Return multiple values: Difference between revisions

add BLC solution
(Added Bracmat)
imported>Tromp
(add BLC solution)
 
(238 intermediate revisions by more than 100 users not shown)
Line 1:
{{task|Basic language learning}} [[Category:Functions and subroutines]]
[[Category:Functions and subroutines]]
{{omit from|GUISS}}
 
;Task:
Show how to return more than one value from a function.
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F addsub(x, y)
R (x + y, x - y)
 
V (summ, difference) = addsub(33, 12)
print(‘33 + 12 = ’summ)
print(‘33 - 12 = ’difference)</syntaxhighlight>
 
{{out}}
<pre>
33 + 12 = 45
33 - 12 = 21
</pre>
 
=={{header|6502 Assembly}}==
A function can return multiple values by storing them in two or more registers, or in user RAM.
Functions are typically called as a subroutine, e.g. <code>JSR UnpackNibbles</code>.
<syntaxhighlight lang="6502asm">UnpackNibbles:
; Takes accumulator as input.
; Separates a two-digit hex number into its component "nibbles." Left nibble in X, right nibble in Y.
 
pha ;backup the input.
and #$0F ;chop off the left nibble. What remains is our Y.
tay
pla ;restore input
and #$F0 ;chop off the right nibble. What remains is our X, but it needs to be bit shifted into the right nibble.
lsr
lsr
lsr
lsr
tax ;store in X
rts</syntaxhighlight>
 
=={{header|68000 Assembly}}==
{{trans|ARM Assembly}}
A function's "return value" is nothing more than the register state upon exit. However, to ensure compatibility between software, there are general calling conventions that compiler-written code will follow that standardizes which registers are used to return values from a function.
 
This code returns the sum and difference of two integers, which will be passed in via registers D2 and D3.
D2+D3 is returned in D0, D2-D3 is returned in D1.
 
<syntaxhighlight lang="68000devpac">foo:
MOVE.L D2,D0
MOVE.L D3,D1
ADD.L D1,D0
SUB.L D2,D3
MOVE.L D3,D1
RTS</syntaxhighlight>
 
=={{header|8086 Assembly}}==
{{trans|ARM Assembly}}
A function's "return value" is nothing more than the register state upon exit. However, to ensure compatibility between software, there are general calling conventions that compiler-written code will follow that standardizes which registers are used to return values from a function.
 
This function takes two 16-bit numbers in CX and DX, and outputs their sum to AX and their difference to BX.
 
<syntaxhighlight lang="asm">mov ax,cx
mov bx,dx
add ax,bx
sub cx,dx
mov bx,cx
ret</syntaxhighlight>
 
=={{header|ACL2}}==
<syntaxhighlight lang="lisp">;; To return multiple values:
(defun multiple-values (a b)
(mv a b))
 
;; To extract the values:
(mv-let (x y)
(multiple-values 1 2)
(+ x y))</syntaxhighlight>
<br><br>
 
=={{header|Action!}}==
The user must type in the monitor the following command after compilation and before running the program!<pre>SET EndProg=*</pre>
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">CARD EndProg ;required for ALLOCATE.ACT
 
INCLUDE "D2:ALLOCATE.ACT" ;from the Action! Tool Kit. You must type 'SET EndProg=*' from the monitor after compiling, but before running this program!
 
DEFINE PTR="CARD"
DEFINE RECORD_SIZE="6"
TYPE Record=[CARD min,max,sum]
 
PROC ArgumentsAsPointers(CARD ARRAY a BYTE n CARD POINTER min,max,sum)
BYTE i
 
min^=65535 max^=0 sum^=0
FOR i=0 TO n-1
DO
IF a(i)>max^ THEN
max^=a(i)
FI
IF a(i)<min^ THEN
min^=a(i)
FI
sum^==+a(i)
OD
RETURN
 
PROC ArgumentAsRecord(CARD ARRAY a BYTE n Record POINTER res)
BYTE i
 
res.min=65535 res.max=0 res.sum=0
FOR i=0 TO n-1
DO
IF a(i)>res.max THEN
res.max=a(i)
FI
IF a(i)<res.min THEN
res.min=a(i)
FI
res.sum==+a(i)
OD
RETURN
 
PTR FUNC ResultAsRecord(CARD ARRAY a BYTE n)
Record POINTER res
BYTE i
 
res=Alloc(RECORD_SIZE)
res.min=65535 res.max=0 res.sum=0
FOR i=0 TO n-1
DO
IF a(i)>res.max THEN
res.max=a(i)
FI
IF a(i)<res.min THEN
res.min=a(i)
FI
res.sum==+a(i)
OD
RETURN (res)
 
PROC Main()
CARD ARRAY a=[123 5267 42 654 234 6531 4432]
CARD minV,maxV,sumV
Record rec
Record POINTER p
 
Put(125) PutE() ;clear screen
AllocInit(0)
 
ArgumentsAsPointers(a,7,@minV,@maxV,@sumV)
PrintE("Return multiple values by passing arguments as pointers:")
PrintF("min=%U max=%U sum=%U%E%E",minV,maxV,sumV)
 
ArgumentAsRecord(a,7,rec)
PrintE("Return multiple values by passing argument as pointer to a record:")
PrintF("min=%U max=%U sum=%U%E%E",rec.min,rec.max,rec.sum)
 
p=ResultAsRecord(a,7)
PrintE("Return multiple values by returning a pointer to a record:")
PrintF("min=%U max=%U sum=%U%E",p.min,p.max,p.sum)
 
Free(p,RECORD_SIZE)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Return_multiple_values.png Screenshot from Atari 8-bit computer]
<pre>
Return multiple values by passing arguments as pointers:
min=42 max=6531 sum=17283
 
Return multiple values by passing argument as pointer to a record:
min=42 max=6531 sum=17283
 
Return multiple values by returning a pointer to a record:
min=42 max=6531 sum=17283
</pre>
 
=={{header|Ada}}==
Ada functions can only return one type.
That type could be an array or record holding multiple values,
but the usual method for returning several values is using
a procedure with 'out' parameters.
By default, all parameters are 'in', but can also be 'out', 'in out' and 'access'. Writing to an 'out' parameter simply changes the value of the variable passed to the procedure.
<syntaxhighlight lang="ada">
with Ada.Text_IO; use Ada.Text_IO;
procedure MultiReturn is
procedure SumAndDiff (x, y : Integer; sum, diff : out Integer) is begin
sum := x + y;
diff := x - y;
end SumAndDiff;
inta : Integer := 5;
intb : Integer := 3;
thesum, thediff : Integer;
begin
SumAndDiff (inta, intb, thesum, thediff);
Put_Line ("Sum:" & Integer'Image (thesum));
Put_Line ("Diff:" & Integer'Image (thediff));
end MultiReturn;
</syntaxhighlight>
{{out}}
<pre>
Sum: 8
Diff: 2
</pre>
 
=={{header|Agena}}==
Agena allows functions to return multiple values.
<br>
Tested with Agena 2.9.5 Win32
<syntaxhighlight lang="agena"># define a function returning three values
mv := proc() is
return 1, 2, "three"
end ; # mv
 
scope # test the mv() proc
local a, b, c := mv();
print( c, b, a )
epocs</syntaxhighlight>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.6.win32}}
Procedures in Algol 68 can only return one value, so to return multiple values,
a structure (or array if all the values have the same mode) can be used.
<syntaxhighlight lang="algol68"># example mode for returning multiple values from a procedure #
MODE PAIR = STRUCT( STRING name, INT value );
 
# procedure returning multiple values via a structure #
PROC get pair = ( INT a )PAIR:
CASE a
IN #1# ( "H", 0 )
, #2# ( "He", 1 )
, #3# ( "Li", 3 )
OUT ( "?", a )
ESAC
;
 
main: (
# use the result as a whole #
print( ( get pair( 3 ), newline ) );
# access the components separately #
print( ( name OF get pair( 1 ), value OF get pair( 2 ), newline ) )
)</syntaxhighlight>
{{out}}
<pre>
Li +3
H +1
</pre>
 
=={{header|ALGOL W}}==
Algol W procedures can't return arrays but records can be used to return multiple values.
<syntaxhighlight lang="algolw">begin
% example using a record type to return multiple values from a procedure %
record Element ( string(2) symbol; integer atomicNumber );
reference(Element) procedure getElement( integer value n ) ;
begin
Element( if n < 1 then "?<"
else if n > 3 then "?>"
else case n of ( %1% "H"
, %2% "He"
, %3% "Li"
)
, n
)
end getElement ;
% test the procedure %
begin
reference(Element) elementData;
for n := 0 until 4 do begin
elementData := getElement(n);
write( s_w := 0, i_w := 1
, atomicNumber(elementData)
, " "
, symbol(elementData)
);
end
end
 
end.</syntaxhighlight>
 
=={{header|Amazing Hopper}}==
Hopper posee una pila de trabajo de alcance global; luego, los datos pueden ser puestos ahí y accedidos desde cualquier parte del programa.
<syntaxhighlight lang="c">
#include <basico.h>
 
#proto foo(_X_,_Y_)
 
algoritmo
 
_foo(10,1), decimales '13', imprimir
 
números(v,w,x,y,z, suma)
_foo(0.25,0) ---retener(5)--- sumar todo,
mover a 'v,w,x,y,z,suma'
imprimir(NL,v,NL, w,NL, x,NL, y,NL, z,NL,NL,suma,NL)
 
terminar
 
subrutinas
 
foo(c,sw)
#(c*10), solo si( sw, NL)
#(c/100), solo si( sw, NL)
#(0.25^c), solo si( sw, convertir a notación; NL)
#(2-(sqrt(c))), solo si( sw, NL)
cuando ' #(!(sw)) '{
#( ((c^c)^c)^c )
}
retornar
</syntaxhighlight>
{{out}}
<pre>
100.0000000000000
0.1000000000000
9.536743e-07
-1.1622776601684
 
2.5000000000000
0.0025000000000
0.7071067811865
1.5000000000000
0.9785720620877
 
5.6881788432742
</pre>
 
=={{header|ARM Assembly}}==
When programming without any rules governing the way you write functions, a function's "return value" is nothing more than the register state upon exit. However, the [https://www.eecs.umich.edu/courses/eecs373/readings/ARM-AAPCS-EABI-v2.08.pdf AAPCS] calling convention dictates that the <code>R0</code> register is used to store a function's return value. (If the return value is larger than 32 bits, the registers <code>R1-R3</code> can also be used.) Following this standard is necessary for human-written assembly code to properly interface with code written by a C compiler.
 
This function takes two numbers in <code>R0</code> and <code>R1</code>, and returns their sum in <code>R0</code> and their difference in <code>R1</code>.
 
<syntaxhighlight lang="arm assembly">foo:
MOV R2,R0
MOV R3,R1
ADD R0,R2,R3
SUB R1,R2,R3
BX LR</syntaxhighlight>
 
=={{header|Arturo}}==
<syntaxhighlight lang="rebol">addsub: function [x y]->
@[x+y x-y]
 
a: 33
b: 12
 
result: addsub a b
 
print [a "+" b "=" result\0]
print [a "-" b "=" result\1]</syntaxhighlight>
 
{{out}}
 
<pre>33 + 12 = 45
33 - 12 = 21</pre>
 
=={{header|ATS}}==
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="ats">//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)
 
fun addsub
(
x: int, y: int
) : (int, int) = (x+y, x-y)
 
(* ****** ****** *)
 
implement
main0 () = let
val (sum, diff) = addsub (33, 12)
in
println! ("33 + 12 = ", sum);
println! ("33 - 12 = ", diff);
end (* end of [main0] *)</syntaxhighlight>
 
=={{header|AutoHotkey}}==
{{works with|AutoHotkey_L}}
Functions may return one value. The conventional way to return multiple values is to bundle them into an Array.
<langsyntaxhighlight AutoHotkeylang="autohotkey">addsub(x, y) {
return [x + y, x - y]
}</langsyntaxhighlight>
 
=={{header|BracmatAutoIt}}==
Return an array.
As in Haskell, every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="autoit">
<lang>(addsub=x y.!arg:(?x.?y)&(!x+!y.!x+-1*!y));</lang>
Func _AddSub($iX, $iY)
Local $aReturn[2]
$aReturn[0] = $iX + $iY
$aReturn[1] = $iX - $iY
Return $aReturn
EndFunc
</syntaxhighlight>
 
=={{header|BASIC}}==
You can use pattern matching to extract the components:
==={{header|ANSI BASIC}}===
{{works with|Decimal BASIC}}
The most straightforward way of returning multiple values is to specify them as parameters.
<syntaxhighlight lang="basic">100 DECLARE EXTERNAL SUB sumdiff
110 !
120 CALL sumdiff(5, 3, sum, diff)
130 PRINT "Sum is "; sum
140 PRINT "Difference is "; diff
150 END
160 !
170 EXTERNAL SUB sumdiff(a, b, c, d)
180 LET c = a + b
190 LET d = a - b
200 END SUB</syntaxhighlight>
{{out}}
<pre>
Sum is 8
Difference is 2
</pre>
 
==={{header|BaCon}}===
<lang>
BaCon can return homogeneous dynamic arrays, or RECORD data holding heterogeneous types.
( addsub$(33.12):(?sum.?difference)
 
<syntaxhighlight lang="freebasic">' Return multiple values
RECORD multi
LOCAL num
LOCAL s$[2]
END RECORD
 
FUNCTION f(n) TYPE multi_type
LOCAL r = { 0 } TYPE multi_type
r.num = n
r.s$[0] = "Hitchhiker's Guide"
r.s$[1] = "Douglas Adams"
RETURN r
END FUNCTION
 
DECLARE rec TYPE multi_type
rec = f(42)
PRINT rec.num
PRINT rec.s$[0]
PRINT rec.s$[1]</syntaxhighlight>
 
{{out}}
<pre>prompt$ ./return-multiple
42
Hitchhiker's Guide
Douglas Adams</pre>
 
==={{header|BBC BASIC}}===
The most straightforward way of returning multiple values is to specify them as RETURNed parameters.
<syntaxhighlight lang="bbcbasic"> PROCsumdiff(5, 3, sum, diff)
PRINT "Sum is " ; sum
PRINT "Difference is " ; diff
END
DEF PROCsumdiff(a, b, RETURN c, RETURN d)
c = a + b
d = a - b
ENDPROC</syntaxhighlight>
 
==={{header|IS-BASIC}}===
<syntaxhighlight lang="is-basic">100 NUMERIC SUM,DIFF
110 CALL SUMDIFF(5,3,SUM,DIFF)
120 PRINT "Sum is";SUM:PRINT "Difference is";DIFF
130 END
140 DEF SUMDIFF(A,B,REF C,REF D)
150 LET C=A+B:LET D=A-B
160 END DEF</syntaxhighlight>
==={{header|uBasic/4tH}}===
{{Trans|Forth}}
uBasic/4tH shares many features with Forth - like a stack. Parameters of functions and procedures are passed through this stack, so there is no difference between pushing the values on the stack ''or'' passing them as function parameters. Return values are passed by the stack as well, so if we push additional values ''before'' calling '''RETURN''' we can retrieve them using '''POP()'''.
<syntaxhighlight lang="qbasic">a = FUNC (_MulDiv (33, 11))
b = Pop()
 
Print "a * b = ";a, "a / b = ";b
 
Push 33, 11 : Proc _MulDiv
a = Pop() : b = Pop()
 
Print "a * b = ";a, "a / b = ";b
End
 
_MulDiv
Param (2)
 
Push a@ / b@
Return (a@ * b@)</syntaxhighlight>
{{Out}}
<pre>a * b = 363 a / b = 3
a * b = 363 a / b = 3
 
0 OK, 0:226 </pre>
 
=={{header|Binary Lambda Calculus}}==
In the lambda calculus, one can return a tuple, which when applied to a function f, applies f to all the tuple elements. For example, <A,B,C> is <code>\f.f A B C</code>. Alternatively, one can use continuation-passing-style (cps), in which the function f is not applied the tuple return value, but instead is passed as an extra initial argument, and then the function can return f applied to the multiple values.
 
