)
   x1=r'+'i'i'
   x2=r'-'i'i'
   End
 Else Do
   dd=sqrt(d)
   x1=(-b+dd)/(2*a)
   x2=(-b-dd)/(2*a)
   End
 Say 'x1='||x1
 Say 'x2='||x2
 Exit

sqrt: /* REXX ***************************************************************

  • EXEC to calculate the square root of x with high precision
                                                                                                                                            • /
 Parse Arg x
 prec=digits()
 prec1=2*prec
 eps=10**(-prec1)
 k = 1
 Numeric Digits prec1
 r0= x
 r = 1
 Do i=1 By 1 Until r=r0 | (abs(r*r-x)<eps)
   r0 = r
   r  = (r + x/r) / 2
   k  = min(prec1,2*k)
   Numeric Digits (k + 5)
   End
 Numeric Digits prec
 Return (r+0)

exit: Say arg(1) </lang>

Output:
Version 1:
    a = 1
    b = -1
    c = 0

root1 = 1
root2 = 0

Version 2:
1*x**2-1.0000000001*x+1.e-9 = 0
x1=0.9999999991000000000025
x2=0.0000000009999999999975

Ring

<lang> x1 = 0 x2 = 0 quadratic(3, 4, 4/3.0) # [-2/3] see "x1 = " + x1 + " x2 = " + x2 + nl quadratic(3, 2, -1) # [1/3, -1] see "x1 = " + x1 + " x2 = " + x2 + nl quadratic(-2, 7, 15) # [-3/2, 5] see "x1 = " + x1 + " x2 = " + x2 + nl quadratic(1, -2, 1) # [1] see "x1 = " + x1 + " x2 = " + x2 + nl

func quadratic a, b, c

    sqrtDiscriminant = sqrt(pow(b,2) - 4*a*c)
    x1 = (-b + sqrtDiscriminant) / (2.0*a)
    x2 = (-b - sqrtDiscriminant) / (2.0*a)
    return [x1, x2]

</lang>

Ruby

Works with: Ruby version 1.9.3+

The CMath#sqrt method will return a Complex instance if necessary. <lang ruby>require 'cmath'

def quadratic(a, b, c)

 sqrt_discriminant = CMath.sqrt(b**2 - 4*a*c)
 [(-b + sqrt_discriminant) / (2.0*a), (-b - sqrt_discriminant) / (2.0*a)]

end

p quadratic(3, 4, 4/3.0) # [-2/3] p quadratic(3, 2, -1) # [1/3, -1] p quadratic(3, 2, 1) # [(-1/3 + sqrt(2/9)i), (-1/3 - sqrt(2/9)i)] p quadratic(1, 0, 1) # [(0+i), (0-i)] p quadratic(1, -1e6, 1) # [1e6, 1e-6] p quadratic(-2, 7, 15) # [-3/2, 5] p quadratic(1, -2, 1) # [1] p quadratic(1, 3, 3) # [(-3 + sqrt(3)i)/2), (-3 - sqrt(3)i)/2)]</lang>

Output:
[-0.6666666666666666, -0.6666666666666666]
[0.3333333333333333, -1.0]
[(-0.3333333333333333+0.47140452079103173i), (-0.3333333333333333-0.47140452079103173i)]
[(0.0+1.0i), (0.0-1.0i)]
[999999.999999, 1.00000761449337e-06]
[-1.5, 5.0]
[1.0, 1.0]
[(-1.5+0.8660254037844386i), (-1.5-0.8660254037844386i)]

Run BASIC

<lang runbasic>print "FOR 1,2,3 => ";quad$(1,2,3) print "FOR 4,5,6 => ";quad$(4,5,6)

FUNCTION quad$(a,b,c)

   d  = b^2-4 * a*c
   x  = -1*b
   if d<0 then
       quad$ = str$(x/(2*a));" +i";str$(sqr(abs(d))/(2*a))+" , "+str$(x/(2*a));" -i";str$(sqr(abs(d))/abs(2*a))
   else
       quad$ = str$(x/(2*a)+sqr(d)/(2*a))+" , "+str$(x/(2*a)-sqr(d)/(2*a))
   end if

END FUNCTION</lang>

FOR 1,2,3 => -1 +i1.41421356 , -1 -i1.41421356
FOR 4,5,6 => -0.625 +i1.05326872 , -0.625 -i1.05326872

Scala

Using Complex class from task Arithmetic/Complex. <lang scala>import ArithmeticComplex._ object QuadraticRoots {

 def solve(a:Double, b:Double, c:Double)={
   val d = b*b-4.0*a*c
   val aa = a+a

   if (d < 0.0) {  // complex roots
     val re= -b/aa;
     val im = math.sqrt(-d)/aa;
     (Complex(re, im), Complex(re, -im))
   }
   else { // real roots
     val re=if (b < 0.0) (-b+math.sqrt(d))/aa else (-b -math.sqrt(d))/aa
     (re, (c/(a*re)))
   }	
 }

