Numerical integration: Difference between revisions

m
(→‎{{header|Common Lisp}}: Re-add task entry deleted for no apparent reason)
m (→‎{{header|Wren}}: Minor tidy)
 
(34 intermediate revisions by 19 users not shown)
Line 27:
sum1 := sum1 + f(a + h * i + h/2)
sum2 := sum2 + f(a + h * i)
 
 
''answer'' := (h / 6) * (f(a) + f(b) + 4*sum1 + 2*sum2)
|}
Line 33:
 
Demonstrate your function by showing the results for:
* &nbsp; {{math|1=ƒ(x) = x<sup>3</sup>}}, &nbsp; &nbsp; where&nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; &nbsp; [0,1], &nbsp; &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 100 approximations. &nbsp; The exact result is &nbsp; 1/4, or &nbsp; 0.25. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (or 1/4)
* &nbsp; {{math|1=ƒ(x) = 1/x}}, &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [1,100], &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp;1,000 approximations. &nbsp; The exact result is the&nbsp; natural&nbsp; log4.605170<sup>+</sup> of&nbsp; 100,&nbsp; (natural or aboutlog of 4.605170100)
* &nbsp; {{math|1=ƒ(x) = x}}, &nbsp; &nbsp; &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [0,5000], &nbsp; with 5,000,000 approximations. &nbsp; The exact result is &nbsp; 12,500,000.
* &nbsp; {{math|1=ƒ(x) = x}}, &nbsp; &nbsp; &nbsp; &nbsp; where &nbsp; '''x''' &nbsp; is &nbsp; [0,6000], &nbsp; with 6,000,000 approximations. &nbsp; The exact result is &nbsp; 18,000,000.
 
<br/>
''';See also''':
* &nbsp; [[Active object]] for integrating a function of real time.
* &nbsp; [[Special:PrefixIndex/Numerical integration]] for other integration methods.
 
<br/>
 
=={{header|11l}}==
{{trans|Nim}}
 
<syntaxhighlight lang="11l">F left_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x)
 
F mid_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x + h / 2)
 
F right_rect((Float -> Float) f, Float x, Float h) -> Float
R f(x + h)
 
F trapezium((Float -> Float) f, Float x, Float h) -> Float
R (f(x) + f(x + h)) / 2.0
 
F simpson((Float -> Float) f, Float x, Float h) -> Float
R (f(x) + 4 * f(x + h / 2) + f(x + h)) / 6.0
 
F cube(Float x) -> Float
R x * x * x
 
F reciprocal(Float x) -> Float
R 1 / x
 
F identity(Float x) -> Float
R x
 
F integrate(f, a, b, steps, meth)
V h = (b - a) / steps
V ival = h * sum((0 .< steps).map(i -> @meth(@f, @a + i * @h, @h)))
R ival
 
L(a, b, steps, func, func_name) [(0.0, 1.0, 100, cube, ‘cube’),
(1.0, 100.0, 1000, reciprocal, ‘reciprocal’),
(0.0, 5000.0, 5'000'000, identity, ‘identity’),
(0.0, 6000.0, 6'000'000, identity, ‘identity’)]
L(rule, rule_name) [(left_rect, ‘left_rect’),
(mid_rect, ‘mid_rect’),
(right_rect, ‘right_rect’),
(trapezium, ‘trapezium’),
(simpson, ‘simpson’)]
print("#. integrated using #.\n from #. to #. (#. steps) = #.".format(
func_name, rule_name, a, b, steps, integrate(func, a, b, steps, rule)))</syntaxhighlight>
 
{{out}}
<pre>
cube integrated using left_rect
from 0 to 1 (100 steps) = 0.245025
cube integrated using mid_rect
from 0 to 1 (100 steps) = 0.2499875
cube integrated using right_rect
from 0 to 1 (100 steps) = 0.255025
cube integrated using trapezium
from 0 to 1 (100 steps) = 0.250025
cube integrated using simpson
from 0 to 1 (100 steps) = 0.25
reciprocal integrated using left_rect
from 1 to 100 (1000 steps) = 4.654991058
reciprocal integrated using mid_rect
from 1 to 100 (1000 steps) = 4.604762549
reciprocal integrated using right_rect
from 1 to 100 (1000 steps) = 4.556981058
reciprocal integrated using trapezium
from 1 to 100 (1000 steps) = 4.605986058
reciprocal integrated using simpson
from 1 to 100 (1000 steps) = 4.605170385
identity integrated using left_rect
from 0 to 5000 (5000000 steps) = 12499997.5
identity integrated using mid_rect
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using right_rect
from 0 to 5000 (5000000 steps) = 12500002.5
identity integrated using trapezium
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using simpson
from 0 to 5000 (5000000 steps) = 12500000
identity integrated using left_rect
from 0 to 6000 (6000000 steps) = 17999997.000000003
identity integrated using mid_rect
from 0 to 6000 (6000000 steps) = 17999999.999999992
identity integrated using right_rect
from 0 to 6000 (6000000 steps) = 18000003.000000003
identity integrated using trapezium
from 0 to 6000 (6000000 steps) = 17999999.999999992
identity integrated using simpson
from 0 to 6000 (6000000 steps) = 17999999.999999992
</pre>
 
=={{header|ActionScript}}==
Integration functions:
<langsyntaxhighlight ActionScriptlang="actionscript">function leftRect(f:Function, a:Number, b:Number, n:uint):Number
{
var sum:Number = 0;
Line 97 ⟶ 185:
}
return (dx/6) * (f(a) + f(b) + 4*sum1 + 2*sum2);
}</langsyntaxhighlight>
Usage:
<langsyntaxhighlight ActionScriptlang="actionscript">function f1(n:Number):Number {
return (2/(1+ 4*(n*n)));
}
Line 107 ⟶ 195:
trace(trapezium(f1, -1, 2 ,4 ));
trace(simpson(f1, -1, 2 ,4 ));
</syntaxhighlight>
</lang>
 
=={{header|Ada}}==
Specification of a generic package implementing the five specified kinds of numerical integration:
<langsyntaxhighlight lang="ada">generic
type Scalar is digits <>;
with function F (X : Scalar) return Scalar;
Line 119 ⟶ 208:
function Trapezium (A, B : Scalar; N : Positive) return Scalar;
function Simpsons (A, B : Scalar; N : Positive) return Scalar;
end Integrate;</langsyntaxhighlight>
An alternative solution is to pass a function reference to the integration function. This solution is probably slightly faster, and works even with Ada83. One could also make each integration function generic, instead of making the whole package generic.
 
Body of the package implementing numerical integration:
<langsyntaxhighlight lang="ada">package body Integrate is
function Left_Rectangular (A, B : Scalar; N : Positive) return Scalar is
H : constant Scalar := (B - A) / Scalar (N);
Line 164 ⟶ 253:
Sum : Scalar := F(A) + F(B);
X : Scalar := 1.0;
begin
while X <= Scalar (N) - 1.0 loop
Sum := Sum + 2.0 * F (A + X * (B - A) / Scalar (N));
Line 174 ⟶ 263:
function Simpsons (A, B : Scalar; N : Positive) return Scalar is
H : constant Scalar := (B - A) / Scalar (N);
Sum_1Sum_U : Scalar := 0.0;
Sum_2Sum_E : Scalar := 0.0;
begin
for I in 01 .. N - 1 loop
Sum_1if :=I Sum_1mod +2 F (A + H * Scalar (I) +/= 0.5 * H);then
Sum_2 Sum_U := Sum_2Sum_U + F (A + H * Scalar (I));
else
Sum_E := Sum_E + F (A + H * Scalar (I));
end if;
end loop;
return (H / 63.0) * (F (A) + F (B) + 4.0 * Sum_1Sum_U + 2.0 * Sum_2Sum_E);
end Simpsons;
end Integrate;</langsyntaxhighlight>
 
Test driver:
<langsyntaxhighlight lang="ada">with Ada.Text_IO, Ada.Integer_Text_IO;
with Integrate;
 
Line 290 ⟶ 382:
end X;
end Numerical_Integration;
</syntaxhighlight>
</lang>
 
=={{header|ALGOL 68}}==
<langsyntaxhighlight lang="algol68">MODE F = PROC(LONG REAL)LONG REAL;
 
###############
Line 410 ⟶ 502:
test integrators( "x ", ( LONG REAL x )LONG REAL: x, 0, 6 000, 6 000 000 );
 
SKIP</langsyntaxhighlight>
{{out}}
<pre>
Line 418 ⟶ 510:
x 12499997.500000 12500002.500000 12500000.000000 12500000.000000 12500000.000000
x 17999997.000000 18000003.000000 18000000.000000 18000000.000000 18000000.000000</pre>
 
=={{header|ALGOL W}}==
{{Trans|ALGOL 68}}
<syntaxhighlight lang="algolw">begin % compare some numeric integration methods %
 
long real procedure leftRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a;
while x <= b - h do begin
sum := sum + (h * f(x));
x := x + h
end;
sum
end leftRect ;
 
long real procedure rightRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a + h;
while x <= b do begin
sum := sum + (h * f(x));
x := x + h
end;
sum
end rightRect ;
 
long real procedure midRect ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := 0;
x := a;
while x <= b - h do begin
sum := sum + h * f(x + h / 2);
x := x + h
end;
sum
end midRect ;
long real procedure trapezium ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum, x;
h := (b - a) / n;
sum := f(a) + f(b);
x := 1;
while x <= n - 1 do begin
sum := sum + 2 * f(a + x * h );
x := x + 1
end;
(b - a) / (2 * n) * sum
end trapezium ;
long real procedure simpson ( long real procedure f
; long real value a, b
; integer value n
) ;
begin
long real h, sum1, sum2, x;
integer limit;
h := (b - a) / n;
sum1 := 0;
sum2 := 0;
limit := n - 1;
for i := 0 until limit do sum1 := sum1 + f(a + h * i + h / 2);
for i := 1 until limit do sum2 := sum2 + f(a + h * i);
h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
end simpson ;
 
% tests the above procedures %
procedure testIntegrators1 ( string(3) value legend
; long real procedure f
; long real value lowerLimit
; long real value upperLimit
; integer value iterations
) ;
write( r_format := "A", r_w := 20, r_d := 6, s_w := 0,
, legend
, leftRect( f, lowerLimit, upperLimit, iterations )
, rightRect( f, lowerLimit, upperLimit, iterations )
, midRect( f, lowerLimit, upperLimit, iterations )
, trapezium( f, lowerLimit, upperLimit, iterations )
, simpson( f, lowerLimit, upperLimit, iterations )
);
procedure testIntegrators2 ( string(3) value legend
; long real procedure f
; long real value lowerLimit
; long real value upperLimit
; integer value iterations
) ;
write( r_format := "A", r_w := 16, r_d := 2, s_w := 0,
, legend
, leftRect( f, lowerLimit, upperLimit, iterations ), " "
, rightRect( f, lowerLimit, upperLimit, iterations ), " "
, midRect( f, lowerLimit, upperLimit, iterations ), " "
, trapezium( f, lowerLimit, upperLimit, iterations ), " "
, simpson( f, lowerLimit, upperLimit, iterations ), " "
);
 
begin % task test cases %
long real procedure xCubed ( long real value x ) ; x * x * x;
long real procedure oneOverX ( long real value x ) ; 1 / x;
long real procedure xValue ( long real value x ) ; x;
write( " "
, " left rect"
, " right rect"
, " mid rect"
, " trapezium"
, " simpson"
);
testIntegrators1( "x^3", xCubed, 0, 1, 100 );
testIntegrators1( "1/x", oneOverX, 1, 100, 1000 );
testIntegrators2( "x ", xValue, 0, 5000, 5000000 );
testIntegrators2( "x ", xValue, 0, 6000, 6000000 )
end
end.</syntaxhighlight>
 
=={{header|ATS}}==
 
<syntaxhighlight lang="ats">
#include "share/atspre_staload.hats"
 
%{^
#include <math.h>
%}
 
typedef FILEstar = $extype"FILE *"
extern castfn FILEref2star : FILEref -<> FILEstar
 
(* This type declarations is for composite quadrature functions for
all the different g0float typekinds. The function must either prove
termination or mask the requirement. (All of ours will prove
termination.) The function to be integrated will not be passed as
an argument, but inlined via the template mechanism. (This design
is more general. It can easily be used to write a quadrature
function that takes the argument, but also can be used for faster
code that requires no function call.) *)
typedef composite_quadrature (tk : tkind) =
(g0float tk, g0float tk, intGte 2) -<> g0float tk
 
extern fn {tk : tkind}
composite_quadrature$func : g0float tk -<> g0float tk
 
extern fn {tk : tkind} left_rule : composite_quadrature tk
extern fn {tk : tkind} right_rule : composite_quadrature tk
extern fn {tk : tkind} midpoint_rule : composite_quadrature tk
extern fn {tk : tkind} trapezium_rule : composite_quadrature tk
extern fn {tk : tkind} simpson_rule : composite_quadrature tk
 
extern fn {tk : tkind}
_one_point_rule$init_x :
g0float tk -<> g0float tk
 
fn {tk : tkind}
_one_point_rule : composite_quadrature tk =
lam (a, b, n) =>
let
prval [n : int] EQINT () = eqint_make_gint n
macdef f = composite_quadrature$func
val h = (b - a) / g0i2f n
val x0 = _one_point_rule$init_x<tk> h
fun
loop {i : nat | i <= n} .<n - i>.
(i : int i,
sum : g0float tk) :<> g0float tk =
if i = n then
sum
else
loop (succ i, sum + f(x0 + (g0i2f i * h)))
in
loop (0, g0i2f 0) * h
end
 