=={{header|BQN}}==
BQN is an array language, and hence arrays are the method of returning multiple values from a function. These values can then be separated with pattern matching.
<syntaxhighlight lang="bqn"> Func←{⟨𝕩+1, 𝕩÷2, 𝕩×3⟩}
(function block)
a‿b‿c←Func 3
⟨ 4 1.5 9 ⟩
a
4
b
1.5
c
9</syntaxhighlight>
 
=={{header|Bracmat}}==
{{trans|Haskell}}
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="bracmat">(addsub=x y.!arg:(?x.?y)&(!x+!y.!x+-1*!y));</syntaxhighlight>
You can use pattern matching to extract the components:
<syntaxhighlight lang="bracmat">( addsub$(33.12):(?sum.?difference)
& out$("33 + 12 = " !sum)
& out$("33 - 12 = " !difference)
);</langsyntaxhighlight>
{{out}}
Output:
<langpre>33 + 12 = 45
33 - 12 = 21</langpre>
 
=={{header|C|C}}==
C has structures and unions which can hold multiple data elementelements of varying types. Unions also use the same memory space for storing different types of data. That's why for the union, the num comes out as 67 instead of 99. 67 is the value of 'C' in ASCII.
<syntaxhighlight lang="c">#include<stdio.h>
<lang c>
#include<stdio.h>
 
typedef struct{
Line 36 ⟶ 532:
double bigDecimal;
}Composite;
typedef union{
int num;
char letter;
}Zip;
 
Composite example()
{
Composite C = {1, 2.3, 'a', "Hello World", 45.678};
return C;
}
 
Zip example2()
{
Zip r;
r.num = 99;
r.letter = 'C';
return r;
}
 
Line 60 ⟶ 543:
{
Composite C = example();
 
Zip rar = example2();
printf("Values from a function returning a structure : { %d, %f, %c, %s, %f}\n", C.integer, C.decimal, C.letter, C.string, C.bigDecimal);
 
printf("Values from a function returning a structure : { %d, %f, %c, %s, %f}",C.integer, C.decimal,C.letter,C.string,C.bigDecimal);
printf("\n\n\nValues from a function returning a union : { %d, %c}",rar.num,rar.letter);
return 0;
}</syntaxhighlight>
}
{{out}}
</lang>
<pre>
Output:
<lang>
Values from a function returning a structure : { 1, 2.300000, a, Hello World, 45.678000}
</pre>
 
C99 and above also allow structure literals to refer to the name, rather than position, of the element to be initialized:
<syntaxhighlight lang="c">#include <stdio.h>
 
typedef struct {
Values from a function returning a union : { 67, C}
char *first, *last;
</lang>
} Name;
 
Name whatsMyName() {
=={{header|C++}}==
return (Name) {
The new 2011 C++ standard includes tuples, which allow a number of different values of even different types to be passed around.
.first = "James",
<lang cpp>#include <algorithm>
.last = "Bond",
#include <iostream>
};
#include <tr1/tuple>
 
std::tr1::tuple<const int , const int> minmax ( const int * numbers , const int num ) {
const int *maximum = std::max_element ( numbers , numbers + num ) ;
const int *minimum = std::min_element ( numbers , numbers + num ) ;
std::tr1::tuple<const int , const int> result( *maximum , *minimum ) ;
return result ;
}
 
int main( ) {
Name me = whatsMyName();
const int numbers[ ] = { 17 , 88 , 9 , 33 , 4 , 987 , -10 , 2 } ;
printf("The name's %s. %s %s.\n", me.last, me.first, me.last);
int numbersize = sizeof( numbers ) / sizeof ( int ) ;
return 0;
std::tr1::tuple<const int , const int> result = minmax( numbers , numbersize ) ;
}</syntaxhighlight>
std::cout << "The greatest number is " << std::tr1::get<0>( result )
{{out}}
<< " , the smallest " << std::tr1::get<1>( result ) << " !\n" ;
<pre>The name's Bond. James Bond.
return 0 ;
}</langpre>
Output:
<PRE>The greatest number is 987 , the smallest -10 !</PRE>
 
=={{header|C sharp}}==
 
=={{header|C sharp|C#}}==
<lang c sharp>using System;
The preferred way to return multiple values in C# is to use "out" parameters on the method. This can be in addition to the value returned by the method.
<syntaxhighlight lang="c sharp">using System;
using System.Collections.Generic;
using System.Linq;
 
namespaceclass ReturnMultipleValues
{
internalstatic classvoid ProgramMain()
{
var values = new[] { 4, 51, 1, -3, 3, 6, 8, 26, 2, 4 };
static void Main()
{ int max, min;
var minMax = MinMaxNum(new[] {4values, 51,out 1max, -3, 3, 6, 8, 26, 2,out 4}min);
 
Console.WriteLine("Min: {0}\nMax: int{1}", min, = minMax.Item1max);
int max = minMax.Item2;
 
Console.WriteLine("Min: {0}\nMax: {1}", min, max);
}
 
static Tuple<int,int> MinMaxNum(IEnumerable<int> nums)
{
var sortedNums = nums.OrderBy(num => num).ToArray();
return new Tuple<int, int>(sortedNums.First(), sortedNums.Last());
}
}
}</lang>
 
static void MinMaxNum(IEnumerable<int> nums, out int max, out int min)
'''Output'''
{
var sortedNums = nums.OrderBy(num => num).ToArray();
max = sortedNums.Last();
min = sortedNums.First();
}
}</syntaxhighlight>
{{out}}
<pre>Min: -3
Max: 51</pre>
 
=={{header|Common LispC++}}==
Since C++11, the C++-standard-library includes tuples, as well as an easy way to destructure them.
Besides the obvious method of passing around a list, Common Lisp also allows a function to return multiple values. When citing the return values, if no interest is shown for multiple values, only the first (the primary return value) is used. Multiple values are not a data structure such as a tuple, list or array. They are a true mechanism for returning multiple values.
<syntaxhighlight lang="cpp">#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>
#include <tuple>
 
std::tuple<int, int> minmax(const int * numbers, const std::size_t num) {
Returning a single value is accomplished by evaluating an expression (which itself yields a single value) at the end of a body of forms.
const auto maximum = std::max_element(numbers, numbers + num);
const auto minimum = std::min_element(numbers, numbers + num);
return std::make_tuple(*minimum, *maximum) ;
}
 
int main( ) {
<lang lisp>(defun return-three ()
const auto numbers = std::array<int, 8>{{17, 88, 9, 33, 4, 987, -10, 2}};
3)</lang>
int min{};
int max{};
std::tie(min, max) = minmax(numbers.data(), numbers.size());
std::cout << "The smallest number is " << min << ", the biggest " << max << "!\n" ;
}</syntaxhighlight>
{{out}}
<PRE>The smallest number is -10, the biggest 987!</PRE>
 
=={{header|Clipper}}==
The next possibility is that of returning no values at all. For this, the <code>values</code> function is used, with no arguments:
Every function returns one value.
The conventional way to return multiple values is to bundle them into an array.
<syntaxhighlight lang="clipper">Function Addsub( x, y )
Return { x+y, x-y }</syntaxhighlight>
 
=={{header|Clojure}}==
<lang lisp>(defun return-nothing ()
Multiple values can be returned by packaging them in a vector.
(values))</lang>
At receiving side, these arguments can be obtained individually by using [http://blog.jayfields.com/2010/07/clojure-destructuring.html destructuring].
<syntaxhighlight lang="clojure">(defn quot-rem [m n] [(quot m n) (rem m n)])
 
; The following prints 3 2.
To combine the values of multiple expressions into a multi-value return, <code>values</code> is used with arguments. The following is from an interactive [[CLISP]] session. CLISP's listener shows multiple values separated by a semicolon:
(let [[q r] (quot-rem 11 3)]
(println q)
(println r))</syntaxhighlight>
In complex cases, it would make more sense to return a map, which can be destructed in a similar manner.
<syntaxhighlight lang="clojure">(defn quot-rem [m n]
{:q (quot m n)
:r (rem m n)})
 
; The following prints 3 2.
<lang lisp>[1]> (defun add-sub (x y) (values-list (list (+ x y) (- x y))))
(let [{:keys [q r]} (quot-rem 11 3)]
(println q)
(println r))</syntaxhighlight>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">% Returning multiple values (along with type parameterization)
% was actually invented with CLU.
 
% Do note that the procedure is actually returning multiple
% values; it's not returning a tuple and unpacking it.
% That doesn't exist in CLU.
 
% For added CLU-ness, this function is fully general, requiring
% only that its arguments support addition and subtraction in any way
 
add_sub = proc [T,U,V,W: type] (a: T, b: U) returns (V, W)
signals (overflow)
where T has add: proctype (T,U) returns (V) signals (overflow),
sub: proctype (T,U) returns (W) signals (overflow)
return (a+b, a-b) resignal overflow
end add_sub
 
 
% And actually using it
start_up = proc ()
add_sub_int = add_sub[int,int,int,int] % boring, but does what you'd expect
po: stream := stream$primary_output()
% returning two values from the function
sum, diff: int := add_sub_int(33, 12)
 
% print out both
stream$putl(po, "33 + 12 = " || int$unparse(sum))
stream$putl(po, "33 - 12 = " || int$unparse(diff))
end start_up</syntaxhighlight>
{{out}}
<pre>33 + 12 = 45
33 - 12 = 21</pre>
=={{header|CMake}}==
<syntaxhighlight lang="cmake"># Returns the first and last characters of string.
function(firstlast string first last)
# f = first character.
string(SUBSTRING "${string}" 0 1 f)
 
# g = last character.
string(LENGTH "${string}" length)
math(EXPR index "${length} - 1")
string(SUBSTRING "${string}" ${index} 1 g)
 
# Return both characters.
set("${first}" "${f}" PARENT_SCOPE)
set("${last}" "${g}" PARENT_SCOPE)
endfunction(firstlast)
 
firstlast("Rosetta Code" begin end)
message(STATUS "begins with ${begin}, ends with ${end}")</syntaxhighlight>
 
=={{header|COBOL}}==
COBOL normally passes data <code>BY REFERENCE</code>, which is the default
mode, effectively making the arguments modifiable.
 
User Defined Functions return a single argument, but that argument can be a
group item.
 
Most large scale COBOL programs will attempt to keep from repeating itself,
in terms of data layouts, using external copy books and the COBOL COPY
statement. ''This example uses in source REPLACE to avoid copy books.''
 
{{works with|GnuCOBOL}}
 
<syntaxhighlight lang="cobol">
identification division.
program-id. multiple-values.
 
environment division.
configuration section.
repository.
function multiples
function all intrinsic.
 
REPLACE ==:linked-items:== BY ==
01 a usage binary-long.
01 b pic x(10).
01 c usage float-short.
==
==:record-item:== BY ==
01 master.
05 ma usage binary-long.
05 mb pic x(10).
05 mc usage float-short.
==.
 
data division.
working-storage section.
:linked-items:
 
:record-item:
procedure division.
sample-main.
 
move 41 to a
move "aaaaabbbbb" to b
move function e to c
 
display "Original: " a ", " b ", " c
call "subprogram" using a b c
display "Modified: " a ", " b ", " c
move multiples() to master
display "Multiple: " ma ", " mb ", " mc
 
goback.
end program multiple-values.
 
*> subprogram
identification division.
program-id. subprogram.
 
data division.
linkage section.
:linked-items:
 
procedure division using a b c.
add 1 to a
inspect b converting "a" to "b"
divide 2 into c
goback.
end program subprogram.
 
*> multiples function
identification division.
function-id. multiples.
 
data division.
linkage section.
:record-item:
 
procedure division returning master.
move 84 to ma
move "multiple" to mb
move function pi to mc
goback.
end function multiples.
</syntaxhighlight>
 
{{out}}
<pre>
prompt$ cobc -xj multiple-values.cob
Original: +0000000041, aaaaabbbbb, 2.7182817
Modified: +0000000042, bbbbbbbbbb, 1.3591409
Multiple: +0000000084, multiple , 3.1415927
</pre>
 
=={{header|Common Lisp}}==
Besides the obvious method of passing around a list, Common Lisp also allows a function to return multiple values. When citing the return values, if no interest is shown for multiple values, only the first (the primary return value) is used. Multiple values are not a data structure such as a tuple, list or array. They are a true mechanism for returning multiple values.
 
Returning a single value is accomplished by evaluating an expression (which itself yields a single value) at the end of a body of forms.
<syntaxhighlight lang="lisp">(defun return-three ()
3)</syntaxhighlight>
The next possibility is that of returning no values at all. For this, the <code>values</code> function is used, with no arguments:
<syntaxhighlight lang="lisp">(defun return-nothing ()
(values))</syntaxhighlight>
To combine the values of multiple expressions into a multi-value return, <code>values</code> is used with arguments. The following is from an interactive [[CLISP]] session. CLISP's listener shows multiple values separated by a semicolon:
<syntaxhighlight lang="lisp">[1]> (defun add-sub (x y) (values-list (list (+ x y) (- x y))))
ADD-SUB
[2]> (add-sub 4 2) ; 6 (primary) and 2
Line 158 ⟶ 824:
10
[5]> (multiple-value-call #'+ (add-sub 4 2) (add-sub 3 1)) ; 6+2+4+2
14</langsyntaxhighlight>
 
What happens if something tries to use the value of a form which returned <code>(values)</code>? In this case the behavior defaults to taking the value <code>nil</code>:
<syntaxhighlight lang="lisp">(car (values)) ;; no error: same as (car nil)</syntaxhighlight>
 
<lang lisp>(car (values)) ;; no error: same as (car nil)</lang>
 
What if the <code>values</code> function is applied to some expressions which also yield multiple values, or which do not yield any values? The answer is that only the primary value is taken from each expression, or the value <code>nil</code> for any expression which did not yield a value:
<syntaxhighlight lang="lisp">(values (values 1 2 3) (values) 'a)</syntaxhighlight>
 
<lang lisp>(values (values 1 2 3) (values) 'a)</lang>
 
yields three values:
 
<pre>-> 1; NIL; A</pre>
 
This also means that <code>values</code> can be used to reduce a multiple value to a single value:
<syntaxhighlight lang="lisp">;; return exactly one value, no matter how many expr returns,
 
<lang lisp>;; return exactly one value, no matter how many expr returns,
;; nil if expr returns no values
(values expr)</langsyntaxhighlight>
 
Multiple values are extracted in several ways.
 
