Ramanujan's constant: Difference between revisions

m
 
(17 intermediate revisions by 9 users not shown)
Line 8:
=={{header|C++}}==
{{libheader|Boost}}
<langsyntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <boost/math/constants/constants.hpp>
Line 33:
}
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 49:
=={{header|Fōrmulæ}}==
 
In [{{FormulaeEntry|page=https://wiki.formulae.org/?script=examples/Ramanujan%27s_constant this] page you can see the solution of this task.}}
 
'''Solution'''
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation &mdash;i.e. XML, JSON&mdash; they are intended for transportation effects more than visualization and edition.
 
'''Case 1. Calculate Ramanujan's constant with at least 32 digits of precision'''
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
 
[[File:Fōrmulæ - Ramanujan's constant 01.png]]
 
[[File:Fōrmulæ - Ramanujan's constant 02.png]]
 
'''Case 2. Show that when evaluated with the last four Heegner numbers the result is almost an integer'''
 
[[File:Fōrmulæ - Ramanujan's constant 03.png]]
 
[[File:Fōrmulæ - Ramanujan's constant 04.png]]
 
=={{header|Go}}==
Line 60 ⟶ 70:
 
Also the math.Pi built in constant is not accurate enough to be used with big.Float and so I have used a more accurate string representation instead.
<langsyntaxhighlight lang="go">package main
 
import (
Line 99 ⟶ 109:
fmt.Printf("%3d: %51.32f ≈ %18d (diff: %.32f)\n", h[0], qh, c, t)
}
}</langsyntaxhighlight>
 
{{out}}
Line 111 ⟶ 121:
67: 147197952743.99999866245422450682926131257863 ≈ 147197952744 (diff: 0.00000133754577549317073868742137)
163: 262537412640768743.99999999999925007259719818568888 ≈ 262537412640768744 (diff: 0.00000000000074992740280181431112)
</pre>
 
=={{header|Haskell}}==
Calculations are done using an arbitrary precision "constructive reals" type (CReal).
<syntaxhighlight lang="haskell">import Control.Monad (forM_)
import Data.Number.CReal (CReal, showCReal)
import Text.Printf (printf)
 
ramfun :: CReal -> CReal
ramfun x = exp (pi * sqrt x)
 
-- Ramanujan's constant.
ramanujan :: CReal
ramanujan = ramfun 163
 
-- The last four Heegner numbers.
heegners :: [Int]
heegners = [19, 43, 67, 163]
 
-- The absolute distance to the nearest integer.
intDist :: CReal -> CReal
intDist x = abs (x - fromIntegral (round x))
 
main :: IO ()
main = do
let n = 35
printf "Ramanujan's constant: %s\n\n" (showCReal n ramanujan)
printf "%3s %34s%20s%s\n\n" " h " "e^(pi*sqrt(h))" "" " Dist. to integer"
forM_ heegners $ \h ->
let r = ramfun (fromIntegral h)
d = intDist r
in printf "%3d %54s %s\n" h (showCReal n r) (showCReal 15 d)</syntaxhighlight>
 
{{out}}
<pre>
Ramanujan's constant: 262537412640768743.99999999999925007259719818568887935
 
h e^(pi*sqrt(h)) Dist. to integer
 
19 885479.77768015431949753789348171962682071 0.222319845680502
43 884736743.99977746603490666193746207858537685 0.000222533965093
67 147197952743.99999866245422450682926131257862851 0.000001337545775
163 262537412640768743.99999999999925007259719818568887935 0.00000000000075
</pre>
 
Line 187 ⟶ 240:
exp=: (1x"_)`((($:~<:)+^%!@x:@])~)@.(0<[) NB. recursive Taylor series x exp y recursively sums x terms of Taylor series for Exp[y], memoization candidate.
</pre>
<syntaxhighlight lang="text">
NB. takes the constant beyond the repeat 9s.
S=: cf_sqrt&163 Digits 34
Line 196 ⟶ 249:
262537412640768743.9999999999992500711164316586918409066184
NB. ^
</syntaxhighlight>
</lang>
 
=={{header|Java}}==
Very interesting. Compute Pi, E, and square root to arbitrary precision.
<langsyntaxhighlight lang="java">
import java.math.BigDecimal;
import java.math.MathContext;
Line 288 ⟶ 341:
}
</syntaxhighlight>
</lang>
 
{{out}}
Line 302 ⟶ 355:
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">
 
julia> a = BigFloat(MathConstants.e^(BigFloat(pi)))^(BigFloat(163.0)^0.5)
Line 310 ⟶ 363:
7.499274028018143111206461436626630091372924626572825942241598957614307213309258e-13
 
