Mertens function: Difference between revisions

From Rosetta Code
Content added Content deleted
(Realize in F#)
(Added Swift solution)
Line 2,239: Line 2,239:
92 zeros
92 zeros
59 zero crossings
59 zero crossings
</pre>

=={{header|Swift}}==
{{trans|C}}
<lang swift>import Foundation

func mertensNumbers(max: Int) -> [Int] {
var mertens = Array(repeating: 1, count: max + 1)
for n in 2...max {
for k in 2...n {
mertens[n] -= mertens[n / k]
}
}
return mertens
}

let max = 1000
let mertens = mertensNumbers(max: max)

let count = 200
let columns = 20
print("First \(count - 1) Mertens numbers:")
for i in 0..<count {
if i % columns > 0 {
print(" ", terminator: "")
}
print(i == 0 ? " " : String(format: "%2d", mertens[i]), terminator: "")
if (i + 1) % columns == 0 {
print()
}
}

var zero = 0, cross = 0, previous = 0
for i in 1...max {
let m = mertens[i]
if m == 0 {
zero += 1
if previous != 0 {
cross += 1
}
}
previous = m
}
print("M(n) is zero \(zero) times for 1 <= n <= \(max).")
print("M(n) crosses zero \(cross) times for 1 <= n <= \(max).")</lang>

{{out}}
<pre>
First 199 Mertens numbers:
1 0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1 0
0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1 0 -1
-1 -2 -1 -1 -1 0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1 0 1 2 2 1 1 1
1 0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
-3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
-4 -3 -2 -1 -1 0 1 1 1 0 0 -1 -1 -1 -2 -1 -1 -2 -1 0
0 1 1 0 0 -1 0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
-3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8
M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.
</pre>
</pre>



Revision as of 17:05, 31 January 2021

Task
Mertens function
You are encouraged to solve this task according to the task description, using any language you may know.

The Mertens function M(x) is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.

It is an extension of the Möbius function. Given the Möbius function μ(n), the Mertens function M(x) is the sum of the Möbius numbers from n == 1 through n == x.


Task
  • Write a routine (function, procedure, whatever) to find the Mertens number for any positive integer x.
  • Use that routine to find and display here, on this page, at least the first 99 terms in a grid layout. (Not just one long line or column of numbers.)
  • Use that routine to find and display here, on this page, the number of times the Mertens function sequence is equal to zero in the range M(1) through M(1000).
  • Use that routine to find and display here, on this page, the number of times the Mertens function sequence crosses zero in the range M(1) through M(1000). (Crossing defined as this term equal to zero but preceding term not.)


See also


This is not code golf.   The stackexchange link is provided as an algorithm reference, not as a guide.