(* The left rule, for any floating point type. *)
implement {tk}
left_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> _ = a
in
_one_point_rule<tk> (a, b, n)
end
 
(* The right rule, for any floating point type. *)
implement {tk}
right_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> h = a + h
in
_one_point_rule<tk> (a, b, n)
end
 
(* The midpoint rule, for any floating point type. *)
implement {tk}
midpoint_rule (a, b, n) =
let
implement _one_point_rule$init_x<tk> h = a + (h / g0i2f 2)
in
_one_point_rule<tk> (a, b, n)
end
 
implement {tk}
trapezium_rule : composite_quadrature tk =
lam (a, b, n) =>
let
prval [n : int] EQINT () = eqint_make_gint n
macdef f = composite_quadrature$func
val h = (b - a) / g0i2f n
fun
loop {i : pos | i <= n} .<n - i>.
(i : int i,
sum : g0float tk) :<> g0float tk =
if i = n then
sum
else
loop (succ i, sum + f(a + (g0i2f i * h)))
val sum = loop (1, g0i2f 0)
in
((f(a) + sum + sum + f(b)) * h) / g0i2f 2
end
 
(* Simpson’s 1/3 rule, for any floating point type. *)
implement {tk}
simpson_rule : composite_quadrature tk =
lam (a, b, n) =>
let
(* I have noticed that the Simpson rule is a weighted average of
the trapezium and midpoint rules, which themselves evaluate
the function at different points. Therefore, the following
should be efficient and produce good results. *)
val estimate1 = trapezium_rule<tk> (a, b, n)
val estimate2 = midpoint_rule<tk> (a, b, n)
in
(estimate1 + estimate2 + estimate2) / (g0i2f 3)
end
 
extern fn {tk : tkind}
fprint_result$rule : composite_quadrature tk
 
extern fn {tk : tkind}
fprint_result (outf : FILEref,
message : string,
a : g0float tk,
b : g0float tk,
n : intGte 2,
nominal : g0float tk) : void
 
implement
fprint_result<dblknd> (outf, message, a, b, n, nominal) =
let
val integral = fprint_result$rule<dblknd> (a, b, n)
in
fprint! (outf, " ", message, " ");
ignoret ($extfcall (int, "fprintf", FILEref2star outf,
"%18.15le", integral));
fprint! (outf, " (nominal + ");
ignoret ($extfcall (int, "fprintf", FILEref2star outf,
"% .6le", integral - nominal));
fprint! (outf, ")\n")
end
 
fn {tk : tkind}
fprint_rule_results (outf : FILEref,
a : g0float tk,
b : g0float tk,
n : intGte 2,
nominal : g0float tk) : void =
let
implement fprint_result$rule<tk> (a, b, n) = left_rule<tk> (a, b, n)
val () = fprint_result (outf, "left rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = right_rule<tk> (a, b, n)
val () = fprint_result (outf, "right rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = midpoint_rule<tk> (a, b, n)
val () = fprint_result (outf, "midpoint rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = trapezium_rule<tk> (a, b, n)
val () = fprint_result (outf, "trapezium rule ", a, b, n, nominal)
implement fprint_result$rule<tk> (a, b, n) = simpson_rule<tk> (a, b, n)
val () = fprint_result (outf, "Simpson rule ", a, b, n, nominal)
in
end
 
implement
main () =
let
val outf = stdout_ref
 
val () = fprint! (outf, "\nx³ in [0,1] with n = 100\n")
implement composite_quadrature$func<dblknd> x = x * x * x
val () = fprint_rule_results<dblknd> (outf, 0.0, 1.0, 100, 0.25)
 
val () = fprint! (outf, "\n1/x in [1,100] with n = 1000\n")
implement composite_quadrature$func<dblknd> x = g0i2f 1 / x
val () = fprint_rule_results<dblknd> (outf, 1.0, 100.0, 1000,
$extfcall (double, "log", 100.0))
 
val () = fprint! (outf, "\nx in [0,5000] with n = 5000000\n")
implement composite_quadrature$func<dblknd> x = x
val () = fprint_rule_results<dblknd> (outf, 0.0, 5000.0, 5000000,
12500000.0)
 
val () = fprint! (outf, "\nx in [0,6000] with n = 6000000\n")
implement composite_quadrature$func<dblknd> x = x
val () = fprint_rule_results<dblknd> (outf, 0.0, 6000.0, 6000000,
18000000.0)
 
val () = fprint! (outf, "\n")
in
0
end
</syntaxhighlight>
 
{{out}}
<pre>$ patscc -std=gnu2x -Ofast numerical_integration_task.dats -lm && ./a.out
 
x³ in [0,1] with n = 100
left rule 2.450250000000000e-01 (nominal + -4.975000e-03)
right rule 2.550250000000000e-01 (nominal + 5.025000e-03)
midpoint rule 2.499875000000000e-01 (nominal + -1.250000e-05)
trapezium rule 2.500250000000000e-01 (nominal + 2.500000e-05)
Simpson rule 2.500000000000000e-01 (nominal + 0.000000e+00)
 
1/x in [1,100] with n = 1000
left rule 4.654991057514675e+00 (nominal + 4.982087e-02)
right rule 4.556981057514675e+00 (nominal + -4.818913e-02)
midpoint rule 4.604762548678376e+00 (nominal + -4.076373e-04)
trapezium rule 4.605986057514674e+00 (nominal + 8.158715e-04)
Simpson rule 4.605170384957142e+00 (nominal + 1.989691e-07)
 
x in [0,5000] with n = 5000000
left rule 1.249999750000000e+07 (nominal + -2.500000e+00)
right rule 1.250000250000000e+07 (nominal + 2.500000e+00)
midpoint rule 1.250000000000000e+07 (nominal + 0.000000e+00)
trapezium rule 1.250000000000000e+07 (nominal + -1.862645e-09)
Simpson rule 1.250000000000000e+07 (nominal + 0.000000e+00)
 
x in [0,6000] with n = 6000000
left rule 1.799999700000000e+07 (nominal + -3.000000e+00)
right rule 1.800000300000000e+07 (nominal + 3.000000e+00)
midpoint rule 1.800000000000000e+07 (nominal + 0.000000e+00)
trapezium rule 1.800000000000000e+07 (nominal + 0.000000e+00)
Simpson rule 1.800000000000000e+07 (nominal + 0.000000e+00)
 
</pre>
 
=={{header|AutoHotkey}}==
ahk [http://www.autohotkey.com/forum/viewtopic.php?t=44657&postdays=0&postorder=asc&start=139 discussion]
<langsyntaxhighlight lang="autohotkey">MsgBox % Rect("fun", 0, 1, 10,-1) ; 0.45 left
MsgBox % Rect("fun", 0, 1, 10) ; 0.50 mid
MsgBox % Rect("fun", 0, 1, 10, 1) ; 0.55 right
Line 455 ⟶ 905:
fun(x) { ; linear test function
Return x
}</syntaxhighlight>
}</lang>
 
=={{header|BASIC}}==
{{works with|QuickBasic|4.5}}
{{trans|Java}}
<langsyntaxhighlight lang="qbasic">FUNCTION leftRect(a, b, n)
h = (b - a) / n
sum = 0
Line 510 ⟶ 960:
 
simpson = h / 6 * (f(a) + f(b) + 4 * sum1 + 2 * sum2)
END FUNCTION</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> *FLOAT64
@% = 12 : REM Column width
Line 583 ⟶ 1,033:
NEXT
x = a
= (d / 6) * (f + EVAL(x$) + 4 * s1 + 2 * s2)</langsyntaxhighlight>
'''Output:'''
<pre>
Line 594 ⟶ 1,044:
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <math.h>
Line 651 ⟶ 1,101:
 
return h / 6.0 * (func(from) + func(to) + 4.0 * sum1 + 2.0 * sum2);
}</langsyntaxhighlight>
 
<langsyntaxhighlight lang="c">/* test */
double f3(double x)
{
Line 723 ⟶ 1,173:
printf("\n");
}
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
Line 844 ⟶ 1,294:
TestApproximationMethods(new DefiniteIntegral(x => x, new Interval(0, 6000)), 6000000);
}
}</langsyntaxhighlight>
Output:
<syntaxhighlight lang="text">0.2499500025
0.24999999875
0.2500500025
Line 865 ⟶ 1,315:
18000003
18000000
18000000</langsyntaxhighlight>
 
=={{header|C++}}==
 
Due to their similarity, it makes sense to make the integration method a policy.
<langsyntaxhighlight lang="cpp">// the integration routine
template<typename Method, typename F, typename Float>
double integrate(F f, Float a, Float b, int steps, Method m)
Line 931 ⟶ 1,382:
double rr = integrate(f, 0.0, 1.0, 10, rectangular(rectangular::right));
double t = integrate(f, 0.0, 1.0, 10, trapezium());
double s = integrate(f, 0.0, 1.0, 10, simpson());</langsyntaxhighlight>
 
=={{header|Chapel}}==
<langsyntaxhighlight lang="chapel">
proc f1(x:real):real {
return x**3;
Line 1,064 ⟶ 1,515:
writeln("simpsonsIntegration: calculated = ", calculated, "; exact = ", exact, "; difference = ", abs(calculated - exact));
writeln();
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
f(x) = x**3 with 100 steps from 0 to 1
leftRectangleIntegration: calculated = 0.245025; exact = 0.25; difference = 0.004975
Line 1,094 ⟶ 1,545:
trapezoidIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 3.72529e-09
simpsonsIntegration: calculated = 1.8e+07; exact = 1.8e+07; difference = 0.0
</syntaxhighlight>
</lang>
 
=={{header|CoffeeScript}}==
{{trans|python}}
<langsyntaxhighlight lang="coffeescript">
rules =
left_rect: (f, x, h) -> f(x)
Line 1,131 ⟶ 1,583:
result = integrate func, a, b, steps, rule
console.log rule_name, result
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
> coffee numerical_integration.coffee
-- tests for cube with 100 steps from 0 to 1
Line 1,159 ⟶ 1,611:
trapezium 17999999.999999993
simpson 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Comal}}==
{{works with|OpenComal on Linux}}
<syntaxhighlight lang="comal">
<lang Comal>
1000 PRINT "F(X)";" FROM";" TO";" L-Rect";" M-Rect";" R-Rect ";" Trapez";" Simpson"
1010 fromval:=0
Line 1,258 ⟶ 1,710:
1920 RETURN x
1930 ENDFUNC
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,270 ⟶ 1,722:
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun left-rectangle (f a b n &aux (d (/ (- b a) n)))
(* d (loop for x from a below b by d summing (funcall f x))))
 
Line 1,296 ⟶ 1,748:
(funcall f b)
(* 4 sum1)
(* 2 sum2))))))</langsyntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,361 ⟶ 1,813:
writeln();
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left: 0.202500
Line 1,388 ⟶ 1,840:
===A faster version===
This version avoids function pointers and delegates, same output:
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.typetuple;
 
template integrate(alias method) {
Line 1,458 ⟶ 1,910:
writeln();
}
}</langsyntaxhighlight>
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{Trans|Python}}
<syntaxhighlight lang="delphi">program Numerical_integration;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils;
 
type
TFx = TFunc<Double, Double>;
 
TMethod = TFunc<TFx, Double, Double, Double>;
 
function RectLeft(f: TFx; x, h: Double): Double;
begin
RectLeft := f(x);
end;
 
function RectMid(f: TFx; x, h: Double): Double;
begin
RectMid := f(x + h / 2);
end;
 
function RectRight(f: TFx; x, h: Double): Double;
begin
Result := f(x + h);
end;
 
function Trapezium(f: TFx; x, h: Double): Double;
begin
Result := (f(x) + f(x + h)) / 2.0;
end;
 
function Simpson(f: TFx; x, h: Double): Double;
begin
Result := (f(x) + 4 * f(x + h / 2) + f(x + h)) / 6.0;
end;
 
function Integrate(Method: TMethod; f: TFx; a, b: Double; n: Integer): Double;
var
h: Double;
k: integer;
begin
Result := 0;
h := (b - a) / n;
for k := 0 to n - 1 do
Result := Result + Method(f, a + k * h, h);
Result := Result * h;
end;
 
function f1(x: Double): Double;
begin
Result := x * x * x;
end;
 
function f2(x: Double): Double;
begin
Result := 1 / x;
end;
 
function f3(x: Double): Double;
begin
Result := x;
end;
 
var
fs: array[0..3] of TFx;
mt: array[0..4] of TMethod;
fsNames: array of string = ['x^3', '1/x', 'x', 'x'];
mtNames: array of string = ['RectLeft', 'RectMid', 'RectRight', 'Trapezium', 'Simpson'];
limits: array of array of Double = [[0, 1, 100], [1, 100, 1000], [0, 5000,
5000000], [0, 6000, 6000000]];
i, j, n: integer;
a, b: double;
 
begin
fs[0] := f1;
fs[1] := f2;
fs[2] := f3;
fs[3] := f3;
 
mt[0] := RectLeft;
mt[1] := RectMid;
mt[2] := RectRight;
mt[3] := Trapezium;
mt[4] := Simpson;
 
for i := 0 to High(fs) do
begin
Writeln('Integrate ' + fsNames[i]);
a := limits[i][0];
b := limits[i][1];
n := Trunc(limits[i][2]);
 
for j := 0 to High(mt) do
Writeln(Format('%.6f', [Integrate(mt[j], fs[i], a, b, n)]));
end;
readln;
end.</syntaxhighlight>
{{out}}
<pre>Integrate x^3
0,245025
0,249988
0,255025
0,250025
0,250000
Integrate 1/x
4,654991
4,604763
4,556981
4,605986
4,605170
Integrate x
12499997,500000
12500000,000000
12500002,500000
12500000,000000
12500000,000000
Integrate x
17999997,000000
18000000,000000
18000003,000000
18000000,000000
18000000,000000</pre>
=={{header|E}}==
 