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">First[RealDigits[N[Exp[Pi Sqrt[163]], 200]]]
Table[
c = N[Exp[Pi Sqrt[h]], 40];
Log10[1 - FractionalPart[c]]
,
{h, {19, 43, 67, 163}}
]</syntaxhighlight>
{{out}}
<pre>{2,6,2,5,3,7,4,1,2,6,4,0,7,6,8,7,4,3,9,9,9,9,9,9,9,9,9,9,9,9,2,5,0,0,7,2,5,9,7,1,9,8,1,8,5,6,8,8,8,7,9,3,5,3,8,5,6,3,3,7,3,3,6,9,9,0,8,6,2,7,0,7,5,3,7,4,1,0,3,7,8,2,1,0,6,4,7,9,1,0,1,1,8,6,0,7,3,1,2,9,5,1,1,8,1,3,4,6,1,8,6,0,6,4,5,0,4,1,9,3,0,8,3,8,8,7,9,4,9,7,5,3,8,6,4,0,4,4,9,0,5,7,2,8,7,1,4,4,7,7,1,9,6,8,1,4,8,5,2,3,2,2,4,3,2,0,3,9,1,1,6,4,7,8,2,9,1,4,8,8,6,4,2,2,8,2,7,2,0,1,3,1,1,7,8,3,1,7,0,6}
 
(*Log10 of the difference between the number and an integer*)
{-0.653021767688625734085368753068345, -3.652603693775839429642336360, -5.87369134597671206721205, -12.1249807767}</pre>
 
=={{header|Nim}}==
{{libheader|nim-decimal}}
<syntaxhighlight lang="nim">import strformat, strutils
import decimal
 
setPrec(75)
let pi = newDecimal("3.1415926535897932384626433832795028841971693993751058209749445923078164")
 
proc eval(n: int): DecimalType =
result = exp(pi * sqrt(newDecimal(n)))
 
func format(n: DecimalType; d: Positive): string =
## Return the representation of "n" with "d" digits of precision.
let parts = ($n).split('.')
result = parts[0] & '.' & parts[1][0..<d]
 
 
echo "Ramanujan’s constant with 50 digits of precision:"
echo eval(163).format(50)
 
setPrec(50)
echo()
echo "Heegner numbers yielding 'almost' integers:"
for n in [19, 43, 67, 163]:
let x = eval(n)
let k = x.roundToInt
let d = x - k
let s = if d > 0: "+ " & $d else: "- " & $(-d)
echo &"{n:3}: {x}... = {k:>18} {s}..."</syntaxhighlight>
 
{{out}}
<pre>Ramanujan’s constant with 50 digits of precision:
262537412640768743.99999999999925007259719818568887935385633733699086
 
Heegner numbers yielding 'almost' integers:
19: 885479.77768015431949753789348171962682071428650216... = 885480 - 0.22231984568050246210651828037317928571349784...
43: 884736743.99977746603490666193746207858537684739914... = 884736744 - 0.00022253396509333806253792141462315260086...
67: 147197952743.99999866245422450682926131257862850810... = 147197952744 - 0.00000133754577549317073868742137149190...
163: 262537412640768743.99999999999925007259719818568865... = 262537412640768744 - 7.4992740280181431135e-13...</pre>
 
=={{header|Pari/GP}}==
<langsyntaxhighlight lang="parigp">\p 50
exp(Pi*sqrt(163))</langsyntaxhighlight>
{{out}}
<pre>
Line 323 ⟶ 430:
===Direct calculation===
{{trans|Sidef}}
<langsyntaxhighlight lang="perl">use strict;
use warnings;
use Math::AnyNum;
Line 349 ⟶ 456:
my $n = Math::AnyNum::ipow($x, 3) + 744;
printf("%3s: %51s ≈ %18s (diff: %s)\n", $h, $c, $n, ($n - $c)->round(-32));
}</langsyntaxhighlight>
{{out}}
<pre>
Line 364 ⟶ 471:
===Continued fractions===
{{trans|Raku}}
<langsyntaxhighlight lang="perl">use strict;
use Math::AnyNum <as_dec rat>;
 
