Numerical integration: Difference between revisions

m
syntax highlighting fixup automation
m (syntax highlighting fixup automation)
Line 48:
{{trans|Nim}}
 
<langsyntaxhighlight lang="11l">F left_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x)
 
Line 87:
(simpson, ‘simpson’)]
print("#. integrated using #.\n from #. to #. (#. steps) = #.".format(
func_name, rule_name, a, b, steps, integrate(func, a, b, steps, rule)))</langsyntaxhighlight>
 
{{out}}
Line 135:
=={{header|ActionScript}}==
Integration functions:
<langsyntaxhighlight ActionScriptlang="actionscript">function leftRect(f:Function, a:Number, b:Number, n:uint):Number
{
var sum:Number = 0;
Line 185:
}
return (dx/6) * (f(a) + f(b) + 4*sum1 + 2*sum2);
}</langsyntaxhighlight>
Usage:
<langsyntaxhighlight ActionScriptlang="actionscript">function f1(n:Number):Number {
return (2/(1+ 4*(n*n)));
}
Line 195:
trace(trapezium(f1, -1, 2 ,4 ));
trace(simpson(f1, -1, 2 ,4 ));
</syntaxhighlight>
</lang>
 
=={{header|Ada}}==
Specification of a generic package implementing the five specified kinds of numerical integration:
<langsyntaxhighlight lang="ada">generic
type Scalar is digits <>;
with function F (X : Scalar) return Scalar;
Line 208:
function Trapezium (A, B : Scalar; N : Positive) return Scalar;
function Simpsons (A, B : Scalar; N : Positive) return Scalar;
end Integrate;</langsyntaxhighlight>
An alternative solution is to pass a function reference to the integration function. This solution is probably slightly faster, and works even with Ada83. One could also make each integration function generic, instead of making the whole package generic.
 
Body of the package implementing numerical integration:
<langsyntaxhighlight lang="ada">package body Integrate is
function Left_Rectangular (A, B : Scalar; N : Positive) return Scalar is
H : constant Scalar := (B - A) / Scalar (N);
Line 275:
return (H / 3.0) * (F (A) + F (B) + 4.0 * Sum_U + 2.0 * Sum_E);
end Simpsons;
end Integrate;</langsyntaxhighlight>
 
Test driver:
<langsyntaxhighlight lang="ada">with Ada.Text_IO, Ada.Integer_Text_IO;
with Integrate;
 
Line 382:
end X;
end Numerical_Integration;
</syntaxhighlight>
</lang>
 
=={{header|ALGOL 68}}==
<langsyntaxhighlight lang="algol68">MODE F = PROC(LONG REAL)LONG REAL;
 
###############
Line 502:
test integrators( "x ", ( LONG REAL x )LONG REAL: x, 0, 6 000, 6 000 000 );
 
SKIP</langsyntaxhighlight>
{{out}}
<pre>
Line 513:
=={{header|ALGOL W}}==
{{Trans|ALGOL 68}}
<langsyntaxhighlight lang="algolw">begin % compare some numeric integration methods %
 
long real procedure leftRect ( long real procedure f
Line 641:
testIntegrators2( "x ", xValue, 0, 6000, 6000000 )
end
end.</langsyntaxhighlight>
 
=={{header|AutoHotkey}}==
ahk [http://www.autohotkey.com/forum/viewtopic.php?t=44657&postdays=0&postorder=asc&start=139 discussion]
<langsyntaxhighlight lang="autohotkey">MsgBox % Rect("fun", 0, 1, 10,-1) ; 0.45 left
MsgBox % Rect("fun", 0, 1, 10) ; 0.50 mid
MsgBox % Rect("fun", 0, 1, 10, 1) ; 0.55 right
Line 679:
fun(x) { ; linear test function
Return x
}</langsyntaxhighlight>
 
=={{header|BASIC}}==
{{works with|QuickBasic|4.5}}
{{trans|Java}}
<langsyntaxhighlight lang="qbasic">FUNCTION leftRect(a, b, n)
h = (b - a) / n
sum = 0
Line 734:
 
simpson = h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
END FUNCTION</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> *FLOAT64
@% = 12 : REM Column width
Line 807:
NEXT
x = a
= (d / 6) * (f + EVAL(x$) + 4 * s1 + 2 * s2)</langsyntaxhighlight>
'''Output:'''
<pre>
Line 818:
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <math.h>
Line 875:
 
return h / 6.0 * (func(from) + func(to) + 4.0 * sum1 + 2.0 * sum2);
}</langsyntaxhighlight>
 
<langsyntaxhighlight lang="c">/* test */
double f3(double x)
{
Line 947:
printf("\n");
}
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
Line 1,068:
TestApproximationMethods(new DefiniteIntegral(x => x, new Interval(0, 6000)), 6000000);
}
}</langsyntaxhighlight>
Output:
<syntaxhighlight lang="text">0.2499500025
0.24999999875
0.2500500025
Line 1,089:
18000003
18000000
18000000</langsyntaxhighlight>
 