1. Binding to variables:
<syntaxhighlight lang="lisp">(multiple-value-bind (dividend remainder) (truncate 16 3)
 
<lang lisp>(multiple-value-bind (dividend remainder) (truncate 16 3)
;; in this scope dividend is 5; remainder is 1
)</langsyntaxhighlight>
 
2. Conversion to a list:
<syntaxhighlight lang="lisp">(multiple-value-list (truncate 16 3)) ;; yields (5 1)</syntaxhighlight>
 
<lang lisp>(multiple-value-list (truncate 16 3)) ;; yields (5 1)</lang>
 
3. Reification of multiple values as arguments to another function:
<syntaxhighlight lang="lisp">;; pass arguments 5 1 to +, resulting in 6:
 
(multiple-value-call #'+ (truncate 16 3))</syntaxhighlight>
<lang lisp>;; pass arguments 5 1 to +, resulting in 6:
(multiple-value-call #'+ (truncate 16 3))</lang>
 
4. Assignment to variables:
<langsyntaxhighlight lang="lisp">;; assign 5 to dividend, 1 to remainder:
(multiple-value-setq (dividend remainder) (truncate 16 1))</langsyntaxhighlight>
<code>(values ...)</code> syntax is treated as a multiple value place by <code>setf</code> and other operators, allowing the above to be expressed this way:
<langsyntaxhighlight lang="lisp">(setf (values dividend remainder) (truncate 16 1))</langsyntaxhighlight>
 
=={{header|Cowgol}}==
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
# In Cowgol, subroutines can simply define multiple output parameters.
sub MinMax(arr: [uint8], len: intptr): (min: uint8, max: uint8) is
min := 255;
max := 0;
while len > 0 loop
len := len - 1;
var cur := [arr];
if min > cur then min := cur; end if;
if max < cur then max := cur; end if;
arr := @next arr;
end loop;
# Values are also returned automatically.
end sub;
 
# Example of usage:
var nums: uint8[] := {23, 65, 33, 12, 95, 5, 32, 91, 135, 25, 8};
var least: uint8;
var most: uint8;
 
# Accept two output parameters from a function
(least, most) := MinMax(&nums[0], @sizeof nums);
 
print("Min: "); print_i8(least); print_nl();
print("Max: "); print_i8(most); print_nl();</syntaxhighlight>
 
{{out}}
 
<pre>Min: 5
Max: 135</pre>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.algorithm;
 
 
mixin template ret(string z) {
mixin({
string res;
 
auto r = z.split(" = ");
auto m = r[0].split(", ");
auto s = m.join("_");
 
res ~= "auto " ~ s ~ " = " ~ r[1] ~ ";";
foreach(i, n; m){
res ~= "auto " ~ n ~ " = " ~ s ~ "[" ~ i.to!string ~ "];\n";
}
return res;
}());
}
 
auto addSub(T)(T x, T y) {
return tuple(x + y, x - y);
}
 
void main() {
automixin rret!q{ a, b = addSub(33, 12) };
 
writefln("33 + 12 = %d\n33 - 12 = %d", r.tupleof);
writefln("33 + 12 = %d\n33 - 12 = %d", a, b);
}</lang>
}</syntaxhighlight>
Output:
{{out}}
<pre>33 + 12 = 45
33 - 12 = 21</pre>
This pull request:
 
=={{header|Dc}}==
https://github.com/D-Programming-Language/dmd/pull/341
Define a divmod macro <code>~</code> which takes <code>a b</code> on the stack and returns <code>a/b a%b</code>.
 
<syntaxhighlight lang="dc">[ S1 S2 l2 l1 / L2 L1 % ] s~
if accepted will allow nice tuple destructuring code like:
1337 42 l~ x f</syntaxhighlight>
<lang d>(auto m1, m2) = addSub(33, 12);</lang>
{{out}}
 
<pre>35
 
31</pre>
=={{header|Delphi}}==
 
=={{header|Delphi}}/{{header|Pascal}}==
Delphi functions return a single value, but var parameters of a function or procedure can be modified and act as return values.
<syntaxhighlight lang="delphi">program ReturnMultipleValues;
 
<lang Delphi>program ReturnMultipleValues;
 
{$APPTYPE CONSOLE}
Line 243 ⟶ 948:
Writeln(x);
Writeln(y);
end.</langsyntaxhighlight>
 
=={{header|FactorDyalect}}==
With stack-oriented languages like Factor, a function returns multiple values by pushing them on the data stack. For example, this word ''*/'' pushes both x*y and x/y.
 
A typical way to return multiple values in Dyalect is to use tuples:
<lang factor>USING: io kernel math prettyprint ;
 
<syntaxhighlight lang="dyalect">func divRem(x, y) {
(x / y, x % y)
}</syntaxhighlight>
 
=={{header|Déjà Vu}}==
<syntaxhighlight lang="dejavu">function-returning-multiple-values:
10 20
 
!print !print function-returning-multiple-values
</syntaxhighlight>
{{out}}
<pre>10
20</pre>
 
=={{header|EasyLang}}==
<syntaxhighlight lang="easylang">
proc addSubtract a b . sum diff .
sum = a + b
diff = a - b
.
addSubtract 7 5 sum diff
print "Sum: " & sum
print "Difference: " & diff
</syntaxhighlight>
{{out}}
<pre>
Sum: 12
Difference: 2
</pre>
 
=={{header|EchoLisp}}==
One can return the result of the '''values''' function, or a list.
<syntaxhighlight lang="scheme">
(define (plus-minus x y)
(values (+ x y) (- x y)))
(plus-minus 3 4)
→ 7
-1
 
(define (plus-minus x y)
(list (+ x y) (- x y)))
(plus-minus 3 4)
→ (7 -1)
</syntaxhighlight>
 
=={{header|ECL}}==
<syntaxhighlight lang="text">MyFunc(INTEGER i1,INTEGER i2) := FUNCTION
RetMod := MODULE
EXPORT INTEGER Add := i1 + i2;
EXPORT INTEGER Prod := i1 * i2;
END;
RETURN RetMod;
END;
 
//Reference each return value separately:
MyFunc(3,4).Add;
MyFunc(3,4).Prod;
</syntaxhighlight>
 
=={{header|Eiffel}}==
Every function returns one value. Multiple values can be returned in a tuple.
<syntaxhighlight lang="eiffel">some_feature: TUPLE
do
Result := [1, 'j', "r"]
end</syntaxhighlight>
Greater control over the type of return values can also be enforced by explicitly declaring the type of the generic parameters.
<syntaxhighlight lang="eiffel">some_feature: TUPLE[INTEGER_32, CHARACTER_8, STRING_8]
do
--Result := [ ] -- compile error
--Result := [1, "r", 'j'] -- also compile error
Result := [1, 'j', "r"] -- okay
Result := [1, 'j', "r", 1.23] -- also okay
end</syntaxhighlight>
 
=={{header|Elena}}==
ELENA 6.x :
<syntaxhighlight lang="elena">import system'routines;
import extensions;
extension op
{
MinMax(ref int minVal, ref int maxVal)
{
var ordered := self.ascendant();
minVal := ordered.FirstMember;
maxVal := ordered.LastMember
}
}
public program()
{
var values := new int[]{4, 51, 1, -3, 3, 6, 8, 26, 2, 4};
values.MinMax(ref int min, ref int max);
console.printLine("Min: ",min," Max: ",max)
}</syntaxhighlight>
=== Using Tuples syntax ===
<syntaxhighlight lang="elena">import system'routines;
import extensions;
extension op
{
::(int, int) MinMax()
{
var ordered := self.ascendant();
^ (ordered.FirstMember, ordered.LastMember);
}
}
public program()
{
var values := new int[]{4, 51, 1, -3, 3, 6, 8, 26, 2, 4};
(int min, int max) := values.MinMax();
console.printLine("Min: ",min," Max: ",max)
}</syntaxhighlight>
{{out}}
<pre>
Min: -3 Max: 51
</pre>
 
=={{header|Elixir}}==
Elixir returns in the tuple form when returning more than one value.
<syntaxhighlight lang="elixir">defmodule RC do
def addsub(a, b) do
{a+b, a-b}
end
end
 
{add, sub} = RC.addsub(7, 4)
IO.puts "Add: #{add},\tSub: #{sub}"</syntaxhighlight>
 
{{out}}
<pre>
Add: 11, Sub: 3
</pre>
 
=={{header|Erlang}}==
<syntaxhighlight lang="erlang">% Put this code in return_multi.erl and run it as "escript return_multi.erl"
 
-module(return_multi).
 
main(_) ->
{C, D, E} = multiply(3, 4),
io:format("~p ~p ~p~n", [C, D, E]).
 
multiply(A, B) ->
{A * B, A + B, A - B}.
</syntaxhighlight>
{{out}}
<pre>12 7 -1
</pre>
 
=={{header|ERRE}}==
FUNCTIONs in ERRE language return always a single value, but PROCEDUREs can return multiple values defining a parameter output list in procedure declaration using '->' separator.
<syntaxhighlight lang="erre">
PROGRAM RETURN_VALUES
 
PROCEDURE SUM_DIFF(A,B->C,D)
C=A+B
D=A-B
END PROCEDURE
 
BEGIN
SUM_DIFF(5,3->SUM,DIFF)
PRINT("Sum is";SUM)
PRINT("Difference is";DIFF)
END PROGRAM
</syntaxhighlight>
 
=={{header|Euler}}==
Euler procedures can return a list (Euler's only data structure), this is used here to return three values from the getMV procedure.
<br>
Procedures are defined by enclosing their text between ` and '. They can then be assigned to a variable for later use.
<br>
Lists are constructed by placing the values between ( and ). Once assigned to a variable, the list can be subscripted to access the individual elements (which can themselves be lists).
'''begin'''
'''new''' mv; '''new''' getMV;
getMV &lt;- ` '''formal''' v; ( v, v * v, v * v * v ) &apos;;
mv &lt;- getMV( 3 );
'''out''' mv[ 1 ];
'''out''' mv[ 2 ];
'''out''' mv[ 3 ]
'''end''' $
 
=={{header|Euphoria}}==
Any Euphoria object can be returned. A sequence of objects can be returned, made from multiple data types as in this example.
<syntaxhighlight lang="euphoria">include std\console.e --only for any_key, to help make running this program easy on windows GUI
 
integer aWholeNumber = 1
atom aFloat = 1.999999
sequence aSequence = {3, 4}
sequence result = {} --empty initialized sequence
 
function addmultret(integer first, atom second, sequence third)--takes three kinds of input, adds them all into one element of the..
return (first + second + third[1]) + third[2] & (first * second * third[1]) * third[2] --..output sequence and multiplies them into..
end function --..the second element
 
result = addmultret(aWholeNumber, aFloat, aSequence) --call function, assign what it gets into result - {9.999999, 23.999988}
? result
any_key()</syntaxhighlight>
 
{{out}}
<pre>{9.999999,23.999988}
Press Any Key to continue...</pre>
 
=={{header|F_Sharp|F#}}==
A function always returns exactly one value.
To return multiple results, they are typically packed into a tuple:
<syntaxhighlight lang="fsharp">let addSub x y = x + y, x - y
 
let sum, diff = addSub 33 12
printfn "33 + 12 = %d" sum
printfn "33 - 12 = %d" diff</syntaxhighlight>
 
Output parameters from .NET APIs are automatically converted to tuples by the compiler.
It is also possible to use output parameters explicitly with the <code>byref</code> keyword, but this is rarely necessary.
 
=={{header|Factor}}==
With stack-oriented languages like Factor, a function returns multiple values by pushing them on the data stack.
For example, this word ''*/'' pushes both x*y and x/y.
<syntaxhighlight lang="factor">USING: io kernel math prettyprint ;
IN: script
 
Line 257 ⟶ 1,191:
 
[ "15 * 3 = " write . ]
[ "15 / 3 = " write . ] bi*</langsyntaxhighlight>
 
Its stack effect declares that ''*/'' always returns 2 values. To return a variable number of values, a word must bundle those values into a [[sequence]] (perhaps an array or vector). For example, ''factors'' (defined in ''math.primes.factors'' and demonstrated at [[Prime decomposition#Factor]]) returns a sequence of prime factors.
 
=={{header|FALSE}}==
<syntaxhighlight lang="false">[\$@$@*@@/]f: { in: a b, out: a*b a/b }
6 2f;! .' ,. { 3 12 }</syntaxhighlight>
 
=={{header|Forth}}==
It is natural to return multiple values on the parameter stack. Many built-in operators and functions do so as well ('''/mod''', '''open-file''', etc.).
<langsyntaxhighlight lang="forth">: muldiv ( a b -- a*b a/b )
2dup / >r * r> ;</langsyntaxhighlight>
 
=={{header|Fortran}}==
{{trans|Haskell}}
<syntaxhighlight lang="fortran">module multiple_values
implicit none
type res
integer :: p, m
end type
 
contains
 
function addsub(x,y) result(r)
integer :: x, y
type(res) :: r
r%p = x+y
r%m = x-y
end function
end module
 
program main
use multiple_values
print *, addsub(33, 22)
end program
</syntaxhighlight>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
' One way to return multiple values is to use ByRef parameters for the additional one(s)
Function tryOpenFile (fileName As String, ByRef fileNumber As Integer) As Boolean
Dim result As Integer
fileNumber = FreeFile
result = Open(fileName For Input As # fileNumber)
If result <> 0 Then
fileNumber = 0
Return False
Else
Return True
End If
End Function
 
Dim fn As Integer
Var b = tryOpenFile("xxx.zyz", fn) '' this file doesn't exist
Print b, fn
b = tryOpenFile("input.txt", fn) '' this file does exist
Print b, fn
Close # fn
 
' Another way is to use a user defined type
 
Type FileOpenInfo
opened As Boolean
fn As Integer
End Type
 
Function tryOpenFile2(fileName As String) As FileOpenInfo
Dim foi As FileOpenInfo
foi.fn = FreeFile
Dim result As Integer
result = Open(fileName For Input As # foi.fn)
If result <> 0 Then
foi.fn = 0
foi.opened = False
Else
foi.Opened = True
End If
Return foi
End Function
 
Print
Var foi = tryOpenFile2("xxx.zyz")
Print foi.opened, foi.fn
foi = tryOpenFile2("input.txt")
Print foi.opened, foi.fn
Close # foi.fn
 
Print
Print "Press any key to quit"
Sleep</syntaxhighlight>
 
{{out}}
<pre>
false 0
true 1
 
false 0
true 1
</pre>
 
=={{header|Frink}}==
The most common way of returning multiple values from a function is to return them as an array, which can be disassembled and set into individual variables on return.
<syntaxhighlight lang="frink">
divMod[a, b] := [a div b, a mod b]
 
[num, remainder] = divMod[10, 3]
</syntaxhighlight>
 
=={{header|FunL}}==
{{trans|Scala}}
<syntaxhighlight lang="funl">def addsub( x, y ) = (x + y, x - y)
 
val (sum, difference) = addsub( 33, 12 )
 
println( sum, difference, addsub(33, 12) )</syntaxhighlight>
 
{{out}}
 
<pre>
45, 21, (45, 21)
</pre>
 
=={{header|FutureBasic}}==
FutureBasic offers several ways to return multiple values from a function: by passing pointers to multiple values in and out of functions; global records (structures); global containers (imagine a global bit bucket that can hold up to 2GBs of data); and global arrays of either the standard kind, or of FB's dynamic arrays.
 