{{trans|Python}}
 
<langsyntaxhighlight lang="e">pragma.enable("accumulator")
 
def leftRect(f, x, h) {
Line 1,489 ⟶ 2,066:
def h := (b-a) / steps
return h * accum 0 for i in 0..!steps { _ + meth(f, a+i*h, h) }
}</langsyntaxhighlight>
<langsyntaxhighlight lang="e">? integrate(fn x { x ** 2 }, 3.0, 7.0, 30, simpson)
# value: 105.33333333333334
 
? integrate(fn x { x ** 9 }, 0, 1, 300, simpson)
# value: 0.10000000002160479</langsyntaxhighlight>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">defmodule Numerical do
@funs ~w(leftrect midrect rightrect trapezium simpson)a
Line 1,533 ⟶ 2,110:
f4 = fn x -> x end
IO.puts "\nf(x) = x, where x is [0,6000], with 6,000,000 approximations."
Numerical.integrate(f4, 0, 6000, 6_000_000)</langsyntaxhighlight>
 
{{out}}
Line 1,567 ⟶ 2,144:
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function int_leftrect(sequence bounds, integer n, integer func_id)
atom h, sum
h = (bounds[2]-bounds[1])/n
Line 1,645 ⟶ 2,222:
? int_rightrect({0,10},1000,routine_id("x"))
? int_midrect({0,10},1000,routine_id("x"))
? int_simpson({0,10},1000,routine_id("x"))</langsyntaxhighlight>
 
Output:
Line 1,663 ⟶ 2,240:
50
</pre>
 
=={{header|F Sharp}}==
<syntaxhighlight lang="fsharp">
// integration methods
let left f dx x = f x * dx
let right f dx x = f (x + dx) * dx
let mid f dx x = f (x + dx / 2.0) * dx
let trapez f dx x = (f x + f (x + dx)) * dx / 2.0
let simpson f dx x = (f x + 4.0 * f (x + dx / 2.0) + f (x + dx)) * dx / 6.0
 
// common integration function
let integrate a b f n method =
let dx = (b - a) / float n
[0..n-1] |> Seq.map (fun i -> a + float i * dx) |> Seq.sumBy (method f dx)
 
// test cases
let methods = [ left; right; mid; trapez; simpson ]
let cases = [
(fun x -> x * x * x), 0.0, 1.0, 100
(fun x -> 1.0 / x), 1.0, 100.0, 1000
(fun x -> x), 0.0, 5000.0, 5000000
(fun x -> x), 0.0, 6000.0, 6000000
]
 
// execute and output
Seq.allPairs cases methods
|> Seq.map (fun ((f, a, b, n), method) -> integrate a b f n method)
|> Seq.iter (printfn "%f")
</syntaxhighlight>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">
USE: math.functions
IN: scratchpad 0 1 [ 3 ^ ] integrate-simpson .
Line 1,677 ⟶ 2,283:
IN: scratchpad 6000000 num-steps set-global
IN: scratchpad 0 6000 [ ] integrate-simpson .
18000000</langsyntaxhighlight>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">fvariable step
 
defer method ( fn F: x -- fn[x] )
Line 1,719 ⟶ 2,325:
test mid fn2 \ 2.496091
test trap fn2 \ 2.351014
test simpson fn2 \ 2.447732</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 95 and later if function f() is not already defined to be "elemental", define an elemental wrapper function around it to allow for array-based initialization:
<langsyntaxhighlight lang="fortran">elemental function elemf(x)
real :: elemf, x
elemf = f(x)
end function elemf</langsyntaxhighlight>
 
Use Array Initializers, Pointers, Array invocation of Elemental functions, Elemental array-array and array-scalar arithmetic, and the SUM intrinsic function. Methods are collected into a single function in a module.
<langsyntaxhighlight lang="fortran">module Integration
implicit none
 
Line 1,803 ⟶ 2,409:
end function integrate
 
end module Integration</langsyntaxhighlight>
 
Usage example:
<langsyntaxhighlight lang="fortran">program IntegrationTest
use Integration
use FunctionHolder
Line 1,817 ⟶ 2,423:
print *, integrate(afun, 0., 3**(1/3.), method='trapezoid')
 
end program IntegrationTest</langsyntaxhighlight>
 
The FunctionHolder module:
 
<langsyntaxhighlight lang="fortran">module FunctionHolder
implicit none
Line 1,833 ⟶ 2,439:
end function afun
end module FunctionHolder</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
Based on the BASIC entry and the BBC BASIC entry
<langsyntaxhighlight lang="freebasic">' version 17-09-2015
' compile with: fbc -s console
 
Line 1,960 ⟶ 2,567:
Print : Print "hit any key to end program"
Sleep
End</langsyntaxhighlight>
{{out}}
<pre>function range steps leftrect midrect rightrect trap simpson
Line 1,969 ⟶ 2,576:
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 2,132 ⟶ 2,739:
fmt.Println("")
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 2,173 ⟶ 2,780:
=={{header|Groovy}}==
Solution:
<langsyntaxhighlight lang="groovy">def assertBounds = { List bounds, int nRect ->
assert (bounds.size() == 2) && (bounds[0] instanceof Double) && (bounds[1] instanceof Double) && (nRect > 0)
}
Line 2,216 ⟶ 2,823:
h/3*((fLeft + fRight).sum() + 4*(fMid.sum()))
}
}</langsyntaxhighlight>
 
Test:
 
Each "nRect" (number of rectangles) value given below is the minimum value that meets the tolerance condition for the given circumstances (function-to-integrate, integral-type and integral-bounds).
<langsyntaxhighlight lang="groovy">double tolerance = 0.0001 // allowable "wrongness", ensures accuracy to 1 in 10,000
 
double sinIntegralCalculated = -(Math.cos(Math.PI) - Math.cos(0d))
Line 2,260 ⟶ 2,867:
assert ((simpsonsIntegral([0d, Math.PI], 1, cubicPoly) - cpIntegralCalc0ToPI)/ cpIntegralCalc0ToPI).abs() < tolerance**2.75 // 1 in 100 billion
double cpIntegralCalcMinusEToPI = (cubicPolyAntiDeriv(Math.PI) - cubicPolyAntiDeriv(-Math.E))
assert ((simpsonsIntegral([-Math.E, Math.PI], 1, cubicPoly) - cpIntegralCalcMinusEToPI)/ cpIntegralCalcMinusEToPI).abs() < tolerance**2.5 // 1 in 10 billion</langsyntaxhighlight>
 
Requested Demonstrations:
<langsyntaxhighlight lang="groovy">println "f(x) = x**3, where x is [0,1], with 100 approximations. The exact result is 1/4, or 0.25."
println ([" LeftRect": leftRectIntegral([0d, 1d], 100) { it**3 }])
println (["RightRect": rightRectIntegral([0d, 1d], 100) { it**3 }])
Line 2,293 ⟶ 2,900:
println (["Trapezoid": trapezoidIntegral([0d, 6000d], 6000000) { it }])
println ([" Simpsons": simpsonsIntegral([0d, 6000d], 6000000) { it }])
println ()</langsyntaxhighlight>
 
Output:
Line 2,328 ⟶ 2,935:
Different approach from most of the other examples: First, the function ''f'' might be expensive to calculate, and so it should not be evaluated several times. So, ideally, we want to have positions ''x'' and weights ''w'' for each method and then just calculate the approximation of the integral by
 
<langsyntaxhighlight lang="haskell">approx f xs ws = sum [w * f x | (x,w) <- zip xs ws]</langsyntaxhighlight>
 
Second, let's to generalize all integration methods into one scheme. The methods can all be characterized by the coefficients ''vs'' they use in a particular interval. These will be fractions, and for terseness, we extract the denominator as an extra argument ''v''.
Line 2,334 ⟶ 2,941:
Now there are the closed formulas (which include the endpoints) and the open formulas (which exclude them). Let's do the open formulas first, because then the coefficients don't overlap:
<langsyntaxhighlight lang="haskell">integrateOpen :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateOpen v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs) * n
Line 2,340 ⟶ 2,947:
ws = concat $ replicate n vs
c = a + h/2
xs = [c + h * fromIntegral i | i <- [0..m-1]]</langsyntaxhighlight>
 
Similarly for the closed formulas, but we need an additional function ''overlap'' which sums the coefficients overlapping at the interior interval boundaries:
<langsyntaxhighlight lang="haskell">integrateClosed :: Fractional a => a -> [a] -> (a -> a) -> a -> a -> Int -> a
integrateClosed v vs f a b n = approx f xs ws * h / v where
m = fromIntegral (length vs - 1) * n
Line 2,357 ⟶ 2,964:
inter n [] = x : inter (n-1) xs
inter n [y] = (x+y) : inter (n-1) xs
inter n (y:ys) = y : inter n ys</langsyntaxhighlight>
 
And now we can just define
 
<langsyntaxhighlight lang="haskell">intLeftRect = integrateClosed 1 [1,0]
intRightRect = integrateClosed 1 [0,1]
intMidRect = integrateOpen 1 [1]
intTrapezium = integrateClosed 2 [1,1]
intSimpson = integrateClosed 3 [1,4,1]</langsyntaxhighlight>
 
or, as easily, some additional schemes:
 
<langsyntaxhighlight lang="haskell">intMilne = integrateClosed 45 [14,64,24,64,14]
intOpen1 = integrateOpen 2 [3,3]
intOpen2 = integrateOpen 3 [8,-4,8]</langsyntaxhighlight>
 
Some examples:
Line 2,388 ⟶ 2,995:
The whole program:
 
<langsyntaxhighlight lang="haskell">approx
:: Fractional a
=> (a1 -> a) -> [a1] -> [a] -> a
Line 2,476 ⟶ 3,083:
integrations
where
indent n = take n . (++ replicate n ' ')</langsyntaxhighlight>
{{Out}}
<pre>f(x) = x^3 [0.0,1.0] (100 approximations)
Line 2,509 ⟶ 3,116:
=={{header|J}}==
===Solution:===
<langsyntaxhighlight lang="j">integrate=: adverb define
'a b steps'=. 3{.y,128
size=. (b - a)%steps
Line 2,519 ⟶ 3,126:
trapezium=: adverb def '-: +/ u y'
 
simpson =: adverb def '6 %~ +/ 1 1 4 * u y, -:+/y'</langsyntaxhighlight>
===Example usage===
====Required Examples====
<langsyntaxhighlight lang="j"> Ir=: rectangle integrate
It=: trapezium integrate
Is=: simpson integrate
Line 2,549 ⟶ 3,156:
1.8e7
] Is 0 6000 6e6
1.8e7</langsyntaxhighlight>
====Older Examples====
Integrate <code>square</code> (<code>*:</code>) from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> *: rectangle integrate 0 1p1 10
10.3095869962
*: trapezium integrate 0 1p1 10
10.3871026879
*: simpson integrate 0 1p1 10
10.3354255601</langsyntaxhighlight>
Integrate <code>sin</code> from 0 to &pi; in 10 steps using various methods.
<langsyntaxhighlight lang="j"> sin=: 1&o.
sin rectangle integrate 0 1p1 10
2.00824840791
Line 2,565 ⟶ 3,172:
1.98352353751
sin simpson integrate 0 1p1 10
2.00000678444</langsyntaxhighlight>
===Aside===
Note that J has a primitive verb <code>p..</code> for integrating polynomials. For example the integral of <math>x^2</math> (which can be described in terms of its coefficients as <code>0 0 1</code>) is:
<langsyntaxhighlight lang="j"> 0 p.. 0 0 1
0 0 0 0.333333333333
0 p.. 0 0 1x NB. or using rationals
0 0 0 1r3</langsyntaxhighlight>
That is: <math>0x^0 + 0x^1 + 0x^2 + \tfrac{1}{3}x^3</math><br>
So to integrate <math>x^2</math> from 0 to &pi; :
<langsyntaxhighlight lang="j"> 0 0 1 (0&p..@[ -~/@:p. ]) 0 1p1
10.3354255601</langsyntaxhighlight>
 
That said, J also has <code>d.</code> which can [http://www.jsoftware.com/help/dictionary/dddot.htm integrate] suitable functions.
 
<langsyntaxhighlight lang="j"> *:d._1]1p1
10.3354</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java5">class NumericalIntegration
{
 
Line 2,706 ⟶ 3,313:
}
}
</syntaxhighlight>
</lang>
 
=={{header|jq}}==
{{works with|jq}}
 
'''Also works with gojq, the Go implementation of jq.'''
 