}</lang> Usage: <lang scala>val equations=Array(

 (1.0, 22.0, -1323.0),   // two distinct real roots
 (6.0, -23.0, 20.0),     //   with a != 1.0
 (1.0, -1.0e9, 1.0),     //   with one root near zero
 (1.0, 2.0, 1.0),        // one real root (double root)
 (1.0, 0.0, 1.0),        // two imaginary roots
 (1.0, 1.0, 1.0)         // two complex roots

);

equations.foreach{v =>

 val (a,b,c)=v
 println("a=%g   b=%g   c=%g".format(a,b,c))
 val roots=solve(a, b, c)
 println("x1="+roots._1)
 if(roots._1 != roots._2) println("x2="+roots._2)
 println

}</lang>

Output:
a=1.00000   b=22.0000   c=-1323.00
x1=-49.0
x2=27.0

a=6.00000   b=-23.0000   c=20.0000
x1=2.5
x2=1.3333333333333333

a=1.00000   b=-1.00000e+09   c=1.00000
x1=1.0E9
x2=1.0E-9

a=1.00000   b=2.00000   c=1.00000
x1=-1.0

a=1.00000   b=0.00000   c=1.00000
x1=-0.0 + 1.0i
x2=-0.0 + -1.0i

a=1.00000   b=1.00000   c=1.00000
x1=-0.5 + 0.8660254037844386i
x2=-0.5 + -0.8660254037844386i

Scheme

<lang scheme>(define (quadratic a b c) (if (= a 0) (if (= b 0) 'fail (- (/ c b))) (let ((delta (- (* b b) (* 4 a c)))) (if (and (real? delta) (> delta 0)) (let ((u (+ b (* (if (>= b 0) 1 -1) (sqrt delta))))) (list (/ u -2 a) (/ (* -2 c) u))) (list (/ (- (sqrt delta) b) 2 a) (/ (+ (sqrt delta) b) -2 a))))))


examples

(quadratic 1 -1 -1)

(1.618033988749895 -0.6180339887498948)

(quadratic 1 0 -2)

(-1.4142135623730951 1.414213562373095)

(quadratic 1 0 2)

(0+1.4142135623730951i 0-1.4142135623730951i)

(quadratic 1+1i 2 5)

(-1.0922677260818898-1.1884256155834088i 0.09226772608188982+2.1884256155834088i)

(quadratic 0 4 3)

-3/4

(quadratic 0 0 1)

fail

(quadratic 1 2 0)

(-2 0)

(quadratic 1 2 1)

(-1 -1)

(quadratic 1 -1e5 1)

(99999.99999 1.0000000001000001e-05)</lang>

Seed7

Translation of: Ada

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";
 include "math.s7i";

const type: roots is new struct

   var float: x1 is 0.0;
   var float: x2 is 0.0;
 end struct;

const func roots: solve (in float: a, in float: b, in float: c) is func

 result
   var roots: solution is roots.value;
 local
   var float: sd is 0.0;
   var float: x is 0.0;
 begin
   sd := sqrt(b**2 - 4.0 * a * c);
   if b < 0.0 then
     x := (-b + sd) / 2.0 * a;
     solution.x1 := x;
     solution.x2 := c / (a * x);
   else
     x := (-b - sd) / 2.0 * a;
     solution.x1 := c / (a * x);
     solution.x2 := x;
   end if;
 end func;

const proc: main is func

 local
   var roots: r is roots.value;
 begin
   r := solve(1.0, -10.0E5, 1.0);
   writeln("X1 = " <& r.x1 digits 6 <& " X2 = " <& r.x2 digits 6); 
 end func;</lang>
Output:
X1 = 1000000.000000 X2 = 0.000001

Sidef

<lang ruby>var sets = [

           [1,    2,  1],
           [1,    2,  3],
           [1,   -2,  1],
           [1,    0, -4],
           [1, -1e6,  1],
          ]

func quadroots(a, b, c) {

   var root = sqrt(b**2 - 4*a*c)
   [(-b + root) / (2 * a),
    (-b - root) / (2 * a)]

}

sets.each { |coefficients|

   say ("Roots for #{coefficients}",
       "=> (#{quadroots(coefficients...).join(', ')})")

}</lang>

Output:
Roots for [1, 2, 1]=> (-1, -1)
Roots for [1, 2, 3]=> (-1+1.41421356237309504880168872420969807856967187538i, -1-1.41421356237309504880168872420969807856967187538i)
Roots for [1, -2, 1]=> (1, 1)
Roots for [1, 0, -4]=> (2, -2)
Roots for [1, -1000000, 1]=> (999999.999998999999999998999999999997999999999995, 0.00000100000000000100000000000200000000000500000000002)

