Proper divisors: Difference between revisions

From Rosetta Code
Content added Content deleted
(1 has no proper divisors.)
(1 has no proper divisors.)
Line 1: Line 1:
{{draft task}}
{{draft task}}
The [http://planetmath.org/properdivisor proper divisors] of a positive integer N are those numbers, other than N itself, that divide N without remainder, and always include 1.
The [http://planetmath.org/properdivisor proper divisors] of a positive integer N are those numbers, other than N itself, that divide N without remainder. <br>For N > 1 they will always include 1, but for N == 1 their are no proper divisors.


For example the proper divisors of 6 are 1, 2, and 3. The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.
For example the proper divisors of 6 are 1, 2, and 3. The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.

'''Note''' that 1 has no proper divisors.


;Task:
;Task:

Revision as of 04:04, 17 December 2014

Proper divisors is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
For N > 1 they will always include 1, but for N == 1 their are no proper divisors.

For example the proper divisors of 6 are 1, 2, and 3. The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.

Task
  1. Create a routine to generate all the proper divisors of a number.
  2. use it to show the proper divisors of the numbers 1 to 10 inclusive.
  3. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has.

Show all output here.

Cf.

D

This example is incorrect. Please fix the code and remove this message.

Details: 1 has no proper divisors.

Translation of: Python

Currently the lambda of the filter allocates a closure on the GC-managed heap. <lang d>void main() /*@safe*/ {

   import std.stdio, std.algorithm, std.range, std.typecons;
   immutable properDivs = (in uint n) pure nothrow @safe /*@nogc*/ =>
       iota(1, (n + 1) / 2 + 1).filter!(x => n % x == 0);
   iota(1, 11).map!properDivs.writeln;
   iota(1, 20_001).map!(n => tuple(properDivs(n).count, n)).reduce!max.writeln;

}</lang>

Output:
[[1], [1], [1], [1, 2], [1], [1, 2, 3], [1], [1, 2, 4], [1, 3], [1, 2, 5]]
Tuple!(uint, int)(79, 18480)

The Run-time is about 0.71 seconds with the ldc2 compiler.

J

This example is incorrect. Please fix the code and remove this message.

Details: 1 has no proper divisors.

The proper divisors of an integer are the Factors of an integer without the integer itself.

So, borrowing from the J implementation of that related task:

<lang J>factors=: [: /:~@, */&>@{@((^ i.@>:)&.>/)@q:~&__ properDivisors=: factors -. -.&1</lang>

Proper divisors of numbers 1 through 10:

<lang J> (,&": ' -- ' ,&": properDivisors)&>1+i.10 1 -- 1 2 -- 1 3 -- 1 4 -- 1 2 5 -- 1 6 -- 1 2 3 7 -- 1 8 -- 1 2 4 9 -- 1 3 10 -- 1 2 5</lang>

Number(s) not exceeding 20000 with largest number of proper divisors (and the count of those divisors):

<lang J> (, #@properDivisors)&> 1+I.(= >./) #@properDivisors@> 1+i.20000 15120 79 18480 79</lang>

Note that it's more efficient to simply count factors here, when selecting the candidate numbers.

<lang J> (, #@properDivisors)&> 1+I.(= >./) #@factors@> 1+i.20000 15120 79 18480 79</lang>

We could also arbitrarily toss either 15120 or 18480, if that were important.

Java

This example is incorrect. Please fix the code and remove this message.

Details: 1 has no proper divisors.

Works with: Java version 1.5+

<lang java5>import java.util.Collections; import java.util.LinkedList; import java.util.List;

public class Proper{

   public static List<Integer> properDivs(int n){
       List<Integer> divs = new LinkedList<Integer>();
       divs.add(1);
       for(int x = 2; x < n; x++){
           if(n % x == 0) divs.add(x);
       }
       
       Collections.sort(divs);
       
       return divs;
   }
   
   public static void main(String[] args){
       for(int x = 1; x <= 10; x++){
           System.out.println(x + ": " + properDivs(x));
       }
       
       int x = 0, count = 0;
       for(int n = 1; n <= 20000; n++){
           if(properDivs(n).size() > count){
               x = n;
               count = properDivs(n).size();
           }
       }
       System.out.println(x + ": " + count);
   }

}</lang>

Output:
1: [1]
2: [1]
3: [1]
4: [1, 2]
5: [1]
6: [1, 2, 3]
7: [1]
8: [1, 2, 4]
9: [1, 3]
10: [1, 2, 5]
15120: 79

Perl

This example is incorrect. Please fix the code and remove this message.