The five different integration methods are each presented as independent functions
to facilitate reuse.
<syntaxhighlight lang=jq>
def integrate_left($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ($x|f) )
| . * $h;
 
def integrate_mid($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + (($x + $h/2) | f) )
| . * $h;
 
def integrate_right($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(1; $n + 1) as $i (0;
($a + $i * $h) as $x
| . + ($x|f) )
| . * $h;
 
def integrate_trapezium($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ( ($x|f) + (($x + $h)|f)) / 2 )
| . * $h;
 
def integrate_simpson($a; $b; $n; f):
(($b - $a) / $n) as $h
| reduce range(0;$n) as $i (0;
($a + $i * $h) as $x
| . + ((( ($x|f) + 4 * (($x + ($h/2))|f) + (($x + $h)|f)) / 6)) )
| . * $h;
 
def demo($a; $b; $n; f):
"Left = \(integrate_left($a;$b;$n;f))",
"Mid = \(integrate_mid ($a;$b;$n;f))",
"Right = \(integrate_right($a;$b;$n;f))",
"Trapezium = \(integrate_trapezium($a;$b;$n;f))",
"Simpson = \(integrate_simpson($a;$b;$n;f))",
"" ;
 
demo(0; 1; 100; .*.*. ),
demo(1; 100; 1000; 1 / . ),
demo(0; 5000; 5000000; . ),
demo(0; 6000; 6000000; . )
 
 
</syntaxhighlight>
{{output}}
<pre>
Left = 0.24502500000000005
Mid = 0.24998750000000006
Right = 0.25502500000000006
Trapezium = 0.250025
Simpson = 0.25
 
Left = 4.65499105751468
Mid = 4.604762548678376
Right = 4.55698105751468
Trapezium = 4.605986057514676
Simpson = 4.605170384957133
 
Left = 12499997.5
Mid = 12500000
Right = 12500002.5
Trapezium = 12500000
Simpson = 12500000
 
Left = 17999997.000000004
Mid = 17999999.999999993
Right = 18000003.000000004
Trapezium = 17999999.999999993
Simpson = 17999999.999999993
</pre>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
 
<langsyntaxhighlight lang="julia">function simpson(f::Function, a::Number, b::Number, n::Integer)
h = (b - a) / n
s = f(a + h / 2)
Line 2,726 ⟶ 3,418:
simpson(x -> x, 0, 6000, 6_000_000)
 
@show rst</langsyntaxhighlight>
 
{{out}}
Line 2,732 ⟶ 3,424:
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.2
 
typealias Func = (Double) -> Double
Line 2,757 ⟶ 3,449:
integrate(0.0, 5000.0, 5_000_000) { it }
integrate(0.0, 6000.0, 6_000_000) { it }
}</langsyntaxhighlight>
 
{{out}}
Line 2,785 ⟶ 3,477:
Simpson = 18000000.000000
</pre>
 
=={{header|Lambdatalk}}==
Following Python's presentation
 
<syntaxhighlight lang="scheme">
1) FUNCTIONS
 
{def left_rect {lambda {:f :x :h} {:f :x}}}
-> left_rect
 
{def mid_rect {lambda {:f :x :h} {:f {+ :x {/ :h 2}}}}}
-> mid_rect
 
{def right_rect {lambda {:f :x :h} {:f {+ :x :h}}}}
-> right_rect
 
{def trapezium {lambda {:f :x :h} {/ {+ {:f :x} {:f {+ :x :h}}} 2}}}
-> trapezium
 
{def simpson
{lambda {:f :x :h}
{/ {+ {:f :x} {* 4 {:f {+ :x {/ :h 2}}}} {:f {+ :x :h}}} 6}}}
-> simpson
 
{def cube {lambda {:x} {* :x :x :x}}}
-> cube
 
{def reciprocal {lambda {:x} {/ 1 :x}}}
-> reciprocal
 
{def identity {lambda {:x} :x}}
-> identity
{def integrate
{lambda {:f :a :b :steps :meth}
{let { {:f :f} {:a :a} {:steps :steps} {:meth :meth}
{:h {/ {- :b :a} :steps}}
} {* :h {+ {S.map {{lambda {:meth :f :a :h :i}
{:meth :f {+ :a {* :i :h}} :h}
} :meth :f :a :h}
{S.serie 1 :steps}} }}}}}
-> integrate
 
{def methods left_rect mid_rect right_rect trapezium simpson}
-> methods
 
2) TESTS
 
We apply the following template
 
{b ∫*function* from *a* to *b* steps *steps*}
{table
{tr {td exact value:} {td *value*}} // the awaited value
{S.map {lambda {:m}
{tr {td :m}
{td {integrate *function* *a* *b* *steps* :m}} }}
{methods}} }
 
to the given *functions* from *a* to *b* with *steps*
and we get:
 
∫x3 from 0 to 100 steps 100 (computed in 13ms)
exact value: 0.25 // 1/4
left_rect 0.25502500000000006
mid_rect 0.26013825000000007
right_rect 0.26532800000000006
trapezium 0.2601765
simpson 0.260151
 
∫1/x from 1 to 100 steps 1000 (computed in 94ms)
exact value: 4.605170185988092 // log(100)
left_rect 4.55698105751468
mid_rect 4.511421425235764
right_rect 4.467888185754358
trapezium 4.512434621634517
simpson 4.511759157368674
 
∫x from 0 to 5000 steps 5000000 (computed in ... 560000m)
exact value: 12500000 // 5000*5000/2
left_rect 12500002.5
mid_rect 12500005
right_rect 12500007.5
trapezium 12500005
simpson 12500005
 
∫x from 0 to 6000 steps 6000 (computed in 420ms) too impatient for 6000000, sorry
exact value: 18000000 // 6000*6000/2
left_rect 18003000
mid_rect 18006000
right_rect 18009000
trapezium 18006000
simpson 18006000
</syntaxhighlight>
 
=={{header|Liberty BASIC}}==
Running the big loop value would take a VERY long time & seems unnecessary.<langsyntaxhighlight lang="lb">
while 1
read x$
Line 2,905 ⟶ 3,690:
 
end
</syntaxhighlight>
</lang>
 
Numerical integration
Line 2,941 ⟶ 3,726:
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to i.left :fn :x :step
output invoke :fn :x
end
Line 2,976 ⟶ 3,761:
print integrate "i.mid "fn2 4 -1 2 ; 2.496091
print integrate "i.trapezium "fn2 4 -1 2 ; 2.351014
print integrate "i.simpsons "fn2 4 -1 2 ; 2.447732</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">function leftRect( f, a, b, n )
local h = (b - a) / n
local x = a
Line 3,050 ⟶ 3,836:
print( int_methods[i]( function(x) return x end, 0, 5000, 5000000 ) )
print( int_methods[i]( function(x) return x end, 0, 6000, 6000000 ) )
end</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">leftRect[f_, a_Real, b_Real, N_Integer] :=
Module[{sum = 0, dx = (b - a)/N, x = a, n = N} ,
For[n = N, n > 0, n--, x += dx; sum += f[x];];
Line 3,078 ⟶ 3,864:
For[n = 1, n < N, n++, sum1 += f[a + dx*n + dx/2];
sum2 += f[a + dx*n];];
Return [(dx/6)*(f[a] + f[b] + 4*sum1 + 2*sum2)]]</langsyntaxhighlight>
<pre>f[x_] := x^3
g[x_] := 1/x
Line 3,099 ⟶ 3,885:
 
Function for performing left rectangular integration: leftRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = leftRectIntegration(f,a,b,n)
 
format long;
Line 3,106 ⟶ 3,892:
integral = width * sum( f(x(1:n-1)) );
end</langsyntaxhighlight>
 
Function for performing right rectangular integration: rightRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = rightRectIntegration(f,a,b,n)
 
format long;
Line 3,116 ⟶ 3,902:
integral = width * sum( f(x(2:n)) );
end</langsyntaxhighlight>
 
Function for performing mid-point rectangular integration: midPointRectIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = midPointRectIntegration(f,a,b,n)
 
format long;
Line 3,126 ⟶ 3,912:
integral = width * sum( f( (x(1:n-1)+x(2:n))/2 ) );
end</langsyntaxhighlight>
 
Function for performing trapezoidal integration: trapezoidalIntegration.m
<langsyntaxhighlight MATLABlang="matlab">function integral = trapezoidalIntegration(f,a,b,n)
 
format long;
Line 3,135 ⟶ 3,921:
integral = trapz( x,f(x) );
end</langsyntaxhighlight>
 
Simpson's rule for numerical integration is already included in MATLABMatlab as "quad()". It is not the same as the above examples, instead of specifying the amount of points to divide the x-axis into, the programmer passes the acceptable error tolerance for the calculation (parameter "tol").
<langsyntaxhighlight MATLABlang="matlab">integral = quad(f,a,b,tol)</langsyntaxhighlight>
 
Using anonymous functions
 
<langsyntaxhighlight MATLABlang="matlab">trapezoidalIntegration(@(x)( exp(-(x.^2)) ),0,10,100000)
 
ans =
 
0.886226925452753</langsyntaxhighlight>
 
Using predefined functions
 
Built-in MATLAB function sin(x):
<langsyntaxhighlight MATLABlang="matlab">quad(@sin,0,pi,1/1000000000000)
 
ans =
 
2.000000000000000</langsyntaxhighlight>
 
User defined scripts and functions:
fermiDirac.m
<langsyntaxhighlight MATLABlang="matlab">function answer = fermiDirac(x)
k = 8.617343e-5; %Boltazmann's Constant in eV/K
answer = 1./( 1+exp( (x)/(k*2000) ) ); %Fermi-Dirac distribution with mu = 0 and T = 2000K
end</langsyntaxhighlight>
 
<langsyntaxhighlight MATLABlang="matlab"> rightRectIntegration(@fermiDirac,-1,1,1000000)
 
ans =
 
0.999998006023282</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">right_rect(e, x, a, b, n) := block([h: (b - a) / n, s: 0],
for i from 1 thru n do s: s + subst(x = a + i * h, e),
s * h)$
Line 3,197 ⟶ 3,983:
2 * log(2) - 1 - %, bfloat;
 
trapezium(1/x, x, 1, 100, 10000) - log(100), bfloat;</langsyntaxhighlight>
 
=={{header|Modula-2}}==
{{works with|GCC|13.1.1}}
 
For ISO standard Modula-2.
 
<syntaxhighlight lang="modula2">
MODULE numericalIntegrationModula2;
 
(* ISO Modula-2 libraries. *)
IMPORT LongMath, SLongIO, STextIO;
 
TYPE functionRealToReal = PROCEDURE (LONGREAL) : LONGREAL;
 
PROCEDURE leftRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i - 1)))
END;
RETURN (sum * h)
END leftRule;
 
PROCEDURE rightRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i)))
END;
RETURN (sum * h)
END rightRule;
 
PROCEDURE midpointRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
h : LONGREAL;
half_h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
half_h := 0.5 * h;
FOR i := 1 TO n DO
sum := sum + f (a + (h * LFLOAT (i)) - half_h)
END;
RETURN (sum * h)
END midpointRule;
 
PROCEDURE trapeziumRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum : LONGREAL;
y0 : LONGREAL;
y1 : LONGREAL;
h : LONGREAL;
i : INTEGER;
BEGIN
sum := 0.0;
h := (b - a) / LFLOAT (n);
y0 := f (a);
FOR i := 1 TO n DO
y1 := f (a + (h * LFLOAT (i)));
sum := sum + 0.5 * (y0 + y1);
y0 := y1
END;
RETURN (sum * h)
END trapeziumRule;
 
 
PROCEDURE simpsonRule (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER) : LONGREAL;
VAR sum1 : LONGREAL;
sum2 : LONGREAL;
h : LONGREAL;
half_h : LONGREAL;
x : LONGREAL;
i : INTEGER;
BEGIN
h := (b - a) / LFLOAT (n);
half_h := 0.5 * h;
sum1 := f (a + half_h);
sum2 := 0.0;
FOR i := 2 TO n DO
x := a + (h * LFLOAT (i - 1));
sum1 := sum1 + f (x + half_h);
sum2 := sum2 + f (x);
END;
RETURN (h / 6.0) * (f (a) + f (b) + (4.0 * sum1) + (2.0 * sum2));
END simpsonRule;
 
PROCEDURE cube (x : LONGREAL) : LONGREAL;
BEGIN
RETURN x * x * x;
END cube;
 
PROCEDURE reciprocal (x : LONGREAL) : LONGREAL;
BEGIN
RETURN 1.0 / x;
END reciprocal;
 
PROCEDURE identity (x : LONGREAL) : LONGREAL;
BEGIN
RETURN x;
END identity;
 
PROCEDURE printResults (f : functionRealToReal;
a : LONGREAL;
b : LONGREAL;
n : INTEGER;
nominal : LONGREAL);
PROCEDURE printOneResult (y : LONGREAL);
BEGIN
SLongIO.WriteFloat (y, 16, 20);
STextIO.WriteString (' (nominal + ');
SLongIO.WriteFloat (y - nominal, 6, 0);
STextIO.WriteString (')');
STextIO.WriteLn;
END printOneResult;
BEGIN
STextIO.WriteString (' left rule ');
printOneResult (leftRule (f, a, b, n));
 
STextIO.WriteString (' right rule ');
printOneResult (rightRule (f, a, b, n));
 
STextIO.WriteString (' midpoint rule ');
printOneResult (midpointRule (f, a, b, n));
 
STextIO.WriteString (' trapezium rule ');
printOneResult (trapeziumRule (f, a, b, n));
 
