In chess, a queen attacks positions from where it is, in straight lines up-down and left-right as well as on both its diagonals. It attacks only pieces not of its own colour.

Task
Peaceful chess queen armies
You are encouraged to solve this task according to the task description, using any language you may know.


The goal of Peaceful chess queen armies is to arrange m black queens and m white queens on an n-by-n square grid, (the board), so that no queen attacks another of a different colour.


Task
  1. Create a routine to represent two-colour queens on a 2-D board. (Alternating black/white background colours, Unicode chess pieces and other embellishments are not necessary, but may be used at your discretion).
  2. Create a routine to generate at least one solution to placing m equal numbers of black and white queens on an n square board.
  3. Display here results for the m=4, n=5 case.


References



11l

Translation of: D

<lang 11l>T.enum Piece

  EMPTY
  BLACK
  WHITE

F isAttacking(queen, pos)

  R queen.x == pos.x
  | queen.y == pos.y
  | abs(queen.x - pos.x) == abs(queen.y - pos.y)

F place(m, n, &pBlackQueens, &pWhiteQueens)

  I m == 0
     R 1B
  V placingBlack = 1B
  L(i) 0 .< n
     L(j) 0 .< n
        V pos = (i, j)
        L(queen) pBlackQueens
           I queen == pos | (!placingBlack & isAttacking(queen, pos))
              L.break
        L.was_no_break
           L(queen) pWhiteQueens
              I queen == pos | (placingBlack & isAttacking(queen, pos))
                 L.break
           L.was_no_break
              I placingBlack
                 pBlackQueens [+]= pos
                 placingBlack = 0B
              E
                 pWhiteQueens [+]= pos
                 I place(m - 1, n, &pBlackQueens, &pWhiteQueens)
                    R 1B
                 pBlackQueens.pop()
                 pWhiteQueens.pop()
                 placingBlack = 1B
  I !placingBlack
     pBlackQueens.pop()
  R 0B

F printBoard(n, blackQueens, whiteQueens)

  V board = [Piece.EMPTY] * (n * n)
  L(queen) blackQueens
     board[queen.x * n + queen.y] = Piece.BLACK
  L(queen) whiteQueens
     board[queen.x * n + queen.y] = Piece.WHITE
  L(b) board
     V i = L.index
     I i != 0 & i % n == 0
        print()
     I b == BLACK
        print(‘B ’, end' ‘’)
     E I b == WHITE
        print(‘W ’, end' ‘’)
     E
        V j = i I/ n
        V k = i - j * n
        I j % 2 == k % 2
           print(‘x ’, end' ‘’)
        E
           print(‘o ’, end' ‘’)
  print("\n")

V nms = [

         (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),
         (5, 1), (5, 2), (5, 3), (5, 4), (5, 5),
         (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),
         (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7)
       ]

L(nm) nms

  print(‘#. black and #. white queens on a #. x #. board:’.format(nm[1], nm[1], nm[0], nm[0]))
  [(Int, Int)] blackQueens, whiteQueens
  I place(nm[1], nm[0], &blackQueens, &whiteQueens)
     printBoard(nm[0], blackQueens, whiteQueens)
  E
     print("No solution exists.\n")</lang>
Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B o x
o x W
x o x

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B o x o
o x W x
x o x o
o x o x

2 black and 2 white queens on a 4 x 4 board:
B o x o
o x W x
B o x o
o x W x

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B o x o x
o x W x o
x o x o x
o x o x o
x o x o x

2 black and 2 white queens on a 5 x 5 board:
B o x o B
o x W x o
x W x o x
o x o x o
x o x o x

3 black and 3 white queens on a 5 x 5 board:
B o x o B
o x W x o
x W x o x
o x o B o
x W x o x

4 black and 4 white queens on a 5 x 5 board:
x B x B x
o x o x B
W o W o x
o x o x B
W o W o x

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B o x o x o
o x W x o x
x o x o x o
o x o x o x
x o x o x o
o x o x o x

2 black and 2 white queens on a 6 x 6 board:
B o x o B o
o x W x o x
x W x o x o
o x o x o x
x o x o x o
o x o x o x

3 black and 3 white queens on a 6 x 6 board:
B o x o B B
o x W x o x
x W x o x o
o x o x o x
x o W o x o
o x o x o x

4 black and 4 white queens on a 6 x 6 board:
B o x o B B
o x W x o x
x W x o x o
o x o x o B
x o W W x o
o x o x o x

5 black and 5 white queens on a 6 x 6 board:
x B x o B o
o x o B o B
W o x o x o
W x W x o x
x o x o x B
W x W x o x

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B o x o x o x
o x W x o x o
x o x o x o x
o x o x o x o
x o x o x o x
o x o x o x o
x o x o x o x

2 black and 2 white queens on a 7 x 7 board:
B o x o B o x
o x W x o x W
x o x o x o x
o x o x o x o
x o x o x o x
o x o x o x o
x o x o x o x

3 black and 3 white queens on a 7 x 7 board:
B o x o B o x
o x W x o x W
B o x o x o x
o x W x o x o
x o x o x o x
o x o x o x o
x o x o x o x

4 black and 4 white queens on a 7 x 7 board:
B o x o B o x
o x W x o x W
B o x o B o x
o x W x o x W
x o x o x o x
o x o x o x o
x o x o x o x

5 black and 5 white queens on a 7 x 7 board:
B o x o B o x
o x W x o x W
B o x o B o x
o x W x o x W
B o x o x o x
o x W x o x o
x o x o x o x

6 black and 6 white queens on a 7 x 7 board:
B o x o B o x
o x W x o x W
B o x o B o x
o x W x o x W
B o x o B o x
o x W x o x W
x o x o x o x

7 black and 7 white queens on a 7 x 7 board:
x B x o x B x
o B o x B x o
x B x o x B x
o x o x B x o
W o W o x o W
o x o W o x o
W o W W x o x

ATS

Translation of: Scheme

The program can print either all solutions or all solutions that are ‘inequivalent’, in the sense of https://oeis.org/A260680

The program also can stop after printing a specified number of solutions, although the default is to print all solutions.

(Commentary by the author: this program suffers similarly of slowness, in eliminating rotational equivalents, as does its Scheme ancestor. Some reasons: it uses backtracking and that is slow; it uses essentially the same inefficient storage format for solutions [one could for instance use integers], and it does not precompute rotational equivalents. However, it does satisfy the task requirements, and might be regarded as a good start. And it is can solve the m=5, n=6 case in practical time on a fast machine. m=7, n=7 is a more annoying case.)

<lang ats>(********************************************************************)

  1. define ATS_DYNLOADFLAG 0
  1. include "share/atspre_define.hats"
  2. include "share/atspre_staload.hats"

staload UN = "prelude/SATS/unsafe.sats"

  1. define NIL list_vt_nil ()
  2. define :: list_vt_cons
  1. ifndef NDEBUG #then
 (* Safety is relatively unimportant in this program.
    Therefore I have made it so you can put ‘-DATS NDEBUG=1’ on
    your patscc command line, to skip some assertloc tests. *)
 #define NDEBUG 0
  1. endif

(********************************************************************)

  1. define EMPTY 0
  2. define BLACK 1
  3. define WHITE ~1

stadef is_color (c : int) : bool = (~1 <= c && c <= 1) stadef reverse_color (c : int) : int = ~c

typedef color_t (tk : tkind, c : int) =

   [is_color c]
   g1int (tk, c)

typedef color_t (tk : tkind) =

   [c : int | is_color c]
   g1int (tk, c)

fn {tk : tkind} reverse_color {c : int | is_color c}

             (c : g1int (tk, c)) :<>
   [c_rev : int | is_color c_rev;
                  c_rev == reverse_color c]
   g1int (tk, c_rev) =
 (* This template is a fancy way to say ‘minus’. *)
 ~c

(********************************************************************)

(* Matrix indices will run from 0..n-1 rather than 1..n. *)

  1. define SIDE_MAX 16 (* The maximum side size. For
                                  efficiency, please make it a
                                  power of two. *)
  1. define BOARD_SIZE 256 (* The storage size for a board. *)

prval _ = prop_verify {SIDE_MAX * SIDE_MAX == BOARD_SIZE} ()

fn {tk : tkind} row_index {k : int | 0 <= k; k < BOARD_SIZE}

         (k : g1int (tk, k)) :<>
   [i : int | 0 <= i; i < SIDE_MAX]
   g1int (tk, i) =
 (* Let the C compiler convert this to bitmasking. *)
 g1int_nmod (k, g1i2i SIDE_MAX)

fn {tk : tkind} column_index {k : int | 0 <= k; k < BOARD_SIZE}

            (k : g1int (tk, k)) :<>
   [i : int | 0 <= i; i < SIDE_MAX]
   g1int (tk, i) =
 (* Let the C compiler convert this to a shift. *)
 k / g1i2i SIDE_MAX

fn {tk : tkind} storage_index {i, j : int | 0 <= i; i < SIDE_MAX;

                           0 <= j; j < SIDE_MAX}
             (i : g1int (tk, i),
              j : g1int (tk, j)) :<>
   [k : int | 0 <= k; k < BOARD_SIZE]
   g1int (tk, k) =
 (* Let the C compiler convert this to a shift and add. *)
 i + (j * g1i2i SIDE_MAX)

(********************************************************************)

extern fn {tk_index : tkind} test_equiv$reindex_i

         {i, j : int | 0 <= i; 0 <= j}
         {n : int | 0 <= n; n <= SIDE_MAX;
                    i < n; j < n}
         (i : g1int (tk_index, i),
          j : g1int (tk_index, j),
          n : g1int (tk_index, n)) :<>
   [i1 : int | 0 <= i1; i1 < SIDE_MAX]
   g1int (tk_index, i1)

extern fn {tk_index : tkind} test_equiv$reindex_j

         {i, j : int | 0 <= i; 0 <= j}
         {n : int | 0 <= n; n <= SIDE_MAX;
                    i < n; j < n}
         (i : g1int (tk_index, i),
          j : g1int (tk_index, j),
          n : g1int (tk_index, n)) :<>
   [j1 : int | 0 <= j1; j1 < SIDE_MAX]
   g1int (tk_index, j1)

extern fn {tk_color : tkind} test_equiv$recolor

         {c : int | is_color c}
         (c : g1int (tk_color, c)) :<>
   [c1 : int | is_color c1]
   g1int (tk_color, c1)

fn {tk_index, tk_color : tkind} test_equiv {n : int | 0 <= n; n <= SIDE_MAX}

          (a : &(@[color_t tk_color][BOARD_SIZE]),
           b : &(@[color_t tk_color][BOARD_SIZE]),
           n : g1int (tk_index, n)) :
   bool =
 let
   macdef reindex_i = test_equiv$reindex_i<tk_index>
   macdef reindex_j = test_equiv$reindex_j<tk_index>
   macdef recolor = test_equiv$recolor<tk_color>
   fun
   loopj {j : int | ~1 <= j; j < n} .<j + 1>.
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n),
          j : g1int (tk_index, j)) :
       bool =
     if j < g1i2i 0 then
       true
     else
       let
         fun loopi {i : int | ~1 <= i; i < n} ..
                   (a : &(@[color_t tk_color][BOARD_SIZE]),
                    b : &(@[color_t tk_color][BOARD_SIZE]),
                    n : g1int (tk_index, n),
                    j : g1int (tk_index, j),
                    i : g1int (tk_index, i)) :
             bool =
               if i < g1i2i 0 then
                 true
               else
                 let
                   val ka = storage_index<tk_index> (i, j)
                   val color_a = a[ka]
                   val i1 = test_equiv$reindex_i<tk_index> (i, j, n)
                   val j1 = test_equiv$reindex_j<tk_index> (i, j, n)
                   val kb = storage_index<tk_index> (i1, j1)
                   val color_b = recolor b[kb]
                 in
                   if color_a = color_b then
                     loopi (a, b, n, j, pred i)
                   else
                     false
                 end
       in
         if loopi (a, b, n, j, g1i2i (pred n)) then
           loopj (a, b, n, pred j)
         else
           false
       end
 in
   loopj (a, b, n, g1i2i (pred n))
 end

fn {tk_index, tk_color : tkind} test_equiv_rotate0

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* No rotations or reflections. *)
   implement
   test_equiv$reindex_i<tk_index> (i, j, n) = i
   implement
   test_equiv$reindex_j<tk_index> (i, j, n) = j
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_rotate90

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Matrix rotation counterclockwise by 90 degrees. *)
   implement
   test_equiv$reindex_i<tk_index> {i, j} {n} (i, j, n) = pred n - j
   implement
   test_equiv$reindex_j<tk_index> (i, j, n) = i
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_rotate180

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Matrix rotation by 180 degrees. *)
   implement
   test_equiv$reindex_i<tk_index> {i, j} {n} (i, j, n) = pred n - i
   implement
   test_equiv$reindex_j<tk_index> {i, j} {n} (i, j, n) = pred n - j
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_rotate270

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Matrix rotation counterclockwise by 270 degrees. *)
   implement
   test_equiv$reindex_i<tk_index> (i, j, n) = j
   implement
   test_equiv$reindex_j<tk_index> {i, j} {n} (i, j, n) = pred n - i
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_reflecti

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Reverse the order of the rows. *)
   implement
   test_equiv$reindex_i<tk_index> {i, j} {n} (i, j, n) = pred n - i
   implement
   test_equiv$reindex_j<tk_index> (i, j, n) = j
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_reflectj

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Reverse the order of the columns. *)
   implement
   test_equiv$reindex_i<tk_index> (i, j, n) = i
   implement
   test_equiv$reindex_j<tk_index> {i, j} {n} (i, j, n) = pred n - j
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_reflect_diag_down

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Transpose the matrix around its main diagonal. *)
   implement
   test_equiv$reindex_i<tk_index> (i, j, n) = j
   implement
   test_equiv$reindex_j<tk_index> (i, j, n) = i
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} test_equiv_reflect_diag_up

         {n : int | 0 <= n; n <= SIDE_MAX}
         (a : &(@[color_t tk_color][BOARD_SIZE]),
          b : &(@[color_t tk_color][BOARD_SIZE]),
          n : g1int (tk_index, n)) :
   bool =
 let
   (* Transpose the matrix around its main skew diagonal. *)
   implement
   test_equiv$reindex_i<tk_index> {i, j} {n} (i, j, n) = pred n - j
   implement
   test_equiv$reindex_j<tk_index> {i, j} {n} (i, j, n) = pred n - i
 in
   test_equiv<tk_index, tk_color> (a, b, n)
 end

fn {tk_index, tk_color : tkind} board_equiv {n : int | 0 <= n; n <= SIDE_MAX}

           (a : &(@[color_t tk_color][BOARD_SIZE]),
            b : &(@[color_t tk_color][BOARD_SIZE]),
            n : g1int (tk_index, n),
            rotation_equiv_classes : bool) :
   bool =
 let
   (* Leave the colors unchanged. *)
   implement test_equiv$recolor<tk_color> (c) = c
   (* Test without rotations or reflections. *)
   val equiv = test_equiv_rotate0<tk_index, tk_color> (a, b, n)
 in
   if ~rotation_equiv_classes then
     equiv
   else
     let
       (* Leave the colors unchanged. *)
       implement test_equiv$recolor<tk_color> (c) = c
       val equiv =
         (equiv ||
          test_equiv_rotate90<tk_index, tk_color> (a, b, n) ||
          test_equiv_rotate180<tk_index, tk_color> (a, b, n) ||
          test_equiv_rotate270<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflecti<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflectj<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflect_diag_down<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflect_diag_up<tk_index, tk_color> (a, b, n))
       (* Reverse the colors of b in each test. *)
       implement test_equiv$recolor<tk_color> (c) = reverse_color c
       val equiv =
         (equiv ||
          test_equiv_rotate0<tk_index, tk_color> (a, b, n) ||
          test_equiv_rotate90<tk_index, tk_color> (a, b, n) ||
          test_equiv_rotate180<tk_index, tk_color> (a, b, n) ||
          test_equiv_rotate270<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflecti<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflectj<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflect_diag_down<tk_index, tk_color> (a, b, n) ||
          test_equiv_reflect_diag_up<tk_index, tk_color> (a, b, n))
     in
       equiv
     end
 end

(********************************************************************)

fn {tk_index : tkind} fprint_rule {n : int | 0 <= n; n <= SIDE_MAX}

           (f : FILEref,
            n : g1int (tk_index, n)) :
   void =
 let
   fun
   loop {j : int | 0 <= j; j <= n} .<n - j>.
        (j : g1int (tk_index, j)) :
       void =
     if j <> n then
       begin
         fileref_puts (f, "----+");
         loop (succ j)
       end
 in
   fileref_puts (f, "+");
   loop (g1i2i 0)
 end

fn {tk_index, tk_color : tkind} fprint_board {n : int | 0 <= n; n <= SIDE_MAX}

            (f : FILEref,
             a : &(@[color_t tk_color][BOARD_SIZE]),
             n : g1int (tk_index, n)) :
   void =
 if n <> 0 then
   let
     fun
     loopi {i : int | ~1 <= i; i < n} ..
           (f : FILEref,
            a : &(@[color_t tk_color][BOARD_SIZE]),
            n : g1int (tk_index, n),
            i : g1int (tk_index, i)) :
         void =
       if i <> ~1 then
         let
           fun
           loopj {j : int | 0 <= j; j <= n} .<n - j>.
                 (f : FILEref,
                  a : &(@[color_t tk_color][BOARD_SIZE]),
                  n : g1int (tk_index, n),
                  i : g1int (tk_index, i),
                  j : g1int (tk_index, j)) :
               void =
             if j <> n then
               let
                 val k = storage_index<tk_index> (i, j)
                 val color = a[k]
                 val representation =
                   if color = g1i2i BLACK then
                     "|  B "
                   else if color = g1i2i WHITE then
                     "|  W "
                   else
                     "|    "
               in
                 fileref_puts (f, representation);
                 loopj (f, a, n, i, succ j)
               end
         in
           fileref_puts (f, "\n");
           loopj (f, a, n, i, g1i2i 0);
           fileref_puts (f, "|\n");
           fprint_rule (f, n);
           loopi (f, a, n, pred i)
         end
   in
     fprint_rule (f, n);
     loopi (f, a, n, pred n)
   end

(********************************************************************)

(* M2_MAX equals the maximum number of queens of either color.