Stata

<lang stata>mata

polyroots((-2,0,1))
                1             2
   +-----------------------------+
 1 |   1.41421356   -1.41421356  |
   +-----------------------------+
polyroots((2,0,1))
                 1              2
   +-------------------------------+
 1 |  -1.41421356i    1.41421356i  |
   +-------------------------------+</lang>

Tcl

Library: Tcllib (Package: math::complexnumbers)

<lang tcl>package require math::complexnumbers namespace import math::complexnumbers::complex math::complexnumbers::tostring

proc quadratic {a b c} {

   set discrim [expr {$b**2 - 4*$a*$c}]
   set roots [list]
   if {$discrim < 0} {
       set term1 [expr {(-1.0*$b)/(2*$a)}]
       set term2 [expr {sqrt(abs($discrim))/(2*$a)}]
       lappend roots [tostring [complex $term1 $term2]] \
               [tostring [complex $term1 [expr {-1 * $term2}]]]
   } elseif {$discrim == 0} {
       lappend roots [expr {-1.0*$b / (2*$a)}]
   } else {
       lappend roots [expr {(-1*$b + sqrt($discrim)) / (2 * $a)}] \
               [expr {(-1*$b - sqrt($discrim)) / (2 * $a)}]
   }
   return $roots

}

proc report_quad {a b c} {

   puts [format "%sx**2 + %sx + %s = 0" $a $b $c]
   foreach root [quadratic $a $b $c] {
       puts "    x = $root"
   }

}

  1. examples on this page

report_quad 3 4 [expr {4/3.0}] ;# {-2/3} report_quad 3 2 -1  ;# {1/3, -1} report_quad 3 2 1  ;# {(-1/3 + sqrt(2/9)i), (-1/3 - sqrt(2/9)i)} report_quad 1 0 1  ;# {(0+i), (0-i)} report_quad 1 -1e6 1  ;# {1e6, 1e-6}

  1. examples from http://en.wikipedia.org/wiki/Quadratic_equation

report_quad -2 7 15  ;# {5, -3/2} report_quad 1 -2 1  ;# {1} report_quad 1 3 3  ;# {(-3 - sqrt(3)i)/2), (-3 + sqrt(3)i)/2)}</lang>

Output:
3x**2 + 4x + 1.3333333333333333 = 0
    x = -0.6666666666666666
3x**2 + 2x + -1 = 0
    x = 0.3333333333333333
    x = -1.0
3x**2 + 2x + 1 = 0
    x = -0.3333333333333333+0.47140452079103173i
    x = -0.3333333333333333-0.47140452079103173i
1x**2 + 0x + 1 = 0
    x = i
    x = -i
1x**2 + -1e6x + 1 = 0
    x = 999999.999999
    x = 1.00000761449337e-6
-2x**2 + 7x + 15 = 0
    x = -1.5
    x = 5.0
1x**2 + -2x + 1 = 0
    x = 1.0
1x**2 + 3x + 3 = 0
    x = -1.5+0.8660254037844386i
    x = -1.5-0.8660254037844386i

TI-89 BASIC

TI-89 BASIC has built-in numeric and algebraic solvers. <lang>solve(x^2-1E9x+1.0)</lang> returns

x=1.E-9 or x=1.E9

zkl

zkl doesn't have a complex number package.

Translation of: Elixir

<lang zkl>fcn quadratic(a,b,c){ b=b.toFloat();

  println("Roots of a quadratic function %s, %s, %s".fmt(a,b,c));
  d,a2:=(b*b - 4*a*c), a+a;
  if(d>0){
     sd:=d.sqrt();
     println("  the real roots are %s and %s".fmt((-b + sd)/a2,(-b - sd)/a2));
  }
  else if(d==0) println("  the single root is ",-b/a2);
  else{
     sd:=(-d).sqrt();
     println("  the complex roots are %s and \U00B1;%si".fmt(-b/a2,sd/a2));
  }

}</lang> <lang zkl>foreach a,b,c in (T( T(1,-2,1), T(1,-3,2), T(1,0,1), T(1,-1.0e10,1), T(1,2,3), T(2,-1,-6)) ){

  quadratic(a,b,c)

}</lang>

Output:
Roots of a quadratic function 1, -2, 1
  the single root is 1
Roots of a quadratic function 1, -3, 2
  the real roots are 2 and 1
Roots of a quadratic function 1, 0, 1
  the complex roots are 0 and ±1i
Roots of a quadratic function 1, -1e+10, 1
  the real roots are 1e+10 and 0
Roots of a quadratic function 1, 2, 3
  the complex roots are -1 and ±1.41421i
Roots of a quadratic function 2, -1, -6
  the real roots are 2 and -1.5