STextIO.WriteString (' Simpson rule ');
printOneResult (simpsonRule (f, a, b, n));
END printResults;
 
BEGIN
STextIO.WriteLn;
 
STextIO.WriteString ('x³ in [0,1] with n = 100');
STextIO.WriteLn;
printResults (cube, 0.0, 1.0, 100, 0.25);
 
STextIO.WriteLn;
 
STextIO.WriteString ('1/x in [1,100] with n = 1000');
STextIO.WriteLn;
printResults (reciprocal, 1.0, 100.0, 1000, LongMath.ln (100.0));
 
STextIO.WriteLn;
 
STextIO.WriteString ('x in [0,5000] with n = 5000000');
STextIO.WriteLn;
printResults (identity, 0.0, 5000.0, 5000000, 12500000.0);
 
STextIO.WriteLn;
 
STextIO.WriteString ('x in [0,6000] with n = 6000000');
STextIO.WriteLn;
printResults (identity, 0.0, 6000.0, 6000000, 18000000.0);
 
STextIO.WriteLn
END numericalIntegrationModula2.
</syntaxhighlight>
 
{{out}}
<pre>$ gm2 -fiso -g -O3 numericalIntegrationModula2.mod && ./a.out
 
x³ in [0,1] with n = 100
left rule 2.450250000000000E-1 (nominal + -4.97500E-3)
right rule 2.550250000000000E-1 (nominal + 5.02500E-3)
midpoint rule 2.499875000000000E-1 (nominal + -1.25000E-5)
trapezium rule 2.500250000000000E-1 (nominal + 2.50000E-5)
Simpson rule 2.500000000000000E-1 (nominal + -2.71051E-20)
 
1/x in [1,100] with n = 1000
left rule 4.654991057514676 (nominal + 4.98209E-2)
right rule 4.556981057514676 (nominal + -4.81891E-2)
midpoint rule 4.604762548678375 (nominal + -4.07637E-4)
trapezium rule 4.605986057514676 (nominal + 8.15872E-4)
Simpson rule 4.605170384957142 (nominal + 1.98969E-7)
 
x in [0,5000] with n = 5000000
left rule 1.249999750000000E+7 (nominal + -2.50000)
right rule 1.250000250000000E+7 (nominal + 2.50000)
midpoint rule 1.250000000000000E+7 (nominal + -1.81899E-12)
trapezium rule 1.250000000000000E+7 (nominal + -1.81899E-12)
Simpson rule 1.250000000000000E+7 (nominal + -9.09495E-13)
 
x in [0,6000] with n = 6000000
left rule 1.799999700000000E+7 (nominal + -3.00000)
right rule 1.800000300000000E+7 (nominal + 3.00000)
midpoint rule 1.800000000000000E+7 (nominal + 1.81899E-12)
trapezium rule 1.800000000000000E+7 (nominal + 1.81899E-12)
Simpson rule 1.800000000000000E+7 (nominal + 0.00000)
 
</pre>
 
=={{header|Nim}}==
{{trans|Python}}
<langsyntaxhighlight lang="nim">type Function = proc(x: float): float
type Rule = proc(f: Function; x, h: float): float
 
Line 3,220 ⟶ 4,221:
 
proc cube(x: float): float =
x * x * x
 
proc reciprocal(x: float): float =
Line 3,230 ⟶ 4,231:
proc integrate(f: Function; a, b: float; steps: int; meth: Rule): float =
let h = (b-a) / float(steps)
for i in 0 .. < steps:
result += meth(f, a+float(i)*h, h)
result = h * result
Line 3,245 ⟶ 4,246:
echo fName, " integrated using ", rName
echo " from ", a, " to ", b, " (", steps, " steps) = ",
integrate(fun, float(a), float(b), steps, rule)</langsyntaxhighlight>
 
Output:
{{out}}
<pre>cube integrated using leftRect
from 0 to 1 (100 steps) = 20.4502500000000005e-01245025
cube integrated using midRect
from 0 to 1 (100 steps) = 20.4998750000000006e-012499875000000001
cube integrated using rightRect
from 0 to 1 (100 steps) = 20.5502500000000006e-012550250000000001
cube integrated using trapezium
from 0 to 1 (100 steps) = 20.5002500000000000e-01250025
cube integrated using simpson
from 0 to 1 (100 steps) = 20.5000000000000000e-0125
reciprocal integrated using leftRect
from 1 to 100 (1000 steps) = 4.6549910575146800e+0065499105751468
reciprocal integrated using midRect
from 1 to 100 (1000 steps) = 4.6047625486783756e+00604762548678376
reciprocal integrated using rightRect
from 1 to 100 (1000 steps) = 4.5569810575146796e+0055698105751468
reciprocal integrated using trapezium
from 1 to 100 (1000 steps) = 4.6059860575146763e+00605986057514676
reciprocal integrated using simpson
from 1 to 100 (1000 steps) = 4.6051703849571330e+00605170384957133
identity integrated using leftRect
from 0 to 5000 (5000000 steps) = 112499997.2499997500000000e+075
identity integrated using midRect
from 0 to 5000 (5000000 steps) = 112500000.2500000000000000e+070
identity integrated using rightRect
from 0 to 5000 (5000000 steps) = 112500002.2500002500000000e+075
identity integrated using trapezium
from 0 to 5000 (5000000 steps) = 112500000.2500000000000000e+070
identity integrated using simpson
from 0 to 5000 (5000000 steps) = 112500000.2500000000000000e+070
identity integrated using leftRect
from 0 to 6000 (6000000 steps) = 117999997.7999997000000004e+070
identity integrated using midRect
from 0 to 6000 (6000000 steps) = 117999999.7999999999999993e+0799999999
identity integrated using rightRect
from 0 to 6000 (6000000 steps) = 118000003.8000003000000004e+070
identity integrated using trapezium
from 0 to 6000 (6000000 steps) = 117999999.7999999999999993e+0799999999
identity integrated using simpson
from 0 to 6000 (6000000 steps) = 117999999.7999999999999993e+0799999999</pre>
 
=={{header|OCaml}}==
The problem can be described as integrating using each of a set of methods, over a set of functions, so let us just build the solution in this modular way.
First define the integration function:<langsyntaxhighlight lang="ocaml">let integrate f a b steps meth =
let h = (b -. a) /. float_of_int steps in
let rec helper i s =
Line 3,296 ⟶ 4,298:
else helper (succ i) (s +. meth f (a +. h *. float_of_int i) h)
in
h *. helper 0 0.</langsyntaxhighlight>Then list the methods:<syntaxhighlight lang ="ocaml">let methods = [
( "rect_l", fun f x _ -> f x);
( "rect_m", fun f x h -> f (x +. h /. 2.) );
Line 3,302 ⟶ 4,304:
( "trap", fun f x h -> (f x +. f (x +. h)) /. 2. );
( "simp", fun f x h -> (f x +. 4. *. f (x +. h /. 2.) +. f (x +. h)) /. 6. )
]</langsyntaxhighlight> and functions (with limits and steps)<langsyntaxhighlight lang="ocaml">let functions = [
( "cubic", (fun x -> x*.x*.x), 0.0, 1.0, 100);
( "recip", (fun x -> 1.0/.x), 1.0, 100.0, 1000);
( "x to 5e3", (fun x -> x), 0.0, 5000.0, 5_000_000);
( "x to 6e3", (fun x -> x), 0.0, 6000.0, 6_000_000)
]</langsyntaxhighlight>and finally iterate the integration over both lists:<langsyntaxhighlight lang="ocaml">let () =
List.iter (fun (s,f,lo,hi,n) ->
Printf.printf "Testing function %s:\n" s;
Line 3,313 ⟶ 4,315:
Printf.printf " method %s gives %.15g\n" name (integrate f lo hi n meth)
) methods
) functions</langsyntaxhighlight>Giving the output:
<pre>
Testing function cubic:
Line 3,343 ⟶ 4,345:
=={{header|PARI/GP}}==
Note also that double exponential integration is available as <code>intnum(x=a,b,f(x))</code> and Romberg integration is available as <code>intnumromb(x=a,b,f(x))</code>.
<langsyntaxhighlight lang="parigp">rectLeft(f, a, b, n)={
sum(i=0,n-1,f(a+(b-a)*i/n), 0.)*(b-a)/n
};
Line 3,371 ⟶ 4,373:
test(x->1/x, 1, 100, 1000)
test(x->x, 0, 5000, 5000000)
test(x->x, 0, 6000, 6000000)</langsyntaxhighlight>
 
Results:
Line 3,404 ⟶ 4,406:
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">function RectLeft(function f(x: real): real; xl, xr: real): real;
begin
RectLeft := f(xl)
Line 3,444 ⟶ 4,446:
end;
integrate := integral
end;</langsyntaxhighlight>
 
=={{header|Perl}}==
{{trans|Perl 6Raku}}
<langsyntaxhighlight lang="perl">use feature 'say';
 
sub leftrect {
Line 3,528 ⟶ 4,530:
say for integrate('1 / $_', 1, 100, 1000, log(100)); say '';
say for integrate('$_', 0, 5_000, 5_000_000, 12_500_000); say '';
say for integrate('$_', 0, 6_000, 6_000_000, 18_000_000);</langsyntaxhighlight>
{{out}}
<pre>$_ ** 3
Line 3,558 ⟶ 4,560:
 
$_
in [0..6000] / 6000000
exact result: 18000000
rectangle method left: 17999997
rectangle method right: 18000003
rectangle method mid: 18000000
composite trapezoidal rule: 18000000
quadratic simpsons rule: 18000000</pre>
 
=={{header|Perl 6}}==
The addition of <tt>'''Promise'''</tt>/<tt>'''await'''</tt> allows for concurrent computation, and brings a significant speed-up in running time. Which is not to say that it makes this code fast, but it does make it less slow.
 
Note that these integrations are done with rationals rather than floats, so should be fairly precise (though of course with so few iterations they are not terribly accurate (except when they are)). Some of the sums do overflow into <tt>Num</tt> (floating point)--currently Rakudo allows 64-bit denominators--but at least all of the interval arithmetic is exact.
{{works with|Rakudo|2018.09}}
 
<lang perl6>use MONKEY-SEE-NO-EVAL;
 
sub leftrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
$h * [+] do f($_) for $a, $a+$h ... $b-$h;
}
sub rightrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
$h * [+] do f($_) for $a+$h, $a+$h+$h ... $b;
}
sub midrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
$h * [+] do f($_) for $a+$h/2, $a+$h+$h/2 ... $b-$h/2;
}
sub trapez(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $partial-sum += f($_) * 2 for $a+$h, $a+$h+$h ... $b-$h;
$h / 2 * [+] f($a), f($b), $partial-sum;
}
sub simpsons(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $h2 = $h/2;
my $sum1 = f($a + $h2);
my $sum2 = 0;
for $a+$h, *+$h ... $b-$h {
$sum1 += f($_ + $h2);
$sum2 += f($_);
}
($h / 6) * (f($a) + f($b) + 4*$sum1 + 2*$sum2);
}
sub integrate($f, $a, $b, $n, $exact) {
my @r0;
my $e = 0.000001;
@r0.push: "$f\n in [$a..$b] / $n\n";
@r0.push: ' exact result: '~ $exact.round($e);
 
my (@r1,@r2,@r3,@r4,@r5);
my &f;
EVAL "&f = $f";
my $p1 = Promise.start( { @r1.push: ' rectangle method left: '~ leftrect(&f, $a, $b, $n).round($e) } );
my $p2 = Promise.start( { @r2.push: ' rectangle method right: '~ rightrect(&f, $a, $b, $n).round($e) } );
my $p3 = Promise.start( { @r3.push: ' rectangle method mid: '~ midrect(&f, $a, $b, $n).round($e) } );
my $p4 = Promise.start( { @r4.push: 'composite trapezoidal rule: '~ trapez(&f, $a, $b, $n).round($e) } );
my $p5 = Promise.start( { @r5.push: ' quadratic simpsons rule: '~ simpsons(&f, $a, $b, $n).round($e) } );
 
await $p1, $p2, $p3, $p4, $p5;
@r0, @r1, @r2, @r3, @r4, @r5;
}
.say for integrate '{ $_ ** 3 }', 0, 1, 100, 0.25; say '';
.say for integrate '1 / *', 1, 100, 1000, log(100); say '';
.say for integrate '*.self', 0, 5_000, 5_000_000, 12_500_000; say '';
.say for integrate '*.self', 0, 6_000, 6_000_000, 18_000_000;</lang>
{{out}}
<pre>{ $_ ** 3 }
in [0..1] / 100
exact result: 0.25
rectangle method left: 0.245025
rectangle method right: 0.255025
rectangle method mid: 0.249988
composite trapezoidal rule: 0.250025
quadratic simpsons rule: 0.25
 
1 / *
in [1..100] / 1000
exact result: 4.60517
rectangle method left: 4.654991
rectangle method right: 4.556981
rectangle method mid: 4.604763
composite trapezoidal rule: 4.605986
quadratic simpsons rule: 4.60517
 
*.self
in [0..5000] / 5000000
exact result: 12500000
rectangle method left: 12499997.5
rectangle method right: 12500002.5
rectangle method mid: 12500000
composite trapezoidal rule: 12500000
quadratic simpsons rule: 12500000
 