  Thus it is the maximum of 2*m, where m is the number of queens
  in an army. *)
  1. define M2_MAX BOARD_SIZE

(* The even-index queens are BLACK, the odd-index queens are WHITE. *)

vtypedef board_record_vt (tk_color : tkind,

                         p        : addr) =
 @{
   pf = @[color_t tk_color][BOARD_SIZE] @ p,
   pfgc = mfree_gc_v p |
   p = ptr p
 }

vtypedef board_record_vt (tk_color : tkind) =

 [p : addr | null < p]
 board_record_vt (tk_color, p)

vtypedef board_record_list_vt (tk_color : tkind,

                              n : int) =
 list_vt (board_record_vt tk_color, n)

vtypedef board_record_list_vt (tk_color : tkind) =

 [n : int]
 board_record_list_vt (tk_color, n)

fn board_record_vt_free

         {tk_color : tkind}
         {p        : addr}
         (record   : board_record_vt (tk_color, p)) :
   void =
 let
   val @{
         pf = pf,
         pfgc = pfgc |
         p = p
       } = record
 in
   array_ptr_free (pf, pfgc | p)
 end

overload free with board_record_vt_free

fn board_record_list_vt_free

         {tk_color : tkind}
         {n        : int}
         (lst      : board_record_list_vt (tk_color, n)) :
   void =
 let
   fun
   loop {n   : int | 0 <= n} .<n>.
        (lst : board_record_list_vt (tk_color, n)) :
       void =
     case+ lst of
     | ~ NIL => ()
     | ~ head :: tail =>
       begin
         free head;
         loop tail
       end
   prval _ = lemma_list_vt_param lst
 in
   loop lst
 end

fn {tk_index, tk_color : tkind} any_board_equiv {n  : int | 0 <= n; n <= SIDE_MAX}

               (board : &(@[color_t tk_color][BOARD_SIZE]),
                lst   : !board_record_list_vt tk_color,
                n     : g1int (tk_index, n),
                rotation_equiv_classes : bool) :
   bool =
 let
   macdef board_equiv = board_equiv<tk_index, tk_color>
   fun
   loop {k : int | 0 <= k} .<k>.
        (board : &(@[color_t tk_color][BOARD_SIZE]),
         lst   : !board_record_list_vt (tk_color, k),
         n     : g1int (tk_index, n)) :
       bool =
     case+ lst of
     | NIL => false
     | head :: tail =>
       if board_equiv (!(head.p), board, n,
                       rotation_equiv_classes) then
         true
       else
         loop (board, tail, n)
   prval _ = lemma_list_vt_param lst
 in
   loop (board, lst, n)
 end

fn {tk_index, tk_color : tkind} queens_to_board

         {count  : int | 0 <= count; count <= M2_MAX}
         (queens : &(@[g1int tk_index][M2_MAX]),
          count  : int count) :
   [p : addr | null < p]
   board_record_vt (tk_color, p) =
 let
   typedef color_t = color_t tk_color
   fun
   loop {k : int | ~1 <= k; k < count} .<k + 1>.
        (queens : &(@[g1int tk_index][M2_MAX]),
         board  : &(@[color_t tk_color][BOARD_SIZE]),
         k      : int k) :
       void =
     if 0 <= k then
       let
         val [coords : int] coords = queens[k]
         #if NDEBUG <> 0 #then
           prval _ = $UN.prop_assert {0 <= coords} ()
           prval _ = $UN.prop_assert {coords < BOARD_SIZE} ()
         #else
           val _ = assertloc (g1i2i 0 <= coords)
           val _ = assertloc (coords < g1i2i BOARD_SIZE)
         #endif
       in
         if g1int_nmod (k, 2) = 0 then
           board[coords] := g1i2i BLACK
         else
           board[coords] := g1i2i WHITE;
         loop (queens, board, pred k)
       end
   val @(pf, pfgc | p) = array_ptr_alloc<color_t> (i2sz BOARD_SIZE)
   val _ = array_initize_elt<color_t> (!p, i2sz BOARD_SIZE,
                                       g1i2i EMPTY)
   val _ = loop (queens, !p, pred count)
 in
   @{
     pf = pf,
     pfgc = pfgc |
     p = p
   }
 end

fn {tk : tkind} queen_would_fit_in

         {count  : int | 0 <= count; count <= M2_MAX}
         {i, j   : int | 0 <= i; i < SIDE_MAX;
                         0 <= j; j < SIDE_MAX}
         (queens : &(@[g1int tk][M2_MAX]),
          count  : int count,
          i      : g1int (tk, i),
          j      : g1int (tk, j)) :
   bool =
 (* Would a new queen at (i,j) be feasible? *)
 if count = 0 then
   true
 else
   let
     fun
     loop {k : int | ~1 <= k; k < count}
          (queens : &(@[g1int tk][M2_MAX]),
           k      : int k) :
         bool =
       if k < 0 then
         true
       else
         let
           val [coords : int] coords = queens[k]
           #if NDEBUG <> 0 #then
             prval _ = $UN.prop_assert {0 <= coords} ()
             prval _ = $UN.prop_assert {coords < BOARD_SIZE} ()
           #else
             val _ = assertloc (g1i2i 0 <= coords)
             val _ = assertloc (coords < g1i2i BOARD_SIZE)
           #endif
           val i1 = row_index<tk> coords
           val j1 = column_index<tk> coords
         in
           if g1int_nmod (k, 2) = g1int_nmod (count, 2) then
           (* The two queens are of the same color. They may not
              share the same square. *)
             begin
               if i <> i1 || j <> j1 then
                 loop (queens, pred k)
               else
                 false
             end
           else
             (* The two queens are of different colors. They may not
                share the same square nor attack each other. *)
             begin
               if (i <> i1 &&
                   j <> j1 &&
                   i + j <> i1 + j1 &&
                   i - j <> i1 - j1) then
                 loop (queens, pred k)
               else
                 false
             end
         end
   in
     loop (queens, pred count)
   end

fn {tk : tkind} latest_queen_fits_in

         {count  : int | 1 <= count; count <= M2_MAX}
         (queens : &(@[g1int tk][M2_MAX]),
          count  : int count) :
   bool =
 let
   val [coords : int] coords = queens[pred count]
   #if NDEBUG <> 0 #then
     prval _ = $UN.prop_assert {0 <= coords} ()
     prval _ = $UN.prop_assert {coords < BOARD_SIZE} ()
   #else
     val _ = assertloc (g1i2i 0 <= coords)
     val _ = assertloc (coords < g1i2i BOARD_SIZE)
   #endif
   val i = row_index<tk> coords
   val j = column_index<tk> coords
 in
   queen_would_fit_in<tk> (queens, pred count, i, j)
 end

fn {tk_index, tk_color : tkind} find_solutions

         {m : int | 0 <= m; 2 * m <= M2_MAX}
         {n : int | 0 <= n; n <= SIDE_MAX}
         {max_solutions : int | 0 <= max_solutions}
         (f : FILEref,
          m : int m,
          n : g1int (tk_index, n),
          rotation_equiv_classes : bool,
          max_solutions : int max_solutions) :
   [num_solutions : int | 0 <= num_solutions;
                          num_solutions <= max_solutions]
   @(int num_solutions,
     board_record_list_vt (tk_color, num_solutions)) =
 (* This template function both prints the solutions and returns
    them as a linked list. *)
 if m = 0 then
   @(0, NIL)
 else if max_solutions = 0 then
   @(0, NIL)
 else
   let
     macdef latest_queen_fits_in = latest_queen_fits_in<tk_index>
     macdef queens_to_board = queens_to_board<tk_index, tk_color>
     macdef fprint_board = fprint_board<tk_index, tk_color>
     macdef any_board_equiv = any_board_equiv<tk_index, tk_color>
     macdef row_index = row_index<tk_index>
     macdef column_index = column_index<tk_index>
     macdef storage_index = storage_index<tk_index>
     fnx
     loop {num_solutions : int | 0 <= num_solutions;
                                 num_solutions <= max_solutions}
          {num_queens    : int | 0 <= num_queens;
                                 num_queens <= 2 * m}
          (solutions     : board_record_list_vt (tk_color,
                                                 num_solutions),
           num_solutions : int num_solutions,
           queens        : &(@[g1int tk_index][M2_MAX]),
           num_queens    : int num_queens) :
         [num_solutions1 : int | 0 <= num_solutions1;
                                 num_solutions1 <= max_solutions]
         @(int num_solutions1,
           board_record_list_vt (tk_color, num_solutions1)) =
       if num_queens = 0 then
         @(num_solutions, solutions)
       else if num_solutions = max_solutions then
         @(num_solutions, solutions)
       else if latest_queen_fits_in (queens, num_queens) then
         begin
           if num_queens = 2 * m then
             let
               val board = queens_to_board (queens, num_queens)
               val equiv_solution =
                 any_board_equiv (!(board.p), solutions, n,
                                  rotation_equiv_classes)
             in
               if ~equiv_solution then
                 begin
                   fprintln! (f, "Solution ",
                              succ num_solutions);
                   fprint_board (f, !(board.p), n);
                   fileref_puts (f, "\n\n");
                   move_a_queen (board :: solutions,
                                 succ num_solutions,
                                 queens, num_queens)
                 end
               else
                 begin
                   free board;
                   move_a_queen (solutions, num_solutions,
                                 queens, num_queens)
                 end
             end
           else
             add_another_queen (solutions, num_solutions,
                                queens, num_queens)
         end
       else
         move_a_queen (solutions, num_solutions,
                       queens, num_queens)
     and
     add_another_queen
               {num_solutions : int |
                               0 <= num_solutions;
                                num_solutions <= max_solutions}
               {num_queens : int | 0 <= num_queens;
                                   num_queens + 1 <= 2 * m}
               (solutions : board_record_list_vt
                                 (tk_color, num_solutions),
                num_solutions : int num_solutions,
                queens     : &(@[g1int tk_index][M2_MAX]),
                num_queens : int num_queens) :
         [num_solutions1 : int | 0 <= num_solutions1;
                                 num_solutions1 <= max_solutions]
         @(int num_solutions1,
           board_record_list_vt (tk_color, num_solutions1)) =
       let
         val coords = storage_index (g1i2i 0, g1i2i 0)
       in
         queens[num_queens] := coords;
         loop (solutions, num_solutions, queens, succ num_queens)
       end
     and
     move_a_queen {num_solutions : int |
                               0 <= num_solutions;
                               num_solutions <= max_solutions}
                  {num_queens : int | 0 <= num_queens;
                                      num_queens <= 2 * m}
                  (solutions : board_record_list_vt
                                 (tk_color, num_solutions),
                   num_solutions : int num_solutions,
                   queens : &(@[g1int tk_index][M2_MAX]),
                   num_queens : int num_queens) :
         [num_solutions1 : int | 0 <= num_solutions1;
                                 num_solutions1 <= max_solutions]
         @(int num_solutions1,
           board_record_list_vt (tk_color, num_solutions1)) =
       if num_queens = 0 then
         loop (solutions, num_solutions, queens, num_queens)
       else
         let
           val [coords : int] coords = queens[pred num_queens]
           #if NDEBUG <> 0 #then
             prval _ = $UN.prop_assert {0 <= coords} ()
             prval _ = $UN.prop_assert {coords < BOARD_SIZE} ()
           #else
             val _ = assertloc (g1i2i 0 <= coords)
             val _ = assertloc (coords < g1i2i BOARD_SIZE)
           #endif
           val [i : int] i = row_index coords
           val [j : int] j = column_index coords
           prval _ = prop_verify {0 <= i} ()
           prval _ = prop_verify {i < SIDE_MAX} ()
           prval _ = prop_verify {0 <= j} ()
           prval _ = prop_verify {j < SIDE_MAX} ()
           #if NDEBUG <> 0 #then
             prval _ = $UN.prop_assert {i < n} ()
             prval _ = $UN.prop_assert {j < n} ()
           #else
             val _ = $effmask_exn assertloc (i < n)
             val _ = $effmask_exn assertloc (j < n)
           #endif
         in
           if j = pred n then
             begin
               if i = pred n then
                 (* Backtrack. *)
                 move_a_queen (solutions, num_solutions,
                               queens, pred num_queens)
               else
                 let
                   val coords = storage_index (succ i, j)
                 in
                   queens[pred num_queens] := coords;
                   loop (solutions, num_solutions,
                         queens, num_queens)
                 end
             end
           else
             let
               #if NDEBUG <> 0 #then
                 prval _ = $UN.prop_assert {j < n - 1} ()
               #else
                 val _ = $effmask_exn assertloc (j < pred n)
               #endif
             in
               if i = pred n then
                 let
                   val coords = storage_index (g1i2i 0, succ j)
                 in
                   queens[pred num_queens] := coords;
                   loop (solutions, num_solutions,
                         queens, num_queens)
                 end
               else
                 let
                   val coords = storage_index (succ i, j)
                 in
                   queens[pred num_queens] := coords;
                   loop (solutions, num_solutions,
                         queens, num_queens)
                 end
             end
         end
     var queens = @[g1int tk_index][M2_MAX] (g1i2i 0)
   in
     queens[0] := storage_index (g1i2i 0, g1i2i 0);
     loop (NIL, 0, queens, 1)
   end

(********************************************************************)

%{^

  1. include <stdlib.h>
  2. include <limits.h>

%}

implement main0 (argc, argv) =

 let
   stadef tk_index = int_kind
   stadef tk_color = int_kind
   macdef usage_error (status) =
     begin
       println! ("Usage: ", argv[0],
                 " M N IGNORE_EQUIVALENTS [MAX_SOLUTIONS]");
       exit (,(status))
     end
   val max_max_solutions =
     $extval ([i : int | 0 <= i] int i, "INT_MAX")
 in
   if 4 <= argc then
     let
       val m = $extfcall (int, "atoi", argv[1])
       val m = g1ofg0 m
       val _ = if m < 0 then usage_error (2)
       val _ = assertloc (0 <= m)
       val _ =
         if M2_MAX < 2 * m then
           begin
             println! (argv[0], ": M cannot be larger than ",
                       M2_MAX / 2);
             usage_error (2)
           end
       val _ = assertloc (2 * m <= M2_MAX)
       val n = $extfcall (int, "atoi", argv[2])
       val n = g1ofg0 n
       val _ = if n < 0 then usage_error (2)
       val _ = assertloc (0 <= n)
       val _ =
         if SIDE_MAX < n then
           begin
             println! (argv[0], ": N cannot be larger than ",
                       SIDE_MAX);
             usage_error (2)
           end
       val _ = assertloc (n <= SIDE_MAX)
       val ignore_equivalents =
         if argv[3] = "T" || argv[3] = "t" || argv[3] = "1" then
           true
         else if argv[3] = "F" || argv[3] = "f" || argv[3] = "0" then
           false
         else
           begin
             println! (argv[0],
                       ": select T=t=1 or F=f=0 ",
                       "for IGNORE_EQUIVALENTS");
             usage_error (2);
             false
           end
     in
       if argc = 5 then
         let
           val max_solutions = $extfcall (int, "atoi", argv[4])
           val max_solutions = g1ofg0 max_solutions
           val max_solutions = max (0, max_solutions)
           val @(num_solutions, solutions) =
           find_solutions<tk_index, tk_color>
             (stdout_ref, m, n, ignore_equivalents,
              max_solutions)
         in
           board_record_list_vt_free solutions
         end
       else          
         let
           val @(num_solutions, solutions) =
           find_solutions<tk_index, tk_color>
             (stdout_ref, m, n, ignore_equivalents,
              max_max_solutions)
         in
           board_record_list_vt_free solutions
         end
     end
   else
     usage_error (1)
 end

