Multiple regression: Difference between revisions

From Rosetta Code
Content added Content deleted
(Add new Python)
m (Fixed lang tags.)
Line 18: Line 18:
=={{header|J}}==
=={{header|J}}==


<lang j>
<lang j> NB. Wikipedia data
NB. Wikipedia data
x=: 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83
x=: 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83
y=: 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46
y=: 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46


y %. x ^/ i.3 NB. calculate coefficients b1, b2 and b3 for 2nd degree polynomial
y %. x ^/ i.3 NB. calculate coefficients b1, b2 and b3 for 2nd degree polynomial
128.813 _143.162 61.9603
128.813 _143.162 61.9603</lang>
</lang>


Breaking it down:
Breaking it down:
<lang j> X=: x ^/ i.3 NB. form Design matrix
<lang j>
X=: x ^/ i.3 NB. form Design matrix
X=: (x^0) ,. (x^1) ,. (x^2) NB. equivalent of previous line
X=: (x^0) ,. (x^1) ,. (x^2) NB. equivalent of previous line
4{.X NB. show first 4 rows of X
4{.X NB. show first 4 rows of X
Line 40: Line 37:
NB. y %. X does matrix division and gives the regression coefficients
NB. y %. X does matrix division and gives the regression coefficients
y %. X
y %. X
128.813 _143.162 61.9603
128.813 _143.162 61.9603</lang>
</lang>
In other words <tt> beta=: y %. X </tt> is the equivalent of:<br>
In other words <tt> beta=: y %. X </tt> is the equivalent of:<br>
<math> \hat\beta = (X'X)^{-1}X'y</math><br>
<math> \hat\beta = (X'X)^{-1}X'y</math><br>


To confirm:
To confirm:
<lang j> mp=: +/ .* NB. matrix product
<lang j>
mp=: +/ .* NB. matrix product
NB. %.X is matrix inverse of X
NB. %.X is matrix inverse of X
NB. |:X is transpose of X
NB. |:X is transpose of X
((%.(|:X) mp X) mp |:X) mp y
((%.(|:X) mp X) mp |:X) mp y
128.814 _143.163 61.9606
128.814 _143.163 61.9606</lang>
</lang>


LAPACK routines are also available via the Addon <tt>math/lapack</tt>.
LAPACK routines are also available via the Addon <tt>math/lapack</tt>.
Line 70: Line 64:
R provides the lm() function for linear regression.
R provides the lm() function for linear regression.


<lang R>
<lang R>## Wikipedia Data
## Wikipedia Data
x <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83)
x <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83)
}
}
y <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)
y <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)


lm( y ~ x + I(x^2))
lm( y ~ x + I(x^2))</lang>
</lang>
Producing output,
Producing output,
<pre>
<pre>
Line 91: Line 83:
R's model description and linear algebra capabilities.
R's model description and linear algebra capabilities.


<lang R>simpleMultipleReg <- function(formula) {
<lang R>
simpleMultipleReg <- function(formula) {


## parse and evaluate the model formula
## parse and evaluate the model formula
Line 107: Line 98:
}
}


simpleMultipleReg(y ~ x + I(x^2))
simpleMultipleReg(y ~ x + I(x^2))</lang>
</lang>


This produces the same coefficients as lm()
This produces the same coefficients as lm()
Line 122: Line 112:
the method above, is to solve the linear system directly and use the crossprod function.
the method above, is to solve the linear system directly and use the crossprod function.


<lang R>solve( crossprod(X), crossprod(X, Y))</lang>
<lang R>
solve( crossprod(X), crossprod(X, Y))
</lang>


=={{header|Ruby}}==
=={{header|Ruby}}==
Line 186: Line 174:
the Lapack library [http://www.netlib.org/lapack/lug/node27.html],
the Lapack library [http://www.netlib.org/lapack/lug/node27.html],
which is callable in Ursala like this.
which is callable in Ursala like this.
<lang Ursala>
<lang Ursala>regression_coefficients = lapack..dgelsd</lang>
regression_coefficients = lapack..dgelsd
</lang>
test program:
test program:
<lang Ursala>
<lang Ursala>x =
x =


<
<
Line 202: Line 187:
#cast %eL
#cast %eL


example = regression_coefficients(x,y)
example = regression_coefficients(x,y)</lang>
</lang>
The matrix x needn't be square, and has one row for each
The matrix x needn't be square, and has one row for each
data point. The length of y must equal the number of rows in
data point. The length of y must equal the number of rows in

Revision as of 11:54, 21 November 2009

Task
Multiple regression
You are encouraged to solve this task according to the task description, using any language you may know.

Given a set of data vectors in the following format:

Compute the vector using ordinary least squares regression using the following equation:

You can assume y is given to you as an array, and x is given to you as a two-dimensional array.

