I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Price list behind API

Price list behind API is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

There is a list of around 100_000 prices in the range £0 to £100_000, expressed in whole £, (no pence); and prices may be duplicated.
The API allows access to the maximum item price via function `get_max_price()`; and the number of items equal-to and between two given price points via function `get_prange_count(pricemin, pricemax)`.
Assume that for the purposes of testing, you have access to the actual number of priced items to split.

1. Write functions to randomly generate around 100K prices and provide the `get_prange_count` and `get_max_price` API calls.
2. Write functions to provide non-overlapping min and max price ranges that provide product counts where most are close to, but no more than, 5_000.
3. Ensure that all priced items are covered by all the ranges of prices shown
4. Show ascending price ranges and the number of items covered by each range.
5. Show output from a sample run here.

## 11l

Translation of: Python
`V price_list_size = random:(99'000 .< 101'000)V price_list = (0 .< price_list_size).map(i -> random:(100'000)) V delta_price = 1 F get_prange_count(startp, endp)   R :price_list.filter(r -> Float(r) C @startp .. @endp).len F get_max_price()   R max(:price_list) F get_5k(Float mn, Float =mx; num = 5'000)   ‘Binary search for num items between mn and mx, adjusting mx’   V count = get_prange_count(mn, mx)   V delta_mx = (mx - mn) / 2   L count != num & delta_mx >= :delta_price / 2      mx += I count > num {-delta_mx} E +delta_mx      mx = Float(mx I/ 1)      (count, delta_mx) = (get_prange_count(mn, mx), delta_mx / 2)   R (mx, count) F get_all_5k(mn = 0.0, Float mx = get_max_price(); num = 5'000)   ‘Get all non-overlapping ranges’   V (partmax, partcount) = get_5k(mn, mx, num)   V result = [(mn, partmax, partcount)]   L partmax < mx      V partmin = partmax + :delta_price      (partmax, partcount) = get_5k(partmin, mx, num)      assert(partcount > 0, ‘price_list from ’partmin‘ with too many of the same price’)      result.append((partmin, partmax, partcount))   R result print(‘Using ’price_list_size‘ random prices from 0 to ’get_max_price())V result = get_all_5k()print(‘Splits into ’result.len‘ bins of approx 5000 elements’)L(mn, mx, count) result   print(f:‘  From {mn:8.1} ... {mx:8.1} with {count} items.’) I price_list.len != sum(result.map((mn, mx, count) -> count))   print("\nWhoops! Some items missing:")`
Output:
```Using 99472 random prices from 0 to 99999
Splits into 20 bins of approx 5000 elements
From      0.0 ...   5114.0 with 4998 items.
From   5115.0 ...  10224.0 with 5000 items.
From  10225.0 ...  15241.0 with 4998 items.
From  15242.0 ...  20393.0 with 4999 items.
From  20394.0 ...  25419.0 with 5000 items.
From  25420.0 ...  30425.0 with 5000 items.
From  30426.0 ...  35412.0 with 4999 items.
From  35413.0 ...  40507.0 with 4999 items.
From  40508.0 ...  45485.0 with 4999 items.
From  45486.0 ...  50569.0 with 5000 items.
From  50570.0 ...  55634.0 with 4998 items.
From  55635.0 ...  60584.0 with 4999 items.
From  60585.0 ...  65477.0 with 5000 items.
From  65478.0 ...  70277.0 with 4999 items.
From  70278.0 ...  75470.0 with 4999 items.
From  75471.0 ...  80383.0 with 5000 items.
From  80384.0 ...  85449.0 with 4996 items.
From  85450.0 ...  90475.0 with 4999 items.
From  90476.0 ...  95475.0 with 5000 items.
From  95476.0 ... 104515.0 with 4490 items.
```