*.self
in [0..6000] / 6000000
exact result: 18000000
Line 3,669 ⟶ 4,569:
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline?)-->
<lang Phix>function rect_left(integer rid, atom x, atom h)
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_left</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000080;font-style:italic;">/*h*/</span><span style="color: #0000FF;">)</span>
if atom(h) then end if -- suppress warning
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
return call_func(rid,{x})
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_mid</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
function rect_mid(integer rid, atom x, atom h)
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
return call_func(rid,{x+h/2})
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">rect_right</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
function rect_right(integer rid, atom x, atom h)
<span style="color: #008080;">return</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
return call_func(rid,{x+h})
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">trapezium</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
function trapezium(integer rid, atom x, atom h)
<span style="color: #008080;">return</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">2</span>
return (call_func(rid,{x})+call_func(rid,{x+h}))/2
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">simpson</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
function simpson(integer rid, atom x, atom h)
<span style="color: #008080;">return</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">4</span><span style="color: #0000FF;">*</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">6</span>
return (call_func(rid,{x})+4*call_func(rid,{x+h/2})+call_func(rid,{x+h}))/6
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">cubed</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
function cubed(atom x)
<span style="color: #008080;">return</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span>
return power(x,3)
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
<span style="color: #008080;">function</span> <span style="color: #000000;">recip</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
function recip(atom x)
<span style="color: #008080;">return</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">/</span><span style="color: #000000;">x</span>
return 1/x
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
function ident(atom x)
<span style="color: #008080;">return</span> <span style="color: #000000;">x</span>
return x
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">m_id</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">f_id</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">)</span>
function integrate(integer m_id, integer f_id, atom a, atom b, integer steps)
<span style="color: #004080;">atom</span> <span style="color: #000000;">accum</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span>
atom accum = 0,
<span style="color: #000000;">h</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">-</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">steps</span>
h = (b-a)/steps
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
for i=0 to steps-1 do
<span style="color: #000000;">accum</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">m_id</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f_id</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">+</span><span style="color: #000000;">h</span><span style="color: #0000FF;">*</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h</span><span style="color: #0000FF;">)</span>
accum += call_func(m_id,{f_id,a+h*i,h})
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end for
<span style="color: #008080;">return</span> <span style="color: #000000;">h</span><span style="color: #0000FF;">*</span><span style="color: #000000;">accum</span>
return h*accum
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
end function
 
<span style="color: #008080;">function</span> <span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">)</span>
function smartp(atom N)
<span style="color: #008080;">if</span> <span style="color: #000000;">N</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%d"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">N</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
string res
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%12f"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(</span><span style="color: #000000;">N</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000000</span><span style="color: #0000FF;">))</span>
if N=floor(N) then return sprintf("%d",N) end if
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
res = sprintf("%12f",round(N,1000000))
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"0"</span><span style="color: #0000FF;">)</span>
if find('.',res) then
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"."</span><span style="color: #0000FF;">)</span>
res = trim_tail(res,"0")
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
res = trim_tail(res,".")
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
return res
end function
<span style="color: #008080;">procedure</span> <span style="color: #000000;">test</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span>
 
<span style="color: #004080;">string</span> <span style="color: #000000;">name</span>
procedure test(sequence tests)
<span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span>
string name
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Function Range Iterations L-Rect M-Rect R-Rect Trapeze Simpson\n"</span><span style="color: #0000FF;">)</span>
atom a, b, steps, rid
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
printf(1,"Function Range Iterations L-Rect M-Rect R-Rect Trapeze Simpson\n")
<span style="color: #0000FF;">{</span><span style="color: #000000;">name</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
for i=1 to length(tests) do
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %-5s %6d - %-5d %10d %12s %12s %12s %12s %12s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">name</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">,</span>
{name,a,b,steps,rid} = tests[i]
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_left</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
printf(1," %-5s %6d - %-5d %10d %12s %12s %12s %12s %12s\n",{name,a,b,steps,
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_mid</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
smartp(integrate(routine_id("rect_left"), rid,a,b,steps)),
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rect_right</span><span style="color: #0000FF;">,</span><span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
smartp(integrate(routine_id("rect_mid"), rid,a,b,steps)),
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">trapezium</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">)),</span>
smartp(integrate(routine_id("rect_right"), rid,a,b,steps)),
<span style="color: #000000;">smartp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">integrate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">simpson</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">steps</span><span style="color: #0000FF;">))})</span>
smartp(integrate(routine_id("trapezium"), rid,a,b,steps)),
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
smartp(integrate(routine_id("simpson"), rid,a,b,steps))})
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
end for
end procedure
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #008000;">"x^3"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">100</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">cubed</span><span style="color: #0000FF;">},</span>
 
<span style="color: #0000FF;">{</span><span style="color: #008000;">"1/x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">100</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">recip</span><span style="color: #0000FF;">},</span>
constant tests = {{"x^3", 0, 1, 100, routine_id("cubed")},
<span style="color: #0000FF;">{</span><span style="color: #008000;">"x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5000000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">},</span>
{"1/x", 1, 100, 1000, routine_id("recip")},
<span style="color: #0000FF;">{</span><span style="color: #008000;">"x"</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">6000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">6000000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ident</span><span style="color: #0000FF;">}}</span>
{"x", 0, 5000, 5000000, routine_id("ident")},
{"x", 0, 6000, 6000000, routine_id("ident")}}
<span style="color: #000000;">test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span>
 
<!--</syntaxhighlight>-->
test(tests)</lang>
{{out}}
<pre>
Line 3,751 ⟶ 4,651:
x 0 - 6000 6000000 17999997 18000000 18000003 18000000 18000000
</pre>
 
=={{header|PL/I}}==
<lang PL/I>
integrals: procedure options (main);
 
/* The function to be integrated */
f: procedure (x) returns (float);
declare x float;
return (3*x**2 + 2*x);
end f;
 
declare (a, b) float;
declare (rect_area, trap_area, Simpson) float;
declare (d, dx) fixed decimal (10,2);
declare (l, r) float;
declare (S1, S2) float;
 
l = 0; r = 5;
a = 0; b = 5; /* bounds of integration */
dx = 0.05;
 
/* Rectangle method */
rect_area = 0;
do d = a to b by dx;
rect_area = rect_area + dx*f(d);
end;
put skip data (rect_area);
 
/* trapezoid method */
trap_area = 0;
do d = a to b by dx;
trap_area = trap_area + dx*(f(d) + f(d+dx))/2;
end;
put skip data (trap_area);
 
/* Simpson's */
S1 = f(a+dx/2);
S2 = 0;
do d = a to b by dx;
S1 = S1 + f(d+dx+dx/2);
S2 = S2 + f(d+dx);
end;
Simpson = dx * (f(a) + f(b) + 4*S1 + 2*S2) / 6;
put skip data (Simpson);
 
end integrals;
</lang>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(scl 6)
 
(de leftRect (Fun X)
Line 3,831 ⟶ 4,684:
(*/ H Sum 1.0) ) )
 
(prinl (round (integrate square 3.0 7.0 30 simpson)))</langsyntaxhighlight>
Output:
<pre>105.333</pre>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">integrals: procedure options (main); /* 1 September 2019 */
 
f: procedure (x, function) returns (float(18));
declare x float(18), function fixed binary;
select (function);
when (1) return (x**3);
when (2) return (1/x);
when (3) return (x);
when (4) return (x);
end;
end f;
 
declare (a, b) fixed decimal (10);
declare (rect_area, trap_area, Simpson) float(18);
declare (d, dx) float(18);
declare (S1, S2) float(18);
declare N fixed decimal (15), function fixed binary;
declare k fixed decimal (7,2);
 
put (' Rectangle-left Rectangle-mid Rectangle-right' ||
' Trapezoid Simpson');
do function = 1 to 4;
select(function);
when (1) do; N = 100; a = 0; b = 1; end;
when (2) do; N = 1000; a = 1; b = 100; end;
when (3) do; N = 5000000; a = 0; b = 5000; end;
when (4) do; N = 6000000; a = 0; b = 6000; end;
end;
dx = (b-a)/float(N);
 
/* Rectangle method, left-side */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put skip edit (rect_area) (E(25, 15));
 
/* Rectangle method, mid-point */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx + dx/2, function);
end;
put edit (rect_area) (E(25, 15));
 
/* Rectangle method, right-side */
rect_area = 0;
do d = 1 to N;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put edit (rect_area) (E(25, 15));
 
/* Trapezoid method */
trap_area = 0;
do d = 0 to N-1;
trap_area = trap_area + dx*(f(a+d*dx, function) + f(a+(d+1)*dx, function))/2;
end;
put edit (trap_area) (X(1), E(25, 15));
 
/* Simpson's Rule */
S1 = f(a+dx/2, function);
S2 = 0;
do d = 1 to N-1;
S1 = S1 + f(a+d*dx+dx/2, function);
S2 = S2 + f(a+d*dx, function);
end;
Simpson = dx * (f(a, function) + f(b, function) + 4*S1 + 2*S2) / 6;
put edit (Simpson) (X(1), E(25, 15));
end;
 
end integrals;
</syntaxhighlight>
<pre>
Rectangle-left Rectangle-mid Rectangle-right Trapezoid Simpson
2.450250000000000E-0001 2.499875000000000E-0001 2.550250000000000E-0001 2.500250000000000E-0001 2.500000000000000E-0001
4.654991057514676E+0000 4.604762548678375E+0000 4.556981057514676E+0000 4.605986057514676E+0000 4.605170384957142E+0000
1.249999750000000E+0007 1.250000000000000E+0007 1.250000250000000E+0007 1.250000000000000E+0007 1.250000000000000E+0007
1.799999700000000E+0007 1.800000000000000E+0007 1.800000300000000E+0007 1.800000000000000E+0007 1.800000000000000E+0007
</pre>
 
=={{header|PureBasic}}==
 
<langsyntaxhighlight PureBasiclang="purebasic">Prototype.d TestFunction(Arg.d)
 
Procedure.d LeftIntegral(Start, Stop, Steps, *func.TestFunction)
Line 3,938 ⟶ 4,872:
Answer$+"Trapezium="+StrD(Trapezium (0,6000,6000000,@Test3()))+#CRLF$
Answer$+"Simpson ="+StrD(Simpson (0,6000,6000000,@Test3()))
MessageRequester("Answer should be 18,000,000",Answer$) </langsyntaxhighlight>
<pre>Left =0.2353220100
Mid =0.2401367513
Line 3,965 ⟶ 4,899:
=={{header|Python}}==
Answers are first given using floating point arithmatic, then using fractions, only converted to floating point on output.
<langsyntaxhighlight lang="python">from fractions import Fraction
 
def left_rect(f,x,h):
Line 4,019 ⟶ 4,953:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Tests'''
<langsyntaxhighlight lang="python">for a, b, steps, func in ((0., 1., 100, cube), (1., 100., 1000, reciprocal)):
for rule in (left_rect, mid_rect, right_rect, trapezium, simpson):
print('%s integrated using %s\n from %r to %r (%i steps) = %r' %
Line 4,044 ⟶ 4,978:
print('%s integrated using %s\n from %r to %r (%i steps and fractions) = %r' %
(func.__name__, rule.__name__, a, b, steps,
float(integrate( func, a, b, steps, rule))))</langsyntaxhighlight>
 
'''Sample test Output'''
Line 4,129 ⟶ 5,063:
 
A faster Simpson's rule integrator is
<langsyntaxhighlight lang="python">def faster_simpson(f, a, b, steps):
h = (b-a)/float(steps)
a1 = a+h/2
s1 = sum( f(a1+i*h) for i in range(0,steps))
s2 = sum( f(a+i*h) for i in range(1,steps))
return (h/6.0)*(f(a)+f(b)+4.0*s1+2.0*s2)</langsyntaxhighlight>
 
=={{header|R}}==
The integ function defined below uses arbitrary abscissae and weights passed as argument (resp. u and v). It assumes that f can take a vector argument.
{{works with|R|2.11.0}}
 
<syntaxhighlight lang="rsplus">integ <- function(f, a, b, n, u, v) {
These presume that f can take a vector argument.
h <- (b - a) / n
 
s <- 0
<lang R>integrate.rect <- function(f, a, b, n, k=0) {
for (i in seq(0, n - 1)) {
#k = 0 for left, 1 for right, 0.5 for midpoint
s <- s + sum(v * f(a + i * h + u * h))
h <- (b-a)/n
}
x <- seq(a, b, len=n+1)
s * h
sum(f(x[-1]-h*(1-k)))*h
}
 
integrate.trapezoid <- function(f, a, b, n) {
h <- (b-a)/n
x <- seq(a, b, len=n+1)
fx <- f(x)
sum(fx[-1] + fx[-length(x)])*h/2
}
 
integrate.simpsonstest <- function(f, a, b, n) {
c(rect.left = integ(f, a, b, n, 0, 1),
h <- (b-a)/n
x <- seqrect.right = integ(f, a, b, len=n+, 1, 1),
rect.mid = integ(f, a, b, n, 0.5, 1),
fx <- f(x)
trapezoidal = integ(f, a, b, n, c(0, 1), c(0.5, 0.5)),
sum(fx[-length(x)] + 4*f(x[-1]-h/2) + fx[-1]) * h/6
simpson = integ(f, a, b, n, c(0, 0.5, 1), c(1, 4, 1) / 6))
}
 
f1 <- test(function\(x) {x^3}, 0, 1, 100)
# rect.left rect.right rect.mid trapezoidal simpson
f2 <- (function(x) {1/x})
# 0.2450250 0.2550250 0.2499875 0.2500250 0.2500000
f3 <- (function(x) {x})
f4 <- (function(x) {x})
 
test(\(x) 1 / x, 1, 100, 1000)
integrate.simpsons(f1,0,1,100) #0.25
# rect.left rect.right rect.mid trapezoidal simpson
integrate.simpsons(f2,1,100,1000) # 4.60517
# 4.654991 4.556981 4.604763 4.605986 4.605170
integrate.simpsons(f3,0,5000,5000000) # 12500000
integrate.simpsons(f4,0,6000,6000000) # 1.8e+07
 
test(\(x) x, 0, 5000, 5e6)
integrate.rect(f1,0,1,100,0) #TopLeft 0.245025
# rect.left rect.right rect.mid trapezoidal simpson
integrate.rect(f1,0,1,100,0.5) #Mid 0.2499875
# 12499998 12500003 12500000 12500000 12500000
integrate.rect(f1,0,1,100,1) #TopRight 0.255025
 
test(\(x) x, 0, 6000, 6e6)
integrate.trapezoid(f1,0,1,100) # 0.250025</lang>
# rect.left rect.right rect.mid trapezoidal simpson
# 1.8e+07 1.8e+07 1.8e+07 1.8e+07 1.8e+07</syntaxhighlight>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(define (integrate f a b steps meth)
Line 4,203 ⟶ 5,131:
(test (λ(x) x) 0. 5000. 5000000 "IDENTITY")
(test (λ(x) x) 0. 6000. 6000000 "IDENTITY")
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
CUBED
left-rect: 0.24502500000000005
Line 4,233 ⟶ 5,161:
trapezium: 17999999.999999993
simpson: 17999999.999999993
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
The addition of <tt>'''Promise'''</tt>/<tt>'''await'''</tt> allows for concurrent computation, and brings a significant speed-up in running time. Which is not to say that it makes this code fast, but it does make it less slow.
 