=={{header|C++}}==
 
Due to their similarity, it makes sense to make the integration method a policy.
<langsyntaxhighlight lang="cpp">// the integration routine
template<typename Method, typename F, typename Float>
double integrate(F f, Float a, Float b, int steps, Method m)
Line 1,156:
double rr = integrate(f, 0.0, 1.0, 10, rectangular(rectangular::right));
double t = integrate(f, 0.0, 1.0, 10, trapezium());
double s = integrate(f, 0.0, 1.0, 10, simpson());</langsyntaxhighlight>
 
=={{header|Chapel}}==
<langsyntaxhighlight lang="chapel">
proc f1(x:real):real {
return x**3;
Line 1,289:
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
f(x) = x**3 with 100 steps from 0 to 1
leftRectangleIntegration: calculated = 0.245025; exact = 0.25; difference = 0.004975
Line 1,319:
trapezoidIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 3.72529e-09
simpsonsIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 0.0
</syntaxhighlight>
</lang>
 
=={{header|CoffeeScript}}==
{{trans|python}}
<langsyntaxhighlight lang="coffeescript">
rules =
left_rect: (f, x, h) -> f(x)
Line 1,357:
result = integrate func, a, b, steps, rule
console.log rule_name, result
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
> coffee numerical_integration.coffee
-- tests for cube with 100 steps from 0 to 1
Line 1,385:
trapezium 17999999.999999993
simpson 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Comal}}==
{{works with|OpenComal on Linux}}
<syntaxhighlight lang="comal">
<lang Comal>
1000 PRINT "F(X)";" FROM";" TO";" L-Rect";" M-Rect";" R-Rect ";" Trapez";" Simpson"
1010 fromval:=0
Line 1,484:
1920 RETURN x
1930 ENDFUNC
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,496:
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun left-rectangle (f a b n &aux (d (/ (- b a) n)))
(* d (loop for x from a below b by d summing (funcall f x))))
 
Line 1,522:
(funcall f b)
(* 4 sum1)
(* 2 sum2))))))</langsyntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,587:
writeln();
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left: 0.202500
Line 1,614:
===A faster version===
This version avoids function pointers and delegates, same output:
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,684:
writeln();
}
}</langsyntaxhighlight>
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{Trans|Python}}
<langsyntaxhighlight Delphilang="delphi">program Numerical_integration;
 
{$APPTYPE CONSOLE}
Line 1,785:
end;
readln;
end.</langsyntaxhighlight>
{{out}}
<pre>Integrate x^3
Line 1,815:
{{trans|Python}}
 
<langsyntaxhighlight lang="e">pragma.enable("accumulator")
 
def leftRect(f, x, h) {
Line 1,840:
def h := (b-a) / steps
return h * accum 0 for i in 0..!steps { _ + meth(f, a+i*h, h) }
}</langsyntaxhighlight>
<langsyntaxhighlight lang="e">? integrate(fn x { x ** 2 }, 3.0, 7.0, 30, simpson)
# value: 105.33333333333334
 
? integrate(fn x { x ** 9 }, 0, 1, 300, simpson)
# value: 0.10000000002160479</langsyntaxhighlight>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">defmodule Numerical do
@funs ~w(leftrect midrect rightrect trapezium simpson)a
Line 1,884:
f4 = fn x -> x end
IO.puts "\nf(x) = x, where x is [0,6000], with 6,000,000 approximations."
Numerical.integrate(f4, 0, 6000, 6_000_000)</langsyntaxhighlight>
 
{{out}}
Line 1,918:
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function int_leftrect(sequence bounds, integer n, integer func_id)
atom h, sum
h = (bounds[2]-bounds[1])/n
Line 1,996:
? int_rightrect({0,10},1000,routine_id("x"))
? int_midrect({0,10},1000,routine_id("x"))
? int_simpson({0,10},1000,routine_id("x"))</langsyntaxhighlight>
 
Output:
Line 2,016:
 
=={{header|F Sharp}}==
<langsyntaxhighlight lang="fsharp">
// integration methods
let left f dx x = f x * dx
Line 2,042:
|> Seq.map (fun ((f, a, b, n), method) -> integrate a b f n method)
|> Seq.iter (printfn "%f")
</syntaxhighlight>
</lang>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">
USE: math.functions
IN: scratchpad 0 1 [ 3 ^ ] integrate-simpson .
Line 2,057:
IN: scratchpad 6000000 num-steps set-global
IN: scratchpad 0 6000 [ ] integrate-simpson .
18000000</langsyntaxhighlight>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">fvariable step
 
defer method ( fn F: x -- fn[x] )
Line 2,099:
test mid fn2 \ 2.496091
test trap fn2 \ 2.351014
test simpson fn2 \ 2.447732</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 95 and later if function f() is not already defined to be "elemental", define an elemental wrapper function around it to allow for array-based initialization:
<langsyntaxhighlight lang="fortran">elemental function elemf(x)
real :: elemf, x
elemf = f(x)
end function elemf</langsyntaxhighlight>
 