Here is an example of returning multiple values using pointers:
<syntaxhighlight lang="futurebasic">
local fn ReturnMultipleValues( strIn as Str255, strOut as ^Str255, letterCount as ^long )
Str255 s
// Test if incoming string is empty, and exit function if it is
if strIn[0] == 0 then exit fn
// Prepend this string to incoming string and return it
s = "Here is your original string: "
strOut.nil$ = s + strIn
// Get length of combined string and return it
// Note: In FutureBasic string[0] is interchangeable with Len(string)
letterCount.nil& = strIn[0] + s[0]
end fn
 
Str255 outStr
long outCount
 
fn ReturnMultipleValues( "Hello, World!", @outStr, @outCount )
print outStr; ". The combined strings have ";outCount; " letters in them."
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
Here is your original string: Hello, World!. The combined strings have 43 letters in them.
</pre>
 
Another way to pass multiple values from a function is with records (AKA structures):
<syntaxhighlight lang="text">
// Elements in global array
_maxDim = 3
 
begin record Addresses
Str63 name
Str15 phone
long zip
end record
 
begin globals
Addresses gAddressData(_maxDim)
end globals
 
local fn FillRecord( array(_maxDim) as Addresses )
array.name(0) = "John Doe"
array.name(1) = "Mary Jones"
array.name(2) = "Bill Smith"
array.phone(0) = "555-359-4411"
array.phone(1) = "555-111-2211"
array.phone(2) = "555-769-8071"
array.zip(0) = 12543
array.zip(1) = 67891
array.zip(2) = 54321
end fn
 
// Pass address of global array to fill it
fn FillRecord( gAddressData(0) )
 
short i
for i = 0 to 2
print gAddressData.name(i); ", ";
print gAddressData.phone(i); ", Zip:";
print gAddressData.zip(i)
next
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
John Doe, 555-359-4411, Zip: 12543
Mary Jones, 555-111-2211, Zip: 67891
Bill Smith, 555-769-8071, Zip: 54321
</pre>
 
You can also use global arrays to return multiple values from a function as in this example:
<syntaxhighlight lang="text">
// Elements in global array
_maxDim = 3
 
begin globals
Str31 gAddressArray(_maxDim, _maxDim)
end globals
 
local fn FillRecord( array(_maxDim, _maxDim) as Str31 )
array( 0, 0 ) = "John Doe"
array( 1, 0 ) = "Mary Jones"
array( 2, 0 ) = "Bill Smith"
 
array( 0, 1 ) = "555-359-4411"
array( 1, 1 ) = "555-111-2211"
array( 2, 1 ) = "555-769-8071"
 
array( 0, 2 ) = "12543"
array( 1, 2 ) = "67891"
array( 2, 2 ) = "54321"
end fn
 
// Pass address of global array to fill it
fn FillRecord( gAddressArray( 0, 0 ) )
 
short i, j
 
for i = 0 to 2
j = 0
print gAddressArray(i, j ); ", ";
print gAddressArray(i, j + 1); ", Zip: ";
print gAddressArray(i, j + 1)
next
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
John Doe, 555-359-4411, Zip: 555-359-4411
Mary Jones, 555-111-2211, Zip: 555-111-2211
Bill Smith, 555-769-8071, Zip: 555-769-8071
</pre>
 
Here is another example using FB's containers -- bit buckets that can hold up to 2GB of data contingent on system memory.
<syntaxhighlight lang="text">
begin globals
// An FB container can hold up to 2GB of data, contingent on system memory
container gC1, gC2
end globals
 
local fn ReturnMultipleValuesInContainers
// Fill container with strings from inside function
gC1 = "Twas brillig, and the slithy toves" + chr$(13)
gC1 += "Did gyre and gimble in the wabe;" + chr$(13)
gC1 += "All mimsy were the borogoves," + chr$(13)
gC1 += "And the mome raths outgrabe." + chr$(13)
gC1 += "'Beware the Jabberwock, my son!" + chr$(13)
gC1 += "The jaws that bite, the claws that catch!" + chr$(13)
gC1 += "Beware the Jubjub bird, and shun" + chr$(13)
gC1 += "The frumious Bandersnatch!'" + chr$(13)
 
// Fill another container with numbers
gC2 = "10254"+ chr$(13)
gC2 += "37" + chr$(13)
gC2 += "64" + chr$(13)
end fn
 
local fn ReturnNewMultipleValuesInContainers
gC1 = "Jabberwocky is gone, but here is some new text." + chr$(13)
gC2 = "1000000"
end fn
 
// Test to see containers are empty:
print gC1 : print gC2
 
// Fill the containers using a function
fn ReturnMultipleValuesInContainers
 
// Check results
print gC1 : print : print gC2
 
// Empty the containers
gC1 = "" : gC2 = ""
 
// Fill with another function
fn ReturnNewMultipleValuesInContainers
 
// Check the new results
print gC1 : print gC2
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
 
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
'Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!'
 
10254
37
64
 
Jabberwocky is gone, but here is some new text.
 
1000000
</pre>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Return_multiple_values}}
 
'''Solution'''
 
Every function returns one value. The conventional way to return multiple values is to return a list.
 
In the following example, the function returns the sum and product of two given numbers.
 
[[File:Fōrmulæ - Return multiple values 01.png]]
 
[[File:Fōrmulæ - Return multiple values 02.png]]
 
[[File:Fōrmulæ - Return multiple values 03.png]]
 
=={{header|Go}}==
Functions can return multiple values in Go:
<syntaxhighlight lang="go">func addsub(x, y int) (int, int) {
 
<lang go>func addsub(x, y int) (int, int) {
return x + y, x - y
}</langsyntaxhighlight>
 
Or equivalently using named return style:
<syntaxhighlight lang="go">func addsub(x, y int) (sum, difference int) {
 
<lang go>func addsub(x, y int) (sum, difference int) {
sum = x + y
difference = x - y
return
}</langsyntaxhighlight>
 
When a function returns multiple values, you must assign to a comma-separated list of targets:
<syntaxhighlight lang="go">sum, difference := addsub(33, 12)
 
<lang go>sum, difference := addsub(33, 12)
fmt.Printf("33 + 12 = %d\n", sum)
fmt.Printf("33 - 12 = %d\n", difference)</langsyntaxhighlight>
::<syntaxhighlight lang="go">package main
 
import (
"fmt"
)
 
// Return multiple values using a function
func Pet(name, color string) (string, string) {
color = "white"
return name, color
}
 
// Change multiple global values using a function and a struct
type Beast struct {
Cry, Play string
}
 
var Fluffy = Beast{"Meow", "Mice"}
 
func myBeast() {
Fluffy.Cry = "Hiss"
// Fluffy.Play = "Ball"
}
 
// Return multiple values using a function and an array
func Cat(newCat []string) []string {
newCat = append(newCat, "Milk")
return newCat
}
 
// Return multiple values using a method and a struct
type Tabby struct {
Sleep string
Cry string
}
 
func (myTab Tabby) Puss() (string, string) {
myTab.Sleep = "Zzzz"
myTab.Cry = "Purr"
return myTab.Sleep, myTab.Cry
}
 
func main() {
// Return multiple values using a function
name, color := Pet("Shadow", "Black")
fmt.Println(name, color) // prt Puss Black
 
// Change multiple global values using a function and a struct
// fmt.Println(Fluffy.Cry, Fluffy.Play) // prt Meow Mice
myBeast()
fmt.Println(Fluffy.Cry, Fluffy.Play) // prt Purr Ball
 
// Return multiple values using a function and an array
newCat := make([]string, 2)
newCat[0] = "Ginger"
newCat[1] = "Orange"
myPuss := Cat(newCat)
fmt.Println(myPuss[1], myPuss[2]) // prt Orange Milk
 
// Return multiple values using a method and a struct
myCat := Tabby{Sleep: "Snore", Cry: "Meow"}
puss, poo := myCat.Puss()
fmt.Println(puss, poo) // prt Kitty Cat
}</syntaxhighlight>
 
=={{header|Groovy}}==
In Groovy functions return one value. One way to return multiple ones is to use anonymous maps as a sort of tuple.
<syntaxhighlight lang="groovy">def addSub(x,y) {
 
<lang groovy>
def addSub(x,y) {
[
sum: x+y,
difference: x-y
]
}</syntaxhighlight>
Result:
<syntaxhighlight lang="groovy">addSub(10,12)
["sum":22, "difference":-2]</syntaxhighlight>
 
And although Groovy functions only return one value, Groovy ''assignments'' of Iterable objects (lists, arrays, sets, etc.) can be distributed across multiple ''variables'', like this:
 
<syntaxhighlight lang="groovy">def addSub2(x,y) {
[ x+y , x-y ]
}
</lang>
 
def (sum, diff) = addSub2(50, 5)
Result:
assert sum == 55
<lang groovy>
assert diff == 45</syntaxhighlight>
addSub(10,12)
 
If there are fewer elements than variables, the leftover variables are assigned null. If there are more elements than variables, the last variable is assigned the collected remainder of the elements.
 
=={{header|Harbour}}==
Every function returns one value. The conventional way to return multiple values is to bundle them into an array.
<syntaxhighlight lang="visualfoxpro">FUNCTION Addsub( x, y )
RETURN { x + y, x - y }</syntaxhighlight>
However, we can 'return' multiple individual values, that are produced/processed/altered inside a function, indirectly, passing parameters `by reference`.
 
For example:
<syntaxhighlight lang="visualfoxpro">
PROCEDURE Main()
LOCAL Street, City, Country
IF GetAddress( @Street, @City, @Country )
? hb_StrFormat( "Adrress: %s, %s, %s", Street, City, Country )
// output: Route 42, Android-Free Town, FOSSLAND
ELSE
? "Cannot obtain address!"
ENDIF
FUNCTION GetAddress( cS, cC, cCn)
["sum":22, "difference":-2]
cS := "Route 42"
</lang>
cC := "Android-Free Town"
cCn:= "FOSSLAND"
RETURN .T.
</syntaxhighlight>
 
=={{header|Haskell}}==
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="haskell"> addsub x y = (x + y, x - y)</syntaxhighlight>
 
<lang haskell>addsub x y =
(x + y, x - y)</lang>
 
You can use pattern matching to extract the components:
<syntaxhighlight lang="haskell">main = do
 
let (sum, difference) = addsub 33 12
<lang haskell>main = do
putStrLn ("33 + 12 = " ++ show sum)
let sum, difference = addsub 33 12
putStrLn $ ("33 +- 12 = " ++ show sumdifference)</syntaxhighlight>
putStrLn $ "33 - 12 = " ++ show difference</lang>
 
=={{header|Icon}} and {{header|Unicon}}==
 
Icon and Unicon values range from simple atomic values like integers and strings to structures like lists, tables, sets, records. The contents of structures are heterogeneous and any of them could be used to return multiple values all at once. Additionally, generators are supported that return multiple results one at a time as needed.
 
The following examples return 1, 2, 3 in different ways:
<syntaxhighlight lang="icon">procedure retList() # returns as ordered list
 
<lang Icon>procedure retList() # returns as ordered list
return [1,2,3]
end
Line 350 ⟶ 1,696:
procedure retRecord() # return as a record, least general method
return retdata(1,2,3)
end</langsyntaxhighlight>
 
=={{header|J}}==
To return multiple values in J, you return an array which contains multiple values. Since the only data type in J is array (this is an oversimplification, from some perspectives - but those issues are out of scope for this task), this is sort of like asking how to return only one value in another language.
<syntaxhighlight lang="j"> 1 2+3 4
4 6</syntaxhighlight>
 
=={{header|Java}}==
<lang j> 1 2+3 4
Java does not have tuples, so the most idiomatic approach would be to create a nested or inner-class specific to your values.
4 6</lang>
<syntaxhighlight lang="java">
Point getPoint() {
return new Point(1, 2);
}
 
static class Point {
int x, y;
 
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
</syntaxhighlight>
It is not recommended to return an ''Object'' array from a method.<br />
This will require the receiving procedure a casting operation, possibly preceded by an ''instanceof'' conditional check.<br /><br />
If you're using objects that are not known until runtime, use Java Generics.
<syntaxhighlight lang="java">
Values<String, OutputStream> getValues() {
return new Values<>("Rosetta Code", System.out);
}
 
static class Values<X, Y> {
X x;
Y y;
 
public Values(X x, Y y) {
this.x = x;
this.y = y;
}
}
</syntaxhighlight>
<br />
Or, an alternate demonstration
{{trans|NetRexx}}
<syntaxhighlight lang="java">import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;
 
// =============================================================================
public class RReturnMultipleVals {
public static final String K_lipsum = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.";
public static final Long K_1024 = 1024L;
public static final String L = "L";
public static final String R = "R";
 
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
public static void main(String[] args) throws NumberFormatException{
Long nv_;
String sv_;
switch (args.length) {
case 0:
nv_ = K_1024;
sv_ = K_lipsum;
break;
case 1:
nv_ = Long.parseLong(args[0]);
sv_ = K_lipsum;
break;
case 2:
nv_ = Long.parseLong(args[0]);
sv_ = args[1];
break;
default:
nv_ = Long.parseLong(args[0]);
sv_ = args[1];
for (int ix = 2; ix < args.length; ++ix) {
sv_ = sv_ + " " + args[ix];
}
break;
}
 
RReturnMultipleVals lcl = new RReturnMultipleVals();
 
Pair<Long, String> rvp = lcl.getPairFromPair(nv_, sv_); // values returned in a bespoke object
System.out.println("Results extracted from a composite object:");
System.out.printf("%s, %s%n%n", rvp.getLeftVal(), rvp.getRightVal());
 
List<Object> rvl = lcl.getPairFromList(nv_, sv_); // values returned in a Java Collection object
System.out.println("Results extracted from a Java Colections \"List\" object:");
System.out.printf("%s, %s%n%n", rvl.get(0), rvl.get(1));
 
Map<String, Object> rvm = lcl.getPairFromMap(nv_, sv_); // values returned in a Java Collection object
System.out.println("Results extracted from a Java Colections \"Map\" object:");
System.out.printf("%s, %s%n%n", rvm.get(L), rvm.get(R));
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Return a bespoke object.
// Permits any number and type of value to be returned
public <T, U> Pair<T, U> getPairFromPair(T vl_, U vr_) {
return new Pair<T, U>(vl_, vr_);
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Exploit Java Collections classes to assemble a collection of results.
// This example uses java.util.List
public List<Object> getPairFromList(Object nv_, Object sv_) {
List<Object> rset = new ArrayList<Object>();
rset.add(nv_);
rset.add(sv_);
return rset;
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Exploit Java Collections classes to assemble a collection of results.
// This example uses java.util.Map
public Map<String, Object> getPairFromMap(Object nv_, Object sv_) {
Map<String, Object> rset = new HashMap<String, Object>();
rset.put(L, nv_);
rset.put(R, sv_);
return rset;
}
 