Related tasks



8080 Assembly

<lang 8080asm>MAX: equ 1000 ; Amount of numbers to generate org 100h ;;; Generate Mertens numbers lxi b,1 ; Start at place 1; BC = current Mertens number lxi h,MM ; First one is 1 dad b mvi m,1 outer: inx b ; Next Mertens number lxi h,MM dad b mvi m,1 ; Initialize at 1 lxi d,2 ; DE = inner loop counter ('k'), starts at 2 ;;; Now we need to find BC/DE, but there is no hardware divide ;;; We also need to be somewhat clever so it doesn't take forever inner: push d ; Keep both loop counters safe on the stack push b xchg ; Divisor in HL mov d,b ; Dividend in DE mov e,c lxi b,100h ; B = counter, C = zero double: dad h ; Double divisor inr b ; Increment counter call cdehl ; Dividend <= divisor? jnc double ; If so, keep doubling mov a,b ; Keep counter mov b,c ; BC = 0 push b ; Push result variable on stakc (initial 0) mov b,a ; Restore counter xchg ; HL = dividend, DE = doubled divisor subtr: mov a,l ; Try HL -= DE sub e mov l,a mov a,h sbb d mov h,a xthl ; Get result accumulator from stack cmc ; Flip borrow mov a,l ; Rotate into result ral mov l,a mov a,h ral mov h,a mov a,l ; Retrieve flag rar xthl ; Retrieve rest of divisor jc $+4 ; If borrow, dad d ; Add dividend back into divisor xra a  ; DE >> 1 ora d rar mov d,a mov a,e rar mov e,a dcr b  ; Are we there yet? jnz subtr  ; If not, try another subtraction pop h ; HL = quotient ;;; Division is done, do lookup and subraction lxi d,MM ; Look up M[outer/inner] dad d mov e,m ; E = M[BC/DE] pop b ; Restore BC (n) lxi h,MM dad b mov a,m ; A = M[BC] sub e ; A = M[BC] - M[BC/DE] mov m,a ; M[BC] = A pop d ; Restore DE (k) ;;; Update loops inx d ; k++ call cbcde ; DE <= BC? jnc inner lxi h,MAX call chlbc ; BC <= MAX? jnc outer ;;; Print table lxi d,frst99 call puts lxi h,MM+1 ; Start of Merten numbers mvi c,9 ; Column counter table: mov a,m ; Get Merten number ana a ; Set flags mvi b,' ' ; Space jp prtab ; If positive, print space-number-space mvi b,'-' ; Otherwise, print minus sign cma ; And negate the number (make positive) inr a prtab: adi '0' ; Make ASCII digit mov d,a ; Keep number mov a,b ; Print space or minus sign call putc mov a,d ; Restore number call putc ; Print number mvi a,' ' ; Print space call putc dcr c ; Decrement column counter jnz tnext lxi d,nl ; End of columns - print newline call puts mvi c,10 ; Column counter tnext: inx h ; Table done? mov a,l cpi 100 jnz table ; If not, keep going ;;; Find zeroes and crossings lxi b,0 ; B=zeroes, C=crossings lxi d,MAX ; Counter lxi h,MM+1 count: mov a,m ; Get number ana a ; Zero? jnz cnext inr b ; If so, add zero dcx h ; Previous number also zero? mov a,m inx h ana a jz cnext inr c ; If not, add crossiong cnext: inx h dcx d mov a,d ora e jnz count lxi d,zero ; Print zeroes call puts mov a,b call puta lxi d,cross ; Print crossings call puts mov a,c call puta lxi d,tms jmp puts ;;; Print character in A using CP/M, keeping registers putc: push b push d push h mov e,a mvi c,2 call 5 jmp resrgs ;;; Print number in A, keeping registers puta: push b push d push h lxi h,num putad: mvi c,-1 putal: inr c sui 10 jnc putal adi 10+'0' dcx h mov m,a mov a,c ana a jnz putad xchg mvi c,9 call 5 jmp resrgs ;;; Print string in DE using CP/M, keeping registers puts: push b push d push h mvi c,9 call 5 resrgs: pop h pop d pop b ret cdehl: mov a,d cmp h rnz mov a,e cmp l ret cbcde: mov a,b cmp d rnz mov a,c cmp e ret chlbc: mov a,h cmp b rnz mov a,l cmp c ret ;;; Strings db '***' num: db '$' frst99: db 'First 99 Mertens numbers:',13,10,' $' nl: db 13,10,'$' zero: db 'M(N) is zero $' cross: db ' times.',13,10,'M(N) crosses zero $' tms: db ' times.$' ;;; Numbers are stored page-aligned after program MM: equ ($/256)*256+256 </lang>

Output:
First 99 Mertens numbers:
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.