## Go

Translation of: Wren
`package main import (    "fmt"    "log"    "math"    "math/rand"    "time") var minDelta = 1.0 func getMaxPrice(prices []float64) float64 {    max := prices[0]    for i := 1; i < len(prices); i++ {        if prices[i] > max {            max = prices[i]        }    }    return max} func getPRangeCount(prices []float64, min, max float64) int {    count := 0    for _, price := range prices {        if price >= min && price <= max {            count++        }    }    return count} func get5000(prices []float64, min, max float64, n int) (float64, int) {    count := getPRangeCount(prices, min, max)    delta := (max - min) / 2    for count != n && delta >= minDelta/2 {        if count > n {            max -= delta        } else {            max += delta        }        max = math.Floor(max)        count = getPRangeCount(prices, min, max)        delta /= 2    }    return max, count} func getAll5000(prices []float64, min, max float64, n int) [][3]float64 {    pmax, pcount := get5000(prices, min, max, n)    res := [][3]float64{{min, pmax, float64(pcount)}}    for pmax < max {        pmin := pmax + 1        pmax, pcount = get5000(prices, pmin, max, n)        if pcount == 0 {            log.Fatal("Price list from", pmin, "has too many with same price.")        }        res = append(res, [3]float64{pmin, pmax, float64(pcount)})    }    return res} func main() {    rand.Seed(time.Now().UnixNano())    numPrices := 99000 + rand.Intn(2001)    maxPrice := 1e5    prices := make([]float64, numPrices) // list of prices    for i := 0; i < numPrices; i++ {        prices[i] = float64(rand.Intn(int(maxPrice) + 1))    }    actualMax := getMaxPrice(prices)    fmt.Println("Using", numPrices, "items with prices from 0 to", actualMax, "\b:")    res := getAll5000(prices, 0, actualMax, 5000)    fmt.Println("Split into", len(res), "bins of approx 5000 elements:")    total := 0    for _, r := range res {        min := int(r[0])        tmx := r[1]        if tmx > actualMax {            tmx = actualMax        }        max := int(tmx)        cnt := int(r[2])        total += cnt        fmt.Printf("   From %6d to %6d with %4d items\n", min, max, cnt)    }    if total != numPrices {        fmt.Println("Something went wrong - grand total of", total, "doesn't equal", numPrices, "\b!")    }}`
Output:
```Using 99784 items with prices from 0 to 99999 :
Split into 20 bins of approx 5000 elements:
From      0 to   5061 with 4997 items
From   5062 to  10031 with 5000 items
From  10032 to  15091 with 5000 items
From  15092 to  20114 with 5000 items
From  20115 to  25141 with 5000 items
From  25142 to  30206 with 4997 items
From  30207 to  35291 with 5000 items
From  35292 to  40333 with 4999 items
From  40334 to  45451 with 4999 items
From  45452 to  50422 with 4998 items
From  50423 to  55355 with 4997 items
From  55356 to  60268 with 4997 items
From  60269 to  65240 with 5000 items
From  65241 to  70193 with 4999 items
From  70194 to  75272 with 4998 items
From  75273 to  80154 with 5000 items
From  80155 to  85218 with 5000 items
From  85219 to  90120 with 4996 items
From  90121 to  95102 with 4998 items
From  95103 to  99999 with 4809 items
```