// ===========================================================================
private static class Pair<L, R> {
private L leftVal;
private R rightVal;
 
public Pair(L nv_, R sv_) {
setLeftVal(nv_);
setRightVal(sv_);
}
public void setLeftVal(L nv_) {
leftVal = nv_;
}
public L getLeftVal() {
return leftVal;
}
public void setRightVal(R sv_) {
rightVal = sv_;
}
public R getRightVal() {
return rightVal;
}
}
}</syntaxhighlight>
'''Otherwise'''
<syntaxhighlight lang="java">public class Values {
private final Object[] objects;
public Values(Object ... objects) {
this.objects = objects;
}
public <T> T get(int i) {
return (T) objects[i];
}
public Object[] get() {
return objects;
}
// to test
public static void main(String[] args) {
Values v = getValues();
int i = v.get(0);
System.out.println(i);
printValues(i, v.get(1));
printValues(v.get());
}
private static Values getValues() {
return new Values(1, 3.8, "text");
}
private static void printValues(int i, double d) {
System.out.println(i + ", " + d);
}
private static void printValues(Object ... objects) {
for (int i=0; i<objects.length; i+=1) System.out.print((i==0 ? "": ", ") + objects[i]);
System.out.println();
}
}</syntaxhighlight>
{{out}}
<pre>
1
1, 3.8
1, 3.8, text
</pre>
 
=={{header|JavaScript}}==
Javascript does not support multi-value bind until ECMAScript 6 is released (still a draft as of May 2015). The multi-value return is actually a destructured binding. Support may not be present yet in most implementations.
<syntaxhighlight lang="javascript">//returns array with three values
var arrBind = function () {
return [1, 2, 3]; //return array of three items to assign
};
 
//returns object with three named values
var objBind = function () {
return {foo: "abc", bar: "123", baz: "zzz"};
};
 
//keep all three values
var [a, b, c] = arrBind();//assigns a => 1, b => 2, c => 3
//skip a value
var [a, , c] = arrBind();//assigns a => 1, c => 3
//keep final values together as array
var [a, ...rest] = arrBind();//assigns a => 1, rest => [2, 3]
 
 
//same return name
var {foo, bar, baz} = objBind();//assigns foo => "abc", bar => "123", baz => "zzz"
//different return name (ignoring baz)
var {baz: foo, buz: bar} = objBind();//assigns baz => "abc", buz => "123"
//keep rest of values together as object
var {foo, ...rest} = objBind();//assigns foo => "abc, rest => {bar: "123", baz: "zzz"}</syntaxhighlight>
 
=={{header|jq}}==
jq supports streams of JSON values, so there are two main ways in which a function can return multiple values: as a stream, or as an array. Using the same example given for the Julia entry: <syntaxhighlight lang="jq"># To produce a stream:
def addsub(x; y): (x + y), (x - y);
 
# To produce an array:
def add_subtract(x; y): [ x+y, x-y ];
</syntaxhighlight>
The builtin filter .[] streams its input if the input is an array, e.g. the expression <code>[1,2] | .[]</code> produces the stream:<syntaxhighlight lang="jq">
1
2</syntaxhighlight>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">function addsub(x, y)
return x + y, x - y
end</syntaxhighlight>
<pre>julia> addsub(10,4)
(14,6)</pre>
 
=={{header|Kotlin}}==
Although Kotlin doesn't support tuples as such, it does have generic Pair and Triple types which can be used to return 2 or 3 values from a function. To return more values, a data class can be used. All of these types can be automatically destructured to separate named variables.
<syntaxhighlight lang="scala">// version 1.0.6
 
/* implicitly returns a Pair<Int, Int>*/
fun minmax(ia: IntArray) = ia.min() to ia.max()
 
fun main(args: Array<String>) {
val ia = intArrayOf(17, 88, 9, 33, 4, 987, -10, 2)
val(min, max) = minmax(ia) // destructuring declaration
println("The smallest number is $min")
println("The largest number is $max")
}</syntaxhighlight>
 
{{out}}
<pre>
The smallest number is -10
The largest number is 987
</pre>
 
=={{header|Lambdatalk}}==
Lambdatalk can retun several values glued into conses or arrays.
<syntaxhighlight lang="scheme">
{def foo
{lambda {:n}
{cons {- :n 1} {+ :n 1}}}} // two values
-> foo
 
{foo 10}
-> (9 11)
 
{def bar
{lambda {:n}
{A.new {- :n 1} :n {+ :n 1} }}} // three values and more
-> bar
 
{bar 10}
-> [9,10,11]
</syntaxhighlight>
 
=={{header|Lasso}}==
<syntaxhighlight lang="lasso">define multi_value() => {
return (:'hello word',date)
}
// shows that single method call will return multiple values
// the two values returned are assigned in order to the vars x and y
local(x,y) = multi_value
 
'x: '+#x
'\ry: '+#y</syntaxhighlight>
{{out}}
<pre>x: hello word
y: 2013-11-06 01:03:47
</pre>
 
=={{header|Liberty BASIC}}==
Using a space-delimited string to hold the array. LB functions return only one numeric or string value, so the function returns a string from which can be separated the two desired values.
<syntaxhighlight lang="lb">data$ ="5 6 7 22 9 3 4 8 7 6 3 -5 2 1 8 9"
<lang lb>
data$ ="5 6 7 22 9 3 4 8 7 6 3 -5 2 1 8 9"
 
a$ =minMax$( data$)
Line 381 ⟶ 2,001:
loop until 0
minMax$ =str$( min) +" " +str$( max)
end function</syntaxhighlight>
</lang>
<pre>
Minimum was -5 & maximum was 22
</pre>
 
=={{header|Lily}}==
No support for returning multiple values, but (similar to Scala), a Tuple can be returned.
 
<syntaxhighlight lang="lily">define combine(a: Integer, b: String): Tuple[Integer, String]
{
return <[a, b]>
}</syntaxhighlight>
 
The current version (0.17) has no support for destructuring Tuple assigns.
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">function addsub( a, b )
return a+b, a-b
end
 
s, d = addsub( 7, 5 )
print( s, d )</langsyntaxhighlight>
 
=={{header|Mathematica}}==
<lang Mathematica>addsub [x_,y_]:= List [x+y,x-y]
addsub[4,2]</lang>
Output <pre>{6,2}</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
 
=={{header|M2000 Interpreter}}==
<lang Matlab> function [a,b,c]=foo(d)
Functions can be made in 5 ways: Normal, Lambda, Simple, Group which return value, Pointer to Group which return value. For every way we can return multiple values as tuple (in a mArray type of array). The (a,b)=funcA() is a way to define/assign values from tuple. So (a,b)=(1, 2) is the simple form. A return value from a function done using = as statement. This return isn't the last statement (isn't exit from function), so may we have multiple = as statements and the last one which we execute return the value. By default if we don't use the = statement based on function's suffix at name (at call) we get 0 or "". Functions can return any type of types. So the return type based on statement = (or the interpreter return 0 or "" based on name at call, where suffix $ means we return empty string, although later versions of language can return string/ make string variables without suffix $).
 
<syntaxhighlight lang="m2000 interpreter">
module Return_multiple_values{
Print "Using a function"
function twovalues(x) {
="ok", x**2, x**3
}
// this is a sugar syntax to apply a tuple (mArray type) to variables
// can be new variables or pre defined
// if they are predifined then overflow may happen
byte b
// object a=(,) // if a is an object we can't assign number
(s, a,b)=twovalues(3) // twovalues(30) raise overflow
Print a=9, b=27, s="ok"
c=twovalues(3)
// need to use val$() because val() on string type is like a Val("1233")
Print c#val$(0)="ok", c#val(1)=9, c#val(2)=27, type$(c)="mArray"
// we can pass by reference
callbyref(&twovalues())
sub callbyref(&a())
local a, b, s as string
(s, a,b)=a(3)
Print a=9, b=27, s="ok"
end sub
}
Return_multiple_values
// modules may change definitions like functions (but not subs and simple functions)
Module Return_multiple_values{
// lambdas are first citizens, can be called as functions or used as variables/values
Print "Using lambda function"
twovalues=lambda (x) ->{
="ok", x**2, x**3
}
byte b
(s, a,b)=twovalues(3) // twovalues(30) raise overflow
Print a=9, b=27, s="ok"
c=twovalues(3)
Print c#val$(0)="ok", c#val(1)=9, c#val(2)=27, type$(c)="mArray"
callbyref(&twovalues())
callbyValue(twovalues, 3)
sub callbyref(&a())
local a, b, s as string
(s, a,b)=a(3)
Print a=9, b=27, s="ok"
end sub
sub callbyValue(g, v)
local a, b, s as string
(s, a,b)=g(v)
Print a=9, b=27, s="ok"
end sub
}
Return_multiple_values
module Return_multiple_values{
Print "Using simple function (static)"
byte b
(s, a,b)=@twovalues(3) // twovalues(30) raise overflow
Print a=9, b=27, s="ok"
c=@twovalues(3)
Print c#val$(0)="ok", c#val(1)=9, c#val(2)=27, type$(c)="mArray"
function twovalues(x)
="ok", x**2, x**3
end function
}
Return_multiple_values
module Return_multiple_values {
// a group may used as function too
// we can use fields to alter state
// we can't pass the object as function by reference
// but we can pass an object function
// group is a static object to this module
// in every call of this module, this object initialised
// when the group statement executed
// and destroyed at the end of execution without a call to remove destructor
Print "Using a group as a function with a field"
group twovalues {
rep$="ok"
function forRef(x) {
=.rep$, x**2, x**3
}
value () { // ![] pass the stack of values to forRef function
if empty then =this: exit
=.forRef(![]) // or use =.rep$, x**2, x**3 and (x) at value
}
Set {
Error "no object change allowed"
}
}
byte b
// object a=(,) // if a is an object we can't assign number
(s, a,b)=twovalues(3)
Print a=9, b=27, s="ok"
twovalues.rep$="Yes"
c=twovalues(3)
// need to use val$() because val() on string type is like a Val("1233")
Print c#val$(0)="Yes", c#val(1)=9, c#val(2)=27, type$(c)="mArray"
callbyref(&twovalues.forRef())
callbyValue(twovalues, 3)
sub callbyref(&a())
local a, b, s as string
(s, a,b)=a(3)
Print a=9, b=27, s="Yes"
end sub
sub callbyValue(g, v)
local a, b, s as string
(s, a,b)=g(v)
Print a=9, b=27, s="Yes"
end sub
}
Return_multiple_values
 
module Return_multiple_values {
Print "Using a pointer to group as a function with a field (group created by a Class)"
class iTwovalues {
string rep
function forRef(x) {
=.rep, x**2, x**3
}
value () { // ![] pass the stack of values to forRef function
=.forRef(![])
}
Set {
Error "no object change allowed"
}
// optional here, only to return the destriyed event (after the module exit from execution)
remove {
print .rep+" destroyed"
}
class:
Module iTwovalues (.rep) {
}
}
byte b
// twovalues is a pointer to an object of general type Group
twovalues->iTwovalues("ok")
Print twovalues is type iTwovalues = true
(s, a,b)=Eval(twovalues, 3)
Print a=9, b=27, s="ok"
twovalues=>rep="Yes"
c=twovalues=>forRef(3) // better to call a function instead of use Eval()
Print c#val$(0)="Yes", c#val(1)=9, c#val(2)=27, type$(c)="mArray"
for twovalues {
// we have to use for object { } to use references to members of object
callbyref(&.forRef())
}
// if we hide the next statement we will see Yes destroyed after return from this module (before "done")
twovalues=pointer() // because twovalues is the last pointer to object, the object destroyed
// we see now: Yes destroyed
sub callbyref(&a())
local a, b, s as string
(s, a,b)=a(3)
Print a=9, b=27, s="Yes"
end sub
}
Return_multiple_values
Print "Done"
</syntaxhighlight>
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">> sumprod := ( a, b ) -> (a + b, a * b):
> sumprod( x, y );
x + y, x y
 
> sumprod( 2, 3 );
5, 6</syntaxhighlight>
The parentheses are needed here only because of the use of arrow ("->") notation to define the procedure. One could do, instead:
<syntaxhighlight lang="maple">sumprod := proc( a, b ) a + b, a * b end:</syntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">addsub [x_,y_]:= List [x+y,x-y]
addsub[4,2]</syntaxhighlight>
{{out}}
<pre>{6,2}</pre>
 
=={{header|MATLAB}} / {{header|Octave}}==
<syntaxhighlight lang="matlab"> function [a,b,c]=foo(d)
a = 1-d;
b = 2+d;
c = a+b;
end;
[x,y,z] = foo(5) </langsyntaxhighlight>
{{out}}
 
<syntaxhighlight lang="matlab"> > [x,y,z] = foo(5)
Output:
 
<lang Matlab> > [x,y,z] = foo(5)
x = -4
y = 7
z = 3 </langsyntaxhighlight>
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">f(a, b) := [a * b, a + b]$
 
[u, v]: f(5, 6);
[30, 11]</syntaxhighlight>
 
=={{header|Mercury}}==
Mercury is a logic language.
Mercury is a logic language. Its unification semantics permit any number of output parameters (the closest equivalent to return values). The sample code provided here centres on the <code>addsub/4</code> predicate. The <code>mode</code> statement identifies the first two parameters as input parameters and the last two as output parameters, thus, in effect, returning two results. In this case the first output parameter returns the sum of the two inputs and the second output returns the difference of the two inputs.
Its unification semantics permit any number of output parameters (the closest equivalent to return values).
The sample code provided here centres on the <code>addsub/4</code> predicate.
The <code>mode</code> statement identifies the first two parameters as input parameters and the last two as output parameters, thus, in effect, returning two results.
In this case the first output parameter returns the sum of the two inputs and the second output returns the difference of the two inputs.
 
===addsub.m===
<langsyntaxhighlight lang="mercury">:- module addsub.
 
:- interface.
Line 429 ⟶ 2,239:
 
main(!IO) :-
io.command_line_arguments(Args, !IO),
list.filter_map(string.to_int, Args, CleanArgs),
(list.length(CleanArgs, 2) ->
X = list.det_index1(CleanArgs,1),
Y = list.det_index1(CleanArgs,2),
addsub(X, Y, S, D),
io.format("%d + %d = %d\n%d - %d = %d\n",
[i(X), i(Y), i(S), i(X), i(Y), i(D)], !IO)
;
io.write_string("Please pass two integers on the command line.\n", !IO)
).
 