8086 Assembly

<lang asm>MAX: equ 1000 ; Amount of Mertens numbers to generate puts: equ 9 ; MS-DOS syscall to print a string putch: equ 2 ; MS-DOS syscall to print a character cpu 8086 org 100h section .text ;;; Generate Mertens numbers mov bx,M ; BX = pointer to start of Mertens numbers mov si,1 ; Current Mertens number mov [si+bx],byte 1 ; First Mertens number is 1 outer: inc si ; Next Mertens number mov [si+bx],byte 1 ; Starts out at 1... mov cx,2 ; CX = from 2 to current number, inner: mov ax,si ; Divide current number, xor dx,dx div cx ; By CX mov di,ax mov al,[di+bx] ; Get value at that location sub [si+bx],al ; Subtract from current number inc cx cmp cx,si jbe inner cmp si,MAX jbe outer ;;; Print the table mov dx,frst99 ; First string call outstr mov si,1 ; Start at index 1 mov dh,9 ; Column count table: mov cl,[si+bx] ; Get item test cl,cl mov dl,' ' jns .print ; Positive? mov dl,'-' ; Otherwise, it is negative, neg cl ; print ' ' and negate .print: call putc ; Print space or minus add cl,'0' ; Add ASCII 0 mov dl,cl call putc ; Print number mov dl,' ' call putc ; Print space dec dh ; One less column left jnz .next mov dx,nl ; Print newline call outstr mov dh,10 .next: inc si ; Done yet? cmp si,100 jb table ; If not, print next item from table ;;; Calculate zeroes and crossings xor cx,cx ; CL = zeroes, CH = crossings mov si,1 mov al,[si+bx] ; AL = current item zc: inc si mov ah,al ; AH = previous item mov al,[si+bx] test al,al ; Zero? jnz .next inc cx ; Then increment zero counter test ah,ah ; Previous one also zero? jz .next inc ch ; Then increment crossing counter .next: cmp si,MAX ; Done yet? jbe zc ;;; Print zeroes and crossings mov dx,zero call outstr mov al,cl call putal mov dx,cross call outstr mov al,ch call putal mov dx,tms jmp outstr putc: mov ah,putch ; Print character int 21h ret ;;; Print AL in decimal format putal: mov di,num .loop: aam ; Extract digit add al,'0' ; Store digit dec di mov [di],al mov al,ah ; Rest of number test al,al ; Done? jnz .loop ; If not, get more digits mov dx,di ; Otherwise, print string outstr: mov ah,puts int 21h ret section .data db '***' ; Number output placeholder num: db '$' frst99: db 'First 99 Mertens numbers:',13,10,' $' nl: db 13,10,'$' zero: db 'M(N) is zero $' cross: db ' times.',13,10,'M(N) crosses zero $' tms: db ' times.$' section .bss mm: resb MAX ; Mertens numbers M: equ mm-1 ; 1-based indexing</lang>

Output:
First 99 Mertens numbers:
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

APL

Works with: Dyalog APL

<lang APL>mertens←{

   step  ← {⍵,-⍨/⌽1,⍵[⌊n÷1↓⍳n←1+≢⍵]}
   m1000 ← step⍣999⊢,1
   zero  ← m1000+.=0
   cross ← +/(~∧1⌽⊢)m1000≠0
   ⎕←'First 99 Mertens numbers:'
   ⎕←10 10⍴'∘',m1000
   ⎕←'M(N) is zero ',(⍕zero),' times.'
   ⎕←'M(N) crosses zero ',(⍕cross),' times.'

}</lang>

Output:
First 99 Mertens numbers:
 ∘  1  0 ¯1 ¯1 ¯2 ¯1 ¯2 ¯2 ¯2
¯1 ¯2 ¯2 ¯3 ¯2 ¯1 ¯1 ¯2 ¯2 ¯3
¯3 ¯2 ¯1 ¯2 ¯2 ¯2 ¯1 ¯1 ¯1 ¯2
¯3 ¯4 ¯4 ¯3 ¯2 ¯1 ¯1 ¯2 ¯1  0
 0 ¯1 ¯2 ¯3 ¯3 ¯3 ¯2 ¯3 ¯3 ¯3
¯3 ¯2 ¯2 ¯3 ¯3 ¯2 ¯2 ¯1  0 ¯1
¯1 ¯2 ¯1 ¯1 ¯1  0 ¯1 ¯2 ¯2 ¯1
¯2 ¯3 ¯3 ¯4 ¯3 ¯3 ¯3 ¯2 ¯3 ¯4
¯4 ¯4 ¯3 ¯4 ¯4 ¯3 ¯2 ¯1 ¯1 ¯2
¯2 ¯1 ¯1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

BASIC

Note that if you actually try this on a real 8-bit micro, this will take literal hours to run. Interpreted BASIC is not fast.

For comparison, the 8080 and 8086 assembly versions above run in around 4 minutes and 15 seconds respectively, on real hardware. This took nearly 4 hours on the 8080 (using MBASIC) and a little over 1 hour on the 8086 (using GWBASIC).