(********************************************************************)</lang>

Output:

$ patscc -DATS NDEBUG=1 -O3 -fno-stack-protector -march=native -DATS_MEMALLOC_LIBC -o peaceful_queens peaceful_queens.dats && ./peaceful_queens 4 5 T

Solution 1
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+

Solution 2
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

Solution 3
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

C

Translation of: C#

<lang c>#include <math.h>

  1. include <stdbool.h>
  2. include <stdio.h>
  3. include <stdlib.h>

enum Piece {

   Empty,
   Black,
   White,

};

typedef struct Position_t {

   int x, y;

} Position;

///////////////////////////////////////////////

struct Node_t {

   Position pos;
   struct Node_t *next;

};

void releaseNode(struct Node_t *head) {

   if (head == NULL) return;
   releaseNode(head->next);
   head->next = NULL;
   free(head);

}

typedef struct List_t {

   struct Node_t *head;
   struct Node_t *tail;
   size_t length;

} List;

List makeList() {

   return (List) { NULL, NULL, 0 };

}

void releaseList(List *lst) {

   if (lst == NULL) return;
   releaseNode(lst->head);
   lst->head = NULL;
   lst->tail = NULL;

}

void addNode(List *lst, Position pos) {

   struct Node_t *newNode;
   if (lst == NULL) {
       exit(EXIT_FAILURE);
   }
   newNode = malloc(sizeof(struct Node_t));
   if (newNode == NULL) {
       exit(EXIT_FAILURE);
   }
   newNode->next = NULL;
   newNode->pos = pos;
   if (lst->head == NULL) {
       lst->head = lst->tail = newNode;
   } else {
       lst->tail->next = newNode;
       lst->tail = newNode;
   }
   lst->length++;

}

void removeAt(List *lst, size_t pos) {

   if (lst == NULL) return;
   if (pos == 0) {
       struct Node_t *temp = lst->head;
       if (lst->tail == lst->head) {
           lst->tail = NULL;
       }
       lst->head = lst->head->next;
       temp->next = NULL;
       free(temp);
       lst->length--;
   } else {
       struct Node_t *temp = lst->head;
       struct Node_t *rem;
       size_t i = pos;
       while (i-- > 1) {
           temp = temp->next;
       }
       rem = temp->next;
       if (rem == lst->tail) {
           lst->tail = temp;
       }
       temp->next = rem->next;
       rem->next = NULL;
       free(rem);
       lst->length--;
   }

}

///////////////////////////////////////////////

bool isAttacking(Position queen, Position pos) {

   return queen.x == pos.x
       || queen.y == pos.y
       || abs(queen.x - pos.x) == abs(queen.y - pos.y);

}

bool place(int m, int n, List *pBlackQueens, List *pWhiteQueens) {

   struct Node_t *queenNode;
   bool placingBlack = true;
   int i, j;
   if (pBlackQueens == NULL || pWhiteQueens == NULL) {
       exit(EXIT_FAILURE);
   }
   if (m == 0) return true;
   for (i = 0; i < n; i++) {
       for (j = 0; j < n; j++) {
           Position pos = { i, j };
           queenNode = pBlackQueens->head;
           while (queenNode != NULL) {
               if ((queenNode->pos.x == pos.x && queenNode->pos.y == pos.y) || !placingBlack && isAttacking(queenNode->pos, pos)) {
                   goto inner;
               }
               queenNode = queenNode->next;
           }
           queenNode = pWhiteQueens->head;
           while (queenNode != NULL) {
               if ((queenNode->pos.x == pos.x && queenNode->pos.y == pos.y) || placingBlack && isAttacking(queenNode->pos, pos)) {
                   goto inner;
               }
               queenNode = queenNode->next;
           }
           if (placingBlack) {
               addNode(pBlackQueens, pos);
               placingBlack = false;
           } else {
               addNode(pWhiteQueens, pos);
               if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                   return true;
               }
               removeAt(pBlackQueens, pBlackQueens->length - 1);
               removeAt(pWhiteQueens, pWhiteQueens->length - 1);
               placingBlack = true;
           }
       inner: {}
       }
   }
   if (!placingBlack) {
       removeAt(pBlackQueens, pBlackQueens->length - 1);
   }
   return false;

}

void printBoard(int n, List *pBlackQueens, List *pWhiteQueens) {

   size_t length = n * n;
   struct Node_t *queenNode;
   char *board;
   size_t i, j, k;
   if (pBlackQueens == NULL || pWhiteQueens == NULL) {
       exit(EXIT_FAILURE);
   }
   board = calloc(length, sizeof(char));
   if (board == NULL) {
       exit(EXIT_FAILURE);
   }
   queenNode = pBlackQueens->head;
   while (queenNode != NULL) {
       board[queenNode->pos.x * n + queenNode->pos.y] = Black;
       queenNode = queenNode->next;
   }
   queenNode = pWhiteQueens->head;
   while (queenNode != NULL) {
       board[queenNode->pos.x * n + queenNode->pos.y] = White;
       queenNode = queenNode->next;
   }
   for (i = 0; i < length; i++) {
       if (i != 0 && i % n == 0) {
           printf("\n");
       }
       switch (board[i]) {
       case Black:
           printf("B ");
           break;
       case White:
           printf("W ");
           break;
       default:
           j = i / n;
           k = i - j * n;
           if (j % 2 == k % 2) {
               printf("  ");
           } else {
               printf("# ");
           }
           break;
       }
   }
   printf("\n\n");

}

void test(int n, int q) {

   List blackQueens = makeList();
   List whiteQueens = makeList();
   printf("%d black and %d white queens on a %d x %d board:\n", q, q, n, n);
   if (place(q, n, &blackQueens, &whiteQueens)) {
       printBoard(n, &blackQueens, &whiteQueens);
   } else {
       printf("No solution exists.\n\n");
   }
   releaseList(&blackQueens);
   releaseList(&whiteQueens);

}

int main() {

   test(2, 1);
   test(3, 1);
   test(3, 2);
   test(4, 1);
   test(4, 2);
   test(4, 3);
   test(5, 1);
   test(5, 2);
   test(5, 3);
   test(5, 4);
   test(5, 5);
   test(6, 1);
   test(6, 2);
   test(6, 3);
   test(6, 4);
   test(6, 5);
   test(6, 6);
   test(7, 1);
   test(7, 2);
   test(7, 3);
   test(7, 4);
   test(7, 5);
   test(7, 6);
   test(7, 7);
   return EXIT_SUCCESS;

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B #
#   W
  #

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B #   #
#   W
  #   #
#   #

2 black and 2 white queens on a 4 x 4 board:
B #   #
#   W
B #   #
#   W

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B #   #
#   W   #
  #   #
#   #   #
  #   #

2 black and 2 white queens on a 5 x 5 board:
B #   # B
#   W   #
  W   #
#   #   #
  #   #

3 black and 3 white queens on a 5 x 5 board:
B #   # B
#   W   #
  W   #
#   # B #
  W   #

4 black and 4 white queens on a 5 x 5 board:
  B   B
#   #   B
W # W #
#   #   B
W # W #

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B #   #   #
#   W   #
  #   #   #
#   #   #
  #   #   #
#   #   #

2 black and 2 white queens on a 6 x 6 board:
B #   # B #
#   W   #
  W   #   #
#   #   #
  #   #   #
#   #   #

3 black and 3 white queens on a 6 x 6 board:
B #   # B B
#   W   #
  W   #   #
#   #   #
  # W #   #
#   #   #

4 black and 4 white queens on a 6 x 6 board:
B #   # B B
#   W   #
  W   #   #
#   #   # B
  # W W   #
#   #   #

5 black and 5 white queens on a 6 x 6 board:
  B   # B #
#   # B # B
W #   #   #
W   W   #
  #   #   B
W   W   #

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B #   #   #
#   W   #   #
  #   #   #
#   #   #   #
  #   #   #
#   #   #   #
  #   #   #

2 black and 2 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
  #   #   #
#   #   #   #
  #   #   #
#   #   #   #
  #   #   #

3 black and 3 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   #   #
#   W   #   #
  #   #   #
#   #   #   #
  #   #   #

4 black and 4 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
  #   #   #
#   #   #   #
  #   #   #

5 black and 5 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
B #   #   #
#   W   #   #
  #   #   #

6 black and 6 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
  #   #   #

7 black and 7 white queens on a 7 x 7 board:
  B   #   B
# B #   B   #
  B   #   B
#   #   B   #
W # W #   # W
#   # W #   #
W # W W   #

C#

Translation of: D

<lang csharp>using System; using System.Collections.Generic;

namespace PeacefulChessQueenArmies {

   using Position = Tuple<int, int>;
   enum Piece {
       Empty,
       Black,
       White
   }
   class Program {
       static bool IsAttacking(Position queen, Position pos) {
           return queen.Item1 == pos.Item1
               || queen.Item2 == pos.Item2
               || Math.Abs(queen.Item1 - pos.Item1) == Math.Abs(queen.Item2 - pos.Item2);
       }
       static bool Place(int m, int n, List<Position> pBlackQueens, List<Position> pWhiteQueens) {
           if (m == 0) {
               return true;
           }
           bool placingBlack = true;
           for (int i = 0; i < n; i++) {
               for (int j = 0; j < n; j++) {
                   var pos = new Position(i, j);
                   foreach (var queen in pBlackQueens) {
                       if (queen.Equals(pos) || !placingBlack && IsAttacking(queen, pos)) {
                           goto inner;
                       }
                   }
                   foreach (var queen in pWhiteQueens) {
                       if (queen.Equals(pos) || placingBlack && IsAttacking(queen, pos)) {
                           goto inner;
                       }
                   }
                   if (placingBlack) {
                       pBlackQueens.Add(pos);
                       placingBlack = false;
                   } else {
                       pWhiteQueens.Add(pos);
                       if (Place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                           return true;
                       }
                       pBlackQueens.RemoveAt(pBlackQueens.Count - 1);
                       pWhiteQueens.RemoveAt(pWhiteQueens.Count - 1);
                       placingBlack = true;
                   }
               inner: { }
               }
           }
           if (!placingBlack) {
               pBlackQueens.RemoveAt(pBlackQueens.Count - 1);
           }
           return false;
       }
       static void PrintBoard(int n, List<Position> blackQueens, List<Position> whiteQueens) {
           var board = new Piece[n * n];
           foreach (var queen in blackQueens) {
               board[queen.Item1 * n + queen.Item2] = Piece.Black;
           }
           foreach (var queen in whiteQueens) {
               board[queen.Item1 * n + queen.Item2] = Piece.White;
           }
           for (int i = 0; i < board.Length; i++) {
               if (i != 0 && i % n == 0) {
                   Console.WriteLine();
               }
               switch (board[i]) {
                   case Piece.Black:
                       Console.Write("B ");
                       break;
                   case Piece.White:
                       Console.Write("W ");
                       break;
                   case Piece.Empty:
                       int j = i / n;
                       int k = i - j * n;
                       if (j % 2 == k % 2) {
                           Console.Write("  ");
                       } else {
                           Console.Write("# ");
                       }
                       break;
               }
           }
           Console.WriteLine("\n");
       }
       static void Main() {
           var nms = new int[,] {
               {2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3},
               {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5},
               {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6},
               {7, 1}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
           };
           for (int i = 0; i < nms.GetLength(0); i++) {
               Console.WriteLine("{0} black and {0} white queens on a {1} x {1} board:", nms[i, 1], nms[i, 0]);
               List<Position> blackQueens = new List<Position>();
               List<Position> whiteQueens = new List<Position>();
               if (Place(nms[i, 1], nms[i, 0], blackQueens, whiteQueens)) {
                   PrintBoard(nms[i, 0], blackQueens, whiteQueens);
               } else {
                   Console.WriteLine("No solution exists.\n");
               }
           }
       }
   }

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B #
#   W
  #

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B #   #
#   W
  #   #
#   #

2 black and 2 white queens on a 4 x 4 board:
B #   #
#   W
B #   #
#   W

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B #   #
#   W   #
  #   #
#   #   #
  #   #

2 black and 2 white queens on a 5 x 5 board:
B #   # B
#   W   #
  W   #
#   #   #
  #   #

3 black and 3 white queens on a 5 x 5 board:
B #   # B
#   W   #
  W   #
#   # B #
  W   #

4 black and 4 white queens on a 5 x 5 board:
  B   B
#   #   B
W # W #
#   #   B
W # W #

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B #   #   #
#   W   #
  #   #   #
#   #   #
  #   #   #
#   #   #

2 black and 2 white queens on a 6 x 6 board:
B #   # B #
#   W   #
  W   #   #
#   #   #
  #   #   #
#   #   #

3 black and 3 white queens on a 6 x 6 board:
B #   # B B
#   W   #
  W   #   #
#   #   #
  # W #   #
#   #   #

4 black and 4 white queens on a 6 x 6 board:
B #   # B B
#   W   #
  W   #   #
#   #   # B
  # W W   #
#   #   #

5 black and 5 white queens on a 6 x 6 board:
  B   # B #
#   # B # B
W #   #   #
W   W   #
  #   #   B
W   W   #

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B #   #   #
#   W   #   #
  #   #   #
#   #   #   #
  #   #   #
#   #   #   #
  #   #   #

2 black and 2 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
  #   #   #
#   #   #   #
  #   #   #
#   #   #   #
  #   #   #

3 black and 3 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   #   #
#   W   #   #
  #   #   #
#   #   #   #
  #   #   #

4 black and 4 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
  #   #   #
#   #   #   #
  #   #   #

5 black and 5 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
B #   #   #
#   W   #   #
  #   #   #

6 black and 6 white queens on a 7 x 7 board:
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
B #   # B #
#   W   #   W
  #   #   #

7 black and 7 white queens on a 7 x 7 board:
  B   #   B
# B #   B   #
  B   #   B
#   #   B   #
W # W #   # W
#   # W #   #
W # W W   #

C++

Translation of: D

<lang cpp>#include <iostream>

  1. include <vector>

enum class Piece {

   empty,
   black,
   white

};

typedef std::pair<int, int> position;

bool isAttacking(const position &queen, const position &pos) {

   return queen.first == pos.first
       || queen.second == pos.second
       || abs(queen.first - pos.first) == abs(queen.second - pos.second);

}

bool place(const int m, const int n, std::vector<position> &pBlackQueens, std::vector<position> &pWhiteQueens) {

   if (m == 0) {
       return true;
   }
   bool placingBlack = true;
   for (int i = 0; i < n; i++) {
       for (int j = 0; j < n; j++) {
           auto pos = std::make_pair(i, j);
           for (auto queen : pBlackQueens) {
               if (queen == pos || !placingBlack && isAttacking(queen, pos)) {
                   goto inner;
               }
           }
           for (auto queen : pWhiteQueens) {
               if (queen == pos || placingBlack && isAttacking(queen, pos)) {
                   goto inner;
               }
           }
           if (placingBlack) {
               pBlackQueens.push_back(pos);
               placingBlack = false;
           } else {
               pWhiteQueens.push_back(pos);
               if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                   return true;
               }
               pBlackQueens.pop_back();
               pWhiteQueens.pop_back();
               placingBlack = true;
           }
       inner: {}
       }
   }
   if (!placingBlack) {
       pBlackQueens.pop_back();
   }
   return false;

}

void printBoard(int n, const std::vector<position> &blackQueens, const std::vector<position> &whiteQueens) {

   std::vector<Piece> board(n * n);
   std::fill(board.begin(), board.end(), Piece::empty);
   for (auto &queen : blackQueens) {
       board[queen.first * n + queen.second] = Piece::black;
   }
   for (auto &queen : whiteQueens) {
       board[queen.first * n + queen.second] = Piece::white;
   }
   for (size_t i = 0; i < board.size(); ++i) {
       if (i != 0 && i % n == 0) {
           std::cout << '\n';
       }
       switch (board[i]) {
       case Piece::black:
           std::cout << "B ";
           break;
       case Piece::white:
           std::cout << "W ";
           break;
       case Piece::empty:
       default:
           int j = i / n;
           int k = i - j * n;
           if (j % 2 == k % 2) {
               std::cout << "x ";
           } else {
               std::cout << "* ";
           }
           break;
       }
   }
   std::cout << "\n\n";