Use Array Initializers, Pointers, Array invocation of Elemental functions, Elemental array-array and array-scalar arithmetic, and the SUM intrinsic function. Methods are collected into a single function in a module.
<langsyntaxhighlight lang="fortran">module Integration
implicit none
 
Line 2,183:
end function integrate
 
end module Integration</langsyntaxhighlight>
 
Usage example:
<langsyntaxhighlight lang="fortran">program IntegrationTest
use Integration
use FunctionHolder
Line 2,197:
print *, integrate(afun, 0., 3**(1/3.), method='trapezoid')
 
end program IntegrationTest</langsyntaxhighlight>
 
The FunctionHolder module:
 
<langsyntaxhighlight lang="fortran">module FunctionHolder
implicit none
Line 2,213:
end function afun
end module FunctionHolder</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
Based on the BASIC entry and the BBC BASIC entry
<langsyntaxhighlight lang="freebasic">' version 17-09-2015
' compile with: fbc -s console
 
Line 2,341:
Print : Print "hit any key to end program"
Sleep
End</langsyntaxhighlight>
{{out}}
<pre>function range steps leftrect midrect rightrect trap simpson
Line 2,350:
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 2,513:
fmt.Println("")
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 2,554:
=={{header|Groovy}}==
Solution:
<langsyntaxhighlight lang="groovy">def assertBounds = { List bounds, int nRect ->
assert (bounds.size() == 2) && (bounds[0] instanceof Double) && (bounds[1] instanceof Double) && (nRect > 0)
}
Line 2,597:
h/3*((fLeft + fRight).sum() + 4*(fMid.sum()))
}
}</langsyntaxhighlight>
 
Test:
 
Each "nRect" (number of rectangles) value given below is the minimum value that meets the tolerance condition for the given circumstances (function-to-integrate, integral-type and integral-bounds).
<langsyntaxhighlight lang="groovy">double tolerance = 0.0001 // allowable "wrongness", ensures accuracy to 1 in 10,000
 
double sinIntegralCalculated = -(Math.cos(Math.PI) - Math.cos(0d))
Line 2,641:
assert ((simpsonsIntegral([0d, Math.PI], 1, cubicPoly) - cpIntegralCalc0ToPI)/ cpIntegralCalc0ToPI).abs() < tolerance**2.75 // 1 in 100 billion
double cpIntegralCalcMinusEToPI = (cubicPolyAntiDeriv(Math.PI) - cubicPolyAntiDeriv(-Math.E))
assert ((simpsonsIntegral([-Math.E, Math.PI], 1, cubicPoly) - cpIntegralCalcMinusEToPI)/ cpIntegralCalcMinusEToPI).abs() < tolerance**2.5 // 1 in 10 billion</langsyntaxhighlight>
 
Requested Demonstrations:
<langsyntaxhighlight lang="groovy">println "f(x) = x**3, where x is [0,1], with 100 approximations. The exact result is 1/4, or 0.25."
println ([" LeftRect": leftRectIntegral([0d, 1d], 100) { it**3 }])
println (["RightRect": rightRectIntegral([0d, 1d], 100) { it**3 }])
Line 2,674:
println (["Trapezoid": trapezoidIntegral([0d, 6000d], 6000000) { it }])
println ([" Simpsons": simpsonsIntegral([0d, 6000d], 6000000) { it }])
println ()</langsyntaxhighlight>
 
Output:
Line 2,709:
Different approach from most of the other examples: First, the function ''f'' might be expensive to calculate, and so it should not be evaluated several times. So, ideally, we want to have positions ''x'' and weights ''w'' for each method and then just calculate the approximation of the integral by
 
<langsyntaxhighlight lang="haskell">approx f xs ws = sum [w * f x | (x,w) <- zip xs ws]</langsyntaxhighlight>
 
Second, let's to generalize all integration methods into one scheme. The methods can all be characterized by the coefficients ''vs'' they use in a particular interval. These will be fractions, and for terseness, we extract the denominator as an extra argument ''v''.
Line 2,715:
Now there are the closed formulas (which include the endpoints) and the open formulas (which exclude them). Let's do the open formulas first, because then the coefficients don't overlap:
<langsyntaxhighlight lang="haskell">integrateOpen :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateOpen v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs) * n
Line 2,721:
ws = concat $ replicate n vs
c = a + h/2
xs = [c + h * fromIntegral i | i <- [0..m-1]]</langsyntaxhighlight>
 
Similarly for the closed formulas, but we need an additional function ''overlap'' which sums the coefficients overlapping at the interior interval boundaries:
<langsyntaxhighlight lang="haskell">integrateClosed :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateClosed v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs - 1) * n
Line 2,738:
inter n [] = x : inter (n-1) xs
inter n [y] = (x+y) : inter (n-1) xs
inter n (y:ys) = y : inter n ys</langsyntaxhighlight>
 