## Julia

Translation of: Python
`# Sample price generationconst price_list_size = rand(99000:100999)const price_list = rand(0:99999, price_list_size)const delta_price = 1   # Minimum difference between any two different prices. """ The API provides these two """get_prange_count(startp, endp) = sum([startp <= r <= endp for r in price_list])get_max_price() = maximum(price_list) """ Binary search for num items between mn and mx, adjusting mx """function get_5k(mn=0, mx=get_max_price(), num=5_000)    count = get_prange_count(mn, mx)    delta_mx = (mx - mn) / 2    while count != num && delta_mx >= delta_price / 2        mx += (count > num ? -delta_mx : +delta_mx)        mx = floor(mx)        count, delta_mx = get_prange_count(mn, mx), delta_mx / 2    end    return mx, countend """ Get all non-overlapping ranges """function get_all_5k(mn=0, mx=get_max_price(), num=5_000)    partmax, partcount = get_5k(mn, mx, num)    result = [(mn, partmax, partcount)]    while partmax < mx        partmin = partmax + delta_price        partmax, partcount = get_5k(partmin, mx, num)        @assert(partcount > 0, "pricelist from \$partmin has too many same price")        push!(result, (partmin, partmax, partcount))    end    return resultend function testpricelist()    println("Using \$price_list_size random prices from 0 to \$(get_max_price()).")    result = get_all_5k()    println("Splits into \$(length(result)) bins of approximately 5000 elements.")    for (mn, mx, count) in result        println("  From \$(Float32(mn)) ... \$(Float32(mx)) with \$count items.")    end    if length(price_list) != sum([x[3] for x in result])        print("\nWhoops! Some items missing.")    endend testpricelist() `
Output:
```Using 100299 random prices from 0 to 99990.
Splits into 21 bins of approximately 5000 elements.
From 0.0 ... 4911.0 with 4998 items.
From 4912.0 ... 9832.0 with 5000 items.
From 9833.0 ... 14841.0 with 5000 items.
From 14842.0 ... 19756.0 with 4999 items.
From 19757.0 ... 24782.0 with 4994 items.
From 24783.0 ... 29751.0 with 4999 items.
From 29752.0 ... 34655.0 with 5000 items.
From 34656.0 ... 39748.0 with 5000 items.
From 39749.0 ... 44819.0 with 4999 items.
From 44820.0 ... 49908.0 with 5000 items.
From 49909.0 ... 54898.0 with 4999 items.
From 54899.0 ... 59700.0 with 4999 items.
From 59701.0 ... 64767.0 with 4999 items.
From 64768.0 ... 69824.0 with 4999 items.
From 69825.0 ... 74765.0 with 4999 items.
From 74766.0 ... 79654.0 with 4999 items.
From 79655.0 ... 84674.0 with 5000 items.
From 84675.0 ... 89602.0 with 4999 items.
From 89603.0 ... 94715.0 with 5000 items.
From 94716.0 ... 99666.0 with 4997 items.
From 99667.0 ... 100309.0 with 320 items.
```