}

int main() {

   std::vector<position> nms = {
       {2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3},
       {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5},
       {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6},
       {7, 1}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
   };
   for (auto nm : nms) {
       std::cout << nm.second << " black and " << nm.second << " white queens on a " << nm.first << " x " << nm.first << " board:\n";
       std::vector<position> blackQueens, whiteQueens;
       if (place(nm.second, nm.first, blackQueens, whiteQueens)) {
           printBoard(nm.first, blackQueens, whiteQueens);
       } else {
           std::cout << "No solution exists.\n\n";
       }
   }
   return 0;

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B * x
* x W
x * x

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B * x *
* x W x
x * x *
* x * x

2 black and 2 white queens on a 4 x 4 board:
B * x *
* x W x
B * x *
* x W x

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B * x * x
* x W x *
x * x * x
* x * x *
x * x * x

2 black and 2 white queens on a 5 x 5 board:
B * x * B
* x W x *
x W x * x
* x * x *
x * x * x

3 black and 3 white queens on a 5 x 5 board:
B * x * B
* x W x *
x W x * x
* x * B *
x W x * x

4 black and 4 white queens on a 5 x 5 board:
x B x B x
* x * x B
W * W * x
* x * x B
W * W * x

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B * x * x *
* x W x * x
x * x * x *
* x * x * x
x * x * x *
* x * x * x

2 black and 2 white queens on a 6 x 6 board:
B * x * B *
* x W x * x
x W x * x *
* x * x * x
x * x * x *
* x * x * x

3 black and 3 white queens on a 6 x 6 board:
B * x * B B
* x W x * x
x W x * x *
* x * x * x
x * W * x *
* x * x * x

4 black and 4 white queens on a 6 x 6 board:
B * x * B B
* x W x * x
x W x * x *
* x * x * B
x * W W x *
* x * x * x

5 black and 5 white queens on a 6 x 6 board:
x B x * B *
* x * B * B
W * x * x *
W x W x * x
x * x * x B
W x W x * x

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B * x * x * x
* x W x * x *
x * x * x * x
* x * x * x *
x * x * x * x
* x * x * x *
x * x * x * x

2 black and 2 white queens on a 7 x 7 board:
B * x * B * x
* x W x * x W
x * x * x * x
* x * x * x *
x * x * x * x
* x * x * x *
x * x * x * x

3 black and 3 white queens on a 7 x 7 board:
B * x * B * x
* x W x * x W
B * x * x * x
* x W x * x *
x * x * x * x
* x * x * x *
x * x * x * x

4 black and 4 white queens on a 7 x 7 board:
B * x * B * x
* x W x * x W
B * x * B * x
* x W x * x W
x * x * x * x
* x * x * x *
x * x * x * x

5 black and 5 white queens on a 7 x 7 board:
B * x * B * x
* x W x * x W
B * x * B * x
* x W x * x W
B * x * x * x
* x W x * x *
x * x * x * x

6 black and 6 white queens on a 7 x 7 board:
B * x * B * x
* x W x * x W
B * x * B * x
* x W x * x W
B * x * B * x
* x W x * x W
x * x * x * x

7 black and 7 white queens on a 7 x 7 board:
x B x * x B x
* B * x B x *
x B x * x B x
* x * x B x *
W * W * x * W
* x * W * x *
W * W W x * x

D

Translation of: Go

<lang d>import std.array; import std.math; import std.stdio; import std.typecons;

enum Piece {

   empty,
   black,
   white,

}

alias position = Tuple!(int, "i", int, "j");

bool place(int m, int n, ref position[] pBlackQueens, ref position[] pWhiteQueens) {

   if (m == 0) {
       return true;
   }
   bool placingBlack = true;
   foreach (i; 0..n) {
       inner:
       foreach (j; 0..n) {
           auto pos = position(i, j);
           foreach (queen; pBlackQueens) {
               if (queen == pos || !placingBlack && isAttacking(queen, pos)) {
                   continue inner;
               }
           }
           foreach (queen; pWhiteQueens) {
               if (queen == pos || placingBlack && isAttacking(queen, pos)) {
                   continue inner;
               }
           }
           if (placingBlack) {
               pBlackQueens ~= pos;
               placingBlack = false;
           } else {
               pWhiteQueens ~= pos;
               if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                   return true;
               }
               pBlackQueens.length--;
               pWhiteQueens.length--;
               placingBlack = true;
           }
       }
   }
   if (!placingBlack) {
       pBlackQueens.length--;
   }
   return false;

}

bool isAttacking(position queen, position pos) {

   return queen.i == pos.i
       || queen.j == pos.j
       || abs(queen.i - pos.i) == abs(queen.j - pos.j);

}

void printBoard(int n, position[] blackQueens, position[] whiteQueens) {

   auto board = uninitializedArray!(Piece[])(n * n);
   board[] = Piece.empty;
   foreach (queen; blackQueens) {
       board[queen.i * n + queen.j] = Piece.black;
   }
   foreach (queen; whiteQueens) {
       board[queen.i * n + queen.j] = Piece.white;
   }
   foreach (i,b; board) {
       if (i != 0 && i % n == 0) {
           writeln;
       }
       final switch (b) {
           case Piece.black:
               write("B ");
               break;
           case Piece.white:
               write("W ");
               break;
           case Piece.empty:
               int j = i / n;
               int k = i - j * n;
               if (j % 2 == k % 2) {
                   write("• "w);
               } else {
                   write("◦ "w);
               }
               break;
       }
   }
   writeln('\n');

}

void main() {

   auto nms = [
       [2, 1], [3, 1], [3, 2], [4, 1], [4, 2], [4, 3],
       [5, 1], [5, 2], [5, 3], [5, 4], [5, 5],
       [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6],
       [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7],
   ];
   foreach (nm; nms) {
       writefln("%d black and %d white queens on a %d x %d board:", nm[1], nm[1], nm[0], nm[0]);
       position[] blackQueens;
       position[] whiteQueens;
       if (place(nm[1], nm[0], blackQueens, whiteQueens)) {
           printBoard(nm[0], blackQueens, whiteQueens);
       } else {
           writeln("No solution exists.\n");
       }
   }

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ • 
◦ • W 
• ◦ • 

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
• ◦ • ◦ 
◦ • ◦ • 

2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
B ◦ • ◦ 
◦ • W • 

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • ◦ 
• ◦ • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ B ◦ 
• W • ◦ • 

4 black and 4 white queens on a 5 x 5 board:
• B • B • 
◦ • ◦ • B 
W ◦ W ◦ • 
◦ • ◦ • B 
W ◦ W ◦ • 

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦ 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ W ◦ • ◦ 
◦ • ◦ • ◦ • 

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ B 
• ◦ W W • ◦ 
◦ • ◦ • ◦ • 

5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦ 
◦ • ◦ B ◦ B 
W ◦ • ◦ • ◦ 
W • W • ◦ • 
• ◦ • ◦ • B 
W • W • ◦ • 

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 

7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B • 
◦ B ◦ • B • ◦ 
• B • ◦ • B • 
◦ • ◦ • B • ◦ 
W ◦ W ◦ • ◦ W 
◦ • ◦ W ◦ • ◦ 
W ◦ W W • ◦ • 

Go

This is based on the C# code here.

Textual rather than HTML output. Whilst the unicode symbols for the black and white queens are recognized by the Ubuntu 16.04 terminal, I found it hard to visually distinguish between them so I've used 'B' and 'W' instead. <lang go>package main

import "fmt"

const (

   empty = iota
   black
   white

)

const (

   bqueen  = 'B'
   wqueen  = 'W'
   bbullet = '•'
   wbullet = '◦'

)

type position struct{ i, j int }

func iabs(i int) int {

   if i < 0 {
       return -i
   }
   return i

}

func place(m, n int, pBlackQueens, pWhiteQueens *[]position) bool {

   if m == 0 {
       return true
   }
   placingBlack := true
   for i := 0; i < n; i++ {
   inner:
       for j := 0; j < n; j++ {
           pos := position{i, j}
           for _, queen := range *pBlackQueens {
               if queen == pos || !placingBlack && isAttacking(queen, pos) {
                   continue inner
               }
           }
           for _, queen := range *pWhiteQueens {
               if queen == pos || placingBlack && isAttacking(queen, pos) {
                   continue inner
               }
           }
           if placingBlack {
               *pBlackQueens = append(*pBlackQueens, pos)
               placingBlack = false
           } else {
               *pWhiteQueens = append(*pWhiteQueens, pos)
               if place(m-1, n, pBlackQueens, pWhiteQueens) {
                   return true
               }
               *pBlackQueens = (*pBlackQueens)[0 : len(*pBlackQueens)-1]
               *pWhiteQueens = (*pWhiteQueens)[0 : len(*pWhiteQueens)-1]
               placingBlack = true
           }
       }
   }
   if !placingBlack {
       *pBlackQueens = (*pBlackQueens)[0 : len(*pBlackQueens)-1]
   }
   return false

}

func isAttacking(queen, pos position) bool {

   if queen.i == pos.i {
       return true
   }
   if queen.j == pos.j {
       return true
   }
   if iabs(queen.i-pos.i) == iabs(queen.j-pos.j) {
       return true
   }
   return false

}

func printBoard(n int, blackQueens, whiteQueens []position) {

   board := make([]int, n*n)
   for _, queen := range blackQueens {
       board[queen.i*n+queen.j] = black
   }
   for _, queen := range whiteQueens {
       board[queen.i*n+queen.j] = white
   }
   for i, b := range board {
       if i != 0 && i%n == 0 {
           fmt.Println()
       }
       switch b {
       case black:
           fmt.Printf("%c ", bqueen)
       case white:
           fmt.Printf("%c ", wqueen)
       case empty:
           if i%2 == 0 {
               fmt.Printf("%c ", bbullet)
           } else {
               fmt.Printf("%c ", wbullet)
           }
       }
   }
   fmt.Println("\n")

}

func main() {

   nms := [][2]int{
       {2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3},
       {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5},
       {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6},
       {7, 1}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
   }
   for _, nm := range nms {
       n, m := nm[0], nm[1]
       fmt.Printf("%d black and %d white queens on a %d x %d board:\n", m, m, n, n)
       var blackQueens, whiteQueens []position
       if place(m, n, &blackQueens, &whiteQueens) {
           printBoard(n, blackQueens, whiteQueens)
       } else {
           fmt.Println("No solution exists.\n")
       }
   }

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ • 
◦ • W 
• ◦ • 

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦ 
• ◦ W ◦ 
• ◦ • ◦ 
• ◦ • ◦ 

2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦ 
• ◦ W ◦ 
B ◦ • ◦ 
• ◦ W ◦ 

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • ◦ 
• ◦ • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ B ◦ 
• W • ◦ • 

4 black and 4 white queens on a 5 x 5 board:
• B • B • 
◦ • ◦ • B 
W ◦ W ◦ • 
◦ • ◦ • B 
W ◦ W ◦ • 

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
• ◦ W ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ 

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦ 
• ◦ W ◦ • ◦ 
• W • ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ 

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
• ◦ W ◦ • ◦ 
• W • ◦ • ◦ 
• ◦ • ◦ • ◦ 
• ◦ W ◦ • ◦ 
• ◦ • ◦ • ◦ 

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
• ◦ W ◦ • ◦ 
• W • ◦ • ◦ 
• ◦ • ◦ • B 
• ◦ W W • ◦ 
• ◦ • ◦ • ◦ 

5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦ 
• ◦ • B • B 
W ◦ • ◦ • ◦ 
W ◦ W ◦ • ◦ 
• ◦ • ◦ • B 
W ◦ W ◦ • ◦ 

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 

7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B • 
◦ B ◦ • B • ◦ 
• B • ◦ • B • 
◦ • ◦ • B • ◦ 
W ◦ W ◦ • ◦ W 
◦ • ◦ W ◦ • ◦ 
W ◦ W W • ◦ • 

Java

Translation of: Kotlin

<lang java>import java.util.ArrayList; import java.util.Arrays; import java.util.List;

public class Peaceful {

   enum Piece {
       Empty,
       Black,
       White,
   }
   public static class Position {
       public int x, y;
       public Position(int x, int y) {
           this.x = x;
           this.y = y;
       }
       @Override
       public boolean equals(Object obj) {
           if (obj instanceof Position) {
               Position pos = (Position) obj;
               return pos.x == x && pos.y == y;
           }
           return false;
       }
   }
   private static boolean place(int m, int n, List<Position> pBlackQueens, List<Position> pWhiteQueens) {
       if (m == 0) {
           return true;
       }
       boolean placingBlack = true;
       for (int i = 0; i < n; ++i) {
           inner:
           for (int j = 0; j < n; ++j) {
               Position pos = new Position(i, j);
               for (Position queen : pBlackQueens) {
                   if (pos.equals(queen) || !placingBlack && isAttacking(queen, pos)) {
                       continue inner;
                   }
               }
               for (Position queen : pWhiteQueens) {
                   if (pos.equals(queen) || placingBlack && isAttacking(queen, pos)) {
                       continue inner;
                   }
               }
               if (placingBlack) {
                   pBlackQueens.add(pos);
                   placingBlack = false;
               } else {
                   pWhiteQueens.add(pos);
                   if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                       return true;
                   }
                   pBlackQueens.remove(pBlackQueens.size() - 1);
                   pWhiteQueens.remove(pWhiteQueens.size() - 1);
                   placingBlack = true;
               }
           }
       }
       if (!placingBlack) {
           pBlackQueens.remove(pBlackQueens.size() - 1);
       }
       return false;
   }
   private static boolean isAttacking(Position queen, Position pos) {
       return queen.x == pos.x
           || queen.y == pos.y
           || Math.abs(queen.x - pos.x) == Math.abs(queen.y - pos.y);
   }
   private static void printBoard(int n, List<Position> blackQueens, List<Position> whiteQueens) {
       Piece[] board = new Piece[n * n];
       Arrays.fill(board, Piece.Empty);
       for (Position queen : blackQueens) {
           board[queen.x + n * queen.y] = Piece.Black;
       }
       for (Position queen : whiteQueens) {
           board[queen.x + n * queen.y] = Piece.White;
       }
       for (int i = 0; i < board.length; ++i) {
           if ((i != 0) && i % n == 0) {
               System.out.println();
           }
           Piece b = board[i];
           if (b == Piece.Black) {
               System.out.print("B ");
           } else if (b == Piece.White) {
               System.out.print("W ");
           } else {
               int j = i / n;
               int k = i - j * n;
               if (j % 2 == k % 2) {
                   System.out.print("• ");
               } else {
                   System.out.print("◦ ");
               }
           }
       }
       System.out.println('\n');
   }
   public static void main(String[] args) {
       List<Position> nms = List.of(
           new Position(2, 1),
           new Position(3, 1),
           new Position(3, 2),
           new Position(4, 1),
           new Position(4, 2),
           new Position(4, 3),
           new Position(5, 1),
           new Position(5, 2),
           new Position(5, 3),
           new Position(5, 4),
           new Position(5, 5),
           new Position(6, 1),
           new Position(6, 2),
           new Position(6, 3),
           new Position(6, 4),
           new Position(6, 5),
           new Position(6, 6),
           new Position(7, 1),
           new Position(7, 2),
           new Position(7, 3),
           new Position(7, 4),
           new Position(7, 5),
           new Position(7, 6),
           new Position(7, 7)
       );
       for (Position nm : nms) {
           int m = nm.y;
           int n = nm.x;
           System.out.printf("%d black and %d white queens on a %d x %d board:\n", m, m, n, n);
           List<Position> blackQueens = new ArrayList<>();
           List<Position> whiteQueens = new ArrayList<>();
           if (place(m, n, blackQueens, whiteQueens)) {
               printBoard(n, blackQueens, whiteQueens);
           } else {
               System.out.println("No solution exists.\n");
           }
       }
   }

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ • 
◦ • ◦ 
• W • 

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • ◦ • 
• W • ◦ 
◦ • ◦ • 

2 black and 2 white queens on a 4 x 4 board:
B ◦ B ◦ 
◦ • ◦ • 
• W • W 
◦ • ◦ • 

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • ◦ • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
B ◦ • ◦ • 

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • W 
• W • ◦ • 
◦ • ◦ B ◦ 
B ◦ • ◦ • 

4 black and 4 white queens on a 5 x 5 board:
• ◦ W ◦ W 
B • ◦ • ◦ 
• ◦ W ◦ W 
B • ◦ • ◦ 
• B • B • 

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
B ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• W • ◦ W ◦ 
◦ • ◦ • ◦ • 
B ◦ • ◦ • ◦ 
B • ◦ • ◦ • 

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• W • ◦ W ◦ 
◦ • ◦ • W • 
B ◦ • ◦ • ◦ 
B • ◦ B ◦ • 

5 black and 5 white queens on a 6 x 6 board:
• ◦ W W • W 
B • ◦ • ◦ • 
• ◦ • W • W 
◦ B ◦ • ◦ • 
B ◦ • ◦ • ◦ 
◦ B ◦ • B • 