<lang BASIC>10 DEFINT C,Z,N,K,M: DIM M(1000) 20 M(1)=1 30 FOR N=2 TO 1000 40 M(N)=1 50 FOR K=2 TO N: M(N) = M(N)-M(INT(N/K)): NEXT 60 NEXT 70 PRINT "First 99 Mertens numbers:" 80 PRINT " "; 90 FOR N=1 TO 99 100 PRINT USING "###";M(N); 110 IF N MOD 10 = 9 THEN PRINT 120 NEXT 130 C=0: Z=0 140 FOR N=1 TO 1000 150 IF M(N)=0 THEN Z=Z+1: IF M(N-1)<>0 THEN C=C+1 160 NEXT 170 PRINT "M(N) is zero";Z;"times." 180 PRINT "M(N) crosses zero";C;"times." 190 END</lang>

Output:
First 99 Mertens numbers:
     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

Bash

<lang bash>#!/bin/bash MAX=1000

m[1]=1 for n in `seq 2 $MAX` do

   m[n]=1
   for k in `seq 2 $n`
   do
       m[n]=$((m[n]-m[n/k]))
   done

done

echo 'The first 99 Mertens numbers are:' echo -n ' ' for n in `seq 1 99` do

   printf '%2d ' ${m[n]}
   test $((n%10)) -eq 9 && echo

done

zero=0 cross=0 for n in `seq 1 $MAX` do

   if [ ${m[n]} -eq 0 ]
   then
       ((zero++))
       test ${m[n-1]} -ne 0 && ((cross++))
   fi

done

echo "M(N) is zero $zero times." echo "M(N) crosses zero $cross times."</lang>

Output:
The first 99 Mertens numbers are:
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>

int* mertens_numbers(int max) {

   int* m = malloc((max + 1) * sizeof(int));
   if (m == NULL)
       return m;
   m[1] = 1;
   for (int n = 2; n <= max; ++n) {
       m[n] = 1;
       for (int k = 2; k <= n; ++k)
           m[n] -= m[n/k];
   }
   return m;

}

int main() {

   const int max = 1000;
   int* mertens = mertens_numbers(max);
   if (mertens == NULL) {
       fprintf(stderr, "Out of memory\n");
       return 1;
   }
   printf("First 199 Mertens numbers:\n");
   const int count = 200;
   for (int i = 0, column = 0; i < count; ++i) {
       if (column > 0)
           printf(" ");
       if (i == 0)
           printf("  ");
       else
           printf("%2d", mertens[i]);
       ++column;
       if (column == 20) {
           printf("\n");
           column = 0;
       }
   }
   int zero = 0, cross = 0, previous = 0;
   for (int i = 1; i <= max; ++i) {
       int m = mertens[i];
       if (m == 0) {
           ++zero;
           if (previous != 0)
               ++cross;
       }
       previous = m;
   }
   free(mertens);
   printf("M(n) is zero %d times for 1 <= n <= %d.\n", zero, max);
   printf("M(n) crosses zero %d times for 1 <= n <= %d.\n", cross, max);
   return 0;

}</lang>

Output:
First 199 Mertens numbers:
    1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
 1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
-3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
-4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
 0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
-3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8
M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.

C++

<lang cpp>#include <iomanip>

  1. include <iostream>
  2. include <map>

class mertens_calculator { public:

   int mertens_number(int);

private:

   std::map<int, int> cache_;

};

int mertens_calculator::mertens_number(int n) {

   auto i = cache_.find(n);
   if (i != cache_.end())
       return i->second;
   int m = 1;
   for (int k = 2; k <= n; ++k)
       m -= mertens_number(n/k);
   cache_.emplace(n, m);
   return m;

}

void print_mertens_numbers(mertens_calculator& mc, int count) {

   int column = 0;
   for (int i = 0; i < count; ++i) {
       if (column > 0)
           std::cout << ' ';
       if (i == 0)
           std::cout << "  ";
       else
           std::cout << std::setw(2) << mc.mertens_number(i);
       ++column;
       if (column == 20) {
           std::cout << '\n';
           column = 0;
       }
   }

}

int main() {

   mertens_calculator mc;
   std::cout << "First 199 Mertens numbers:\n";
   print_mertens_numbers(mc, 200);
   int zero = 0, cross = 0, previous = 0;
   for (int i = 1; i <= 1000; ++i) {
       int m = mc.mertens_number(i);
       if (m == 0) {
           ++zero;
           if (previous != 0)
               ++cross;
       }
       previous = m;
   }
   std::cout << "M(n) is zero " << zero << " times for 1 <= n <= 1000.\n";
   std::cout << "M(n) crosses zero " << cross << " times for 1 <= n <= 1000.\n";
   return 0;

}</lang>

Output:
First 199 Mertens numbers:
    1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
 1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
-3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
-4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
 0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
-3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8
M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.