:- pred addsub(int::in, int::in, int::out, int::out) is det.
:- mode addsub(in, in, out, out) is det.
addsub(X, Y, S, D) :-
S = X + Y,
D = X - Y.</lang>
 
:- end_module addsub.</syntaxhighlight>
 
===Use and output===
Line 452 ⟶ 2,263:
100 - 999 = -899</nowiki></pre>
 
===Functions and tuples===
=={{header|OCaml}}==
Mercury is also a functional language, thus a function-based implementation is also possible.
Every function returns one value. The conventional way to return multiple values is to return a tuple.
Functions in Mercury can only return a single value, but Mercury allows the use of arbitrary tuples containing multiple heterogeneous ad-hoc values which is, for all practical purposes, the same thing.
The above code can be modified so that the definition of <code>addsub/4</code> is now instead this function <code>addsub/2</code>:
 
<syntaxhighlight lang="mercury">:- func addsub(int, int) = {int, int}.
<lang ocaml>let addsub x y =
addsub(X, Y) x= { X + yY, xX - yY }.</langsyntaxhighlight>
 
Instead, now, of a predicate with two input and two output parameters of type <code>int</code>, addsub is a function that takes two <code>int</code> parameters and returns a tuple containing two <code>int</code> values. The call to <code>addsub/4</code> in the above code is now replaced by this:
 
<syntaxhighlight lang="mercury"> {S, D} = addsub(X, Y),</syntaxhighlight>
 
All other code remains exactly the same as does the use and output of it.
 
===Functions and type constructors===
It should be noted that tuples as a construct are generally frowned upon in Mercury, relying as they do on structural type equivalence instead of nominative.
The preferred approach is either to have multiple explicit output parameters on predicates or to have an explicit named type that covers the multi-return needs.
 
An example of this follows:
 
<syntaxhighlight lang="mercury">:- module addsub.
 
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
 
:- implementation.
:- import_module int, list, string.
 
:- type my_result ---> twin(int, int).
 
main(!IO) :-
command_line_arguments(Args, !IO),
filter_map(to_int, Args, CleanArgs),
(length(CleanArgs, 2) ->
X = det_index1(CleanArgs,1),
Y = det_index1(CleanArgs,2),
twin(S, D) = addsub(X, Y),
format("%d + %d = %d\n%d - %d = %d\n",
[i(X), i(Y), i(S), i(X), i(Y), i(D)], !IO)
;
write_string("Please pass two integers on the command line.\n", !IO)
).
 
:- func addsub(int, int) = my_result.
addsub(X, Y) = twin(X + Y, X - Y).
 
:- end_module addsub.</syntaxhighlight>
 
Here the type <code>my_result</code> has been provided with a <code>twin/2</code> constructor that accepts two <code>int</code> values. Use and output of the code is, again, exactly the same.
 
<code>addsub/2</code> explicitly constructs a <code>my_result</code> value with the paired calculations and this is deconstructed in the call in the main predicate through unification. While the resulting code is slightly more verbose than the tuple-based version it is more strongly protected against type errors and is more explicit in its intent at the same time.
 
=={{header|min}}==
To return multiple values in min, simply leave them on the data stack.
{{works with|min|0.19.6}}
<syntaxhighlight lang="min">(over over / '* dip) :muldiv</syntaxhighlight>
 
=={{header|MIPS Assembly}}==
The registers <code>$v0</code> and <code>$v1</code> are intended for return values. Technically you can use any register you want, but the calling conventions use <code>$v0</code> and <code>$v1</code>.
<syntaxhighlight lang="mips">sum:
add $v0,$a0,$a1
jr ra
nop ;branch delay slot</syntaxhighlight>
 
=={{header|Nemerle}}==
To return multiple values in Nemerle, package them into a tuple.
<syntaxhighlight lang="nemerle">using System;
using System.Console;
using Nemerle.Assertions;
 
module MultReturn
{
MinMax[T] (ls : list[T]) : T * T
where T : IComparable
requires ls.Length > 0 otherwise throw ArgumentException("An empty list has no extreme values.")
{
def greaterOf(a, b) { if (a.CompareTo(b) > 0) a else b }
def lesserOf(a, b) { if (a.CompareTo(b) < 0) a else b }
(ls.FoldLeft(ls.Head, lesserOf), ls.FoldLeft(ls.Head, greaterOf)) // packing tuple
}
Main() : void
{
def nums = [1, 34, 12, -5, 4, 0];
def (min, max) = MinMax(nums); // unpacking tuple
WriteLine($"Min of nums = $min; max of nums = $max");
}
}</syntaxhighlight>
 
=={{header|NetRexx}}==
While a NetRexx method can only return a single &quot;thing&quot; to it's caller that &quot;thing&quot; can be an object which may contain a great deal of information. Typical return objects can be composite objects, Java Collection Class objects, NetRexx ''indexed strings'' etc.
 
Another common idiom inherited from [[REXX]] is the ability to collect the return data into a simple NetRexx string. Caller can then use the <tt>PARSE</tt> instruction to deconstruct the return value and assign the parts to separate variables.
<syntaxhighlight lang="netrexx">/* NetRexx */
options replace format comments java crossref symbols nobinary
 
-- =============================================================================
class RReturnMultipleVals public
properties constant
L = 'L'
R = 'R'
K_lipsum = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.'
K_1024 = 1024
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method RReturnMultipleVals() public
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method main(args = String[]) public static
arg = Rexx(args)
parse arg nv_ sv_ .
if \nv_.datatype('n') then nv_ = K_1024
if sv_ = '' then sv_ = K_lipsum
 
lcl = RReturnMultipleVals()
 
rvr = lcl.getPair(nv_, sv_) -- multiple values returned as a string. Use PARSE to extract values
parse rvr val1 val2
say 'Results extracted from a NetRexx string:'
say val1',' val2
say
 
rvr = lcl.getPairFromRexx(nv_, sv_) -- values returned in a NetRexx indexed string
say 'Results extracted from a NetRexx "indexed string":'
say rvr[L]',' rvr[R]
say
 
rvp = lcl.getPairFromPair(nv_, sv_) -- values returned in a bespoke object
say 'Results extracted from a composite object:'
say rvp.getLeftVal',' rvp.getRightVal
say
 
rvl = lcl.getPairFromList(nv_, sv_) -- values returned in a Java Collection "List" object
say 'Results extracted from a Java Colections "List" object:'
say rvl.get(0)',' rvl.get(1)
say
 
rvm = lcl.getPairFromMap(nv_, sv_) -- values returned in a Java Collection "Map" object
say 'Results extracted from a Java Colections "Map" object:'
say rvm.get(L)',' rvm.get(R)
say
 
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- returns the values in a NetRexx string.
-- Caller can the power of PARSE to extract the results
method getPair(nv_, sv_) public returns Rexx
return nv_ sv_
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Return the values as members of a NetRexx indexed string
method getPairFromRexx(nv_, sv_) public returns Rexx
rval = ''
rval[L] = nv_
rval[R] = sv_
return rval
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Return a bespoke object.
-- Permits any number and type of value to be returned
method getPairFromPair(nv_, sv_) public returns RReturnMultipleVals.Pair
rset = RReturnMultipleVals.Pair(nv_, sv_)
return rset
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Exploit Java Collections classes to assemble a collection of results.
-- This example uses java.util.List
method getPairFromList(nv_, sv_) public returns java.util.List
rset = ArrayList()
rset.add(nv_)
rset.add(sv_)
return rset
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- This example uses java.util.Map
method getPairFromMap(nv_, sv_) public returns java.util.Map
rset = HashMap()
rset.put(L, nv_)
rset.put(R, sv_)
return rset
 
-- =============================================================================
class RReturnMultipleVals.Pair dependent
 
properties indirect
leftVal
rightVal
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method Pair(nv_ = parent.K_1024, sv_ = parent.K_lipsum) public
setLeftVal(nv_)
setRightVal(sv_)
return
</syntaxhighlight>
 
=={{header|Nim}}==
Every function returns one value. We can return a tuple instead:
<syntaxhighlight lang="nim">proc addsub(x, y: int): (int, int) =
(x + y, x - y)
 
var (a, b) = addsub(12, 15)</syntaxhighlight>
 
Or manipulate the parameters directly:
<syntaxhighlight lang="nim">proc addsub(x, y: int; a, b: var int) =
a = x + y
b = x - y
 
var a, b: int
addsub(12, 15, a, b)</syntaxhighlight>
 
=={{header|Objeck}}==
Easiest way to return multiple values is to use in/out objects. The language also supports returning collections.
<syntaxhighlight lang="objeck">class Program {
function : Main(args : String[]) ~ Nil {
a := IntHolder->New(3); b := IntHolder->New(7);
Addon(a,b);
a->Get()->PrintLine(); b->Get()->PrintLine();
}
function : Addon(a : IntHolder, b : IntHolder) ~ Nil {
a->Set(a->Get() + 2); b->Set(b->Get() + 13);
}
}</syntaxhighlight>
 
=={{header|OCaml}}==
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="ocaml">let addsub x y =
x + y, x - y</syntaxhighlight>
(Note that parentheses are not necessary for a tuple literal in OCaml.)
 
You can use pattern matching to extract the components:
<syntaxhighlight lang="ocaml">let sum, difference = addsub 33 12 in
 
<lang ocaml>let sum, difference = addsub 33 12 in
Printf.printf "33 + 12 = %d\n" sum;
Printf.printf "33 - 12 = %d\n" difference</langsyntaxhighlight>
 
=={{header|Oforth}}==
=== Space safety of tuples ===
 
Oforth uses a data stack. A function return is everything left on the stack when the function ends, so a function can return as many objects as needed :
The OCaml programmer should be aware that when multiple values are returned with a tuple, the finalisation does not handle each values independently, but handles the tuple as a whole. So all the values are only finalised when all the values are not reachable anymore.
<syntaxhighlight lang="oforth">import: date
 
: returnFourValues 12 13 14 15 ;
There is also an explanation of this behaviour in the module [http://www.janestreet.com/ocaml/janestreet-ocamldocs/core/Space_safe_tuple.html Space_safe_tuple] of the Jane Street's core library.
: returnOneObject [ 12, 13, 14, 15, [16, 17 ], Date now, 1.2, "abcd" ] ;
 
"Showing four values returned on the parameter stack:" println
<lang ocaml>let pair a b =
returnFourValues .s clr
let ra = Array.create 1 a
and rb = Array.create 1 b in
let f r = Printf.printf "> finalised: %d\n%!" r.(0) in
Gc.finalise f ra;
Gc.finalise f rb;
(ra, rb)
 
"\nShowing one object containing four values returned on the parameter stack:" println
let () =
returnOneObject .s clr</syntaxhighlight>
let a, b = pair 1 2 in
let c, d = pair 3 4 in
Gc.full_major (); (* garbage collection *)
Printf.printf "Used: %d\n%!" a.(0)</lang>
 
Output:
Here we see that <code>b</code> is not finalised even if it is not used after the garbage collection:
<pre>
Showing four values returned on the parameter stack:
[1] (Integer) 15
[2] (Integer) 14
[3] (Integer) 13
[4] (Integer) 12
 
Showing one object containing four values returned on the parameter stack:
<pre>$ ocamlopt -w y -o pair.opt pair.ml
[1] (List) [12, 13, 14, 15, [16, 17], 2016-02-05 20:55:15,778, 1.2, abcd]
$ ./pair.opt
</pre>
> finalised: 4
> finalised: 3
Used: 1</pre>
 
=={{header|ooRexx}}==
The workaround is to explicitly access to each value with functions like [http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALfst <code>fst</code>] and [http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALsnd <code>snd</code>] that return only one element of the tuple:
Functions and methods in ooRexx can only have a single return value, but that return value can be some sort of collection or other object that contains multiple values. For example, an array:
<syntaxhighlight lang="oorexx">
r = addsub(3, 4)
say r[1] r[2]
 
::routine addsub
<lang ocaml>val fst : 'a * 'b -> 'a
use arg x, y
val snd : 'a * 'b -> 'b</lang>
return .array~of(x + y, x - y)
</syntaxhighlight>
Output:
<pre>
7 -1
</pre>
 
=={{header|OxygenBasic}}==
<lang ocaml>let pair a b =
Demonstrated with vectors, using OOP and a pseudo-assign trick:
let ra = Array.create 1 a
and rb = Array.create 1 b in
let f r = Printf.printf "> finalised: %d\n%!" r.(0) in
Gc.finalise f ra;
Gc.finalise f rb;
(ra, rb)
 
<syntaxhighlight lang="oxygenbasic">
let () =
let ab = pair 1 2 in
let a = fst ab
and b = snd ab in
let c, d = pair 3 4 in
Gc.full_major (); (* garbage collection *)
Printf.printf "Used: %d\n%!" a.(0)</lang>
 
'============
Now we see that <code>b</code> is finalised:
class vector4
'============
 
float w,x,y,z
<pre>$ ocamlopt -w y -o pair2.opt pair2.ml
 
$ ./pair2.opt
method values(float fw,fx,fy,fz)
> finalised: 4
this <= fw, fx, fy, fz
> finalised: 3
end method
> finalised: 2
 
Used: 1</pre>
method values(vector4 *v)
this <= v.w, v.x, v.y, v.z
end method
 
method values() as vector4
return this
end method
 
method ScaledValues(float fw,fx,fy,fz) as vector4
static vector4 v
v <= w*fw, x*fx, y*fy, z*fz
return v
end method
 
method ShowValues() as string
string cm=","
return w cm x cm y cm z
end method
 
end class
 
vector4 aa,bb
 
bb.values = 1,2,3,4
 
aa.values = bb.Values()
 
print aa.ShowValues() 'result 1,2,3,4
 
aa.values = bb.ScaledValues(100,100,-100,100)
 
print aa.ShowValues() 'result 100,200,-300,400
 
</syntaxhighlight>
 
=={{header|PARI/GP}}==
The usual way to return multiple values is to put them in a vector:
<langsyntaxhighlight lang="parigp">foo(x)={
[x^2, x^3]
};</langsyntaxhighlight>
 
=={{header|Pascal}}==
See [[Return_multiple_values#Delphi | Delphi]]
 
=={{header|Perl}}==
 
Functions may return lists of values:
<syntaxhighlight lang="perl">sub foo {
 
<lang perl>sub foo {
my ($a, $b) = @_;
return $a + $b, $a * %$b;
}</langsyntaxhighlight>
 
=={{header|Phix}}==
{{libheader|Phix/basics}}
Every function returns one value. You can return any number of items as elements of a sequence, and unpack them on receipt or not.
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">function</span> <span style="color: #000000;">stuff</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #008000;">"PI"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">'='</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3.1415926535</span><span style="color: #0000FF;">}</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #0000FF;">{</span><span style="color: #004080;">string</span> <span style="color: #000000;">what</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">op</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">val</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">stuff</span><span style="color: #0000FF;">()</span>
<!--</syntaxhighlight>-->
 
=={{header|PHP}}==
Every function returns one value. The conventional way to return multiple values is to bundle them into an array.
<syntaxhighlight lang="php">function addsub($x, $y) {
 
<lang php>function addsub($x, $y) {
return array($x + $y, $x - $y);
}</langsyntaxhighlight>
 
You can use the <code>list()</code> construct to assign to multiple variables:
<syntaxhighlight lang="php">list($sum, $difference) = addsub(33, 12);
 
<lang php>list($sum, $difference) = addsub(33, 12);
echo "33 + 12 = $sum\n";
echo "33 - 12 = $difference\n";</langsyntaxhighlight>
 
Additionally, if you specify a parameter as being a pointer, you do have the capacity to change that value. A built-in PHP example of this is <code>preg_match()</code> which returns a boolean value (to determine if a match was found or not), but which modifies the <code>$matches</code> parameter supplied to hold all the capture groups.
 