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
B ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • ◦ • ◦ • 

3 black and 3 white queens on a 7 x 7 board:
B ◦ B ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • ◦ • 
◦ • ◦ • ◦ • ◦ 
B ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • ◦ • ◦ • 

4 black and 4 white queens on a 7 x 7 board:
B ◦ B ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • ◦ • 
◦ • ◦ • ◦ • ◦ 
B ◦ B ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • ◦ • 

5 black and 5 white queens on a 7 x 7 board:
B ◦ B ◦ B ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • W • 
◦ • ◦ • ◦ • ◦ 
B ◦ B ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • ◦ • 

6 black and 6 white queens on a 7 x 7 board:
B ◦ B ◦ B ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • W • 
◦ • ◦ • ◦ • ◦ 
B ◦ B ◦ B ◦ • 
◦ • ◦ • ◦ • ◦ 
• W • W • W • 

7 black and 7 white queens on a 7 x 7 board:
• ◦ • ◦ W ◦ W 
B B B • ◦ • ◦ 
• ◦ • ◦ W ◦ W 
◦ • ◦ • ◦ W W 
• B • B • ◦ • 
B • B • ◦ • ◦ 
• ◦ • ◦ W ◦ • 

Julia

GUI version, uses the Gtk library. The place! function is condensed from the C# example. <lang julia>using Gtk

struct Position

   row::Int
   col::Int

end

function place!(numeach, bsize, bqueens, wqueens)

   isattack(q, pos) = (q.row == pos.row || q.col == pos.col ||
                       abs(q.row - pos.row) == abs(q.col - pos.col))
   noattack(qs, pos) = !any(x -> isattack(x, pos), qs)
   positionopen(bqs, wqs, p) = !any(x -> x == p, bqs) && !any(x -> x == p, wqs)
   placingbqueens = true
   if numeach < 1
       return true
   end
   for i in 1:bsize, j in 1:bsize
       bpos = Position(i, j)
       if positionopen(bqueens, wqueens, bpos)
           if placingbqueens && noattack(wqueens, bpos)
               push!(bqueens, bpos)
               placingbqueens = false
           elseif !placingbqueens && noattack(bqueens, bpos)
               push!(wqueens, bpos)
               if place!(numeach - 1, bsize, bqueens, wqueens)
                   return true
               end
               pop!(bqueens)
               pop!(wqueens)
               placingbqueens = true
           end
       end
   end
   if !placingbqueens
       pop!(bqueens)
   end
   false

end

function peacefulqueenapp()

   win = GtkWindow("Peaceful Chess Queen Armies", 800, 800) |> (GtkFrame() |> (box = GtkBox(:v)))
   boardsize = 5
   numqueenseach = 4
   hbox = GtkBox(:h)
   boardscale = GtkScale(false, 2:16)
   set_gtk_property!(boardscale, :hexpand, true)
   blabel = GtkLabel("Choose Board Size")
   nqueenscale = GtkScale(false, 1:24)
   set_gtk_property!(nqueenscale, :hexpand, true)
   qlabel = GtkLabel("Choose Number of Queens Per Side")
   solveit = GtkButton("Solve")
   set_gtk_property!(solveit, :label, "   Solve   ")
   solvequeens(wid) = (boardsize = Int(GAccessor.value(boardscale));
       numqueenseach = Int(GAccessor.value(nqueenscale)); update!())
   signal_connect(solvequeens, solveit, :clicked)
   map(w->push!(hbox, w),[blabel, boardscale, qlabel, nqueenscale, solveit])
   scrwin = GtkScrolledWindow()
   grid = GtkGrid()
   push!(scrwin, grid)
   map(w -> push!(box, w),[hbox, scrwin])
   piece = (white = "\u2655", black = "\u265B", blank = "   ")
   stylist = GtkStyleProvider(Gtk.CssProviderLeaf(data="""
       label {background-image: image(cornsilk); font-size: 48px;}
       button {background-image: image(tan); font-size: 48px;}"""))
   function update!()
       bqueens, wqueens = Vector{Position}(), Vector{Position}()
       place!(numqueenseach, boardsize, bqueens, wqueens)
       if length(bqueens) == 0
           warn_dialog("No solution for board size $boardsize and $numqueenseach queens each.", win)
           return
       end
       empty!(grid)
       labels = Array{Gtk.GtkLabelLeaf, 2}(undef, (boardsize, boardsize))
       buttons = Array{GtkButtonLeaf, 2}(undef, (boardsize, boardsize))
       for i in 1:boardsize, j in 1:boardsize
           if isodd(i + j)
               grid[i, j] = buttons[i, j] = GtkButton(piece.blank)
               set_gtk_property!(buttons[i, j], :expand, true)
               push!(Gtk.GAccessor.style_context(buttons[i, j]), stylist, 600)
           else
               grid[i, j] = labels[i, j] = GtkLabel(piece.blank)
               set_gtk_property!(labels[i, j], :expand, true)
               push!(Gtk.GAccessor.style_context(labels[i, j]), stylist, 600)
           end
           pos = Position(i, j)
           if pos in bqueens
               set_gtk_property!(grid[i, j], :label, piece.black)
           elseif pos in wqueens
               set_gtk_property!(grid[i, j], :label, piece.white)
           end
       end
       showall(win)
   end
   update!()
   cond = Condition()
   endit(w) = notify(cond)
   signal_connect(endit, win, :destroy)
   showall(win)
   wait(cond)

end

peacefulqueenapp() </lang>

Kotlin

Translation of: D

<lang scala>import kotlin.math.abs

enum class Piece {

   Empty,
   Black,
   White,

}

typealias Position = Pair<Int, Int>

fun place(m: Int, n: Int, pBlackQueens: MutableList<Position>, pWhiteQueens: MutableList<Position>): Boolean {

   if (m == 0) {
       return true
   }
   var placingBlack = true
   for (i in 0 until n) {
       inner@
       for (j in 0 until n) {
           val pos = Position(i, j)
           for (queen in pBlackQueens) {
               if (queen == pos || !placingBlack && isAttacking(queen, pos)) {
                   continue@inner
               }
           }
           for (queen in pWhiteQueens) {
               if (queen == pos || placingBlack && isAttacking(queen, pos)) {
                   continue@inner
               }
           }
           placingBlack = if (placingBlack) {
               pBlackQueens.add(pos)
               false
           } else {
               pWhiteQueens.add(pos)
               if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
                   return true
               }
               pBlackQueens.removeAt(pBlackQueens.lastIndex)
               pWhiteQueens.removeAt(pWhiteQueens.lastIndex)
               true
           }
       }
   }
   if (!placingBlack) {
       pBlackQueens.removeAt(pBlackQueens.lastIndex)
   }
   return false

}

fun isAttacking(queen: Position, pos: Position): Boolean {

   return queen.first == pos.first
           || queen.second == pos.second
           || abs(queen.first - pos.first) == abs(queen.second - pos.second)

}

fun printBoard(n: Int, blackQueens: List<Position>, whiteQueens: List<Position>) {

   val board = MutableList(n * n) { Piece.Empty }
   for (queen in blackQueens) {
       board[queen.first * n + queen.second] = Piece.Black
   }
   for (queen in whiteQueens) {
       board[queen.first * n + queen.second] = Piece.White
   }
   for ((i, b) in board.withIndex()) {
       if (i != 0 && i % n == 0) {
           println()
       }
       if (b == Piece.Black) {
           print("B ")
       } else if (b == Piece.White) {
           print("W ")
       } else {
           val j = i / n
           val k = i - j * n
           if (j % 2 == k % 2) {
               print("• ")
           } else {
               print("◦ ")
           }
       }
   }
   println('\n')

}

fun main() {

   val nms = listOf(
       Pair(2, 1), Pair(3, 1), Pair(3, 2), Pair(4, 1), Pair(4, 2), Pair(4, 3),
       Pair(5, 1), Pair(5, 2), Pair(5, 3), Pair(5, 4), Pair(5, 5),
       Pair(6, 1), Pair(6, 2), Pair(6, 3), Pair(6, 4), Pair(6, 5), Pair(6, 6),
       Pair(7, 1), Pair(7, 2), Pair(7, 3), Pair(7, 4), Pair(7, 5), Pair(7, 6), Pair(7, 7)
   )
   for ((n, m) in nms) {
       println("$m black and $m white queens on a $n x $n board:")
       val blackQueens = mutableListOf<Position>()
       val whiteQueens = mutableListOf<Position>()
       if (place(m, n, blackQueens, whiteQueens)) {
           printBoard(n, blackQueens, whiteQueens)
       } else {
           println("No solution exists.\n")
       }
   }

}</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ • 
◦ • W 
• ◦ • 

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
• ◦ • ◦ 
◦ • ◦ • 

2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
B ◦ • ◦ 
◦ • W • 

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • ◦ 
• ◦ • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ B ◦ 
• W • ◦ • 

4 black and 4 white queens on a 5 x 5 board:
• B • B • 
◦ • ◦ • B 
W ◦ W ◦ • 
◦ • ◦ • B 
W ◦ W ◦ • 

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦ 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ W ◦ • ◦ 
◦ • ◦ • ◦ • 

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ B 
• ◦ W W • ◦ 
◦ • ◦ • ◦ • 

5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦ 
◦ • ◦ B ◦ B 
W ◦ • ◦ • ◦ 
W • W • ◦ • 
• ◦ • ◦ • B 
W • W • ◦ • 

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 

7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B • 
◦ B ◦ • B • ◦ 
• B • ◦ • B • 
◦ • ◦ • B • ◦ 
W ◦ W ◦ • ◦ W 
◦ • ◦ W ◦ • ◦ 
W ◦ W W • ◦ • 

Mathematica/Wolfram Language

<lang Mathematica>ClearAll[ValidSpots, VisibleByQueen, SolveQueen, GetSolution] VisualizeState[state_] := Module[{q, cells},

 q = MapIndexed[If[#["q"] == -1, {}, Text[Style[#["q"], 24], #2]] &, state, {2}];
 cells = MapIndexed[{If[OddQ[Total[#2]], FaceForm[], 
      FaceForm[GrayLevel[0.8]]], EdgeForm[Black], 
     Rectangle[#2 - 0.5, #2 + 0.5]} &, state, {2}];
 Graphics[{cells, q}]
]

ValidSpots[state_, tp_Integer] := Module[{vals},

 vals = Catenate@MapIndexed[If[#1["q"] == -1 \[And] DeleteCases[#1["v"], tp] == {}, #2, Missing[]] &, state, {2}];
 DeleteMissing[vals]
]

VisibleByQueen[{i_, j_}, {a_, b_}] := i == a \[Or] j == b \[Or] i + j == a + b \[Or] i - j == a - b PlaceQueen[state_, pos : {i_Integer, j_Integer}, tp_Integer] := Module[{vals, out},

 out = state;
 outi, j = Association[outi, j, "q" -> tp];
 out = MapIndexed[If[VisibleByQueen[{i, j}, #2], <|#1, "v" -> Append[#1["v"], tp]|>, #1] &, out, {2}];
 out
 ]

SolveQueen[state_, toplace_List] :=

Module[{len = Length[toplace], next, valid, newstate},
 If[len == 0,
  Print[VisualizeState@state];
  Print[StringRiffle[StringJoin /@ Map[ToString, stateAll, All, "q" /. -1 -> ".", {2}], "\n"]];
  Abort[];
  ,
  next = First[toplace];
  valid = ValidSpots[state, next];
  Do[
   newstate = PlaceQueen[state, v, next];
   SolveQueen[newstate, Rest[toplace]]
   ,
   {v, valid}
   ]
  ]
 ]

GetSolution[n_Integer?Positive, m_Integer?Positive, numcol_ : 2] :=

Module[{state, tp},
 state = ConstantArray[<|"q" -> -1, "v" -> {}|>, {n, n}];
 tp = Flatten[Transpose[ConstantArray[#, m] & /@ Range[numcol]]];
 SolveQueen[state, tp]
 ]

GetSolution[8, 4, 3](* Solves placing 3 armies of each 4 queens on an 8*8 board*) GetSolution[5, 4, 2](* Solves placing 2 armies of each 4 queens on an 5*5 board*)</lang>

Output:
[Graphical object]
1....1..
..2....2
....3...
.3....3.
...1....
1.......
..2....2
....3...

[Graphical object]
1...1
..2..
.2.2.
..2..
1...1

Nim

Translation of: Kotlin

Almost a direct translation except for "printBoard" where we have chosen to use a sequence of sequences to simplify the code.

<lang Nim>import sequtils, strformat

type

 Piece {.pure.} = enum Empty, Black, White
 Position = tuple[x, y: int]


func isAttacking(queen, pos: Position): bool =

 queen.x == pos.x or queen.y == pos.y or abs(queen.x - pos.x) == abs(queen.y - pos.y)


func place(m, n: int; blackQueens, whiteQueens: var seq[Position]): bool =

 if m == 0: return true
 var placingBlack = true
 for i in 0..<n:
   for j in 0..<n:
     block inner:
       let pos: Position = (i, j)
       for queen in blackQueens:
         if queen == pos or not placingBlack and queen.isAttacking(pos):
           break inner
       for queen in whiteQueens:
         if queen == pos or placingBlack and queen.isAttacking(pos):
           break inner
       if placingBlack:
         blackQueens.add pos
       else:
         whiteQueens.add pos
         if place(m - 1, n, blackQueens, whiteQueens): return true
         discard blackQueens.pop()
         discard whiteQueens.pop()
       placingBlack = not placingBlack
 if not placingBlack:
   discard blackQueens.pop()


proc printBoard(n: int; blackQueens, whiteQueens: seq[Position]) =

 var board = newSeqWith(n, newSeq[Piece](n))   # Initialized to Empty.
 for queen in blackQueens:
   board[queen.x][queen.y] = Black
 for queen in whiteQueens:
   board[queen.x][queen.y] = White
 for i in 0..<n:
   for j in 0..<n:
     stdout.write case board[i][j]
                  of Black: "B "
                  of White: "W "
                  of Empty: (if (i and 1) == (j and 1): "• " else: "◦ ")
   stdout.write '\n'
 echo ""


const Nms = [(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),

            (5, 1), (5, 2), (5, 3), (5, 4), (5, 5),
            (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),
            (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7)]

for (n, m) in Nms:

 echo &"{m} black and {m} white queens on a {n} x {n} board:"
 var blackQueens, whiteQueens: seq[Position]
 if place(m, n, blackQueens, whiteQueens):
   printBoard(n, blackQueens, whiteQueens)
 else:
   echo "No solution exists.\n"</lang>
Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ • 
◦ • W 
• ◦ • 

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
• ◦ • ◦ 
◦ • ◦ • 

2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦ 
◦ • W • 
B ◦ • ◦ 
◦ • W • 

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ • 
◦ • W • ◦ 
• ◦ • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ B ◦ 
• W • ◦ • 

4 black and 4 white queens on a 5 x 5 board:
• B • B • 
◦ • ◦ • B 
W ◦ W ◦ • 
◦ • ◦ • B 
W ◦ W ◦ • 

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦ 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ W ◦ • ◦ 
◦ • ◦ • ◦ • 

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ B 
• ◦ W W • ◦ 
◦ • ◦ • ◦ • 

5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦ 
◦ • ◦ B ◦ B 
W ◦ • ◦ • ◦ 
W • W • ◦ • 
• ◦ • ◦ • B 
W • W • ◦ • 

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 

7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B • 
◦ B ◦ • B • ◦ 
• B • ◦ • B • 
◦ • ◦ • B • ◦ 
W ◦ W ◦ • ◦ W 
◦ • ◦ W ◦ • ◦ 
W ◦ W W • ◦ • 

Perl

Terse

<lang perl>use strict; use warnings;

my $m = shift // 4; my $n = shift // 5; my %seen; my $gaps = join '|', qr/-*/, map qr/.{$_}(?:-.{$_})*/s, $n-1, $n, $n+1; my $attack = qr/(\w)(?:$gaps)(?!\1)\w/;

place( scalar ('-' x $n . "\n") x $n ); print "No solution to $m $n\n";

sub place

 {
 local $_ = shift;
 $seen{$_}++ || /$attack/ and return; # previously or attack
 (my $have = tr/WB//) < $m * 2 or exit !print "Solution to $m $n\n\n$_";
 place( s/-\G/ qw(W B)[$have % 2] /er ) while /-/g; # place next queen
 }</lang>
Output:
Solution to 4 5

W---W
--B--
-B-B-
--B--
W---W

Verbose

A refactored version of the same code, with fancier output. <lang perl>use strict; use warnings; use feature 'say'; use feature 'state'; use utf8; binmode(STDOUT, ':utf8');