Note that these integrations are done with rationals rather than floats, so should be fairly precise (though of course with so few iterations they are not terribly accurate (except when they are)). Some of the sums do overflow into <tt>Num</tt> (floating point)--currently Rakudo allows 64-bit denominators--but at least all of the interval arithmetic is exact.
{{works with|Rakudo|2018.09}}
 
<syntaxhighlight lang="raku" line>use MONKEY-SEE-NO-EVAL;
 
sub leftrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $end = $b-$h;
my $sum = 0;
loop (my $i = $a; $i <= $end; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub rightrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $sum = 0;
loop (my $i = $a+$h; $i <= $b; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub midrect(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $sum = 0;
my ($start, $end) = $a+$h/2, $b-$h/2;
loop (my $i = $start; $i <= $end; $i += $h) { $sum += f($i) }
$h * $sum;
}
 
sub trapez(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $partial-sum = 0;
my ($start, $end) = $a+$h, $b-$h;
loop (my $i = $start; $i <= $end; $i += $h) { $partial-sum += f($i) * 2 }
$h / 2 * ( f($a) + f($b) + $partial-sum );
}
 
sub simpsons(&f, $a, $b, $n) {
my $h = ($b - $a) / $n;
my $h2 = $h/2;
my ($start, $end) = $a+$h, $b-$h;
my $sum1 = f($a + $h2);
my $sum2 = 0;
loop (my $i = $start; $i <= $end; $i += $h) {
$sum1 += f($i + $h2);
$sum2 += f($i);
}
($h / 6) * (f($a) + f($b) + 4*$sum1 + 2*$sum2);
}
 
sub integrate($f, $a, $b, $n, $exact) {
my $e = 0.000001;
my $r0 = "$f\n in [$a..$b] / $n\n"
~ ' exact result: '~ $exact.round($e);
 
my ($r1,$r2,$r3,$r4,$r5);
my &f;
EVAL "&f = $f";
my $p1 = Promise.start( { $r1 = ' rectangle method left: '~ leftrect(&f, $a, $b, $n).round($e) } );
my $p2 = Promise.start( { $r2 = ' rectangle method right: '~ rightrect(&f, $a, $b, $n).round($e) } );
my $p3 = Promise.start( { $r3 = ' rectangle method mid: '~ midrect(&f, $a, $b, $n).round($e) } );
my $p4 = Promise.start( { $r4 = 'composite trapezoidal rule: '~ trapez(&f, $a, $b, $n).round($e) } );
my $p5 = Promise.start( { $r5 = ' quadratic simpsons rule: '~ simpsons(&f, $a, $b, $n).round($e) } );
 
await $p1, $p2, $p3, $p4, $p5;
$r0, $r1, $r2, $r3, $r4, $r5;
}
 
.say for integrate '{ $_ ** 3 }', 0, 1, 100, 0.25; say '';
.say for integrate '1 / *', 1, 100, 1000, log(100); say '';
.say for integrate '*.self', 0, 5_000, 5_000_000, 12_500_000; say '';
.say for integrate '*.self', 0, 6_000, 6_000_000, 18_000_000;</syntaxhighlight>
{{out}}
<pre>{ $_ ** 3 }
in [0..1] / 100
exact result: 0.25
rectangle method left: 0.245025
rectangle method right: 0.255025
rectangle method mid: 0.249988
composite trapezoidal rule: 0.250025
quadratic simpsons rule: 0.25
 
1 / *
in [1..100] / 1000
exact result: 4.60517
rectangle method left: 4.654991
rectangle method right: 4.556981
rectangle method mid: 4.604763
composite trapezoidal rule: 4.605986
quadratic simpsons rule: 4.60517
 
*.self
in [0..5000] / 5000000
exact result: 12500000
rectangle method left: 12499997.5
rectangle method right: 12500002.5
rectangle method mid: 12500000
composite trapezoidal rule: 12500000
quadratic simpsons rule: 12500000
 
*.self
in [0..6000] / 6000000
exact result: 18000000
rectangle method left: 17999997
rectangle method right: 18000003
rectangle method mid: 18000000
composite trapezoidal rule: 18000000
quadratic simpsons rule: 18000000</pre>
 
=={{header|REXX}}==
Note: &nbsp; there was virtually no difference in accuracy between &nbsp; '''numeric digits 9''' &nbsp; (the default) &nbsp; and &nbsp; '''numeric digits 20'''.
<langsyntaxhighlight lang="rexx">/*REXX pgm performs numerical integration using 5 different algorithms and show results.*/
numeric digits 20 /*use twenty decimal digits precision. */
 
do test=1 for 4; say /*perform the 4 different test suites. */
if test==1 then do; L= 0; H= 1; i= 100; end
if test==2 then do; L= 1; H= 100; i= 1000; end
if test==3 then do; L= 0; H= 5000; i= 5000000; end
if test==4 then do; L= 0; H= 6000; i= 50000006000000; end
say center('test' test, 79, "═") /*display a header for the test suite. */
say
say center('test' test, 65, "─") left rectangular('L", "H', 'i") /*display a──► header" for the test suite. */ left_rect(L, H, i)
say ' left midpoint rectangular('L", "H', 'i") ──► " left_rectmidpoint_rect(L, H, i)
say ' midpoint right rectangular('L", "H', 'i") ──► " midpoint_rect right_rect(L, H, i)
say ' right rectangular Simpson('L", "H', 'i") ──► " right_rect Simpson(L, H, i)
say ' Simpson trapezium('L", "H', 'i") ──► " Simpsontrapezium(L, H, i)
say ' trapezium('L", "H', 'i") ──► " trapezium(L, H, i)
end /*test*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
f: ifparse test==1arg y; then returnif arg(1) **3test>2 then return y /*choose the cube "as─is" function. */
if test==2 then return 1 / arg(1) if test==1 then return y**3 /* " " reciprocal "cube function. */
return arg(1) return 1/*y " /* " "as-is" reciprocal " */
/*──────────────────────────────────────────────────────────────────────────────────────*/
left_rect: procedure expose test; parse arg a,b,n#; $= 0; h= (b-a) / n#
do x=a by h for #; $= 0$ + f(x)
end do x=a by h for n; $=$+f(x); end /*x*/
return $*h/1
/*──────────────────────────────────────────────────────────────────────────────────────*/
midpoint_rect: procedure expose test; parse arg a,b,n#; $= 0; h= (b-a) / n#
do x=a+h/2 by h for #; $= 0$ + f(x)
end do x=a+h/2 by h for n; $=$+f(x); end /*x*/
return $*h/1
/*──────────────────────────────────────────────────────────────────────────────────────*/
right_rect: procedure expose test; parse arg a,b,n#; $= 0; h= (b-a) / n#
do x=a+h by h for #; $= 0$ + f(x)
end do x=a+h by h for n; $=$+f(x); end /*x*/
return $*h/1
/*──────────────────────────────────────────────────────────────────────────────────────*/
Simpson: procedure expose test; parse arg a,b,n#; h= (b-a) / n#
hh= h/2; $= f(a + h/2hh)
@= 0; do x=1 for n#-1; $hx=$+f(a+h*x +h*.5) a; @= @ + f(a+x*hhx); end /*x*/
$= $ + f(hx + hh)
end /*x*/
 
return h * (f(a) + f(b) + 4*$ + 2*@) / 6
/*──────────────────────────────────────────────────────────────────────────────────────*/
trapezium: procedure expose test; parse arg a,b,n#; $= 0; h= (b-a)/n#
do x=a by h for #; $= 0$ + (f(x) + f(x+h))
end do x=a by h for n; $=$+(f(x)+f(x+h)); end /*x*/
return $*h/2</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
════════════════════════════════════test 1═════════════════════════════════════
─────────────────────────────test 1──────────────────────────────
left rectangular(0, 1, 100) ──► 0.245025
midpoint rectangular(0, 1, 100) ──► 0.2499875
right rectangular(0, 1, 100) ──► 0.255025
Simpson(0, 1, 100) ──► 0.25
trapezium(0, 1, 100) ──► 0.250025
 
════════════════════════════════════test 2═════════════════════════════════════
─────────────────────────────test 2──────────────────────────────
left rectangular(1, 100, 1000) ──► 4.6549910575146761473
midpoint rectangular(1, 100, 1000) ──► 4.604762548678375185
right rectangular(1, 100, 1000) ──► 4.5569810575146761472
Simpson(1, 100, 1000) ──► 4.6051703849571421725
trapezium(1, 100, 1000) ──► 4.605986057514676146
 
════════════════════════════════════test 3═════════════════════════════════════
─────────────────────────────test 3──────────────────────────────
left rectangular(0, 5000, 5000000) ──► 12499997.5
midpoint rectangular(0, 5000, 5000000) ──► 12500000
right rectangular(0, 5000, 5000000) ──► 12500002.5
Simpson(0, 5000, 5000000) ──► 12500000
trapezium(0, 5000, 5000000) ──► 12500000
 
════════════════════════════════════test 4═════════════════════════════════════
─────────────────────────────test 4──────────────────────────────
left rectangular(0, 6000, 50000006000000) ──► 17999996.417999997
midpoint rectangular(0, 6000, 50000006000000) ──► 18000000
right rectangular(0, 6000, 50000006000000) ──► 18000003.6
Simpson(0, 6000, 50000006000000) ──► 18000000
trapezium(0, 6000, 50000006000000) ──► 18000000
</pre>
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
# Project : Numerical integration
 
Line 4,402 ⟶ 5,443:
eval("result = " + x2)
return (d / 6) * (f + result + 4 * s1 + 2 * s)
</syntaxhighlight>
</lang>
Output:
<pre>
Line 4,414 ⟶ 5,455:
=={{header|Ruby}}==
{{trans|Tcl}}
<langsyntaxhighlight lang="ruby">def leftrect(f, left, right)
f.call(left)
end
Line 4,471 ⟶ 5,512:
printf " %-10s %s\t(%.1f%%)\n", method, int, diff
end
end</langsyntaxhighlight>
outputs
<pre>integral of #<Method: Object#square> from 0 to 3.14159265358979 in 10 steps
Line 4,485 ⟶ 5,526:
trapezium 1.98352353750945 (-0.8%)
simpson 2.0000067844418 (0.0%)</pre>
 
 
=={{header|Rust}}==
This is a partial solution and only implements trapezium integration.
<langsyntaxhighlight lang="rust">fn integral<F>(f: F, range: std::ops::Range<f64>, n_steps: u32) -> f64
where F: Fn(f64) -> f64
{
Line 4,508 ⟶ 5,548:
println!("{}", integral(|x| x, 0.0..5000.0, 5_000_000));
println!("{}", integral(|x| x, 0.0..6000.0, 6_000_000));
}</langsyntaxhighlight>
 