And now we can just define
 
<langsyntaxhighlight lang="haskell">intLeftRect = integrateClosed 1 [1,0]
intRightRect = integrateClosed 1 [0,1]
intMidRect = integrateOpen 1 [1]
intTrapezium = integrateClosed 2 [1,1]
intSimpson = integrateClosed 3 [1,4,1]</langsyntaxhighlight>
 
or, as easily, some additional schemes:
 
<langsyntaxhighlight lang="haskell">intMilne = integrateClosed 45 [14,64,24,64,14]
intOpen1 = integrateOpen 2 [3,3]
intOpen2 = integrateOpen 3 [8,-4,8]</langsyntaxhighlight>
 
Some examples:
Line 2,769:
The whole program:
 
<langsyntaxhighlight lang="haskell">approx
:: Fractional a
=> (a1 -> a) -> [a1] -> [a] -> a
Line 2,857:
integrations
where
indent n = take n . (++ replicate n ' ')</langsyntaxhighlight>
{{Out}}
<pre>f(x) = x^3 [0.0,1.0] (100 approximations)
Line 2,890:
=={{header|J}}==
===Solution:===
<langsyntaxhighlight lang="j">integrate=: adverb define
'a b steps'=. 3{.y,128
size=. (b - a)%steps
Line 2,900:
trapezium=: adverb def '-: +/ u y'
 
simpson =: adverb def '6 %~ +/ 1 1 4 * u y, -:+/y'</langsyntaxhighlight>
===Example usage===
====Required Examples====
<langsyntaxhighlight lang="j"> Ir=: rectangle integrate
It=: trapezium integrate
Is=: simpson integrate
Line 2,930:
1.8e7
] Is 0 6000 6e6
1.8e7</langsyntaxhighlight>
====Older Examples====
Integrate <code>square</code> (<code>*:</code>) from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> *: rectangle integrate 0 1p1 10
10.3095869962
*: trapezium integrate 0 1p1 10
10.3871026879
*: simpson integrate 0 1p1 10
10.3354255601</langsyntaxhighlight>
Integrate <code>sin</code> from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> sin=: 1&o.
sin rectangle integrate 0 1p1 10
2.00824840791
Line 2,946:
1.98352353751
sin simpson integrate 0 1p1 10
2.00000678444</langsyntaxhighlight>
===Aside===
Note that J has a primitive verb <code>p..</code> for integrating polynomials. For example the integral of <math>x^2</math> (which can be described in terms of its coefficients as <code>0 0 1</code>) is:
<langsyntaxhighlight lang="j"> 0 p.. 0 0 1
0 0 0 0.333333333333
0 p.. 0 0 1x NB. or using rationals
0 0 0 1r3</langsyntaxhighlight>
That is: <math>0x^0 + 0x^1 + 0x^2 + \tfrac{1}{3}x^3</math><br>
So to integrate <math>x^2</math> from 0 to &pi; :
<langsyntaxhighlight lang="j"> 0 0 1 (0&p..@[ -~/@:p. ]) 0 1p1
10.3354255601</langsyntaxhighlight>
 
That said, J also has <code>d.</code> which can [http://www.jsoftware.com/help/dictionary/dddot.htm integrate] suitable functions.
 
<langsyntaxhighlight lang="j"> *:d._1]1p1
10.3354</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java5">class NumericalIntegration
{
 
Line 3,087:
}
}
</syntaxhighlight>
</lang>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
 
<langsyntaxhighlight lang="julia">function simpson(f::Function, a::Number, b::Number, n::Integer)
h = (b - a) / n
s = f(a + h / 2)
Line 3,107:
simpson(x -> x, 0, 6000, 6_000_000)
 
@show rst</langsyntaxhighlight>
 
{{out}}
Line 3,113:
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.2
 
typealias Func = (Double) -> Double
Line 3,138:
integrate(0.0, 5000.0, 5_000_000) { it }
integrate(0.0, 6000.0, 6_000_000) { it }
}</langsyntaxhighlight>
 
{{out}}
Line 3,170:
Following Python's presentation
 
<syntaxhighlight lang="scheme">
<lang Scheme>
1) FUNCTIONS
 
Line 3,258:
trapezium 18006000
simpson 18006000
</syntaxhighlight>
</lang>
 
=={{header|Liberty BASIC}}==
Running the big loop value would take a VERY long time & seems unnecessary.<langsyntaxhighlight lang="lb">
while 1
read x$
Line 3,379:
 
end
</syntaxhighlight>
</lang>
 
Numerical integration
Line 3,415:
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to i.left :fn :x :step
output invoke :fn :x
end
Line 3,450:
print integrate "i.mid "fn2 4 -1 2 ; 2.496091
print integrate "i.trapezium "fn2 4 -1 2 ; 2.351014
print integrate "i.simpsons "fn2 4 -1 2 ; 2.447732</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">function leftRect( f, a, b, n )
local h = (b - a) / n
local x = a
Line 3,525:
print( int_methods[i]( function(x) return x end, 0, 5000, 5000000 ) )
print( int_methods[i]( function(x) return x end, 0, 6000, 6000000 ) )
end</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">leftRect[f_, a_Real, b_Real, N_Integer] :=
Module[{sum = 0, dx = (b - a)/N, x = a, n = N} ,
For[n = N, n > 0, n--, x += dx; sum += f[x];];
Line 3,553:
For[n = 1, n < N, n++, sum1 += f[a + dx*n + dx/2];
sum2 += f[a + dx*n];];
Return [(dx/6)*(f[a] + f[b] + 4*sum1 + 2*sum2)]]</langsyntaxhighlight>
<pre>f[x_] := x^3
g[x_] := 1/x
Line 3,574:
 