## Nim

Translation of: Go
`import math, strformat const MinDelta = 1.0 type Result = tuple[min, max: float; count: int]  func getPRangeCount(prices: seq[float]; min, max: float): int =  for price in prices:    if price in min..max:      inc result  func get5000(prices: seq[float]; min, max: float; n: int): (float, int) =    var      count = prices.getPRangeCount(min, max)      delta = (max - min) / 2      max = max    while count != n and delta >= MinDelta / 2:      if count > n: max -= delta      else: max += delta      max = floor(max)      count = getPRangeCount(prices, min, max)      delta /= 2    result = (max, count)  func getAll5000(prices: seq[float]; min, max: float; n: int): seq[Result] =    var (pmax, pcount) = prices.get5000(min, max, n)    result = @[(min, pmax, pcount)]    while pmax < max:      let pmin = pmax + 1      (pmax, pcount) = prices.get5000(pmin, max, n)      if pcount == 0:        raise newException(ValueError, &"Price list from {pmin} has too many with same price.")      result.add (pmin, pmax, pcount)  when isMainModule:  import random, sequtils  randomize()   let numPrices = rand(99_000..101_000)  const MaxPrice = 100_000  let prices = newSeqWith(numPrices, rand(1..MaxPrice).toFloat)  let actualMax = max(prices)  echo &"Using {numPrices} items with prices from 0 to {actualMax.int}:"   let res = prices.getAll5000(0, actualMax, 5000)  echo &"Split into {res.len} bins of approx 5000 elements:"  var total = 0  for (minf, maxf, count) in res:    let min = minf.toInt    let max = min(maxf, actualMax).toInt    inc total, count    echo &"   From {min:6} to {max:6} with {count:4} items"   if total != numPrices:    echo &"Something went wrong: grand total of {total} doesn't equal {numPrices}!"`
Output:
```Using 99244 items with prices from 0 to 100000:
Split into 20 bins of approx 5000 elements:
From      0 to   4933 with 5000 items
From   4934 to   9949 with 4999 items
From   9950 to  15074 with 4998 items
From  15075 to  20081 with 5000 items
From  20082 to  25011 with 5000 items
From  25012 to  30106 with 5000 items
From  30107 to  35208 with 5000 items
From  35209 to  40210 with 4998 items
From  40211 to  45208 with 4996 items
From  45209 to  50271 with 5000 items
From  50272 to  55318 with 4996 items
From  55319 to  60384 with 5000 items
From  60385 to  65323 with 5000 items
From  65324 to  70425 with 5000 items
From  70426 to  75509 with 4998 items
From  75510 to  80536 with 4999 items
From  80537 to  85603 with 4999 items
From  85604 to  90642 with 5000 items
From  90643 to  95681 with 4999 items
From  95682 to 100000 with 4262 items```

## Perl

Translation of: Raku
`use strict;use warnings;use List::Util <min max shuffle>; sub getPRangeCount {    my(\$min,\$max,@prices) = @_;    grep { \$min <= \$_ <= \$max } @prices;} sub get5000 {   my(\$min, \$max, \$n, @prices) = @_;   my \$count = getPRangeCount(\$min, \$max, @prices);   my \$delta = (\$max - \$min) / 2;   while (\$count != \$n and \$delta >= 1/2) {      \$count > \$n ? \$max -= \$delta : (\$max += \$delta);      \$count = getPRangeCount(\$min, \$max, @prices);      \$delta /= 2;   }   \$max, \$count} sub getAll5000 {   my(\$min, \$max, \$n, @prices) = @_;   my ( \$pmax, \$pcount ) = get5000(\$min, \$max, \$n, @prices);   my @results = [ \$min, \$pmax, \$pcount ];   while (\$pmax < \$max) {      my \$pmin = \$pmax + 1;      ( \$pmax, \$pcount ) = get5000(\$pmin, \$max, \$n, @prices);      \$pcount == 0 and print "Price list from \$pmin has too many duplicates.\n";      push @results, [ \$pmin, \$pmax, \$pcount ];   }   @results} my @prices;push @prices, int rand 10_000+1 for 1 .. (my \$numPrices = shuffle 99_990..100_050); my \$actualMax = max @prices;print "Using \$numPrices items with prices from 0 to \$actualMax:\n"; my @results = getAll5000(0, \$actualMax, 5000, @prices);print "Split into " . @results . " bins of approx 5000 elements:\n"; for my \$row (@results) {   my (\$min,\$max,\$subtotal) = @\$row;   \$max = \$actualMax if \$max > \$actualMax;   printf "  From %6d to %6d with %4d items\n", \$min, \$max, \$subtotal}`
Output:
```Using 100047 items with prices from 0 to 10000:
Split into 20 bins of approx 5000 elements:
From      0 to    496 with 5002 items
From    497 to    991 with 4992 items
From    992 to   1483 with 4996 items
From   1484 to   1988 with 4998 items
From   1989 to   2483 with 5002 items
From   2484 to   2980 with 5009 items
From   2981 to   3482 with 4996 items
From   3483 to   3968 with 5000 items
From   3969 to   4476 with 4998 items
From   4477 to   4989 with 5009 items
From   4990 to   5491 with 5005 items
From   5492 to   5981 with 5005 items
From   5982 to   6483 with 5002 items
From   6484 to   6984 with 5005 items
From   6985 to   7495 with 4992 items
From   7496 to   8004 with 4991 items
From   8005 to   8496 with 5000 items
From   8497 to   9002 with 5000 items
From   9003 to   9514 with 4995 items
From   9515 to  10000 with 4850 items```