  1. recursively place the next queen

sub place {

   my($board, $n, $m, $empty_square) = @_;
   state(%seen,$attack,$solution);
   # logic of 'attack' regex: queen ( ... paths between queens containing only empty squares ... ) queen of other color
   unless ($attack) {
     $attack =
       '([WB])' .      # 1st queen
       '(?:' .
           join('|',
               "[$empty_square]*",
               map {
                   "(?^s:.{$_}(?:[$empty_square].{$_})*)"
               } $n-1, $n, $n+1
           ) .
       ')' .
       '(?!\1)[WB]';   # 2nd queen
   }
   # pass first result found back up the stack (omit this line to get last result found)
   return $solution if $solution;
   # bail out if seen this configuration previously, or attack detected
   return if $seen{$board}++ or $board =~ /$attack/;
   # success if queen count is m×2
   $solution = $board and return if $m * 2 == (my $have = $board =~ tr/WB//);
   # place the next queen (alternating colors each time)
   place(   $board =~ s/[$empty_square]\G/ qw<W B>[$have % 2] /er, $n, $m, $empty_square ) 
      while $board =~  /[$empty_square]/g;
   return $solution

}

my($m, $n) = $#ARGV == 1 ? @ARGV : (4, 5); my $empty_square = '◦•'; my $board = join "\n", map { substr $empty_square x $n, $_%2, $n } 1..$n;

my $solution = place $board, $n, $m, $empty_square;

say $solution

   ? sprintf "Solution to $m $n\n\n%s", map { s/(.)/$1 /gm; s/B /♛/gm; s/W /♕/gmr } $solution
   : "No solution to $m $n";</lang>
Output:
Solution to 4 5

♕◦ • ◦ ♕
◦ • ♛• ◦
• ♛• ♛•
◦ • ♛• ◦
♕◦ • ◦ ♕

Phix

Translation of: Go
Translation of: Python

<lang Phix>-- demo\rosetta\Queen_Armies.exw string html = "" constant as_html = true constant queens = {``,

                  `♛`, 
                  ``,
                  `?`}

procedure showboard(integer n, sequence blackqueens, whitequeens)

   sequence board = repeat(repeat('-',n),n)
   for i=1 to length(blackqueens) do
       integer {qi,qj} = blackqueens[i]
       board[qi,qj] = 'B'
       {qi,qj} = whitequeens[i]
       board[qi,qj] = 'W'
   end for
   if as_html then
       string out = sprintf("
## %d black and %d white queens on a %d-by-%d board
\n", {length(blackqueens),length(whitequeens),n,n}), tbl = ""

out &= "

\n " for x=1 to n do for y=1 to n do if y=1 then tbl &= " \n \n" end if integer xw = find({x,y},blackqueens)!=0, xb = find({x,y},whitequeens)!=0, dx = xw+xb*2+1 string ch = queens[dx], bg = iff(mod(x+y,2)?"":` bgcolor="silver"`) tbl &= sprintf(" \n",{bg,ch})
           end for
       end for
       out &= tbl[11..$]
out &= " \n
%s

\n
\n"

       html &= out
   else
       integer b = length(blackqueens),
               w = length(whitequeens)
       printf(1,"%d black and %d white queens on a %d x %d board:\n", {b, w, n, n})
       puts(1,join(board,"\n")&"\n")

--  ?{n,blackqueens, whitequeens}

   end if

end procedure

function isAttacking(sequence queen, pos)

   integer {qi,qj} = queen, {pi,pj} = pos
   return qi=pi or qj=pj or abs(qi-pi)=abs(qj-pj)

end function

function place(integer m, n, sequence blackqueens = {}, whitequeens = {})

   if m == 0 then showboard(n,blackqueens,whitequeens) return true end if
   bool placingBlack := true
   for i=1 to n do
       for j=1 to n do
           sequence pos := {i, j}
           for q=1 to length(blackqueens) do
               sequence queen := blackqueens[q]
               if queen == pos or ((not placingBlack) and isAttacking(queen, pos)) then
                   pos = {}
                   exit
               end if
           end for
           if pos!={} then
               for q=1 to length(whitequeens) do
                   sequence queen := whitequeens[q]
                   if queen == pos or (placingBlack and isAttacking(queen, pos)) then
                       pos = {}
                       exit
                   end if
               end for
               if pos!={} then
                   if placingBlack then
                       blackqueens = append(blackqueens, pos)
                       placingBlack = false
                   else
                       whitequeens = append(whitequeens, pos)
                       if place(m-1, n, blackqueens, whitequeens) then return true end if
                       blackqueens = blackqueens[1..$-1]
                       whitequeens = whitequeens[1..$-1]
                       placingBlack = true
                   end if
               end if
           end if
       end for
   end for
   return false

end function

for n=2 to 7 do

   for m=1 to n-(n<5) do
       if not place(m,n) then
           string no = sprintf("Cannot place %d+ queen armies on a %d-by-%d board",{m,n,n})
           if as_html then
               html &= sprintf("# %s

\n\n",{no}) else printf(1,"%s.\n", {no}) end if end if end for

end for

constant html_header = """ <!DOCTYPE html> <html lang="en">

<head>
 <meta charset="utf-8" />
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Rosettacode Rank Languages by popularity</title>
</head>
<body>

queen armies

""", -- or

        html_footer = """
</body>

</html>

""" -- or

if as_html then

   integer fn = open("queen_armies.html","w")
   puts(fn,html_header)
   puts(fn,html)
   puts(fn,html_footer)
   close(fn)
   printf(1,"See queen_armies.html\n")

end if

?"done" {} = wait_key()</lang>

Output:

with as_html = false

Cannot place 1+ queen armies on a 2-by-2 board.
1 black and 1 white queens on a 3 x 3 board:
B--
--W
---
Cannot place 2+ queen armies on a 3-by-3 board.
<snip>
7 black and 7 white queens on a 7 x 7 board:
-B---B-
-B--B--
-B---B-
----B--
W-W---W
---W---
W-WW---
Output:

with as_html = true

# Cannot place 1+ queen armies on a 2-by-2 board


## 1 black and 1 white queens on a 3-by-3 board


# Cannot place 2+ queen armies on a 3-by-3 board

<snip>

## 7 black and 7 white queens on a 7-by-7 board

Python

Python: Textual output

<lang python>from itertools import combinations, product, count from functools import lru_cache, reduce


_bbullet, _wbullet = '\u2022\u25E6' _or = set.__or__

def place(m, n):

   "Place m black and white queens, peacefully, on an n-by-n board"
   board = set(product(range(n), repeat=2))  # (x, y) tuples
   placements = {frozenset(c) for c in combinations(board, m)}
   for blacks in placements:
       black_attacks = reduce(_or, 
                              (queen_attacks_from(pos, n) for pos in blacks), 
                              set())
       for whites in {frozenset(c)     # Never on blsck attacking squares
                      for c in combinations(board - black_attacks, m)}:
           if not black_attacks & whites:
               return blacks, whites
   return set(), set()

@lru_cache(maxsize=None) def queen_attacks_from(pos, n):

   x0, y0 = pos
   a = set([pos])    # Its position
   a.update((x, y0) for x in range(n))    # Its row
   a.update((x0, y) for y in range(n))    # Its column
   # Diagonals
   for x1 in range(n):
       # l-to-r diag
       y1 = y0 -x0 +x1
       if 0 <= y1 < n: 
           a.add((x1, y1))
       # r-to-l diag
       y1 = y0 +x0 -x1
       if 0 <= y1 < n: 
           a.add((x1, y1))
   return a

def pboard(black_white, n):

   "Print board"
   if black_white is None: 
       blk, wht = set(), set()
   else:
       blk, wht = black_white
   print(f"## {len(blk)} black and {len(wht)} white queens "
         f"on a {n}-by-{n} board:", end=)
   for x, y in product(range(n), repeat=2):
       if y == 0:
           print()
       xy = (x, y)
       ch = ('?' if xy in blk and xy in wht 
             else 'B' if xy in blk
             else 'W' if xy in wht
             else _bbullet if (x + y)%2 else _wbullet)
       print('%s' % ch, end=)
   print()

if __name__ == '__main__':

   n=2
   for n in range(2, 7):
       print()
       for m in count(1):
           ans = place(m, n)
           if ans[0]:
               pboard(ans, n)
           else:
               print (f"# Can't place {m} queens on a {n}-by-{n} board")
               break
   #
   print('\n')
   m, n = 5, 7
   ans = place(m, n)
   pboard(ans, n)</lang>
Output:
# Can't place 1 queens on a 2-by-2 board

## 1 black and 1 white queens on a 3-by-3 board:
◦•◦
B◦•
◦•W
# Can't place 2 queens on a 3-by-3 board

## 1 black and 1 white queens on a 4-by-4 board:
◦•W•
B◦•◦
◦•◦•
•◦•◦
## 2 black and 2 white queens on a 4-by-4 board:
◦B◦•
•B•◦
◦•◦•
W◦W◦
# Can't place 3 queens on a 4-by-4 board

## 1 black and 1 white queens on a 5-by-5 board:
◦•◦•◦
W◦•◦•
◦•◦•◦
•◦•◦B
◦•◦•◦
## 2 black and 2 white queens on a 5-by-5 board:
◦•◦•W
•◦B◦•
◦•◦•◦
•◦•B•
◦W◦•◦
## 3 black and 3 white queens on a 5-by-5 board:
◦W◦•◦
•◦•◦W
B•B•◦
B◦•◦•
◦•◦W◦
## 4 black and 4 white queens on a 5-by-5 board:
◦•B•B
W◦•◦•
◦W◦W◦
W◦•◦•
◦•B•B
# Can't place 5 queens on a 5-by-5 board

## 1 black and 1 white queens on a 6-by-6 board:
◦•◦•◦•
W◦•◦•◦
◦•◦•◦•
•◦•◦B◦
◦•◦•◦•
•◦•◦•◦
## 2 black and 2 white queens on a 6-by-6 board:
◦•◦•◦•
•◦B◦•◦
◦•◦•◦•
•◦•B•◦
◦•◦•◦•
W◦•◦W◦
## 3 black and 3 white queens on a 6-by-6 board:
◦•B•◦•
•B•◦•◦
◦•◦W◦W
•◦•◦•◦
W•◦•◦•
•◦•◦B◦
## 4 black and 4 white queens on a 6-by-6 board:
WW◦•W•
•W•◦•◦
◦•◦•◦B
•◦B◦•◦
◦•◦B◦•
•◦•B•◦
## 5 black and 5 white queens on a 6-by-6 board:
◦•W•W•
B◦•◦•◦
◦•W•◦W
B◦•◦•◦
◦•◦•◦W
BB•B•◦
# Can't place 6 queens on a 6-by-6 board


## 5 black and 5 white queens on a 7-by-7 board:
◦•◦•B•◦
•W•◦•◦W
◦•◦•B•◦
B◦•◦•◦•
◦•B•◦•◦
•◦•B•◦•
◦W◦•◦WW

Python: HTML output

Uses the solver function place from the above textual output case. <lang python>from peaceful_queen_armies_simpler import place from itertools import product, count

_bqueenh, _wqueenh = '♛', ''

def hboard(black_white, n):

   "HTML board generator"
   if black_white is None: 
       blk, wht = set(), set()
   else:
       blk, wht = black_white
   out = (f"
## {len(blk)} black and {len(wht)} white queens " f"on a {n}-by-{n} board
\n")

out += '

\n ' tbl = for x, y in product(range(n), repeat=2): if y == 0: tbl += ' \n \n' xy = (x, y) ch = ('?' if xy in blk and xy in wht else _bqueenh if xy in blk else _wqueenh if xy in wht else "") bg = "" if (x + y)%2 else ' bgcolor="silver"' tbl += f' \n'
   out += tbl[7:]
out += ' \n
{ch}

\n
\n'

   return out

if __name__ == '__main__':

   n=2
   html = 
   for n in range(2, 7):
       print()
       for m in count(1):
           ans = place(m, n)
           if ans[0]:
               html += hboard(ans, n)
           else:
               html += (f"# Can't place {m} queen armies on a "
                        f"{n}-by-{n} board

\n\n" ) break # html += '
\n' m, n = 6, 7 ans = place(m, n) html += hboard(ans, n) with open('peaceful_queen_armies.htm', 'w') as f: f.write(html)</lang>
Output:

# Can't place 1 queen armies on a 2-by-2 board


## 1 black and 1 white queens on a 3-by-3 board


# Can't place 2 queen armies on a 3-by-3 board


## 1 black and 1 white queens on a 4-by-4 board



## 2 black and 2 white queens on a 4-by-4 board


# Can't place 3 queen armies on a 4-by-4 board


## 1 black and 1 white queens on a 5-by-5 board



## 2 black and 2 white queens on a 5-by-5 board



## 3 black and 3 white queens on a 5-by-5 board



## 4 black and 4 white queens on a 5-by-5 board


# Can't place 5 queen armies on a 5-by-5 board


## 1 black and 1 white queens on a 6-by-6 board



## 2 black and 2 white queens on a 6-by-6 board



## 3 black and 3 white queens on a 6-by-6 board



## 4 black and 4 white queens on a 6-by-6 board



## 5 black and 5 white queens on a 6-by-6 board


# Can't place 6 queen armies on a 6-by-6 board



## 6 black and 6 white queens on a 7-by-7 board


Raku

(formerly Perl 6)

Translation of: Perl

<lang perl6># recursively place the next queen sub place ($board, $n, $m, $empty-square) {

   my $cnt;
   state (%seen,$attack);
   state $solution = False;
   # logic of regex: queen ( ... paths between queens containing only empty squares ... ) queen of other color
   once {
     my %Q = 'WBBW'.comb; # return the queen of alternate color
     my $re =
       '(<[WB]>)' ~                # 1st queen
       '[' ~
         join(' |',
           qq/<[$empty-square]>*/,
           map {
             qq/ . ** {$_}[<[$empty-square]> . ** {$_}]*/
           }, $n-1, $n, $n+1
         ) ~
       ']' ~
       '<{%Q{$0}}>';               # 2nd queen
     $attack = "rx/$re/".EVAL;
   }
   # return first result found (omit this line to get last result found)
   return $solution if $solution;
   # bail out if seen this configuration previously, or attack detected
   return if %seen{$board}++ or $board ~~ $attack;
   # success if queen count is m×2, set state variable and return from recursion
   $solution = $board and return if $m * 2 == my $queens = $board.comb.Bag{<W B>}.sum;
   # place the next queen (alternating colors each time)
   place( $board.subst( /<[◦•]>/, {<W B>[$queens % 2]}, :nth($cnt) ), $n, $m, $empty-square )
       while $board ~~ m:nth(++$cnt)/<[◦•]>/;
   return $solution

}

my ($m, $n) = @*ARGS == 2 ?? @*ARGS !! (4, 5); my $empty-square = '◦•'; my $board = ($empty-square x $n**2).comb.rotor($n)>>.join[^$n].join: "\n";

my $solution = place $board, $n, $m, $empty-square;

say $solution

   ?? "Solution to $m $n\n\n{S:g/(\N)/$0 / with $solution}"
   !! "No solution to $m $n";</lang>
Output:
W • ◦ • W
• ◦ B ◦ •
◦ B ◦ B ◦
• ◦ B ◦ •
W • ◦ • W

Ruby

Translation of: Java

<lang ruby>class Position

   attr_reader :x, :y
   def initialize(x, y)
       @x = x
       @y = y
   end
   def ==(other)
       self.x == other.x &&
       self.y == other.y
   end
   def to_s
       '(%d, %d)' % [@x, @y]
   end
   def to_str
       to_s
   end

end

def isAttacking(queen, pos)

   return queen.x == pos.x ||
          queen.y == pos.y ||
          (queen.x - pos.x).abs() == (queen.y - pos.y).abs()

end

def place(m, n, blackQueens, whiteQueens)

   if m == 0 then
       return true
   end
   placingBlack = true
   for i in 0 .. n-1
       for j in 0 .. n-1
           catch :inner do
               pos = Position.new(i, j)
               for queen in blackQueens
                   if pos == queen || !placingBlack && isAttacking(queen, pos) then
                       throw :inner
                   end
               end
               for queen in whiteQueens
                   if pos == queen || placingBlack && isAttacking(queen, pos) then
                       throw :inner
                   end
               end
               if placingBlack then
                   blackQueens << pos
                   placingBlack = false
               else
                   whiteQueens << pos
                   if place(m - 1, n, blackQueens, whiteQueens) then
                       return true
                   end
                   blackQueens.pop
                   whiteQueens.pop
                   placingBlack = true
               end
           end
       end
   end
   if !placingBlack then
       blackQueens.pop
   end
   return false

end

def printBoard(n, blackQueens, whiteQueens)

   # initialize the board
   board = Array.new(n) { Array.new(n) { ' ' } }
   for i in 0 .. n-1
       for j in 0 .. n-1
           if i % 2 == j % 2 then
               board[i][j] = '•'
           else
               board[i][j] = '◦'
           end
       end
   end
   # insert the queens
   for queen in blackQueens
       board[queen.y][queen.x] = 'B'
   end
   for queen in whiteQueens
       board[queen.y][queen.x] = 'W'
   end
   # print the board
   for row in board
       for cell in row
           print cell, ' '
       end
       print "\n"
   end
   print "\n"

end

nms = [

   [2, 1],
   [3, 1], [3, 2],
   [4, 1], [4, 2], [4, 3],
   [5, 1], [5, 2], [5, 3], [5, 4], [5, 5],
   [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6],
   [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7]

] for nm in nms

   m = nm[1]
   n = nm[0]
   print "%d black and %d white queens on a %d x %d board:\n" % [m, m, n, n]
   blackQueens = []
   whiteQueens = []
   if place(m, n, blackQueens, whiteQueens) then
       printBoard(n, blackQueens, whiteQueens)
   else
       print "No solution exists.\n\n"
   end

end</lang>

Output:
1 black and 1 white queens on a 2 x 2 board:
No solution exists.