Function for performing left rectangular integration: leftRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = leftRectIntegration(f,a,b,n)
 
format long;
Line 3,581:
integral = width * sum( f(x(1:n-1)) );
end</langsyntaxhighlight>
 
Function for performing right rectangular integration: rightRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = rightRectIntegration(f,a,b,n)
 
format long;
Line 3,591:
integral = width * sum( f(x(2:n)) );
end</langsyntaxhighlight>
 
Function for performing mid-point rectangular integration: midPointRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = midPointRectIntegration(f,a,b,n)
 
format long;
Line 3,601:
integral = width * sum( f( (x(1:n-1)+x(2:n))/2 ) );
end</langsyntaxhighlight>
 
Function for performing trapezoidal integration: trapezoidalIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = trapezoidalIntegration(f,a,b,n)
 
format long;
Line 3,610:
integral = trapz( x,f(x) );
end</langsyntaxhighlight>
 
Simpson's rule for numerical integration is already included in Matlab as "quad()". It is not the same as the above examples, instead of specifying the amount of points to divide the x-axis into, the programmer passes the acceptable error tolerance for the calculation (parameter "tol").
<langsyntaxhighlight MATLABlang="matlab">integral = quad(f,a,b,tol)</langsyntaxhighlight>
 
Using anonymous functions
 
<langsyntaxhighlight MATLABlang="matlab">trapezoidalIntegration(@(x)( exp(-(x.^2)) ),0,10,100000)
 
ans =
 
0.886226925452753</langsyntaxhighlight>
 
Using predefined functions
 
Built-in MATLAB function sin(x):
<langsyntaxhighlight MATLABlang="matlab">quad(@sin,0,pi,1/1000000000000)
 
ans =
 
2.000000000000000</langsyntaxhighlight>
 
User defined scripts and functions:
fermiDirac.m
<langsyntaxhighlight MATLABlang="matlab">function answer = fermiDirac(x)
k = 8.617343e-5; %Boltazmann's Constant in eV/K
answer = 1./( 1+exp( (x)/(k*2000) ) ); %Fermi-Dirac distribution with mu = 0 and T = 2000K
end</langsyntaxhighlight>
 
<langsyntaxhighlight MATLABlang="matlab"> rightRectIntegration(@fermiDirac,-1,1,1000000)
 
ans =
 
0.999998006023282</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">right_rect(e, x, a, b, n) := block([h: (b - a) / n, s: 0],
for i from 1 thru n do s: s + subst(x = a + i * h, e),
s * h)$
Line 3,672:
2 * log(2) - 1 - %, bfloat;
 
trapezium(1/x, x, 1, 100, 10000) - log(100), bfloat;</langsyntaxhighlight>
 
=={{header|Nim}}==
{{trans|Python}}
<langsyntaxhighlight lang="nim">type Function = proc(x: float): float
type Rule = proc(f: Function; x, h: float): float
 
Line 3,720:
echo fName, " integrated using ", rName
echo " from ", a, " to ", b, " (", steps, " steps) = ",
integrate(fun, float(a), float(b), steps, rule)</langsyntaxhighlight>
 