## Phix

Translation of: Python

Note that defaulted arguments of the form mx=get_max_price() are not currently supported, hence a slightly hacky workaround, of -1 then -1==>get_max_price().
Were you (or I) to define constant mp = get_max_price(), then mx=mp style parameter defaulting would be fine.

```with javascript_semantics
requires("0.8.3") -- [assert() now accepts a 3rd param]
constant price_list_size = 99_000 + rand(2_001) - 1,
price_list = sq_sub(sq_rand(repeat(100_000,price_list_size)),1),
delta_price = 1 -- Minimum difference between any two different prices.

function get_prange_count(integer startp, endp)
return length(filter(price_list,"in",{startp,endp},"[]"))
end function

function get_max_price()
return max(price_list)
end function

function get_5k(integer mn=0, mx=-1, num=5_000)
if mx=-1 then mx = get_max_price() end if
-- Binary search for num items between mn and mx, adjusting mx
integer count = get_prange_count(mn, mx)
atom delta_mx = (mx - mn) / 2
while count != num and delta_mx >= delta_price / 2 do
mx = floor(mx + iff(count > num ? -delta_mx : +delta_mx))
{count, delta_mx} = {get_prange_count(mn, mx), delta_mx / 2}
end while
return {mx, count}
end function

function get_all_5k(integer mn=0, mx=-1, num=5_000)
if mx=-1 then mx = get_max_price() end if
-- Get all non-overlapping ranges
integer {partmax, partcount} = get_5k(mn, mx, num)
sequence result = {{mn, partmax, partcount}}
while partmax < mx do
integer partmin = partmax + delta_price
{partmax, partcount} = get_5k(partmin, mx, num)
assert(partcount>0,"Price list from %.2f has too many same price",{partmin})
result = append(result,{partmin, partmax, partcount})
end while
return result
end function

printf(1,"Using %d random prices from 0 to %d\n",{price_list_size,get_max_price()})
sequence result = get_all_5k()
printf(1,"Splits into %d bins of approx 5000 elements\n",{length(result)})
for i=1 to length(result) do
printf(1,"  From %8.2f ... %8.2f with %d items.\n",result[i])
end for
assert(length(price_list)==sum(vslice(result,3)),"Whoops! Some items missing!")
```
Output:
```Using 100957 random prices from 0 to 99999
Splits into 21 bins of approx 5000 elements
From     0.00 ...  4838.00 with 4998 items.
From  4839.00 ...  9765.00 with 4999 items.
From  9766.00 ... 14602.00 with 4999 items.
From 14603.00 ... 19575.00 with 5000 items.
From 19576.00 ... 24515.00 with 4998 items.
From 24516.00 ... 29476.00 with 5000 items.
From 29477.00 ... 34386.00 with 5000 items.
From 34387.00 ... 39289.00 with 4999 items.
From 39290.00 ... 44349.00 with 5000 items.
From 44350.00 ... 49265.00 with 4992 items.
From 49266.00 ... 54262.00 with 4998 items.
From 54263.00 ... 59289.00 with 4999 items.
From 59290.00 ... 64191.00 with 5000 items.
From 64192.00 ... 69119.00 with 4999 items.
From 69120.00 ... 74095.00 with 4996 items.
From 74096.00 ... 79144.00 with 4999 items.
From 79145.00 ... 84093.00 with 4998 items.
From 84094.00 ... 88961.00 with 4996 items.
From 88962.00 ... 94051.00 with 4999 items.
From 94052.00 ... 99038.00 with 5000 items.
From 99039.00 ... 100955.00 with 988 items.
```