1 black and 1 white queens on a 3 x 3 board:
B ◦ •
◦ • ◦
• W •

2 black and 2 white queens on a 3 x 3 board:
No solution exists.

1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦
◦ • ◦ •
• W • ◦
◦ • ◦ •

2 black and 2 white queens on a 4 x 4 board:
B ◦ B ◦
◦ • ◦ •
• W • W
◦ • ◦ •

3 black and 3 white queens on a 4 x 4 board:
No solution exists.

1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • ◦ • ◦ 
• W • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •

2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • W • ◦
• W • ◦ •
◦ • ◦ • ◦
B ◦ • ◦ •

3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • W • W
• W • ◦ •
◦ • ◦ B ◦
B ◦ • ◦ •

4 black and 4 white queens on a 5 x 5 board:
• ◦ W ◦ W 
B • ◦ • ◦
• ◦ W ◦ W
B • ◦ • ◦
• B • B •

5 black and 5 white queens on a 5 x 5 board:
No solution exists.

1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • ◦ • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •

2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • W • ◦ •
• W • ◦ • ◦ 
◦ • ◦ • ◦ •
B ◦ • ◦ • ◦
◦ • ◦ • ◦ •

3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • W • ◦ •
• W • ◦ W ◦
◦ • ◦ • ◦ •
B ◦ • ◦ • ◦
B • ◦ • ◦ •

4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • W • ◦ •
• W • ◦ W ◦
◦ • ◦ • W •
B ◦ • ◦ • ◦
B • ◦ B ◦ •

5 black and 5 white queens on a 6 x 6 board:
• ◦ W W • W 
B • ◦ • ◦ •
• ◦ • W • W
◦ B ◦ • ◦ •
B ◦ • ◦ • ◦
◦ B ◦ • B •

6 black and 6 white queens on a 6 x 6 board:
No solution exists.

1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • ◦ • ◦ •
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •

2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
B ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • ◦ • ◦ •

3 black and 3 white queens on a 7 x 7 board:
B ◦ B ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • W • ◦ •
◦ • ◦ • ◦ • ◦
B ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦
• W • ◦ • ◦ •

4 black and 4 white queens on a 7 x 7 board:
B ◦ B ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • W • ◦ •
◦ • ◦ • ◦ • ◦
B ◦ B ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • W • ◦ •

5 black and 5 white queens on a 7 x 7 board:
B ◦ B ◦ B ◦ •
◦ • ◦ • ◦ • ◦
• W • W • W • 
◦ • ◦ • ◦ • ◦
B ◦ B ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• W • W • ◦ •

6 black and 6 white queens on a 7 x 7 board:
B ◦ B ◦ B ◦ •
◦ • ◦ • ◦ • ◦
• W • W • W •
◦ • ◦ • ◦ • ◦
B ◦ B ◦ B ◦ •
◦ • ◦ • ◦ • ◦
• W • W • W •

7 black and 7 white queens on a 7 x 7 board:
• ◦ • ◦ W ◦ W 
B B B • ◦ • ◦
• ◦ • ◦ W ◦ W
◦ • ◦ • ◦ W W
• B • B • ◦ •
B • B • ◦ • ◦
• ◦ • ◦ W ◦ •

Scheme

All solutions

Works with: CHICKEN version 5.3.0
Library: srfi-132

<lang scheme>;;;

Solutions to the Peaceful Chess Queen Armies puzzle, in R7RS
Scheme (using also SRFI-132).
https://rosettacode.org/wiki/Peaceful_chess_queen_armies

(cond-expand

 (r7rs)
 (chicken (import (r7rs))))

(import (scheme process-context)) (import (only (srfi 132) list-sort))

(define-record-type <&fail>

 (make-the-one-unique-&fail-that-you-must-not-make-twice)
 do-not-use-this:&fail?)

(define &fail

 (make-the-one-unique-&fail-that-you-must-not-make-twice))

(define (failure? f)

 (eq? f &fail))

(define (success? f)

 (not (failure? f)))

(define *suspend*

 (make-parameter (lambda (x) x)))

(define (suspend v)

 ((*suspend*) v))

(define (fail-forever)

 (let loop ()
   (suspend &fail)
   (loop)))

(define (make-generator-procedure thunk)

 ;;
 ;; Make a suspendable procedure that takes no arguments. It is a
 ;; simple generator of values. (One can elaborate on this to have
 ;; the procedure accept an argument upon resumption, like an Icon
 ;; co-expression.)
 ;;
 (define (next-run return)
   (define (my-suspend v)
     (set! return
       (call/cc
        (lambda (resumption-point)
          (set! next-run resumption-point)
          (return v)))))
   (parameterize ((*suspend* my-suspend))
     (suspend (thunk))
     (fail-forever)))
 (lambda ()
   (call/cc next-run)))

(define BLACK 'B) (define WHITE 'W)

(define (flip-color c)

 (if (eq? c BLACK) WHITE BLACK))

(define-record-type <queen>

 (make-queen color rank file)
 queen?
 (color queen-color)
 (rank queen-rank)
 (file queen-file))

(define (serialize-queen queen)

 (string-append (if (eq? (queen-color queen) BLACK) "B" "W")
                "(" (number->string (queen-rank queen))
                "," (number->string (queen-file queen)) ")"))

(define (serialize-queens queens)

 (apply string-append
        (list-sort string<? (map serialize-queen queens))))

(define (queens->string n queens)

 (define board
   (let ((board (make-vector (* n n) #f)))
     (do ((q queens (cdr q)))
         ((null? q))
       (let* ((color (queen-color (car q)))
              (i (queen-rank (car q)))
              (j (queen-file (car q))))
         (vector-set! board (ij->index n i j) color)))
     board))
 (define rule
   (let ((str "+"))
     (do ((j 1 (+ j 1)))
         ((= j (+ n 1)))
       (set! str (string-append str "----+")))
     str))
 (define str "")
 (when (< 0 n)
   (set! str rule)
   (do ((i n (- i 1)))
       ((= i 0))
     (set! str (string-append str "\n"))
     (do ((j 1 (+ j 1)))
         ((= j (+ n 1)))
       (let* ((color (vector-ref board (ij->index n i j)))
              (representation
               (cond ((eq? color #f) "    ")
                     ((eq? color BLACK) "  B ")
                     ((eq? color WHITE) "  W ")
                     (else " ?? "))))
         (set! str (string-append str "|" representation))))
     (set! str (string-append str "|\n" rule))))
 str)

(define (queen-fits-in? queen other-queens)

 (or (null? other-queens)
     (let ((other (car other-queens)))
       (let ((colorq (queen-color queen))
             (rankq (queen-rank queen))
             (fileq (queen-file queen))
             (coloro (queen-color other))
             (ranko (queen-rank other))
             (fileo (queen-file other)))
         (if (eq? colorq coloro)
             (and (or (not (= rankq ranko))
                      (not (= fileq fileo)))
                  (queen-fits-in? queen (cdr other-queens)))
             (and (not (= rankq ranko))
                  (not (= fileq fileo))
                  (not (= (+ rankq fileq) (+ ranko fileo)))
                  (not (= (- rankq fileq) (- ranko fileo)))
                  (queen-fits-in? queen (cdr other-queens))))))))

(define (latest-queen-fits-in? queens)

 (or (null? (cdr queens))
     (queen-fits-in? (car queens) (cdr queens))))

(define (make-peaceful-queens-generator m n)

 (make-generator-procedure
  (lambda ()
    (define solutions '())
    (let loop ((queens (list (make-queen BLACK 1 1)))
               (num-queens 1))
      (define (add-another-queen)
        (let ((color (flip-color (queen-color (car queens)))))
          (loop (cons (make-queen color 1 1) queens)
                (+ num-queens 1))))
      (define (move-a-queen)
        (let drop-one ((queens queens)
                       (num-queens num-queens))
          (if (zero? num-queens)
              (loop '() 0)
              (let* ((latest (car queens))
                     (color (queen-color latest))
                     (rank (queen-rank latest))
                     (file (queen-file latest)))
                (if (and (= rank n) (= file n))
                    (drop-one (cdr queens) (- num-queens 1))
                    (let-values (((rank^ file^)
                                  (advance-ij n rank file)))
                      (loop (cons (make-queen color rank^ file^)
                                  (cdr queens))
                            num-queens)))))))
      (cond ((zero? num-queens)
             ;; There are no more solutions.
             &fail)
            ((latest-queen-fits-in? queens)
             (if (= num-queens (* 2 m))
                 (let ((str (serialize-queens queens)))
                   ;; The current "queens" is a solution.
                   (unless (member str solutions)
                     ;; The current "queens" is a *new* solution.
                     (set! solutions (cons str solutions))
                     (suspend queens))
                   (move-a-queen))
                 (add-another-queen)))
            (else
             (move-a-queen)))))))

(define (ij->index n i j)

 (let ((i1 (- i 1))
       (j1 (- j 1)))
   (+ i1 (* n j1))))

(define (index->ij n index)

 (let-values (((q r) (floor/ index n)))
   (values (+ r 1) (+ q 1))))

(define (advance-ij n i j)

 (index->ij n (+ (ij->index n i j) 1)))

(define args (command-line)) (unless (or (= (length args) 3)

           (= (length args) 4))
 (display "Usage: ")
 (display (list-ref args 0))
 (display " M N [MAX_SOLUTIONS]")
 (newline)
 (exit 1))

(define m (string->number (list-ref args 1))) (define n (string->number (list-ref args 2))) (define max-solutions

 (if (= (length args) 4)
     (string->number (list-ref args 3))
     +inf.0))

(define generate-peaceful-queens

 (make-peaceful-queens-generator m n))

(let loop ((next-solution-number 1))

 (when (<= next-solution-number max-solutions)
   (let ((solution (generate-peaceful-queens)))
     (when (success? solution)
       (display "Solution ")
       (display next-solution-number)
       (newline)
       (display (queens->string n solution))
       (newline)
       (newline)
       (loop (+ next-solution-number 1))))))</lang>
Output:

$ csc -O3 peaceful_queens.scm && ./peaceful_queens 4 5

Solution 1
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+

Solution 2
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

Solution 3
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+

Solution 4
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

Solution 5
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+

Solution 6
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+

Solution 7
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |    |  W |    |  W |
+----+----+----+----+----+
|  B |    |    |    |    |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+

Solution 8
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+

Solution 9
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+

Solution 10
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+

Solution 11
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+

Solution 12
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+

Solution 13
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+

Solution 14
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+
|    |    |  B |    |    |
+----+----+----+----+----+
|  W |    |    |    |  W |
+----+----+----+----+----+

Solution 15
+----+----+----+----+----+
|    |  B |    |  B |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+
|    |    |    |    |  B |
+----+----+----+----+----+
|  W |    |  W |    |    |
+----+----+----+----+----+

Solution 16
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+

Solution 17
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+

Solution 18
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |    |  B |    |  B |
+----+----+----+----+----+
|  W |    |    |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+

All non-equivalent solutions

Works with: CHICKEN version 5.3.0

<lang scheme>;;;

Solutions to the Peaceful Chess Queen Armies puzzle, in R7RS
Scheme. This implementation returns only one of each equivalent
solution. See https://oeis.org/A260680
I weed out equivalent solutions by comparing them tediously
against solutions already found.
(At least when compiled with CHICKEN 5.3.0, this program gets kind
of slow for m=5, n=6, once you get past having found the 35
non-equivalent solutions. There are still other, equivalent
solutions to eliminate.)
https://rosettacode.org/wiki/Peaceful_chess_queen_armies

(cond-expand

 (r7rs)
 (chicken (import (r7rs))))

(import (scheme process-context))

(define-record-type <&fail>

 (make-the-one-unique-&fail-that-you-must-not-make-twice)
 do-not-use-this:&fail?)

(define &fail

 (make-the-one-unique-&fail-that-you-must-not-make-twice))

(define (failure? f)

 (eq? f &fail))

(define (success? f)

 (not (failure? f)))

(define *suspend*

 (make-parameter (lambda (x) x)))

(define (suspend v)

 ((*suspend*) v))

(define (fail-forever)

 (let loop ()
   (suspend &fail)
   (loop)))

(define (make-generator-procedure thunk)

 ;;
 ;; Make a suspendable procedure that takes no arguments. It is a
 ;; simple generator of values. (One can elaborate on this to have
 ;; the procedure accept an argument upon resumption, like an Icon
 ;; co-expression.)
 ;;
 (define (next-run return)
   (define (my-suspend v)
     (set! return
       (call/cc
        (lambda (resumption-point)
          (set! next-run resumption-point)
          (return v)))))
   (parameterize ((*suspend* my-suspend))
     (suspend (thunk))
     (fail-forever)))
 (lambda ()
   (call/cc next-run)))

(define (isqrt m)

 ;; Integer Newton’s method. See
 ;; https://en.wikipedia.org/w/index.php?title=Integer_square_root&oldid=1074473475#Using_only_integer_division
 (let ((k (truncate-quotient m 2)))
   (if (zero? k)
       m
       (let loop ((k k)
                  (k^ (truncate-quotient
                       (+ k (truncate-quotient m k)) 2)))
         (if (< k^ k)
             (loop k^ (truncate-quotient
                       (+ k^ (truncate-quotient m k^)) 2))
             k)))))

(define (ij->index n i j)

 (let ((i1 (- i 1))
       (j1 (- j 1)))
   (+ i1 (* n j1))))

(define (index->ij n index)

 (let-values (((q r) (floor/ index n)))
   (values (+ r 1) (+ q 1))))

(define (advance-ij n i j)

 (index->ij n (+ (ij->index n i j) 1)))

(define (index-rotate90 n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n (- n j -1) i)))

(define (index-rotate180 n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n (- n i -1) (- n j -1))))

(define (index-rotate270 n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n j (- n i -1))))

(define (index-reflecti n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n (- n i -1) j)))

(define (index-reflectj n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n i (- n j -1))))

(define (index-reflect-diag-down n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n j i)))

(define (index-reflect-diag-up n index)

 (let-values (((i j) (index->ij n index)))
   (ij->index n (- n j -1) (- n i -1))))

(define BLACK 'B) (define WHITE 'W)

(define (reverse-color c)

 (cond ((eq? c WHITE) BLACK)
       ((eq? c BLACK) WHITE)
       (else c)))

(define (pick-color-adjuster c)

 (if (eq? c WHITE)
     reverse-color
     (lambda (x) x)))

(define-record-type <queen>

 (make-queen color rank file)
 queen?
 (color queen-color)
 (rank queen-rank)
 (file queen-file))

(define (queens->board queens)

 (let ((board (make-vector (* n n) #f)))
   (do ((q queens (cdr q)))
       ((null? q))
     (let* ((color (queen-color (car q)))
            (i (queen-rank (car q)))
            (j (queen-file (car q))))
       (vector-set! board (ij->index n i j) color)))
   board))

(define-syntax board-partial-equiv?