{{out}}
Line 3,766:
=={{header|OCaml}}==
The problem can be described as integrating using each of a set of methods, over a set of functions, so let us just build the solution in this modular way.
First define the integration function:<langsyntaxhighlight lang="ocaml">let integrate f a b steps meth =
let h = (b -. a) /. float_of_int steps in
let rec helper i s =
Line 3,772:
else helper (succ i) (s +. meth f (a +. h *. float_of_int i) h)
in
h *. helper 0 0.</langsyntaxhighlight>Then list the methods:<syntaxhighlight lang ="ocaml">let methods = [
( "rect_l", fun f x _ -> f x);
( "rect_m", fun f x h -> f (x +. h /. 2.) );
Line 3,778:
( "trap", fun f x h -> (f x +. f (x +. h)) /. 2. );
( "simp", fun f x h -> (f x +. 4. *. f (x +. h /. 2.) +. f (x +. h)) /. 6. )
]</langsyntaxhighlight> and functions (with limits and steps)<langsyntaxhighlight lang="ocaml">let functions = [
( "cubic", (fun x -> x*.x*.x), 0.0, 1.0, 100);
( "recip", (fun x -> 1.0/.x), 1.0, 100.0, 1000);
( "x to 5e3", (fun x -> x), 0.0, 5000.0, 5_000_000);
( "x to 6e3", (fun x -> x), 0.0, 6000.0, 6_000_000)
]</langsyntaxhighlight>and finally iterate the integration over both lists:<langsyntaxhighlight lang="ocaml">let () =
List.iter (fun (s,f,lo,hi,n) ->
Printf.printf "Testing function %s:\n" s;
Line 3,789:
Printf.printf " method %s gives %.15g\n" name (integrate f lo hi n meth)
) methods
) functions</langsyntaxhighlight>Giving the output:
<pre>
Testing function cubic:
Line 3,819:
=={{header|PARI/GP}}==
Note also that double exponential integration is available as <code>intnum(x=a,b,f(x))</code> and Romberg integration is available as <code>intnumromb(x=a,b,f(x))</code>.
<langsyntaxhighlight lang="parigp">rectLeft(f, a, b, n)={
sum(i=0,n-1,f(a+(b-a)*i/n), 0.)*(b-a)/n
};
Line 3,847:
test(x->1/x, 1, 100, 1000)
test(x->x, 0, 5000, 5000000)
test(x->x, 0, 6000, 6000000)</langsyntaxhighlight>
 
Results:
Line 3,880:
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">function RectLeft(function f(x: real): real; xl, xr: real): real;
begin
RectLeft := f(xl)
Line 3,920:
end;
integrate := integral
end;</langsyntaxhighlight>
 
=={{header|Perl}}==
{{trans|Raku}}
<langsyntaxhighlight lang="perl">use feature 'say';
 
sub leftrect {
Line 4,004:
say for integrate('1 / $_', 1, 100, 1000, log(100)); say '';
say for integrate('$_', 0, 5_000, 5_000_000, 12_500_000); say '';
say for integrate('$_', 0, 6_000, 6_000_000, 18_000_000);</langsyntaxhighlight>
{{out}}
<pre>$_ ** 3
Line 4,043:
 
=={{header|Phix}}==
<!--<langsyntaxhighlight Phixlang="phix">(phixonline?)-->
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_left</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000080;font-style:italic;">/*h*/</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
Line 4,116:
<span style="color: #000000;">test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre>
Line 4,127:
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(scl 6)
 
(de leftRect (Fun X)
Line 4,158:
(*/ H Sum 1.0) ) )
 
(prinl (round (integrate square 3.0 7.0 30 simpson)))</langsyntaxhighlight>
Output:
<pre>105.333</pre>
 
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii">integrals: procedure options (main); /* 1 September 2019 */
 
f: procedure (x, function) returns (float(18));
Line 4,234:
 
end integrals;
</syntaxhighlight>
</lang>
<pre>
Rectangle-left Rectangle-mid Rectangle-right Trapezoid Simpson
Line 4,245:
=={{header|PureBasic}}==
 
<langsyntaxhighlight PureBasiclang="purebasic">Prototype.d TestFunction(Arg.d)
 
Procedure.d LeftIntegral(Start, Stop, Steps, *func.TestFunction)
Line 4,346:
Answer$+"Trapezium="+StrD(Trapezium (0,6000,6000000,@Test3()))+#CRLF$
Answer$+"Simpson ="+StrD(Simpson (0,6000,6000000,@Test3()))
MessageRequester("Answer should be 18,000,000",Answer$) </langsyntaxhighlight>
<pre>Left =0.2353220100
Mid =0.2401367513
Line 4,373:
=={{header|Python}}==
Answers are first given using floating point arithmatic, then using fractions, only converted to floating point on output.
<langsyntaxhighlight lang="python">from fractions import Fraction
 
def left_rect(f,x,h):
Line 4,427:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Tests'''
<langsyntaxhighlight lang="python">for a, b, steps, func in ((0., 1., 100, cube), (1., 100., 1000, reciprocal)):
for rule in (left_rect, mid_rect, right_rect, trapezium, simpson):
print('%s integrated using %s\n from %r to %r (%i steps) = %r' %
Line 4,452:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Sample test Output'''
Line 4,537:
 
A faster Simpson's rule integrator is
<langsyntaxhighlight lang="python">def faster_simpson(f, a, b, steps):
h = (b-a)/float(steps)
a1 = a+h/2
s1 = sum( f(a1+i*h) for i in range(0,steps))
s2 = sum( f(a+i*h) for i in range(1,steps))
return (h/6.0)*(f(a)+f(b)+4.0*s1+2.0*s2)</langsyntaxhighlight>
 
=={{header|R}}==
The integ function defined below uses arbitrary abscissae and weights passed as argument (resp. u and v). It assumes that f can take a vector argument.
 