Cowgol

<lang cowgol>include "cowgol.coh";

const MAX := 1000;

  1. Table output

sub printtab(n: int8) is

   if n<0 then 
       print_char('-');
       n := -n;
   else 
       print_char(' ');
   end if;
   print_char(n as uint8 + '0');
   print_char(' ');

end sub;

  1. Generate Merten numbers

var M: int8[MAX+1]; M[0] := 0; M[1] := 1;

var n: @indexof M := 2; while n < @sizeof M loop

   M[n] := 1;
   var k: @indexof M := 2;
   while k <= n loop
       M[n] := M[n] - M[n/k];
       k := k + 1;
   end loop;
   n := n + 1;

end loop;

  1. Find zeroes and crossings

var zero: uint8 := 0; var cross: uint8 := 0; n := 1; while n < @sizeof M loop

   if M[n] == 0 then
       zero := zero + 1;
       if M[n-1] != 0 then
           cross := cross + 1;
       end if;
   end if;
   n := n + 1;

end loop;

  1. Print table

print("The first 99 Mertens numbers are:\n"); print(" "); n := 1; var col: uint8 := 9; while n < 100 loop

   printtab(M[n]);
   col := col - 1;
   if col == 0 then    
       print_nl();
       col := 10;
   end if;
   n := n + 1;

end loop;

print("M(n) is zero "); print_i8(zero); print(" times\n"); print("M(n) crosses zero "); print_i8(cross); print(" times\n");</lang>

Output:
The first 99 Mertens numbers are:
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(n) is zero 92 times
M(n) crosses zero 59 times

F#

This task uses Möbius_function (F#) <lang fsharp> // Mertens function. Nigel Galloway: January 31st., 2021 let mertens=mobius|>Seq.scan((+)) 0|>Seq.tail mertens|>Seq.take 500|>Seq.chunkBySize 25|>Seq.iter(fun n->Array.iter(printf "%3d") n;printfn "\n####") let n=mertens|>Seq.take 1000|>Seq.mapi(fun n g->(n+1,g))|>Seq.groupBy snd|>Map.ofSeq n|>Map.iter(fun n g->printf "%3d->" n; g|>Seq.iter(fun(n,_)->printf "%3d " n); printfn "\n####") printfn "%d Zeroes\n####" (Seq.length (snd n.[0])) printfn "Crosses zero %d times" (n.[0]|>Seq.pairwise|>Seq.filter(fun((n,_),(g,_))->n+1<g)|>Seq.length) </lang>