{{out}}
Line 4,517 ⟶ 5,557:
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">object NumericalIntegration {
def leftRect(f:Double=>Double, a:Double, b:Double)=f(a)
def midRect(f:Double=>Double, a:Double, b:Double)=f((a+b)/2)
Line 4,551 ⟶ 5,591:
print(fn3, 0, 6000, 6000000)
}
}</langsyntaxhighlight>
Output:
<pre>rectangular left : 0,245025
Line 4,579 ⟶ 5,619:
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">(define (integrate f a b steps meth)
(define h (/ (- b a) steps))
(* h
Line 4,599 ⟶ 5,639:
(define rr (integrate square 0 1 10 right-rect))
(define t (integrate square 0 1 10 trapezium))
(define s (integrate square 0 1 10 simpson))</langsyntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Perl 6}}
<lang ruby>func sum(f, start, from, to) {
var s = 0;
RangeNum(start, to, from-start).each { |i|
s += f(i);
}
return s
}
 
func leftrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a, a+h, b-h);
}
 
func rightrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a+h, a + 2*h, b);
}
 
func midrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a + h/2, a + h + h/2, b - h/2)
}
 
func trapez(f, a, b, n) {
var h = ((b - a) / n);
h/2 * (f(a) + f(b) + sum({ f(_)*2 }, a+h, a + 2*h, b-h));
}
 
func simpsons(f, a, b, n) {
var h = ((b - a) / n);
var h2 = h/2;
 
var sum1 = f(a + h2);
var sum2 = 0;
 
sum({|i| sum1 += f(i + h2); sum2 += f(i); 0 }, a+h, a+h+h, b-h);
h/6 * (f(a) + f(b) + 4*sum1 + 2*sum2);
}
 
func tryem(label, f, a, b, n, exact) {
say "\n#{label}\n in [#{a}..#{b}] / #{n}";
 
say(' exact result: ', exact);
say(' rectangle method left: ', leftrect(f, a, b, n));
say(' rectangle method right: ', rightrect(f, a, b, n));
say(' rectangle method mid: ', midrect(f, a, b, n));
say('composite trapezoidal rule: ', trapez(f, a, b, n));
say(' quadratic simpsons rule: ', simpsons(f, a, b, n));
}
 
tryem('x^3', { _ ** 3 }, 0, 1, 100, 0.25);
tryem('1/x', { 1 / _ }, 1, 100, 1000, log(100));
tryem('x', { _ }, 0, 5_000, 5_000_000, 12_500_000);
tryem('x', { _ }, 0, 6_000, 6_000_000, 18_000_000);</lang>
 
=={{header|SequenceL}}==
<langsyntaxhighlight lang="sequencel">import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
 
Line 4,718 ⟶ 5,701:
delimit(delimit(heading ++ transpose(funcs ++ ranges ++ trimEndZeroes(floatToString(tests, 8))), '\t'), '\n');
 
trimEndZeroes(x(1)) := x when size(x) = 0 else x when x[size(x)] /= '0' else trimEndZeroes(x[1...size(x)-1]);</langsyntaxhighlight>
 
{{out}}
Line 4,728 ⟶ 5,711:
x 0 - 6000 17999997. 18000003. 18000000. 18000000. 18000000."
</pre>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func sum(f, start, from, to) {
var s = 0;
RangeNum(start, to, from-start).each { |i|
s += f(i);
}
return s
}
 
func leftrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a, a+h, b-h);
}
 
func rightrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a+h, a + 2*h, b);
}
 
func midrect(f, a, b, n) {
var h = ((b - a) / n);
h * sum(f, a + h/2, a + h + h/2, b - h/2)
}
 
func trapez(f, a, b, n) {
var h = ((b - a) / n);
h/2 * (f(a) + f(b) + sum({ f(_)*2 }, a+h, a + 2*h, b-h));
}
 
func simpsons(f, a, b, n) {
var h = ((b - a) / n);
var h2 = h/2;
 
var sum1 = f(a + h2);
var sum2 = 0;
 
sum({|i| sum1 += f(i + h2); sum2 += f(i); 0 }, a+h, a+h+h, b-h);
h/6 * (f(a) + f(b) + 4*sum1 + 2*sum2);
}
 
func tryem(label, f, a, b, n, exact) {
say "\n#{label}\n in [#{a}..#{b}] / #{n}";
 
say(' exact result: ', exact);
say(' rectangle method left: ', leftrect(f, a, b, n));
say(' rectangle method right: ', rightrect(f, a, b, n));
say(' rectangle method mid: ', midrect(f, a, b, n));
say('composite trapezoidal rule: ', trapez(f, a, b, n));
say(' quadratic simpsons rule: ', simpsons(f, a, b, n));
}
 
tryem('x^3', { _ ** 3 }, 0, 1, 100, 0.25);
tryem('1/x', { 1 / _ }, 1, 100, 1000, log(100));
tryem('x', { _ }, 0, 5_000, 5_000_000, 12_500_000);
tryem('x', { _ }, 0, 6_000, 6_000_000, 18_000_000);</syntaxhighlight>
 
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">fun integrate (f, a, b, steps, meth) = let
val h = (b - a) / real steps
fun helper (i, s) =
Line 4,752 ⟶ 5,792:
val rr = integrate (square, 0.0, 1.0, 10, right_rect)
val t = integrate (square, 0.0, 1.0, 10, trapezium )
val s = integrate (square, 0.0, 1.0, 10, simpson )</langsyntaxhighlight>
 
=={{header|Stata}}==
<syntaxhighlight lang="text">mata
function integrate(f,a,b,n,u,v) {
s = 0
Line 4,795 ⟶ 5,835:
test(&id(),0,5000,5000000)
test(&id(),0,6000,6000000)
end</langsyntaxhighlight>
 
'''Output'''
Line 4,820 ⟶ 5,860:
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">public enum IntegrationType : CaseIterable {
case rectangularLeft
case rectangularRight
Line 4,924 ⟶ 5,964:
print("f(x) = 1 / x:", types.map({ integrate(from: 1, to: 100, n: 1000, using: $0, f: { 1 / $0 }) }))
print("f(x) = x, 0 -> 5_000:", types.map({ integrate(from: 0, to: 5_000, n: 5_000_000, using: $0, f: { $0 }) }))
print("f(x) = x, 0 -> 6_000:", types.map({ integrate(from: 0, to: 6_000, n: 6_000_000, using: $0, f: { $0 }) }))</langsyntaxhighlight>
 
{{out}}
Line 4,933 ⟶ 5,973:
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
proc leftrect {f left right} {
Line 4,986 ⟶ 6,026:
puts [format " %-10s %s\t(%.1f%%)" $method $int $diff]
}
}</langsyntaxhighlight>
<pre>integral of square(x) from 0 to 3.141592653589793 in 10 steps
leftrect 8.836788853885448 (-14.5%)
Line 5,016 ⟶ 6,056:
the integrand <math>f</math>, the bounds <math>(a,b)</math>, and the number of intervals <math>n</math>.
 
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
#import flo
Line 5,022 ⟶ 6,062:
(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ("m" "f")*ytp (ari successor "n")/"a" "b"</langsyntaxhighlight>
An alternative way of defining this function shown below prevents redundant evaluations of the integrand
at the cost of building a table-driven finite map in advance.
<langsyntaxhighlight Ursalalang="ursala">(integral_by "m") ("f","a","b","n") =
 
iprod ^(* ! div\float"n" minus/"b" "a",~&) ^H(*+ "m"+ -:"f"+ * ^/~& "f",~&ytp) (ari successor "n")/"a" "b"</langsyntaxhighlight>
As mentioned in the Haskell solution, the latter choice is preferable if evaluating the integrand
is expensive.
An integrating function is defined for each method as follows.
<langsyntaxhighlight Ursalalang="ursala">left = integral_by "f". ("l","r"). "f" "l"
right = integral_by "f". ("l","r"). "f" "r"
midpoint = integral_by "f". ("l","r"). "f" div\2. plus/"l" "r"
trapezium = integral_by "f". ("l","r"). div\2. plus "f"~~/"l" "r"
simpson = integral_by "f". ("l","r"). div\6. plus:-0. <"f" "l",times/4. "f" div\2. plus/"l" "r","f" "r"></langsyntaxhighlight>
As shown above, the method passed to the <code>integral_by</code> function
is itself a higher order function taking an integrand <math>f</math> as an argument and
Line 5,041 ⟶ 6,081:
Here is a test program showing the results of integrating the square from zero to <math>\pi</math> in ten intervals
by all five methods.
<langsyntaxhighlight Ursalalang="ursala">#cast %eL
 
examples = <.left,midpoint,rignt,trapezium,simpson> (sqr,0.,pi,10)</langsyntaxhighlight>
output:
<pre>
Line 5,059 ⟶ 6,099:
The following program does not follow the task requirement on two points: first, the same function is used for all quadrature methods, as they are really the same thing with different parameters (abscissas and weights). And since it's getting rather slow for a large number of intervals, the last two are integrated with resp. 50,000 and 60,000 intervals. It does not make sense anyway to use more, for such a simple function (and if really it were difficult to integrate, one would rely one more sophistcated methods).
 
<langsyntaxhighlight lang="vb">Option Explicit
Option Base 1
 
Line 5,114 ⟶ 6,154:
Next j
Next i
End Sub</langsyntaxhighlight>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
 
var integrate = Fn.new { |a, b, n, f|
var h = (b - a) / n
var sum = List.filled(5, 0)
for (i in 0...n) {
var x = a + i * h
sum[0] = sum[0] + f.call(x)
sum[1] = sum[1] + f.call(x + h/2)
sum[2] = sum[2] + f.call(x + h)
sum[3] = sum[3] + (f.call(x) + f.call(x+h))/2
sum[4] = sum[4] + (f.call(x) + 4 * f.call(x + h/2) + f.call(x + h))/6
}
var methods = ["LeftRect ", "MidRect ", "RightRect", "Trapezium", "Simpson "]
for (i in 0..4) Fmt.print("$s = $h", methods[i], sum[i] * h)
System.print()
}
 
integrate.call(0, 1, 100) { |v| v * v * v }
integrate.call(1, 100, 1000) { |v| 1 / v }
integrate.call(0, 5000, 5000000) { |v| v }
integrate.call(0, 6000, 6000000) { |v| v }
</syntaxhighlight>
 
{{out}}
<pre>
LeftRect = 0.245025
MidRect = 0.249988
RightRect = 0.255025
Trapezium = 0.250025
Simpson = 0.25
 
LeftRect = 4.654991
MidRect = 4.604763
RightRect = 4.556981
Trapezium = 4.605986
Simpson = 4.60517
 
LeftRect = 12499997.5
MidRect = 12500000
RightRect = 12500002.5
Trapezium = 12500000
Simpson = 12500000
 
LeftRect = 17999997
MidRect = 18000000
RightRect = 18000003
Trapezium = 18000000
Simpson = 18000000
</pre>
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
 
func real Func(FN, X); \Return F(X) for function number FN
Line 5,163 ⟶ 6,257:
Integrate(0.0, 5000.0, 3, 5_000_000);
Integrate(0.0, 6000.0, 3, 6_000_000);
]</langsyntaxhighlight>
 
Interestingly, the small rounding errors creep in when millions of
Line 5,176 ⟶ 6,270:
17999997.001391 18000003.001391 18000000.001391 18000000.001391 18000000.001391
</pre>
 
=={{header|Yabasic}}==
Based on the XPL0entry and the Free BASIC entry
<syntaxhighlight lang="yabasic">// Rosetta Code problem: https://rosettacode.org/wiki/Numerical_integration
// by Jjuanhdez, 06/2022
 
print "function range steps leftrect midrect rightrect trap simpson "
frmt$ = "%1.10f"
print "f(x) = x^3 0 - 1 100 ";
Integrate(0.0, 1.0, 1, 100)
print "f(x) = 1/x 1 - 100 1000 ";
Integrate(1.0, 100.0, 2, 1000)
frmt$ = "%8.3f"
print "f(x) = x 0 - 5000 5000000 ";
Integrate(0.0, 5000.0, 3, 5000000)
print "f(x) = x 0 - 6000 6000000 ";
Integrate(0.0, 6000.0, 3, 6000000)
end
 
sub Func(FN, X) //Return F(X) for function number FN
switch FN
case 1
return X ^ 3
case 2
return 1.0 / X
case 3
return X
default
return 0.0
end switch
end sub
 
sub Integrate(A, B, FN, N) //Display area under curve for function FN
// A, B, FN limits A, B, and number of slices N
DX = (B-A)/N
X = A
Area = 0.0 //rectangular left
for i = 1 to N
Area = Area + Func(FN,X)*DX
X = X + DX
next i
print str$(Area, frmt$);
X = A
Area = 0.0 //rectangular right
for i = 1 to N
X = X + DX
Area = Area + Func(FN,X)*DX
next i
print " ";
print str$(Area, frmt$);
X = A + DX / 2.0
Area = 0.0 //rectangular mid point
for i = 1 to N
Area = Area + Func(FN,X)*DX
X = X + DX
next i
print " ";
print str$(Area, frmt$);
X = A
Area = 0.0 //trapezium
for i = 1 to N
Area = Area + (Func(FN,X)+Func(FN,X + DX))/2.0*DX
X = X + DX
next i
print " ";
print str$(Area, frmt$);
X = A
Area = 0.0 //Simpson's rule
for i = 1 to N
Area = Area + DX/6.0*(Func(FN,X) + 4.0*Func(FN,(X+X + DX)/2.0) + Func(FN,X + DX))
X = X + DX
next i
print " ";
print str$(Area, frmt$)
end sub</syntaxhighlight>
 
=={{header|zkl}}==
{{trans|D}}
<langsyntaxhighlight lang="zkl">fcn integrate(F,f,a,b,steps){
h:=(b - a) / steps;
h*(0).reduce(steps,'wrap(s,i){ F(f, h*i + a, h) + s },0.0);
Line 5,202 ⟶ 6,372:
"%s %f".fmt(nm,integrate(f,a.xplode())).println() }, fs);
println();
}</langsyntaxhighlight>
{{out}}
<pre>
9,476

edits