You can achieve this simply by adding the <code>&</code> before the desired parameter:
<syntaxhighlight lang="php">function multiples($param1, &$param2) {
if ($param1 == 'bob') {
$param2 = 'is your grandmother';
return true;
}
return false;
}
 
echo 'First run: ' . multiples('joe', $y) . "\r\n";
echo "Param 2 from first run: '${y}'\r\n";
 
echo 'Second run: ' . multiples('bob', $y) . "\r\n";
echo "Param 2 from second run: '${y}'\r\n";</syntaxhighlight>
 
The above will yield the following output:
<pre>First run:
Param 2 from first run: ''
Second run: 1
Param 2 from second run: 'is your grandmother'</pre>
 
=={{header|Picat}}==
===Functions===
Functions returns a single value. Multiple values must be collected in a list (or an array, map, set, structure).
<syntaxhighlight lang="picat">main =>
[A,B,C] = fun(10),
println([A,B,C]).
 
fun(N) = [2*N-1,2*N,2*N+1].</syntaxhighlight>
 
===Predicates===
Sometimes it is not possible - or not convenient - to create a function that return values. In those cases a predicate is used and then some of the variables are considered output variables (and are usually placed last).
<syntaxhighlight lang="picat">main =>
pred(10, E,F,G),
% ...
 
% A, B, and C are output variables
pred(N, A,B,C) =>
A=2*N-1,
B=2*N,
C=2*N+1.</syntaxhighlight>
 
A variant of this is to use a structure (here <code>$ret(A,B,C)</code>) that collects the output values.
<syntaxhighlight lang="picat">main =>
pred2(10, Ret),
println(Ret),
% or
pred2(10,$ret(H,I,J)),
println([H,I,J]).
 
% The structure $ret(A,B,C) contains the output values.
pred2(N, ret(A,B,C)) :-
A=2*N-1,
B=2*N,
C=2*N+1.</syntaxhighlight>
 
Note: Sometimes the meaning of input/output variables are confusing, for example when a predicate can be used with multiple input/output modes, e.g. reversible predicates such as <code>append/3</code> or <code>member/2</code>.
 
 
 
=={{header|PicoLisp}}==
A PicoLisp function returns a single value. For multiple return values, a cons pair or a list may be used.
<langsyntaxhighlight PicoLisplang="picolisp">(de addsub (X Y)
(list (+ X Y) (- X Y)) )</langsyntaxhighlight>
Test:
<langsyntaxhighlight PicoLisplang="picolisp">: (addsub 4 2)
-> (6 2)
: (addsub 3 1)
Line 567 ⟶ 2,701:
-> 10
: (sum + (addsub 4 2) (addsub 3 1))
-> 14</langsyntaxhighlight>
 
=={{header|Pike}}==
multipleMultiple values are returned through an array.
anAn array can be assigned to separate variables.
<langsyntaxhighlight Pikelang="pike">array(int) addsub(int x, int y)
{
return ({ x+y, x-y });
}
 
[int z, int w] = addsub(5,4);</langsyntaxhighlight>
 
=={{header|PL/I}}==
Example 1 illustrates a function that returns an array:
<syntaxhighlight lang="pl/i"> define structure 1 h,
<lang PL/I>
define structure 1 h,
2 a (10) float;
declare i fixed binary;
Line 593 ⟶ 2,726:
end;
return (p);
end sub;</syntaxhighlight>
</lang>
Example 2 illustrates a function that returns a general data structure:
<syntaxhighlight lang="pl/i"> define structure 1 customer,
<pre>
define structure 1 customer,
2 name,
3 surname character (20),
Line 611 ⟶ 2,742:
get edit (c.street, c.suburb, c.zip) (L);
return (c);
end sub2;</syntaxhighlight>
</pre>
Example 3 illustrates the return of two values as a complex value:
<syntaxhighlight lang="pl/i">comp: procedure(a, b) returns (complex);
<pre>
comp: procedure(a, b) returns (complex);
declare (a, b) float;
 
return (complex(a, b) );
end comp;</syntaxhighlight>
 
=={{header|Plain English}}==
Since parameters are passed by reference by default in Plain English, returning values ends up being unnecessary in most cases. The only functions that actually return a value are Boolean functions, called deciders.
 
It is possible, however, to call an auxiliary routine to change fields in a record and:
 
# Concatenate these values, assigning the concatenated string to a new string (see code below);
# Write the concatenated string on the console; or
# As is done in C style, obtain the address of the record (a pointer) and save the pointer's value in a number for later manipulation.
 
<syntaxhighlight line="1" start="1">The example record is a record with
A number called first field,
A string called second field,
A flag called third field.
To run:
Start up.
Fill the example record.
Write the example record on the console.
Shut down.
 
To fill the example record:
Put 123 into the example's record's first field.
Put "Hello World!" into the example's record's second field.
Set the example's record's third field.
 
To Write the example record on the console:
Convert the example's example's record's first field to a string.
Convert the example's example's record's third field to another string.
Put the string then " "
then the example's record's second field
then " " then other string into a return string.
Write the return string on the console.
</syntaxhighlight>When it is necessary to get the return value from a Win 32 API function, the syntax is as follows:
 
''Call "dllname.dll" "FunctionNameHereIsCaseSensitive" returning a <type>.''
 
Example:s
 
''Call "gdi32.dll" "GetCurrentObject" with the printer canvas and 6 [obj_font] returning a handle.''
 
''Call "kernel32.dll" "SetFilePointer" with the file and 0 and 0 and 2 [file_end] returning a result number.''
 
''Call "kernel32.dll" "WriteFile" with the file and the buffer's first and the buffer's length and a number's whereabouts and 0 returning the result number.''
 
''Call "kernel32.dll" "HeapAlloc" with the heap pointer and 8 [heap_zero_memory] and the byte count returning the pointer.''{{out}}
<pre>
123 Hello World! yes
</pre>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
function multiple-value ($a, $b) {
[pscustomobject]@{
a = $a
b = $b
}
}
$m = multiple-value "value" 1
$m.a
$m.b
</syntaxhighlight>
<b>Output:</b>
<pre>
value
1
</pre>
 
=={{header|PureBasic}}==
PureBasic's procedures return only a single value. The value needs to be a standard numeric type or string.
 
An array, map, or list can be used as a parameter to a procedure and in the process contain values to be returned as well. A pointer to memory or a structured variable may also be returned to reference multiple return values (requiring the memory to be manually freed afterwards).
<langsyntaxhighlight lang="purebasic">;An array, map, or list can be used as a parameter to a procedure and in the
;process contain values to be returned as well.
Procedure example_1(x, y, Array r(1)) ;array r() will contain the return values
Line 657 ⟶ 2,853:
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf</langsyntaxhighlight>
 
=={{header|Python}}==
Every function returns one value. The conventional way to return multiple values is to bundle them into a tuple.
<syntaxhighlight lang="python">def addsub(x, y):
 
return x + y, x - y</syntaxhighlight>
<lang python>def addsub(x, y):
return x + y, x - y</lang>
 
(Note that parentheses are not necessary for a tuple literal in Python.)
 
You can assign to a comma-separated list of targets:
<syntaxhighlight lang="python">sum, difference = addsub(33, 12)
 
<lang python>sum, difference = addsub(33, 12)
print "33 + 12 = %s" % sum
print "33 - 12 = %s" % difference</langsyntaxhighlight>
There is no discernible difference between "returning multiple values" and returning a single tuple of multiple values. It is just a more pedantic/accurate statement of the mechanism employed.
 
=={{header|Quackery}}==
 
Words in Quackery take zero or more arguments from the data stack and leave zero or more results on the data stack.
 
We can demonstrate defining and using a word <code>+*</code>, which returns the sum and product of two numbers, in the Quackery shell.
 
<pre>Welcome to Quackery.
 
Enter "leave" to leave the shell.
 
/O> [ 2dup + unrot * ] is +* ( a b --> a+b a*b )
... 12 23 +*
...
 
Stack: 35 276
 
/O> </pre>
 
There is no discernable difference between "returning multiple values" and returning a single tuple of multiple values. It is just a more pedantic/accurate statement of the mechanism employed.
 
=={{header|R}}==
The conventional way to return multiple values is to bundle them into a list.
<syntaxhighlight lang="r">addsub <- function(x, y) list(add=(x + y), sub=(x - y))</syntaxhighlight>
 
=={{header|Racket}}==
Racket has a defined function "values" that returns multiple values using continuations, a way it can be implemented is shown in "my-values"
<syntaxhighlight lang="racket">#lang racket
(values 4 5)
 
(define (my-values . return-list)
(call/cc
(lambda (return)
(apply return return-list))))</syntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
 
Each function officially returns one value, but by returning a List or Seq you can transparently return a list of arbitrary (even infinite) size. The calling scope can destructure the list using assignment, if it so chooses:
 
<syntaxhighlight lang="raku" line>sub addmul($a, $b) {
$a + $b, $a * $b
}
 
my ($add, $mul) = addmul 3, 7;</syntaxhighlight>
 
In this example, the variable <tt>$add</tt> now holds the number 10, and <tt>$mul</tt> the number 21.
 
=={{header|Raven}}==
<syntaxhighlight lang="raven">define multiReturn use $v
$v each
 
3 multiReturn</syntaxhighlight>
{{out}}
<pre>2
1
0</pre>
 
=={{header|ReScript}}==
<syntaxhighlight lang="rescript">let addsub = (x, y) => {
(x + y, x - y)
}
 
let (sum, difference) = addsub(33, 12)
 
Js.log2("33 + 12 = ", sum)
<lang R>addsub <- function(x, y) list(add=(x + y), sub=(x - y))</lang>
Js.log2("33 - 12 = ", difference)</syntaxhighlight>
 
=={{header|Retro}}==
Functions take and return values via a stack. This makes returning multiple values easy.
<syntaxhighlight lang="retro">: addSubtract ( xy-nm )
2over - [ + ] dip ;</syntaxhighlight>
 
=={{header|REXX}}==
<lang Retro>: addSubtract ( xy-nm )
Strictly speaking, REXX only returns one value (or no values), but the value (a string) can comprise of
2over - [ + ] dip ;
<br>multiple "values" or substrings.
</lang>
 
If the multiple values are separated by blanks &nbsp; [or some other unique character(s) such as a comma,
<br>semicolon, backslash, ···], &nbsp; it's a very simple matter to parse the multiple-value string into the desired
<br>substrings &nbsp; (or values, if you will) &nbsp; with REXX's handy-dandy &nbsp; '''parse''' &nbsp; statement.
<syntaxhighlight lang="rexx">/*REXX program shows and displays examples of multiple RETURN values from a function.*/
numeric digits 70 /*the default is: NUMERIC DIGITS 9 */
parse arg a b . /*obtain two numbers from command line.*/
if a=='' | a=="," then a= 82 /*Not specified? Then use the default.*/
if b=='' | b=="," then b= 20 /* " " " " " " */
say ' a =' a /*display the first number to the term.*/
say ' b =' b /* " " second " " " " */
say copies('═', 50) /*display a separator line " " " */
z= arithmetics(a, b) /*call the function: arithmetics */
parse var z abut sum diff rem div Idiv prod pow /*obtain the function's returned values*/
say ' || =' abut /*display abutment to the terminal.*/
say ' + =' sum /* " sum " " " */
say ' - =' diff /* " difference " " " */
say ' // =' rem /* " remainder " " " */
say ' / =' div /* " quotient " " " */
say ' % =' Idiv /* " int. quotient " " " */
say ' * =' prod /* " product " " " */
say ' ** =' pow /* " power " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
arithmetics: procedure; parse arg x,y; return x||y x+y x-y x//y x/y x%y x*y x**y</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
a = 82
b = 20
══════════════════════════════════════════════════
|| = 8220
+ = 102
- = 62
// = 2
/ = 4.1
% = 4
* = 1640
** = 188919613181312032574569023867244773376
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
Func AddSub x,y
Return [ x+y, x-y ]
</syntaxhighlight>
 
=={{header|RPL}}==
The stack is where data are taken and then returned: stack size's the limit!
≪ + LAST - ≫ ‘ADDSUB’ STO
{{in}}
<pre>
33 12 ADDSUB
</pre>
{{out}}
<pre>
2: 44
1: 20
</pre>
 
=={{header|Ruby}}==
Line 691 ⟶ 3,004:
 
Use an array literal:
<syntaxhighlight lang="ruby">def addsub(x, y)
 
<lang ruby>def addsub(x, y)
[x + y, x - y]
end</langsyntaxhighlight>
 
Or use <code>return</code> with 2 or more values:
<syntaxhighlight lang="ruby">def addsub(x, y)
 
<lang ruby>def addsub(x, y)
return x + y, x - y
end</langsyntaxhighlight>
 
(With at least 2 values, <code>return</code> makes a new Array. With 1 value, <code>return</code> passes the value, without making any Array. With 0 values, <code>return</code> passes <code>nil</code>.)
 
Assignment can split the Array into separate variables.
<syntaxhighlight lang="ruby">sum, difference = addsub(33, 12)
 
<lang ruby>sum, difference = addsub(33, 12)
puts "33 + 12 = #{sum}"
puts "33 - 12 = #{difference}"</langsyntaxhighlight>
 
=={{header|Run BASIC}}==
Courtesy http://dkokenge.com/rbp
<br>Gets the UTC time from the web
<syntaxhighlight lang="runbasic">a$ = timeInfo$()
print " UTC:";word$(a$,1,"|")
print "Date:";word$(a$,2,"|")
print "Time:";word$(a$,3,"|")
wait
function timeInfo$()
utc$ = word$(word$(httpget$("http://tycho.usno.navy.mil/cgi-bin/timer.pl"),1,"UTC"),2,"<BR>") ' Universal time
d$ = date$()
t$ = time$()
timeInfo$ = utc$;"|";d$;"|";t$
end function</syntaxhighlight>
 
=={{header|Rust}}==
 
Rust supports ADT, thus function can return tuple.
 
<syntaxhighlight lang="rust">fn multi_hello() -> (&'static str, i32) {
("Hello",42)
}
 
fn main() {
let (str,num)=multi_hello();
println!("{},{}",str,num);
}
</syntaxhighlight>
 
{{out}}
 
<pre>Hello,42
</pre>
 
=={{header|Scala}}==
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="scala">def addSubMult(x: Int, y: Int) = (x + y, x - y, x * y)</syntaxhighlight>
A more detailed declaration would be:
<syntaxhighlight lang="scala">
def addSubMult(x: Int, y:Int) : (Int, Int, Int) = {
...
(x + y, x - y, x * y)
}
</syntaxhighlight>
You can use pattern matching to extract the components:
<syntaxhighlight lang="scala">val (sum, difference) = addsub(33, 12)</syntaxhighlight>
Scala borrows this idea from ML, and generalizes it into [http://www.scala-lang.org/node/112 extractors].
 