Output:
  1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3 -3 -2 -1 -2 -2 -2
 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0  0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3
 -2 -2 -3 -3 -2 -2 -1  0 -1 -1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3
 -3 -2 -3 -4 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1  1
  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3 -3 -3 -2 -1 -1 -1
 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1  0  1  1  1  0  0
 -1 -1 -1 -2 -1 -1 -2 -1  0  0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4
 -4 -3 -2 -3 -3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8 -8
 -7 -6 -5 -5 -4 -3 -3 -3 -2 -1 -2 -2 -1  0  1  1  2  3  4  4  5  4  3  3  3
  4  3  3  2  1  0  0 -1 -1  0  0  1  0 -1 -1 -2 -2 -2 -2 -2 -3 -2 -2 -1 -1
 -2 -2 -1  0 -1 -1 -2 -3 -2 -2 -2 -1 -2 -2 -1 -2 -1 -1 -2 -2 -3 -3 -4 -3 -3
 -3 -4 -3 -3 -3 -4 -5 -6 -6 -7 -8 -7 -7 -7 -8 -7 -7 -8 -8 -7 -7 -7 -6 -5 -5
 -4 -3 -2 -2 -1 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -4 -5 -4 -4 -3 -4 -3 -3 -3
 -2 -1 -1  0  1  0  0  0  1  2  2  1  1  2  2  3  3  3  3  2  3  2  2  1  1
  1  1  0 -1  0  0 -1  0 -1 -1 -1  0  0  0  1  0 -1 -1 -1 -2 -1 -1 -2 -3 -3
 -3 -2 -2 -3 -3 -2 -1 -2 -2 -3 -2 -2 -2 -3 -2 -1 -1  0  1  2  2  1  2  1  1
  0 -1  0  0  0 -1  0  0 -1 -2 -1 -1  0  0  1  1  2  1  0  0 -1  0  0  0  0
 -1  0  0 -1 -2 -3 -3 -4 -5 -6 -6 -5 -6 -7 -7 -7 -8 -9 -9 -8 -7 -6 -6 -7 -7
 -6 -6 -5 -4 -5 -5 -6 -5 -5 -5 -6 -5 -6 -6 -7 -6 -7 -7 -6 -7 -6 -6 -5 -6 -6
 -6 -6 -5 -6 -6 -5 -4 -5 -5 -4 -4 -5 -5 -4 -4 -5 -5 -4 -5 -5 -5 -4 -5 -6 -6
####
-12->665 666 678 683 684
-11->661 663 664 667 668 670 673 677 679 680 682 685 686
-10->659 660 662 669 671 672 674 675 676 681 687 688
 -9->443 444 654 658 689 691 692 693
 -8->199 200 286 290 293 294 442 445 653 655 656 657 690 694
 -7->197 198 201 285 287 288 289 291 292 295 296 297 439 440 441 446 449 450 465 467 468 470 647 648 651 652 695 696
 -6->114 193 195 196 202 283 284 298 435 436 438 447 448 451 452 457 461 463 464 466 469 471 472 474 475 476 477 479 480 499 500 509 646 649 650 697
 -5->110 113 115 116 117 182 191 192 194 203 204 282 299 300 318 434 437 453 455 456 458 459 460 462 473 478 481 483 484 487 488 491 492 494 495 496 498 501 503 504 506 507 508 510 619 620 621 645 698 701 702 705 710 711 712 743 744 762
 -4-> 31  32  73  79  80  81  83  84 109 111 112 118 139 140 174 175 176 181 183 184 186 190 205 273 277 281 301 313 317 319 320 322 433 454 482 485 486 489 490 493 497 502 505 511 512 513 618 622 643 644 699 700 703 704 706 709 713 715 716 742 745 761 763 764 765 830 834
 -3-> 13  19  20  30  33  43  44  45  47  48  49  50  53  54  71  72  74  75  76  78  82  85 105 107 108 119 120 121 131 132 138 141 173 177 179 180 185 187 188 189 206 207 208 246 258 271 272 274 275 276 278 279 280 302 311 312 314 315 316 321 323 324 325 374 375 376 379 380 385 389 431 432 514 523 524 525 617 623 624 625 627 628 631 632 642 707 708 714 717 719 720 730 733 741 746 747 748 751 752 754 757 759 760 766 769 777 829 831 832 833 835 836 837 839 840 841 861 863 864
 -2->  5   7   8   9  11  12  14  17  18  21  23  24  25  29  34  37  42  46  51  52  55  56  61  67  68  70  77  86  89  90 103 104 106 122 127 128 130 133 137 142 154 157 170 171 172 178 209 211 212 241 242 243 244 245 247 248 251 252 257 259 260 261 263 264 266 269 270 303 304 307 308 310 326 370 373 377 378 381 383 384 386 387 388 390 410 430 515 516 518 521 522 526 530 531 532 534 610 613 615 616 626 629 630 633 641 718 721 722 727 728 729 731 732 734 735 736 739 740 749 750 753 755 756 758 767 768 770 773 774 775 776 778 787 788 790 827 828 838 842 857 859 860 862 865
 -1->  3   4   6  10  15  16  22  26  27  28  35  36  38  41  57  59  60  62  63  64  66  69  87  88  91  92 102 123 124 125 126 129 134 135 136 143 144 151 152 153 155 156 158 165 167 168 169 210 213 233 234 239 240 249 250 253 255 256 262 265 267 268 305 306 309 327 328 354 357 359 360 361 367 368 369 371 372 382 391 392 402 406 409 411 412 421 426 429 517 519 520 527 528 529 533 535 536 609 611 612 614 634 638 639 640 723 724 725 726 737 738 771 772 779 780 782 783 784 786 789 791 792 797 826 843 844 845 846 847 848 854 855 856 858 866 867 868 885 887 888 890 891 892 894 897 907 908 909 911 912
  0->  2  39  40  58  65  93 101 145 149 150 159 160 163 164 166 214 231 232 235 236 238 254 329 331 332 333 353 355 356 358 362 363 364 366 393 401 403 404 405 407 408 413 414 419 420 422 423 424 425 427 428 537 541 607 608 635 636 637 781 785 793 795 796 798 811 812 814 823 824 825 849 850 853 869 877 883 884 886 889 893 895 896 898 903 904 906 910 913 915 916 919 920
  1->  1  94  97  98  99 100 146 147 148 161 162 215 216 230 237 330 334 337 338 349 350 351 352 365 394 397 399 400 415 416 418 538 539 540 542 606 794 799 800 801 806 809 810 813 815 816 822 851 852 870 874 875 876 878 881 882 899 900 902 905 914 917 918 921 947 948 971 972 978 987 988 991 992 994 997
  2-> 95  96 217 229 335 336 339 340 345 347 348 395 396 398 417 543 544 602 603 604 605 802 805 807 808 817 821 871 872 873 879 880 901 922 942 946 949 950 953 954 957 970 973 977 979 980 981 983 984 986 989 990 993 995 996 998 999 1000
  3->218 223 224 225 227 228 341 342 343 344 346 545 547 548 549 550 601 803 804 818 819 820 923 924 925 929 938 941 943 944 945 951 952 955 956 958 962 963 964 969 974 975 976 982 985
  4->219 220 222 226 546 551 552 557 558 561 563 564 577 578 599 600 926 927 928 930 931 932 937 939 940 959 960 961 965 967 968
  5->221 553 555 556 559 560 562 565 569 571 572 574 575 576 579 580 582 595 596 598 933 935 936 966
  6->554 566 567 568 570 573 581 583 584 585 587 588 590 593 594 597 934
  7->586 589 591 592
####
92 Zeroes
####
Crosses zero 59 times