Line 378 ⟶ 485:
 
printf "Ramanujan's constant\n%s\n", as_dec($R,58);
</syntaxhighlight>
</lang>
{{out}}
<pre>Ramanujan's constant
Line 386 ⟶ 493:
{{trans|Go}}
{{libheader|Phix/mpfr}}
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>include mpfr.e
<span style="color: #008080;">without</span> <span style="color: #008080;">javascript_semantics</span> <span style="color: #000080;font-style:italic;">-- no mpfr_exp() under p2js (yet), sorry</span>
mpfr_set_default_prec(-120) -- (18 before, 100 after, plus 2 for kicks.)
<span style="color: #7060A8;">requires</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"1.0.0"</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (mpfr_set_default_prec[ision] has been renamed)</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
function q(integer d)
<span style="color: #7060A8;">mpfr_set_default_precision</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">120</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (18 before, 100 after, plus 2 for kicks.)</span>
mpfr pi = mpfr_init()
mpfr_const_pi(pi)
<span style="color: #008080;">function</span> <span style="color: #000000;">q</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">d</span><span style="color: #0000FF;">)</span>
mpfr t = mpfr_init(d)
<span style="color: #004080;">mpfr</span> <span style="color: #000000;">pi</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpfr_init</span><span style="color: #0000FF;">()</span>
mpfr_sqrt(t,t)
<span style="color: #7060A8;">mpfr_const_pi</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pi</span><span style="color: #0000FF;">)</span>
mpfr_mul(t,pi,t)
<span style="color: #004080;">mpfr</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpfr_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d</span><span style="color: #0000FF;">)</span>
mpfr_exp(t,t)
<span style="color: #7060A8;">mpfr_sqrt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)</span>
return t
<span style="color: #7060A8;">mpfr_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)</span>
end function
<span style="color: #000000;">mpfr_exp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">t</span>
printf(1,"Ramanujan's constant to 100 decimal places is:\n")
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
mpfr_printf(1, "%.100Rf\n", q(163))
sequence heegners = {{19, 96},
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Ramanujan's constant to 100 decimal places is:\n"</span><span style="color: #0000FF;">)</span>
{43, 960},
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%s\n"</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">mpfr_get_fixed</span><span style="color: #0000FF;">(</span><span style="color: #000000;">q</span><span style="color: #0000FF;">(</span><span style="color: #000000;">163</span><span style="color: #0000FF;">),</span><span style="color: #000000;">100</span><span style="color: #0000FF;">))</span>
{67, 5280},
<span style="color: #004080;">sequence</span> <span style="color: #000000;">heegners</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">19</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">96</span><span style="color: #0000FF;">},</span>
{163, 640320},
<span style="color: #0000FF;">{</span><span style="color: #000000;">43</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">960</span><span style="color: #0000FF;">},</span>
}
<span style="color: #0000FF;">{</span><span style="color: #000000;">67</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5280</span><span style="color: #0000FF;">},</span>
printf(1,"\nHeegner numbers yielding 'almost' integers:\n")
<span style="color: #0000FF;">{</span><span style="color: #000000;">163</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">640320</span><span style="color: #0000FF;">},</span>
mpfr t = mpfr_init(), qh
<span style="color: #0000FF;">}</span>
mpz c = mpz_init()
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\nHeegner numbers yielding 'almost' integers:\n"</span><span style="color: #0000FF;">)</span>
for i=1 to length(heegners) do
<span style="color: #004080;">mpfr</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpfr_init</span><span style="color: #0000FF;">(),</span> <span style="color: #000000;">qh</span>
integer {h0,h1} = heegners[i]
<span style="color: #004080;">mpz</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">()</span>
qh = q(h0)
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">heegners</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
mpz_ui_pow_ui(c,h1,3)
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">h0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h1</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">heegners</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
mpz_add_ui(c,c,744)
<span style="color: #000000;">qh</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">q</span><span style="color: #0000FF;">(</span><span style="color: #000000;">h0</span><span style="color: #0000FF;">)</span>
mpfr_set_z(t,c)
<span style="color: #7060A8;">mpz_ui_pow_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span>
mpfr_sub(t,t,qh)
<span style="color: #7060A8;">mpz_add_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">744</span><span style="color: #0000FF;">)</span>
string qhs = mpfr_sprintf("%51.32Rf",qh),
<span style="color: #7060A8;">mpfr_set_z</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">)</span>
cs = mpz_get_str(c),
<span style="color: #7060A8;">mpfr_sub</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">qh</span><span style="color: #0000FF;">)</span>
ts = mpfr_sprintf("%.32Rf",t)
<span style="color: #004080;">string</span> <span style="color: #000000;">qhs</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpfr_get_fixed</span><span style="color: #0000FF;">(</span><span style="color: #000000;">qh</span><span style="color: #0000FF;">,</span><span style="color: #000000;">32</span><span style="color: #0000FF;">),</span>
printf(1,"%3d: %s ~= %18s (diff: %s)\n", {h0, qhs, cs, ts})
<span style="color: #000000;">cs</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">),</span>
end for</lang>
<span style="color: #000000;">ts</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpfr_get_fixed</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">32</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%3d: %51s ~= %18s (diff: %s)\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">h0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">qhs</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">cs</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ts</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 435 ⟶ 546:
=={{header|Python}}==
{{libheader|mpmath}}
<langsyntaxhighlight Pythonlang="python">from mpmath import mp
heegner = [19,43,67,163]
mp.dps = 50
Line 443 ⟶ 554:
for i in heegner:
print(" for {}: {} ~ {} error: {}".format(str(i),mp.exp(mp.pi*mp.sqrt(i)),round(mp.exp(mp.pi*mp.sqrt(i))),(mp.pi*mp.sqrt(i)) - round(mp.pi*mp.sqrt(i))))
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 462 ⟶ 573:
[http://rosettacode.org/wiki/Calculating_the_value_of_e Euler's number], and
[http://rosettacode.org/wiki/Arithmetic-geometric_mean/Integer_roots integer roots]. Additional custom routines for exponentiation are used to ensure all computations are done with rationals, specifically <tt>FatRat</tt>s (rational numbers stored with arbitrary size numerator and denominator). The module <tt>Rat::Precise</tt> makes it simple to display these to a configurable precision.
<syntaxhighlight lang="raku" perl6line>use Rat::Precise;
 