Note: This is more general than Polynomial Fitting, which only deals with 2 datasets and only deals with polynomial equations. Ordinary least squares can deal with an arbitrary number of datasets (limited by the processing power of the machine) and can have more advanced equations such as:

J

<lang j> NB. Wikipedia data

  x=: 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83
  y=: 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46
  y %. x ^/ i.3   NB. calculate coefficients b1, b2 and b3 for 2nd degree polynomial

128.813 _143.162 61.9603</lang>

Breaking it down: <lang j> X=: x ^/ i.3 NB. form Design matrix

  X=: (x^0) ,. (x^1) ,. (x^2)   NB. equivalent of previous line
  4{.X                          NB. show first 4 rows of X

1 1.47 2.1609 1 1.5 2.25 1 1.52 2.3104 1 1.55 2.4025

  NB. Where y is a set of observations and X is the design matrix
  NB. y %. X does matrix division and gives the regression coefficients
  y %. X

128.813 _143.162 61.9603</lang> In other words beta=: y %. X is the equivalent of:

To confirm: <lang j> mp=: +/ .* NB. matrix product

                                NB. %.X is matrix inverse of X
                                NB. |:X is transpose of X
  
  ((%.(|:X) mp X) mp |:X) mp y

128.814 _143.163 61.9606</lang>

LAPACK routines are also available via the Addon math/lapack.

Python

Using

Library: matplotlib

The following

Library: IPython

session gives:

<lang python>In [7]: x = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]

In [8]: y = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46]

In [9]: polyfit(x, y, 2) Out[9]: array([ 61.96032544, -143.16202287, 128.81280358])</lang>

R

R provides the lm() function for linear regression.

<lang R>## Wikipedia Data x <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83) } y <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)

lm( y ~ x + I(x^2))</lang> Producing output,

Call:
lm(formula = y ~ x + I(x^2))

Coefficients:
(Intercept)            x       I(x^2)  
     128.81      -143.16        61.96  

A simple implementation of multiple regression in native R is useful to illustrate R's model description and linear algebra capabilities.

<lang R>simpleMultipleReg <- function(formula) {

   ## parse and evaluate the model formula
   mf <- model.frame(formula)
   ## create design matrix
   X <- model.matrix(attr(mf, "terms"), mf)
   ## create dependent variable
   Y <- model.response(mf)
   ## solve
   solve(t(X) %*% X) %*% t(X) %*% Y

}

simpleMultipleReg(y ~ x + I(x^2))</lang>

This produces the same coefficients as lm()

                  [,1]
(Intercept)  128.81280
x           -143.16202
I(x^2)        61.96033


A more efficient way to solve , than the method above, is to solve the linear system directly and use the crossprod function.

<lang R>solve( crossprod(X), crossprod(X, Y))</lang>

Ruby

Using the standard library Matrix class:

<lang ruby>require 'matrix'

def regression_coefficients y, x

 y = Matrix.column_vector y.map { |i| i.to_f }
 x = Matrix.columns x.map { |xi| xi.map { |i| i.to_f }}
 (x.t * x).inverse * x.t * y

end</lang>

Testing: <lang ruby>puts regression_coefficients([1, 2, 3, 4, 5], [ [2, 1, 3, 4, 5] ])</lang> Output:

Matrix[[0.981818181818182]]

Tcl

Uses the

Library: tcllib

linear algebra package.

<lang tcl>package require math::linearalgebra namespace eval multipleRegression {

   namespace export regressionCoefficients
   namespace import ::math::linearalgebra::*
   # Matrix inversion is defined in terms of Gaussian elimination
   # Note that we assume (correctly) that we have a square matrix
   proc invert {matrix} {

solveGauss $matrix [mkIdentity [lindex [shape $matrix] 0]]

   }
   # Implement the Ordinary Least Squares method
   proc regressionCoefficients {y x} {

matmul [matmul [invert [matmul $x [transpose $x]]] $x] $y

   }

} namespace import multipleRegression::regressionCoefficients</lang> Using an example from the Wikipedia page on the correlation of height and weight: <lang tcl># Simple helper just for this example proc map {n exp list} {

   upvar 1 $n v
   set r {}; foreach v $list {lappend r [uplevel 1 $exp]}; return $r

}

  1. Data from wikipedia

set x {

   1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83

} set y {

   52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10
   69.92 72.19 74.46

}

  1. Wikipedia states that fitting up to the square of x[i] is worth it

puts [regressionCoefficients $y [map n {map v {expr {$v**$n}} $x} {0 1 2}]]</lang> Produces this output (a 3-vector of coefficients):

128.81280358170625 -143.16202286630732 61.96032544293041

Ursala

This exact problem is solved by the DGELSD function from the Lapack library [1], which is callable in Ursala like this. <lang Ursala>regression_coefficients = lapack..dgelsd</lang> test program: <lang Ursala>x =

<

  <7.589183e+00,1.703609e+00,-4.477162e+00>,
  <-4.597851e+00,9.434889e+00,-6.543450e+00>,
  <4.588202e-01,-6.115153e+00,1.331191e+00>>

y = <1.745005e+00,-4.448092e+00,-4.160842e+00>

  1. cast %eL

example = regression_coefficients(x,y)</lang> The matrix x needn't be square, and has one row for each data point. The length of y must equal the number of rows in x, and the number of coefficients returned will be the number of columns in x. It would be more typical in practice to initialize x by evaluating a set of basis functions chosen to model some empirical data, but the regression solver is indifferent to the model.

output:

<9.335612e-01,1.101323e+00,1.611777e+00>

A similar method can be used for regression with complex numbers by substituting zgelsd for dgelsd, above.