<langsyntaxhighlight lang="rsplus">integ <- function(f, a, b, n, u, v) {
h <- (b - a) / n
s <- 0
Line 4,578:
test(\(x) x, 0, 6000, 6e6)
# rect.left rect.right rect.mid trapezoidal simpson
# 1.8e+07 1.8e+07 1.8e+07 1.8e+07 1.8e+07</langsyntaxhighlight>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(define (integrate f a b steps meth)
Line 4,605:
(test (λ(x) x) 0. 5000. 5000000 "IDENTITY")
(test (λ(x) x) 0. 6000. 6000000 "IDENTITY")
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
CUBED
left-rect: 0.24502500000000005
Line 4,635:
trapezium: 17999999.999999993
simpson: 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
Line 4,644:
{{works with|Rakudo|2018.09}}
 
<syntaxhighlight lang="raku" perl6line>use MONKEY-SEE-NO-EVAL;
 
sub leftrect(&f, $a, $b, $n) {
Line 4,711:
.say for integrate '1 / *', 1, 100, 1000, log(100); say '';
.say for integrate '*.self', 0, 5_000, 5_000_000, 12_500_000; say '';
.say for integrate '*.self', 0, 6_000, 6_000_000, 18_000_000;</langsyntaxhighlight>
{{out}}
<pre>{ $_ ** 3 }
Line 4,751:
=={{header|REXX}}==
Note: &nbsp; there was virtually no difference in accuracy between &nbsp; '''numeric digits 9''' &nbsp; (the default) &nbsp; and &nbsp; '''numeric digits 20'''.
<langsyntaxhighlight lang="rexx">/*REXX pgm performs numerical integration using 5 different algorithms and show results.*/
numeric digits 20 /*use twenty decimal digits precision. */
 
Line 4,798:
do x=a by h for #; $= $ + (f(x) + f(x+h))
end /*x*/
return $*h/2</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
Line 4,831:
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
# Project : Numerical integration
 
Line 4,917:
eval("result = " + x2)
return (d / 6) * (f + result + 4 * s1 + 2 * s)
</syntaxhighlight>
</lang>
Output:
<pre>
Line 4,929:
=={{header|Ruby}}==
{{trans|Tcl}}
<langsyntaxhighlight lang="ruby">def leftrect(f, left, right)
f.call(left)
end
Line 4,986:
printf " %-10s %s\t(%.1f%%)\n", method, int, diff
end
end</langsyntaxhighlight>
outputs
<pre>integral of #<Method: Object#square> from 0 to 3.14159265358979 in 10 steps
Line 5,003:
=={{header|Rust}}==
This is a partial solution and only implements trapezium integration.
<langsyntaxhighlight lang="rust">fn integral<F>(f: F, range: std::ops::Range<f64>, n_steps: u32) -> f64
where F: Fn(f64) -> f64
{
Line 5,022:
println!("{}", integral(|x| x, 0.0..5000.0, 5_000_000));
println!("{}", integral(|x| x, 0.0..6000.0, 6_000_000));
}</langsyntaxhighlight>
 
{{out}}
Line 5,031:
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">object NumericalIntegration {
def leftRect(f:Double=>Double, a:Double, b:Double)=f(a)
def midRect(f:Double=>Double, a:Double, b:Double)=f((a+b)/2)
Line 5,065:
print(fn3, 0, 6000, 6000000)
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left : 0,245025
Line 5,093:
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">(define (integrate f a b steps meth)
(define h (/ (- b a) steps))
(* h
Line 5,113:
(define rr (integrate square 0 1 10 right-rect))
(define t (integrate square 0 1 10 trapezium))
(define s (integrate square 0 1 10 simpson))</langsyntaxhighlight>
 
=={{header|SequenceL}}==
<langsyntaxhighlight lang="sequencel">import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
 
Line 5,175:
delimit(delimit(heading ++ transpose(funcs ++ ranges ++ trimEndZeroes(floatToString(tests, 8))), '\t'), '\n');
 
trimEndZeroes(x(1)) := x when size(x) = 0 else x when x[size(x)] /= '0' else trimEndZeroes(x[1...size(x)-1]);</langsyntaxhighlight>
 
{{out}}
Line 5,188:
=={{header|Sidef}}==
{{trans|Raku}}
<langsyntaxhighlight lang="ruby">func sum(f, start, from, to) {
var s = 0;
RangeNum(start, to, from-start).each { |i|
Line 5,241:
tryem('1/x', { 1 / _ }, 1, 100, 1000, log(100));
tryem('x', { _ }, 0, 5_000, 5_000_000, 12_500_000);
tryem('x', { _ }, 0, 6_000, 6_000_000, 18_000_000);</langsyntaxhighlight>
 
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">fun integrate (f, a, b, steps, meth) = let
val h = (b - a) / real steps
fun helper (i, s) =
Line 5,266:
val rr = integrate (square, 0.0, 1.0, 10, right_rect)
val t = integrate (square, 0.0, 1.0, 10, trapezium )
val s = integrate (square, 0.0, 1.0, 10, simpson )</langsyntaxhighlight>
 
=={{header|Stata}}==
<syntaxhighlight lang="text">mata
function integrate(f,a,b,n,u,v) {
s = 0
Line 5,309:
test(&id(),0,5000,5000000)
test(&id(),0,6000,6000000)
end</langsyntaxhighlight>
 