## Python

`import random #%%Sample price generationprice_list_size = random.choice(range(99_000, 101_000))price_list = random.choices(range(100_000), k=price_list_size) delta_price = 1     # Minimum difference between any two different prices. #%% APIdef get_prange_count(startp, endp):    return len([r for r in price_list if startp <= r <= endp]) def get_max_price():    return max(price_list) #%% Solutiondef get_5k(mn=0, mx=get_max_price(), num=5_000):    "Binary search for num items between mn and mx, adjusting mx"    count = get_prange_count(mn, mx)    delta_mx = (mx - mn) / 2    while count != num and delta_mx >= delta_price / 2:        mx += -delta_mx if count > num else +delta_mx        mx = mx // 1    # Floor        count, delta_mx = get_prange_count(mn, mx), delta_mx / 2    return mx, count def get_all_5k(mn=0, mx=get_max_price(), num=5_000):    "Get all non-overlapping ranges"    partmax, partcount = get_5k(mn, mx, num)    result = [(mn, partmax, partcount)]    while partmax < mx:        partmin = partmax + delta_price         partmax, partcount = get_5k(partmin, mx, num)        assert partcount > 0, \            f"price_list from {partmin} with too many of the same price"        result.append((partmin, partmax, partcount))    return result if __name__ == '__main__':    print(f"Using {price_list_size} random prices from 0 to {get_max_price()}")    result = get_all_5k()    print(f"Splits into {len(result)} bins of approx 5000 elements")    for mn, mx, count in result:        print(f"  From {mn:8.1f} ... {mx:8.1f} with {count} items.")     if len(price_list) != sum(count for mn, mx, count in result):        print("\nWhoops! Some items missing:")`
Output:
```Using 99838 random prices from 0 to 99999
Splits into 20 bins of approx 5000 elements
From      0.0 ...   4876.0 with 4999 items.
From   4877.0 ...   9973.0 with 4997 items.
From   9974.0 ...  14954.0 with 4999 items.
From  14955.0 ...  20041.0 with 4997 items.
From  20042.0 ...  25132.0 with 4999 items.
From  25133.0 ...  30221.0 with 5000 items.
From  30222.0 ...  35313.0 with 5000 items.
From  35314.0 ...  40263.0 with 5000 items.
From  40264.0 ...  45249.0 with 4997 items.
From  45250.0 ...  50264.0 with 5000 items.
From  50265.0 ...  55251.0 with 5000 items.
From  55252.0 ...  60301.0 with 4997 items.
From  60302.0 ...  65239.0 with 5000 items.
From  65240.0 ...  70220.0 with 4998 items.
From  70221.0 ...  75193.0 with 4999 items.
From  75194.0 ...  80229.0 with 4996 items.
From  80230.0 ...  85191.0 with 4997 items.
From  85192.0 ...  90214.0 with 5000 items.
From  90215.0 ...  95249.0 with 4999 items.
From  95250.0 ... 104742.0 with 4864 items.```

## Raku

Translation of: Go
`# 20210208 Raku programming solution my \minDelta = 1; sub getMaxPrice { @_.max } sub getPRangeCount(@prices,\min,\max) { +@prices.grep: min ≤ * ≤ max } sub get5000(@prices, \$min, \$max is copy, \n) {   my \$count = getPRangeCount(@prices, \$min, \$max);   my \$delta = (\$max - \$min) / 2;   while \$count != n && \$delta ≥ minDelta/2 {      \$count > n ?? (\$max -= \$delta) !! (\$max += \$delta);      \$count = getPRangeCount(@prices, \$min, \$max);       \$delta /= 2;   }   \$max, \$count} sub getAll5000(@prices, \min, \max, \n) {   my ( \$pmax, \$pcount ) = get5000(@prices, min, max, n);   my @res = [ min, \$pmax, \$pcount ] , ;   while \$pmax < max {      my \$pmin = \$pmax + 1;      ( \$pmax, \$pcount ) = get5000(@prices, \$pmin, max, n);      \$pcount == 0 and note "Price list from \$pmin has too many duplicates.";      @res.push: [ \$pmin, \$pmax, \$pcount ];   }    @res}  my \$numPrices = (99000..101001).roll;my \maxPrice  = 1e5;my @prices    = (1..\$numPrices+1).roll xx \$numPrices ; my \$actualMax = getMaxPrice(@prices);say "Using \$numPrices items with prices from 0 to \$actualMax:"; my @res = getAll5000(@prices, 0, \$actualMax, 5000);say "Split into ", +@res, " bins of approx 5000 elements:"; for @res -> @row {   my (\$min,\$max,\$subtotal) = @row;   \$max = \$actualMax if \$max > \$actualMax ;   printf "  From %6d to %6d with %4d items\n", \$min, \$max, \$subtotal } `