# set the degree of precision for calculations
Line 482 ⟶ 593:
while (abs($mid - $exp) > ε) {
$sqr = sqrt($sqr);
if ($mid <= $exp) { $low = $mid; $acc *×= $sqr }
else { $high = $mid; $acc *××= 1/$sqr }
$mid = ($low + $high) / 2;
}
Line 497 ⟶ 608:
 
for ^d {
given [ ($a + $g)/2, sqrt $a *× $g ] {
$z -= (.[0] - $a)**2 *× $n;
$n += $n;
($a, $g) = @$_;
Line 508 ⟶ 619:
 
multi sqrt(FatRat $r --> FatRat) {
FatRat.new: sqrt($r.nude[0] *× 10**(D*2D×2) div $r.nude[1]), 10**D;
}
 
Line 523 ⟶ 634:
 
# calculation of 𝑒
sub postfix:<!> (Int $n) { (constant f = 1, |[\*×] 1..*)[$n] }
sub 𝑒 (--> FatRat) { sum map { FatRat.new(1,.!) }, ^D }
 
Line 541 ⟶ 652:
constant 𝑒 = &𝑒();
 
my $Ramanujan = 𝑒**(π* × √163);
say "Ramanujan's constant to 32 decimal places:\nActual: " ~
"262537412640768743.99999999999925007259719818568888\n" ~
Line 548 ⟶ 659:
say "Heegner numbers yielding 'almost' integers";
for 19, 96, 43, 960, 67, 5280, 163, 640320 -> $heegner, $x {
my $almost = 𝑒**(π* × √$heegner);
my $exact = $x**3³ + 744;
say format($exact, $almost);
}</langsyntaxhighlight>
{{out}}
<pre>Ramanujan's constant to 32 decimal places:
Line 576 ⟶ 687:
===Continued fractions===
Ramanujan's constant can also be generated to an arbitrary precision using standard [https://en.wikipedia.org/wiki/Generalized_continued_fraction continued fraction formulas] for each component of the 𝑒**(π*√163) expression. Substantially slower than the first method.
<syntaxhighlight lang="raku" perl6line>use Rat::Precise;
 
sub continued-fraction($n, :@a, :@b) {
Line 588 ⟶ 699:
#`{ e**x } my $R = 1 + ($_ / continued-fraction(170, :a( 1,|(2+$_, 3+$_ ... *)), :b(Nil, |(-1*$_, -2*$_ ... *) ))) given $r163*$pi;
 
say "Ramanujan's constant to 32 decimal places:\n", $R.precise(32);</langsyntaxhighlight>
{{out}}
<pre>Ramanujan's constant to 32 decimal places:
Line 595 ⟶ 706:
=={{header|REXX}}==
Instead of calculating &nbsp; <big> '''e''' </big> &nbsp; and &nbsp; <big><big><math>\pi</math></big></big> &nbsp; to some arbitrary length, &nbsp; it was easier to just include those two constants with &nbsp; '''201''' &nbsp; decimal digits &nbsp; (which is the amount of decimal digits used for the calculations). &nbsp; The results are displayed &nbsp; (right justified) &nbsp; with one-half of that number of decimal digits past the decimal point.
<langsyntaxhighlight lang="rexx">/*REXX pgm displays Ramanujan's constant to at least 100 decimal digits of precision. */
d= min( length(pi()), length(e()) ) - length(.) /*calculate max #decimal digs supported*/
parse arg digs sDigs . 1 . . $ /*obtain optional arguments from the CL*/
Line 629 ⟶ 740:
numeric form; m.=9; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_%2
do j=0 while h>9; m.j=h; h=h % 2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g) * .5; end /*k*/; return g</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
Line 648 ⟶ 759:
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">require "bigdecimal/math"
include BigMath
 