'''Output'''
Line 5,334:
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">public enum IntegrationType : CaseIterable {
case rectangularLeft
case rectangularRight
Line 5,438:
print("f(x) = 1 / x:", types.map({ integrate(from: 1, to: 100, n: 1000, using: $0, f: { 1 / $0 }) }))
print("f(x) = x, 0 -> 5_000:", types.map({ integrate(from: 0, to: 5_000, n: 5_000_000, using: $0, f: { $0 }) }))
print("f(x) = x, 0 -> 6_000:", types.map({ integrate(from: 0, to: 6_000, n: 6_000_000, using: $0, f: { $0 }) }))</langsyntaxhighlight>
 
{{out}}
Line 5,447:
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
proc leftrect {f left right} {
Line 5,500:
puts [format " %-10s %s\t(%.1f%%)" $method $int $diff]
}
}</langsyntaxhighlight>
<pre>integral of square(x) from 0 to 3.141592653589793 in 10 steps
leftrect 8.836788853885448 (-14.5%)
Line 5,530:
the integrand <math>f</math>, the bounds <math>(a,b)</math>, and the number of intervals <math>n</math>.
 
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
#import flo
Line 5,536:
(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ("m" "f")*ytp (ari successor "n")/"a" "b"</langsyntaxhighlight>
An alternative way of defining this function shown below prevents redundant evaluations of the integrand
at the cost of building a table-driven finite map in advance.
<langsyntaxhighlight Ursalalang="ursala">(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ^H(*+ "m"+ -:"f"+ * ^/~& "f",~&ytp) (ari successor "n")/"a" "b"</langsyntaxhighlight>
As mentioned in the Haskell solution, the latter choice is preferable if evaluating the integrand
is expensive.
An integrating function is defined for each method as follows.
<langsyntaxhighlight Ursalalang="ursala">left = integral_by "f". ("l","r"). "f" "l"
right = integral_by "f". ("l","r"). "f" "r"
midpoint = integral_by "f". ("l","r"). "f" div\2. plus/"l" "r"
trapezium = integral_by "f". ("l","r"). div\2. plus "f"~~/"l" "r"
simpson = integral_by "f". ("l","r"). div\6. plus:-0. <"f" "l",times/4. "f" div\2. plus/"l" "r","f" "r"></langsyntaxhighlight>
As shown above, the method passed to the <code>integral_by</code> function
is itself a higher order function taking an integrand <math>f</math> as an argument and
Line 5,555:
Here is a test program showing the results of integrating the square from zero to <math>\pi</math> in ten intervals
by all five methods.
<langsyntaxhighlight Ursalalang="ursala">#cast %eL
 
examples = <.left,midpoint,rignt,trapezium,simpson> (sqr,0.,pi,10)</langsyntaxhighlight>
output:
<pre>
Line 5,573:
The following program does not follow the task requirement on two points: first, the same function is used for all quadrature methods, as they are really the same thing with different parameters (abscissas and weights). And since it's getting rather slow for a large number of intervals, the last two are integrated with resp. 50,000 and 60,000 intervals. It does not make sense anyway to use more, for such a simple function (and if really it were difficult to integrate, one would rely one more sophistcated methods).
 
<langsyntaxhighlight lang="vb">Option Explicit
Option Base 1
 
Line 5,628:
Next j
Next i
End Sub</langsyntaxhighlight>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-fmt}}
<langsyntaxhighlight lang="ecmascript">import "/fmt" for Fmt
 
var integrate = Fn.new { |a, b, n, f|
Line 5,655:
integrate.call(0, 5000, 5000000) { |v| v }
integrate.call(0, 6000, 6000000) { |v| v }
</syntaxhighlight>
</lang>
 
{{out}}
Line 5,685:
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
 
func real Func(FN, X); \Return F(X) for function number FN
Line 5,731:
Integrate(0.0, 5000.0, 3, 5_000_000);
Integrate(0.0, 6000.0, 3, 6_000_000);
]</langsyntaxhighlight>
 
Interestingly, the small rounding errors creep in when millions of
Line 5,747:
=={{header|Yabasic}}==
Based on the XPL0entry and the Free BASIC entry
<langsyntaxhighlight lang="yabasic">// Rosetta Code problem: https://rosettacode.org/wiki/Numerical_integration
// by Jjuanhdez, 06/2022
 
Line 5,819:
print " ";
print str$(Area, frmt$)
end sub</langsyntaxhighlight>
 
=={{header|zkl}}==
{{trans|D}}
<langsyntaxhighlight lang="zkl">fcn integrate(F,f,a,b,steps){
h:=(b - a) / steps;
h*(0).reduce(steps,'wrap(s,i){ F(f, h*i + a, h) + s },0.0);
Line 5,846:
"%s %f".fmt(nm,integrate(f,a.xplode())).println() }, fs);
println();
}</langsyntaxhighlight>
{{out}}
<pre>
10,327

edits