Details: 1 has no proper divisors.

Using a module for divisors

Library: ntheory

<lang perl>use ntheory qw/divisors/;

  1. Uses the task definition of pd(1) = 1, not the OEIS A032741 definition.

sub proper_divisors {

 my $n = shift;
 return if $n == 0;
 return 1 if $n == 1;
 my @d = divisors($n);
 pop @d;
 @d;

} say "$_: ", join " ", proper_divisors($_) for 1..10;

  1. 1. For the max, we can do a traditional loop.

my($max,$ind) = (0,0); for (1..20000) {

 my $nd = scalar proper_divisors($_);
($max,$ind) = ($nd,$_) if $nd > $max;

} say "$max $ind";

  1. 2. Or we can use List::Util's max with decoration (this exploits its implementation)

{

 use List::Util qw/max/;
 no warnings 'numeric';
 say max(map { scalar(proper_divisors($_)) . " $_" } 1..20000);

}</lang>

Output:
1: 1
2: 1
3: 1
4: 1 2
5: 1
6: 1 2 3
7: 1
8: 1 2 4
9: 1 3
10: 1 2 5
79 15120
79 18480

Note that the first code will choose the first max, while the second chooses the last.


Python

This example is incorrect. Please fix the code and remove this message.

Details: 1 has no proper divisors.

Python: Literal

A very literal interpretation <lang python>>>> def proper_divs2(n): ... return {x for x in range(1, (n + 1) // 2 + 1) if n % x == 0} ... >>> [proper_divs2(n) for n in range(1, 11)] [{1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}, {1, 3}, {1, 2, 5}] >>> >>> n, length = max(((n, len(proper_divs2(n))) for n in range(1, 20001)), key=lambda pd: pd[1]) >>> n 15120 >>> length 79 >>> </lang>


Python: From prime factors

I found a reference on how to generate factors from all the prime factors and the number of times each prime factor goes into N - its multiplicity.

For example, given N having prime factors P(i) with associated multiplicity M(i}) then the factors are given by:

for m[0] in range(M(0) + 1):
    for m[1] in range(M[1] + 1):
        ...
                for m[i - 1] in range(M[i - 1] + 1):
                    mult = 1
                    for j in range(i):
                        mult *= P[j] ** m[j]
                    yield mult

This version is over an order of magnitude faster for generating the proper divisors of the first 20,000 integers; at the expense of simplicity. <lang python>from math import sqrt from functools import lru_cache, reduce from collections import Counter from itertools import product


MUL = int.__mul__


def prime_factors(n):

   'Map prime factors to their multiplicity for n'
   d = _divs(n)
   d = [] if d == [n] else (d[:-1] if d[-1] == d else d)
   pf = Counter(d)
   return dict(pf)

@lru_cache(maxsize=None) def _divs(n):

   'Memoized recursive function returning prime factors of n as a list'
   for i in range(2, int(sqrt(n)+1)):
       d, m  = divmod(n, i)
       if not m:
           return [i] + _divs(d)
   return [n]


def proper_divs(n):

   Return the set of proper divisors of n.
   pf = prime_factors(n)
   pfactors, occurrences = pf.keys(), pf.values()
   multiplicities = product(*(range(oc + 1) for oc in occurrences))
   divs = {reduce(MUL, (pf**m for pf, m in zip(pfactors, multis)), 1)
           for multis in multiplicities}
   try:
       divs.remove(n)
   except KeyError:
       pass
   return divs or {1}


if __name__ == '__main__':

   rangemax = 20000
   
   print([proper_divs(n) for n in range(1, 11)])
   print(*max(((n, len(proper_divs(n))) for n in range(1, 20001)), key=lambda pd: pd[1]))</lang>
Output:
[{1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}, {1, 3}, {1, 2, 5}]
15120 79