=={{header|Scheme}}==
Scheme can return multiple values using the <code>values</code> function, which uses continuations:
<langsyntaxhighlight lang="scheme">(define (addsub x y)
(values (+ x y) (- x y)))</langsyntaxhighlight>
 
You can use the multiple values using the <code>call-with-values</code> function:
<langsyntaxhighlight lang="scheme">(call-with-values
(lambda () (addsub 33 12))
(lambda (sum difference)
(display "33 + 12 = ") (display sum) (newline)
(display "33 - 12 = ") (display difference) (newline)))</langsyntaxhighlight>
 
The syntax is kinda awkward. SRFI 8 introduces a <code>receive</code> construct to make this simpler:
<langsyntaxhighlight lang="scheme">(receive (sum difference) (addsub 33 12)
; in this scope you can use sum and difference
(display "33 + 12 = ") (display sum) (newline)
(display "33 - 12 = ") (display difference) (newline))</langsyntaxhighlight>
 
SRFI 11 introduces a <code>let-values</code> construct to make this simpler:
<langsyntaxhighlight lang="scheme">(let-values (((sum difference) (addsub 33 12)))
; in this scope you can use sum and difference
(display "33 + 12 = ") (display sum) (newline)
(display "33 - 12 = ") (display difference) (newline))</langsyntaxhighlight>
 
=={{header|Standard MLSeed7}}==
Seed7 functions can only return one value. That value could be an array or record holding multiple values, but the usual method for returning several values is using a procedure with [http://seed7.sourceforge.net/manual/params.htm#inout_parameter inout] parameters:
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: sumAndDiff (in integer: x, in integer: y, inout integer: sum, inout integer: diff) is func
<lang sml>fun addsub (x, y) =
begin
(x + y, x - y)</lang>
sum := x + y;
diff := x - y;
end func;
 
const proc: main is func
You can use pattern matching to extract the components:
local
var integer: sum is 0;
var integer: diff is 0;
begin
sumAndDiff(5, 3, sum, diff);
writeln("Sum: " <& sum);
writeln("Diff: " <& diff);
end func;</syntaxhighlight>
 
{{out}}
<lang sml>let
<pre>
Sum: 8
Diff: 2
</pre>
 
=={{header|SenseTalk}}==
You can return multiple values in SenseTalk by returning a list, which can be assigned to multiple variables.
<syntaxhighlight lang="sensetalk">set [quotient,remainder] to quotientAndRemainder(13,4)
 
put !"The quotient of 13 ÷ 4 is: [[quotient]] with remainder: [[remainder]]"
 
to handle quotientAndRemainder of num, divisor
return [num div divisor, num rem divisor]
end quotientAndRemainder</syntaxhighlight>
{{out}}
<pre>
The quotient of 13 ÷ 4 is: 3 with remainder: 1
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func foo(a,b) {
return (a+b, a*b);
}</syntaxhighlight>
 
Catching the returned arguments:
<syntaxhighlight lang="ruby">var (x, y) = foo(4, 5);
say x; #=> 9
say y; #=> 20</syntaxhighlight>
 
=={{header|Smalltalk}}==
 
Smalltalk returns a single value from methods, so this task is usually implemented the scheme-way, by passing a lambda-closure which is invoked with the values to return and either operates on the values itself or sets them as the caller's locals (i.e. simular to call-with-values ... values):
 
<syntaxhighlight lang="smalltalk">foo multipleValuesInto:[:a :b |
Transcript show:a; cr.
Transcript show:b; cr.
]</syntaxhighlight>
 
or:
<syntaxhighlight lang="smalltalk">|val1 val2|
foo multipleValuesInto:[:a :b |
val1 := a.
val2 := b.
].
... do something with val1 and val2...
</syntaxhighlight>
 
The called method in foo looks like:
<syntaxhighlight lang="smalltalk">
multipleValuesInto: aTwoArgBlock
...
aTwoArgBlock value:<value1> value:<value2>
</syntaxhighlight>
i.e. it invokes the passed-in lambda closure with the two (return-)values.
 
=={{header|Standard ML}}==
Every function returns one value. The conventional way to return multiple values is to return a tuple.
<syntaxhighlight lang="sml">fun addsub (x, y) =
(x + y, x - y)</syntaxhighlight>
You can use pattern matching to extract the components:
<syntaxhighlight lang="sml">let
val (sum, difference) = addsub (33, 12)
in
print ("33 + 12 = " ^ Int.toString sum ^ "\n");
print ("33 - 12 = " ^ Int.toString difference ^ "\n")
end</langsyntaxhighlight>
 
=={{header|Swift}}==
Every function returns one value. The conventional way to return multiple values is to bundle them into a tuple.
<syntaxhighlight lang="swift">func addsub(x: Int, y: Int) -> (Int, Int) {
return (x + y, x - y)
}</syntaxhighlight>
You can use pattern matching to extract the components:
<syntaxhighlight lang="swift">let (sum, difference) = addsub(33, 12)
println("33 + 12 = \(sum)")
println("33 - 12 = \(difference)")</syntaxhighlight>
 
=={{header|Tcl}}==
Tcl commands all return a single value, but this value can be a compound value such as a list or dictionary. The result value of a procedure is either the value given to the <code>return</code> command or the result of the final command in the body in the procedure. (Commands that return “no” value actually return the empty string.)
<langsyntaxhighlight lang="tcl">proc addsub {x y} {
list [expr {$x+$y}] [expr {$x-$y}]
}</langsyntaxhighlight>
This can be then assigned to a single variable with <code>set</code> or to multiple variables with <code>lassign</code>.
<langsyntaxhighlight lang="tcl">lassign [addsub 33 12] sum difference
puts "33 + 12 = $sum, 33 - 12 = $difference"</langsyntaxhighlight>
 
{{omit from|GUISS}}
 
=={{header|TXR}}==
 
TXR functions return material by binding unbound variables.
 
The following function potentially returns three values, which will happen if called with three arguments, each of which is an unbound variable:
<syntaxhighlight lang="txr">@(define func (x y z))
 
<lang txr>@(define func (x y z))
@ (bind w "discarded")
@ (bind (x y z) ("a" "b" "c"))
@(end)</langsyntaxhighlight>
 
The binding <code>w</code>, if created, is discarded because <code>w</code> is not in the list of formal parameters. However, <code>w</code> can cause the function to fail because there can already exist a variable <code>w</code> with a value which doesn't match <code>"discarded"</code>.
 
Call:
<syntaxhighlight lang="txr">@(func t r s)</syntaxhighlight>
 
<lang txr>@(func t r s)</lang>
 
If <code>t</code>, <code>r</code> and <code>s</code> are unbound variables, they get bound to <code>"a"</code>, <code>"b"</code> and <code>"c"</code>, respectively via a renaming mechanism. This may look like C++ reference parameters or Pascal "var" parameters, and can be used that way, but isn't really the same at all.
 
Failed call ("1" doesn't match "a"):
<syntaxhighlight lang="txr">@(func "1" r s)</syntaxhighlight>
Successful call binding only one new variable:
<syntaxhighlight lang="txr">@(func "a" "b" s)</syntaxhighlight>
 
=={{header|UNIX Shell}}==
<lang txr>@(func "1" r s)</lang>
Shell scripts don't directly support returning values from a function,
it can be simulated through some clunky code.
 
<syntaxhighlight lang="bash">
Successful call binding only one new variable:
#!/bin/sh
funct1() {
a=$1
b=`expr $a + 1`
echo $a $b
}
 
values=`funct1 5`
 
set $values
x=$1
y=$2
echo "x=$x"
echo "y=$y"
</syntaxhighlight>
 
{{out}}
<pre>
x=5
y=6
</pre>
 
=={{header|Ursa}}==
The most straightforward way to return multiple values from a function in Ursa is to return a stream.
 
This example gets a specified amount of strings from the user, then returns a stream containing them.
<syntaxhighlight lang="ursa">def getstrs (int n)
decl string<> input
 
while (> n 0)
out ": " console
append (in string console) input
dec n
end while
 
return input
end getstrs
 
decl int amount
out "how many strings do you want to enter? " console
set amount (in int console)
 
decl string<> ret
set ret (getstrs amount)
 
out endl ret endl console</syntaxhighlight>
{{out}}
<pre>how many strings do you want to enter? 5
: these
: are
: some
: test
: strings
 
class java.lang.String<these, are, some, test, strings></pre>
 
=={{header|VBA}}==
Firt way : User Defined Type
<syntaxhighlight lang="vb">
Type Contact
Name As String
firstname As String
Age As Byte
End Type
 
Function SetContact(N As String, Fn As String, A As Byte) As Contact
SetContact.Name = N
SetContact.firstname = Fn
SetContact.Age = A
End Function
 
'For use :
Sub Test_SetContact()
Dim Cont As Contact
 
Cont = SetContact("SMITH", "John", 23)
Debug.Print Cont.Name & " " & Cont.firstname & ", " & Cont.Age & " years old."
End Sub
</syntaxhighlight>
{{out}}
<pre>SMITH John, 23 years old.</pre>
Second way : ByRef argument : (Note : the ByRef Arg could be an array)
<syntaxhighlight lang="vb">
Function Divide(Dividend As Integer, Divisor As Integer, ByRef Result As Double) As Boolean
Divide = True
On Error Resume Next
Result = Dividend / Divisor
If Err <> 0 Then
Divide = False
On Error GoTo 0
End If
End Function
 
'For use :
Sub test_Divide()
Dim R As Double, Ddd As Integer, Dvs As Integer, B As Boolean
 
Ddd = 10: Dvs = 3
B = Divide(Ddd, Dvs, R)
Debug.Print "Divide return : " & B & " Result = " & R
Ddd = 10: Dvs = 0
B = Divide(Ddd, Dvs, R)
Debug.Print "Divide return : " & B & " Result = " & R
End Sub
</syntaxhighlight>
{{out}}
<pre>Divide return : True Result = 3,33333333333333
Divide return : False Result = 1,#INF</pre>
Third way : ParramArray
<syntaxhighlight lang="vb">
Function Multiple_Divide(Dividend As Integer, Divisor As Integer, ParamArray numbers() As Variant) As Long
Dim i As Integer
 
On Error GoTo ErrorHandler
numbers(LBound(numbers)) = Dividend / Divisor
For i = LBound(numbers) + 1 To UBound(numbers)
numbers(i) = numbers(i - 1) / Divisor
Next i
Multiple_Divide = 1: Exit Function
ErrorHandler:
Multiple_Divide = 0
End Function
 
'For use :
Sub test_Multiple_Divide()
Dim Arr(3) As Variant, Ddd As Integer, Dvs As Integer, L As Long, i As Integer
 
Ddd = 10: Dvs = 3
L = Multiple_Divide(Ddd, Dvs, Arr(0), Arr(1), Arr(2), Arr(3))
Debug.Print "The function return : " & L
Debug.Print "The values in return are : "
For i = LBound(Arr) To UBound(Arr)
Debug.Print Arr(i)
Next i
Erase Arr
Debug.Print "--------------------------------------"
Ddd = 10: Dvs = 0
L = Multiple_Divide(Ddd, Dvs, Arr(0), Arr(1), Arr(2), Arr(3))
Debug.Print "The function return : " & L
Debug.Print "The values in return are : "
For i = LBound(Arr) To UBound(Arr)
Debug.Print IIf(Arr(i) = "", "vbNullString", "Null")
Next i
End Sub
</syntaxhighlight>
{{out}}
<pre>The function return : 1
The values in return are :
3,33333333333333
1,11111111111111
0,37037037037037
0,123456790123457
--------------------------------------
The function return : 0
The values in return are :
vbNullString
vbNullString
vbNullString
vbNullString</pre>
Fourth way : the variant() function
<syntaxhighlight lang="vb">
Function List() As String()
Dim i&, Temp(9) As String
 
For i = 0 To 9
Temp(i) = "Liste " & i + 1
Next
List = Temp
End Function
 
'For use :
Sub test_List()
Dim myArr() As String, i As Integer
'Note : you don't need to Dim your array !
myArr = List()
For i = LBound(myArr) To UBound(myArr)
Debug.Print myArr(i)
Next
End Sub
</syntaxhighlight>
{{out}}
<pre>Liste 1
Liste 2
Liste 3
Liste 4
Liste 5
Liste 6
Liste 7
Liste 8
Liste 9
Liste 10</pre>
 
=={{header|Visual FoxPro}}==
<syntaxhighlight lang="vfp">
*!* Return multiple values from a function
*!* The simplest way is to pass the parameters by reference
*!* either by SET UDFPARMS TO REFERENCE, or prefix the variables with @.
LOCAL a, b
a = 5
b = 6
? "Sum =", AddUp(@a, @b) && Displays 11
? "a =", a, "b =", b && Displays 4, 5
? "Sum =", AddUp(@a, @b) && Displays 9
 
FUNCTION AddUp(n1, n2)
LOCAL n
n = n1 + n2
n1 = n1 - 1
n2 = n2 - 1
RETURN n
ENDFUNC
</syntaxhighlight>
 
=={{header|Wren}}==
In Wren, one would return multiple values from a function or method by using some sort of Sequence object, usually a List though a Map could be used if you needed ''named'' returns.
<syntaxhighlight lang="wren">var splitName = Fn.new { |fullName| fullName.split(" ") }
 
var names = splitName.call("George Bernard Shaw")
System.print("First name: %(names[0]), middle name: %(names[1]) and surname: %(names[2]).")</syntaxhighlight>
 
{{out}}
<pre>
First name: George, middle name: Bernard and surname: Shaw.
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
 
proc Rect2Polar(X,Y,A,D); \Return two polar coordinate values
real X,Y,A,D;
[A(0):= ATan2(Y,X);
D(0):= Sqrt(X*X+Y*Y);
]; \Rect2Polar
 
real Ang, Dist;
[Rect2Polar(4.0, 3.0, @Ang, @Dist); \("@" is a new feature similar to 'addr')
RlOut(0, Ang);
RlOut(0, Dist);
CrLf(0);
]</syntaxhighlight>
 
{{out}} (angle is in radians):
<pre>
0.64350 5.00000
</pre>
 
=={{header|Z80 Assembly}}==
A function can return multiple values by altering the contents of multiple registers. Code is <code>CALL</code>ed as a subroutine.
 
In this trivial example, the function returns 0xABCD and 0xFFFF.
<syntaxhighlight lang="z80">foo:
ld hl,&ABCD
ld bc,&FFFF
ret</syntaxhighlight>
 
=={{header|zkl}}==
<lang txr>@(func "a" "b" s)</lang>
<syntaxhighlight lang="zkl">fcn f{return(1,2,"three")}
a,b,c:=f() // a==1, b==2, c=="three"</syntaxhighlight>
Anonymous user