Output:
```Using 99506 items with prices from 0 to 99507:
Split into 20 bins of approx 5000 elements:
From      0 to   4983 with 5000 items
From   4984 to  10034 with 5003 items
From  10035 to  15043 with 4998 items
From  15044 to  20043 with 5001 items
From  20044 to  24987 with 5001 items
From  24988 to  30000 with 4998 items
From  30001 to  34954 with 5000 items
From  34955 to  40018 with 5000 items
From  40019 to  45016 with 5000 items
From  45017 to  49950 with 5000 items
From  49951 to  54877 with 4999 items
From  54878 to  59880 with 5002 items
From  59881 to  64807 with 5001 items
From  64808 to  69800 with 5000 items
From  69801 to  74897 with 5000 items
From  74898 to  79956 with 5002 items
From  79957 to  85037 with 5000 items
From  85038 to  90118 with 5001 items
From  90119 to  95169 with 5001 items
From  95170 to  99507 with 4470 items
```

## Wren

Translation of: Python
Library: Wren-math
Library: Wren-fmt
`import "random" for Randomimport "/math" for Numsimport "/fmt" for Fmt var rand = Random.new()var minDelta = 1 var getMaxPrice = Fn.new { |prices| Nums.max(prices) } var getPrangeCount = Fn.new { |prices, min, max| prices.count { |p| p >= min && p <= max } } var get5000 = Fn.new { |prices, min, max, n|    var count = getPrangeCount.call(prices, min, max)    var delta = (max - min) / 2    while (count != n && delta >= minDelta/2) {        max = ((count > n) ? max-delta : max+delta).floor        count = getPrangeCount.call(prices, min, max)        delta = delta / 2    }    return [max, count]} var getAll5000 = Fn.new { |prices, min, max, n|    var mc = get5000.call(prices, min, max, n)    var pmax = mc[0]    var pcount = mc[1]    var res = [[min, pmax, pcount]]    while (pmax < max) {        var pmin = pmax + 1        mc = get5000.call(prices, pmin, max, n)        pmax = mc[0]        pcount = mc[1]        if (pcount == 0) Fiber.abort("Price list from %(pmin) has too many with same price.")        res.add([pmin, pmax, pcount])    }    return res}var numPrices = rand.int(99000, 101001)var maxPrice = 1e5var prices = List.filled(numPrices, 0) // list of pricesfor (i in 1..numPrices) prices[i-1] = rand.int(maxPrice + 1)var actualMax = getMaxPrice.call(prices)System.print("Using %(numPrices) items with prices from 0 to %(actualMax):")var res = getAll5000.call(prices, 0, actualMax, 5000)System.print("Split into %(res.count) bins of approx 5000 elements:")var total = 0for (r in res) {    var min = r[0]    var max = r[1]    if (max > actualMax) max = actualMax    var cnt = r[2]    total = total + cnt    Fmt.print("   From \$6d to \$6d with \$4d items", min, max, cnt)}if (total != numPrices) {    System.print("Something went wrong - grand total of %(total) doesn't equal %(numPrices)!")}`
Output:

Sample run:

```Using 99756 items with prices from 0 to 99998:
Split into 20 bins of approx 5000 elements:
From      0 to   4964 with 5000 items
From   4965 to   9992 with 5000 items
From   9993 to  15063 with 5000 items
From  15064 to  20130 with 5000 items
From  20131 to  25063 with 4998 items
From  25064 to  30014 with 4998 items
From  30015 to  35002 with 5000 items
From  35003 to  40030 with 5000 items
From  40031 to  45058 with 5000 items
From  45059 to  50199 with 4999 items
From  50200 to  55133 with 4999 items
From  55134 to  60139 with 4997 items
From  60140 to  65097 with 5000 items
From  65098 to  69972 with 4999 items
From  69973 to  74932 with 5000 items
From  74933 to  80041 with 5000 items
From  80042 to  85214 with 5000 items
From  85215 to  90241 with 4999 items
From  90242 to  95353 with 5000 items
From  95354 to  99998 with 4767 items
```