QR decomposition: Difference between revisions

From Rosetta Code
Content added Content deleted
(Task description, reference implementation in Common Lisp.)
 
(Added task category Matrices)
Line 1: Line 1:
{{task|Matrices}}
Any rectangular <math>m \times n</math> matrix <math>A</math> can be decomposed to a product of a orthogonal matrix <math>Q</math> and a upper (right) triangular matrix <math>R</math>, as described in [[wp:QR decomposition|QR decomposition]].
Any rectangular <math>m \times n</math> matrix <math>A</math> can be decomposed to a product of a orthogonal matrix <math>Q</math> and a upper (right) triangular matrix <math>R</math>, as described in [[wp:QR decomposition|QR decomposition]].



Revision as of 15:28, 17 June 2011

Task
QR decomposition
You are encouraged to solve this task according to the task description, using any language you may know.

Any rectangular matrix can be decomposed to a product of a orthogonal matrix and a upper (right) triangular matrix , as described in QR decomposition.

There are several methods to compute and , but in this task, the method of Householder reflections should be used. Multiplying a given vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , for example the first column of matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , with the Householder matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} , which is given as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = I - \frac {2} {u^T u} u u^T}

reflects Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} about a plane given by its normal vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} . When the normal vector of the plane Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} is given as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = a - \|a\|_2 \; e_1}

then the transformation reflects onto the first standard basis vector

which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of :

and normalize with respect to the first element:

Applying on then gives

and applying on the matrix zeroes all subdiagonal elements of the first column:

In the second step, the second column of , we want to zero all elements but the first two, which means that we have to calculate with the first column of the submatrix (denoted *), not on the whole second column of .

To get , we then embed the new into an identity:

This is how we can, column by column, remove all subdiagonal elements of and thus transform it into .

The product of all the Householder matrices , for every column, in reverse order, will then yield the orthogonal matrix .

The QR decomposition should then be used to solve linear least squares (Multiple regression) problems by solving

When is not square, i.e. we have to cut off the zero padded bottom rows.

and the same for the RHS:

Finally, solve the square upper triangular system by back substitution:

Demonstrate the QR decomposition on the example matrix from the Wikipedia article:

and the usage for linear least squares problems on the example from Polynomial_regression.

Common Lisp

Uese the routines m+, m-, .* from Element-wise_operations, mmul from Matrix multiplication, mtp from Matrix transposition.

Helper functions: <lang lisp>(defun sign (x)

 (if (zerop x)
     x
     (/ x (abs x))))

(defun norm (x)

 (let ((len (car (array-dimensions x))))
   (sqrt (loop for i from 0 to (1- len) sum (expt (aref x i 0) 2)))))

(defun make-unit-vector (dim)

 (let ((vec (make-array `(,dim ,1) :initial-element 0.0d0)))
   (setf (aref vec 0 0) 1.0d0)
   vec))

(defun array-range (A ma mb na nb)

 (let* ((m (car (array-dimensions A)))
        (n (car (array-dimensions A)))
        (mm (1+ (- mb ma)))
        (nn (1+ (- nb na)))
        (B (make-array `(,mm ,nn) :initial-element 0.0d0)))
   (loop for i from 0 to (1- mm) do
        (loop for j from 0 to (1- nn) do
             (setf (aref B i j)
                   (aref A (+ ma i) (+ na j)))))
   B))

(defun rows (A) (car (array-dimensions A))) (defun cols (A) (cadr (array-dimensions A))) (defun mcol (A n) (array-range A 0 (1- (rows A)) n n)) (defun mrow (A n) (array-range A n n 0 (1- (cols A))))

(defun array-embed (A B row col)

 (let* ((ma (rows A))
        (na (cols A))
        (mb (rows B))
        (nb (cols B))
        (C  (make-array `(,ma ,na) :initial-element 0.0d0)))
   (loop for i from 0 to (1- ma) do
        (loop for j from 0 to (1- na) do
             (setf (aref C i j) (aref A i j))))
   (loop for i from 0 to (1- mb) do
        (loop for j from 0 to (1- nb) do
             (setf (aref C (+ row i) (+ col j))
                   (aref B i j))))
   C))

</lang>

Main routines: <lang lisp> (defun make-householder (a)

 (let* ((m    (car (array-dimensions a)))
        (s    (sign (aref a 0 0)))
        (e    (make-unit-vector m))
        (u    (m+ a (.* (* (norm a) s) e)))
        (v    (./ u (aref u 0 0)))
        (beta (/ 2 (mmul (mtp v) v))))
   
   (m- (eye m)
       (.* beta (mmul v (mtp v))))))

(defun qr (A)

 (let* ((m (car  (array-dimensions A)))
        (n (cadr (array-dimensions A)))
        (Q (eye m)))
   ;; Work on n columns of A.
   (loop for i from 0 to (if (= m n) (- n 2) (- n 1)) do
        ;; Select the i-th submatrix. For i=0 this means the original matrix A.
        (let* ((B (array-range A i (1- m) i (1- n)))
               ;; Take the first column of the current submatrix B.
               (x (mcol B 0))
               ;; Create the Householder matrix for the column and embed it into an mxm identity.
               (H (array-embed (eye m) (make-householder x) i i)))
          ;; The product of all H matrices from the right hand side is the orthogonal matrix Q.
          (setf Q (mmul Q H))
          ;; The product of all H matrices with A from the LHS is the upper triangular matrix R.
          (setf A (mmul H A))))
   ;; Return Q and R.
   (values Q A)))

</lang>

Example 1:

<lang lisp>(qr #2A((12 -51 4) (6 167 -68) (-4 24 -41)))

  1. 2A((-0.85 0.39 0.33)
   (-0.42 -0.90 -0.03)
   ( 0.28 -0.17  0.94))
  1. 2A((-14.0 -21.0 14.0)
   (  0.0 -175.0  70.0)
   (  0.0    0.0 -35.0))</lang>

Example 2, Polynomial regression:

<lang lisp>(defun polyfit (x y n)

 (let* ((m (cadr (array-dimensions x)))
        (A (make-array `(,m ,(+ n 1)) :initial-element 0)))
   (loop for i from 0 to (- m 1) do
         (loop for j from 0 to n do
               (setf (aref A i j)
                     (expt (aref x 0 i) j))))
   (lsqr A (mtp y))))
Solve a linear least squares problem by QR decomposition.

(defun lsqr (A b)

 (multiple-value-bind (Q R) (qr A)
   (let* ((n (cadr (array-dimensions R))))
     (solve-upper-triangular (array-range R                0 (- n 1) 0 (- n 1))
                             (array-range (mmul (mtp Q) b) 0 (- n 1) 0 0)))))
Solve an upper triangular system by back substitution.

(defun solve-upper-triangular (R b)

 (let* ((n (cadr (array-dimensions R)))
        (x (make-array `(,n 1) :initial-element 0.0d0)))
   (loop for k from (- n 1) downto 0
      do (setf (aref x k 0)
               (/ (- (aref b k 0)
                     (loop for j from (+ k 1) to (- n 1)
                        sum (* (aref R k j)
                               (aref x j 0))))
                  (aref R k k))))
   x))</lang>

<lang lisp>;; Finally use the data: (let ((x #2A((0 1 2 3 4 5 6 7 8 9 10)))

     (y #2A((1 6 17 34 57 86 121 162 209 262 321))))
   (polyfit x y 2))
  1. 2A((0.999999966345088) (2.000000015144699) (2.99999999879804))</lang>