e, pi = E(200), PI(200)
[19, 43, 67, 163].each do |x|
puts "#{x}: #{(e ** (pi * BigMath.sqrt(BigDecimal(x), 200))).round(100).to_s("F")}"
end
</syntaxhighlight>
{{out}}
<pre>19: 885479.7776801543194975378934817196268207142865018553571526577110128809842286637202423189990118182067775711
43: 884736743.9997774660349066619374620785853768473991271391609175146278344881148747592189635643106023717101372606
67: 147197952743.999998662454224506829261312578628508183312503816712633371282105122950998831523502041379242353370629
163: 262537412640768743.9999999999992500725971981856888793538563373369908627075374103782106479101186073129511813461860645042
</pre>
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">func ramanujan_const(x, decimals=32) {
local Num!PREC = *"#{4*round((Num.pi*√x)/log(10) + decimals + 1)}"
exp(Num.pi * √x) -> round(-decimals).to_s
Line 663 ⟶ 789:
var n = (x**3 + 744)
printf("%3s: %51s ≈ %18s (diff: %s)\n", h, c, n, n-Num(c))
})</langsyntaxhighlight>
{{out}}
<pre>
Line 670 ⟶ 796:
 
Heegner numbers yielding 'almost' integers:
19: 885479.77768015431949753789348171962682 ≈ 885480 (diff: 0.22231984568050246210651828037318)
43: 884736743.99977746603490666193746207858538 ≈ 884736744 (diff: 0.00022253396509333806253792141462)
67: 147197952743.99999866245422450682926131257863 ≈ 147197952744 (diff: 0.00000133754577549317073868742137)
163: 262537412640768743.99999999999925007259719818568888 ≈ 262537412640768744 (diff: 0.00000000000074992740280181431112)
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-big}}
{{libheader|Wren-fmt}}
Wren has BigRat but not BigFloat which means we are lacking both a 'big' value for pi and an arbitrary precision exponential method.
 
I've therefore hard-coded a value for pi with 70 decimal places (more than enough for this task) and written a 'big' exponential function using the Taylor series for e(x). The latter requires a lot of iterations and is therefore quite slow (takes about 5 seconds to calculate the Ramanujan constant). However, this is acceptable for a scripting language such as Wren.
<syntaxhighlight lang="wren">import "./big" for BigRat
import "./fmt" for Fmt
 
var pi = "3.1415926535897932384626433832795028841971693993751058209749445923078164"
var bigPi = BigRat.fromDecimal(pi)
 
var exp = Fn.new { |x, p|
var sum = x + 1
var prevTerm = x
var k = 2
var eps = BigRat.fromDecimal("0.5e-%(p)")
while (true) {
var nextTerm = prevTerm * x / k
sum = sum + nextTerm
if (nextTerm < eps) break
// speed up calculations by limiting precision to 'p' places
prevTerm = BigRat.fromDecimal(nextTerm.toDecimal(p))
k = k + 1
}
return sum
}
 
var ramanujan = Fn.new { |n, dp|
var e = bigPi * BigRat.new(n, 1).sqrt(70)
return exp.call(e, 70)
}
 
System.print("Ramanujan's constant to 32 decimal places is:")
System.print(ramanujan.call(163, 32).toDecimal(32))
var heegner = [19, 43, 67, 163]
System.print("\nHeegner numbers yielding almost integers:")
for (h in heegner) {
var r = ramanujan.call(h, 32)
var rc = r.ceil
var diff = (rc - r).toDecimal(32)
r = r.toDecimal(32)
rc = rc.toDecimal(32)
Fmt.print("$3d: $51s ≈ $18s (diff: $s)", h, r, rc, diff)
}</syntaxhighlight>
 
{{out}}
<pre>
Ramanujan's constant to 32 decimal places is:
262537412640768743.99999999999925007259719818568888
 
Heegner numbers yielding almost integers:
19: 885479.77768015431949753789348171962682 ≈ 885480 (diff: 0.22231984568050246210651828037318)
43: 884736743.99977746603490666193746207858538 ≈ 884736744 (diff: 0.00022253396509333806253792141462)
2,120

edits