 (syntax-rules ()
   ((_ board1 board2 n*n n reindex recolor)
    (let loop ((i 0))
      (or (= i n*n)
          (let ((color1 (vector-ref board1 i))
                (color2 (recolor (vector-ref board2 (reindex n i)))))
            (and (eq? color1 color2)
                 (loop (+ i 1)))))))))

(define (board-equiv? board1 board2)

 (define (identity x) x)
 (define (2nd-argument n i) i)
 (let ((n*n (vector-length board1)))
   (or (board-partial-equiv? board1 board2 n*n #f
                             2nd-argument identity)
       (board-partial-equiv? board1 board2 n*n #f
                             2nd-argument reverse-color)
       (let ((n (isqrt n*n)))
         (or (board-partial-equiv? board1 board2 n*n n
                                   index-rotate90
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-rotate90
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-rotate180
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-rotate180
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-rotate270
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-rotate270
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflecti
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflecti
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflectj
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflectj
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflect-diag-down
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflect-diag-down
                                   reverse-color)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflect-diag-up
                                   identity)
             (board-partial-equiv? board1 board2 n*n n
                                   index-reflect-diag-up
                                   reverse-color) )))))

(define (queens->string n queens)

 (define board (queens->board queens))
 (define rule
   (let ((str "+"))
     (do ((j 1 (+ j 1)))
         ((= j (+ n 1)))
       (set! str (string-append str "----+")))
     str))
 (define str "")
 (when (< 0 n)
   (set! str rule)
   (do ((i n (- i 1)))
       ((= i 0))
     (set! str (string-append str "\n"))
     (do ((j 1 (+ j 1)))
         ((= j (+ n 1)))
       (let* ((color (vector-ref board (ij->index n i j)))
              (representation
               (cond ((eq? color #f) "    ")
                     ((eq? color BLACK) "  B ")
                     ((eq? color WHITE) "  W ")
                     (else " ?? "))))
         (set! str (string-append str "|" representation))))
     (set! str (string-append str "|\n" rule))))
 str)

(define (queen-fits-in? queen other-queens)

 (or (null? other-queens)
     (let ((other (car other-queens)))
       (let ((colorq (queen-color queen))
             (rankq (queen-rank queen))
             (fileq (queen-file queen))
             (coloro (queen-color other))
             (ranko (queen-rank other))
             (fileo (queen-file other)))
         (if (eq? colorq coloro)
             (and (or (not (= rankq ranko))
                      (not (= fileq fileo)))
                  (queen-fits-in? queen (cdr other-queens)))
             (and (not (= rankq ranko))
                  (not (= fileq fileo))
                  (not (= (+ rankq fileq) (+ ranko fileo)))
                  (not (= (- rankq fileq) (- ranko fileo)))
                  (queen-fits-in? queen (cdr other-queens))))))))

(define (latest-queen-fits-in? queens)

 (or (null? (cdr queens))
     (queen-fits-in? (car queens) (cdr queens))))

(define (make-peaceful-queens-generator m n)

 (make-generator-procedure
  (lambda ()
    (define solutions '())
    (let loop ((queens (list (make-queen BLACK 1 1)))
               (num-queens 1))
      (define (add-another-queen)
        (let ((color (reverse-color (queen-color (car queens)))))
          (loop (cons (make-queen color 1 1) queens)
                (+ num-queens 1))))
      (define (move-a-queen)
        (let drop-one ((queens queens)
                       (num-queens num-queens))
          (if (zero? num-queens)
              (loop '() 0)
              (let* ((latest (car queens))
                     (color (queen-color latest))
                     (rank (queen-rank latest))
                     (file (queen-file latest)))
                (if (and (= rank n) (= file n))
                    (drop-one (cdr queens) (- num-queens 1))
                    (let-values (((rank^ file^)
                                  (advance-ij n rank file)))
                      (loop (cons (make-queen color rank^ file^)
                                  (cdr queens))
                            num-queens)))))))
      (cond ((zero? num-queens)
             ;; There are no more solutions.
             &fail)
            ((latest-queen-fits-in? queens)
             (if (= num-queens (* 2 m))
                 (let ((board (queens->board queens)))
                   ;; The current "queens" is a solution.
                   (unless (member board solutions board-equiv?)
                     ;; The current "queens" is a *new* solution.
                     (set! solutions (cons board solutions))
                     (suspend queens))
                   (move-a-queen))
                 (add-another-queen)))
            (else
             (move-a-queen)))))))

(define args (command-line)) (unless (or (= (length args) 3)

           (= (length args) 4))
 (display "Usage: ")
 (display (list-ref args 0))
 (display " M N [MAX_SOLUTIONS]")
 (newline)
 (exit 1))

(define m (string->number (list-ref args 1))) (define n (string->number (list-ref args 2))) (define max-solutions

 (if (= (length args) 4)
     (string->number (list-ref args 3))
     +inf.0))

(define generate-peaceful-queens

 (make-peaceful-queens-generator m n))

(let loop ((next-solution-number 1))

 (when (<= next-solution-number max-solutions)
   (let ((solution (generate-peaceful-queens)))
     (when (success? solution)
       (display "Solution ")
       (display next-solution-number)
       (newline)
       (display (queens->string n solution))
       (newline)
       (newline)
       (loop (+ next-solution-number 1))))))</lang>
Output:

$ csc -O5 peaceful_queens2.scm && ./peaceful_queens2 4 5

Solution 1
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |  W |    |    |
+----+----+----+----+----+
|  B |    |    |    |  B |
+----+----+----+----+----+

Solution 2
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

Solution 3
+----+----+----+----+----+
|    |  W |    |  W |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+
|    |    |    |    |  W |
+----+----+----+----+----+
|  B |    |  B |    |    |
+----+----+----+----+----+

Swift

Translation of: Kotlin

<lang swift>enum Piece {

 case empty, black, white

}

typealias Position = (Int, Int)

func place(_ m: Int, _ n: Int, pBlackQueens: inout [Position], pWhiteQueens: inout [Position]) -> Bool {

 guard m != 0 else {
   return true
 }
 var placingBlack = true
 for i in 0..<n {
   inner: for j in 0..<n {
     let pos = (i, j)
     for queen in pBlackQueens where queen == pos || !placingBlack && isAttacking(queen, pos) {
       continue inner
     }
     for queen in pWhiteQueens where queen == pos || placingBlack && isAttacking(queen, pos) {
       continue inner
     }
     if placingBlack {
       pBlackQueens.append(pos)
       placingBlack = false
     } else {
       placingBlack = true
       pWhiteQueens.append(pos)
       if place(m - 1, n, pBlackQueens: &pBlackQueens, pWhiteQueens: &pWhiteQueens) {
         return true
       } else {
         pBlackQueens.removeLast()
         pWhiteQueens.removeLast()
       }
     }
   }
 }
 if !placingBlack {
   pBlackQueens.removeLast()
 }
 return false

}

func isAttacking(_ queen: Position, _ pos: Position) -> Bool {

 queen.0 == pos.0 || queen.1 == pos.1 || abs(queen.0 - pos.0) == abs(queen.1 - pos.1)

}

func printBoard(n: Int, pBlackQueens: [Position], pWhiteQueens: [Position]) {

 var board = Array(repeating: Piece.empty, count: n * n)
 for queen in pBlackQueens {
   board[queen.0 * n + queen.1] = .black
 }
 for queen in pWhiteQueens {
   board[queen.0 * n + queen.1] = .white
 }
 for (i, p) in board.enumerated() {
   if i != 0 && i % n == 0 {
     print()
   }
   switch p {
   case .black:
     print("B ", terminator: "")
   case .white:
     print("W ", terminator: "")
   case .empty:
     let j = i / n
     let k = i - j * n
     if j % 2 == k % 2 {
       print("• ", terminator: "")
     } else {
       print("◦ ", terminator: "")
     }
   }
 }
 print("\n")

}

let nms = [

 (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),
 (5, 1), (5, 2), (5, 3), (5, 4), (5, 5),
 (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),
 (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7)

]

for (n, m) in nms {

 print("\(m) black and white queens on \(n) x \(n) board")
 var blackQueens = [Position]()
 var whiteQueens = [Position]()
 if place(m, n, pBlackQueens: &blackQueens, pWhiteQueens: &whiteQueens) {
   printBoard(n: n, pBlackQueens: blackQueens, pWhiteQueens: whiteQueens)
 } else {
   print("No solution")
 }

}</lang>

Output:
1 black and white queens on 2 x 2 board
No solution
1 black and white queens on 3 x 3 board
B ◦ • 
◦ • W 
• ◦ • 

2 black and white queens on 3 x 3 board
No solution
1 black and white queens on 4 x 4 board
B ◦ • ◦ 
◦ • W • 
• ◦ • ◦ 
◦ • ◦ • 

2 black and white queens on 4 x 4 board
B ◦ • ◦ 
◦ • W • 
B ◦ • ◦ 
◦ • W • 

3 black and white queens on 4 x 4 board
No solution
1 black and white queens on 5 x 5 board
B ◦ • ◦ • 
◦ • W • ◦ 
• ◦ • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

2 black and white queens on 5 x 5 board
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ • ◦ 
• ◦ • ◦ • 

3 black and white queens on 5 x 5 board
B ◦ • ◦ B 
◦ • W • ◦ 
• W • ◦ • 
◦ • ◦ B ◦ 
• W • ◦ • 

4 black and white queens on 5 x 5 board
• B • B • 
◦ • ◦ • B 
W ◦ W ◦ • 
◦ • ◦ • B 
W ◦ W ◦ • 

5 black and white queens on 5 x 5 board
No solution
1 black and white queens on 6 x 6 board
B ◦ • ◦ • ◦ 
◦ • W • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

2 black and white queens on 6 x 6 board
B ◦ • ◦ B ◦ 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ • ◦ • ◦ 
◦ • ◦ • ◦ • 

3 black and white queens on 6 x 6 board
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ • 
• ◦ W ◦ • ◦ 
◦ • ◦ • ◦ • 

4 black and white queens on 6 x 6 board
B ◦ • ◦ B B 
◦ • W • ◦ • 
• W • ◦ • ◦ 
◦ • ◦ • ◦ B 
• ◦ W W • ◦ 
◦ • ◦ • ◦ • 

5 black and white queens on 6 x 6 board
• B • ◦ B ◦ 
◦ • ◦ B ◦ B 
W ◦ • ◦ • ◦ 
W • W • ◦ • 
• ◦ • ◦ • B 
W • W • ◦ • 

6 black and white queens on 6 x 6 board
No solution
1 black and white queens on 7 x 7 board
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

2 black and white queens on 7 x 7 board
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

3 black and white queens on 7 x 7 board
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

4 black and white queens on 7 x 7 board
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 
◦ • ◦ • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

5 black and white queens on 7 x 7 board
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ • ◦ • 
◦ • W • ◦ • ◦ 
• ◦ • ◦ • ◦ • 

6 black and white queens on 7 x 7 board
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
B ◦ • ◦ B ◦ • 
◦ • W • ◦ • W 
• ◦ • ◦ • ◦ • 

7 black and white queens on 7 x 7 board
• B • ◦ • B • 
◦ B ◦ • B • ◦ 
• B • ◦ • B • 
◦ • ◦ • B • ◦ 
W ◦ W ◦ • ◦ W 
◦ • ◦ W ◦ • ◦ 
W ◦ W W • ◦ •

Wren

Translation of: Kotlin
Library: Wren-dynamic

<lang ecmascript>import "/dynamic" for Enum, Tuple

var Piece = Enum.create("Piece", ["empty", "black", "white"])

var Pos = Tuple.create("Pos", ["x", "y"])

var isAttacking = Fn.new { |q, pos|

   return q.x == pos.x || q.y == pos.y || (q.x - pos.x).abs == (q.y - pos.y).abs

}

var place // recursive place = Fn.new { |m, n, blackQueens, whiteQueens|

   if (m == 0) return true
   var placingBlack = true
   for (i in 0...n) {        
       for (j in 0...n) {
           var pos = Pos.new(i, j)
           var inner = false
           for (queen in blackQueens) {
               var equalPos = queen.x == pos.x && queen.y == pos.y
               if (equalPos || !placingBlack && isAttacking.call(queen, pos)) {
                   inner = true
                   break
               }
           }
           if (!inner) {
               for (queen in whiteQueens) {
                   var equalPos = queen.x == pos.x && queen.y == pos.y
                   if (equalPos || placingBlack && isAttacking.call(queen, pos)) {
                       inner = true
                       break
                   }
               }
               if (!inner) {
                   if (placingBlack) {
                       blackQueens.add(pos)
                       placingBlack = false
                   } else {
                       whiteQueens.add(pos)
                       if (place.call(m-1, n, blackQueens, whiteQueens)) return true
                       blackQueens.removeAt(-1)
                       whiteQueens.removeAt(-1)
                       placingBlack = true
                   }
               }
           }
       }
   }
   if (!placingBlack) blackQueens.removeAt(-1)
   return false

}

var printBoard = Fn.new { |n, blackQueens, whiteQueens|

   var board = List.filled(n * n, 0)
   for (queen in blackQueens) board[queen.x * n + queen.y] = Piece.black
   for (queen in whiteQueens) board[queen.x * n + queen.y] = Piece.white
   var i = 0
   for (b in board) {
       if (i != 0 && i%n == 0) System.print()
       if (b == Piece.black) {
           System.write("B ")
       } else if (b == Piece.white) {
           System.write("W ")
       } else {
           var j = (i/n).floor
           var k = i - j*n
           if (j%2 == k%2) {
               System.write("• ")
           } else {
               System.write("◦ ")
           }
       }
       i = i + 1
   }
   System.print("\n")

}

var nms = [

   Pos.new(2, 1), Pos.new(3, 1), Pos.new(3, 2), Pos.new(4, 1), Pos.new(4, 2), Pos.new(4, 3),
   Pos.new(5, 1), Pos.new(5, 2), Pos.new(5, 3), Pos.new(5, 4), Pos.new(5, 5),
   Pos.new(6, 1), Pos.new(6, 2), Pos.new(6, 3), Pos.new(6, 4), Pos.new(6, 5), Pos.new(6, 6),
   Pos.new(7, 1), Pos.new(7, 2), Pos.new(7, 3), Pos.new(7, 4), Pos.new(7, 5), Pos.new(7, 6), Pos.new(7, 7)

] for (p in nms) {

   System.print("%(p.y) black and %(p.y) white queens on a %(p.x) x %(p.x) board:")
   var blackQueens = []
   var whiteQueens = []
   if (place.call(p.y, p.x, blackQueens, whiteQueens)) {
       printBoard.call(p.x, blackQueens, whiteQueens)
   } else {
       System.print("No solution exists.\n")
   }

}</lang>

Output:
Same as Kotlin entry.

zkl

<lang zkl>fcn isAttacked(q, x,y) // ( (r,c), x,y ) : is queen at r,c attacked by q@(x,y)?

  { r,c:=q; (r==x or c==y or r+c==x+y or r-c==x-y) }

fcn isSafe(r,c,qs) // queen safe at (r,c)?, qs=( (r,c),(r,c)..)

  { ( not qs.filter1(isAttacked,r,c) ) }

fcn isEmpty(r,c,qs){ (not (qs and qs.filter1('wrap([(x,y)]){ r==x and c==y })) ) } fcn _peacefulQueens(N,M,qa,qb){ //--> False | (True,((r,c)..),((r,c)..) )

  // qa,qb -->  // ( (r,c),(r,c).. ), solution so far to last good spot
  if(qa.len()==M==qb.len()) return(True,qa,qb);
  n, x,y := N, 0,0;
  if(qa) x,y = qa[-1]; else n=(N+1)/2;  // first queen, first quadrant only
  foreach r in ([x..n-1]){
     foreach c in ([y..n-1]){

if(isEmpty(r,c,qa) and isSafe(r,c,qb)){ qc,qd := qa.append(T(r,c)), self.fcn(N,M, qb,qc); if(qd) return( if(qd[0]==True) qd else T(qc,qd) ); }

     }
     y=0
  }
  False

}

fcn peacefulQueens(N=5,M=4){ # NxN board, M white and black queens

  qs:=_peacefulQueens(N,M, T,T);
  println("Solution for %dx%d board with %d black and %d white queens:".fmt(N,N,M,M));
  if(not qs)println("None");
  else{
     z:=Data(Void,"-"*N*N);
     foreach r,c in (qs[1]){ z[r*N + c]="W" }
     foreach r,c in (qs[2]){ z[r*N + c]="B" }
     z.text.pump(Void,T(Void.Read,N-1),"println");
  }   

}</lang> <lang zkl>peacefulQueens(); foreach n in ([4..10]){ peacefulQueens(n,n) }</lang>

Output:
Solution for 5x5 board with 4 black and 4 white queens:
W---W
--B--
-B-B-
--B--
W---W
Solution for 4x4 board with 4 black and 4 white queens:
None
Solution for 5x5 board with 5 black and 5 white queens:
None
Solution for 6x6 board with 6 black and 6 white queens:
None
Solution for 7x7 board with 7 black and 7 white queens:
W---W-W
--B----
-B-B-B-
--B----
W-----W
--BB---
W-----W
Solution for 8x8 board with 8 black and 8 white queens:
W---W---
--B---BB
W---W---
--B---B-
---B---B
-W---W--
W---W---
--B-----
Solution for 9x9 board with 9 black and 9 white queens:
W---W---W
--B---B--
-B---B---
---W---W-
-B---B---
---W---W-
-B---B---
---W---W-
-B-------
Solution for 10x10 board with 10 black and 10 white queens:
W---W---WW
--B---B---
-B-B------
-----W-W-W
-BBB------
-----W-W-W
-B--------
------B---
---B------
----------