Factor

Works with: Factor version 0.99 2020-01-23

<lang factor>USING: formatting grouping io kernel math math.extras math.ranges math.statistics prettyprint sequences ;

! Take the cumulative sum of the mobius sequence to avoid ! summing lower terms over and over.

mertens-upto ( n -- seq ) [1,b] [ mobius ] map cum-sum ;

"The first 199 terms of the Mertens sequence:" print 199 mertens-upto " " prefix 20 group [ [ "%3s" printf ] each nl ] each nl

"In the first 1,000 terms of the Mertens sequence there are:" print 1000 mertens-upto [ [ zero? ] count bl pprint bl "zeros." print ] [

   2 <clumps> [ first2 [ 0 = not ] [ zero? ] bi* and ] count bl
   pprint bl "zero crossings." print

] bi</lang>

Output:
The first 199 terms of the Mertens sequence:
     1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
  1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
 -3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
 -4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
  0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
 -3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8

In the first 1,000 terms of the Mertens sequence there are:
 92 zeros.
 59 zero crossings.

Forth

<lang forth>: AMOUNT 1000 ;

variable mertens AMOUNT cells allot

M 1- cells mertens + ; \ 1-indexed array
make-mertens
 1 1 M !
 2 begin dup AMOUNT <= while
   1 over M !
   2 begin over over >= while
     over over / M @ 
     2 pick M @ swap -
     2 pick M !  
   1+ repeat
   drop
 1+ repeat
 drop
print-row
 begin dup while 
   swap dup M @ 3 .r 1+
   swap 1-
 repeat
 drop
print-table ." "
 1 9 print-row cr
 begin dup 100 < while 10 print-row cr repeat
 drop
find-zero-cross
 0 0
 1 begin dup AMOUNT <= while
   dup M @ 0= if
     swap 1+ swap
     dup 1- M @ 0<> if rot 1+ -rot then
   then
   1+
 repeat
 drop

make-mertens ." The first 99 Mertens numbers are:" cr print-table find-zero-cross ." M(N) is zero " . ." times." cr ." M(N) crosses zero " . ." times." cr bye </lang>

Output:
The first 99 Mertens numbers are:
     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

Fortran

<lang Fortran> program Mertens

     implicit none
     integer M(1000), n, k, zero, cross
      

C Generate Mertens numbers

     M(1) = 1
     do 10 n=2, 1000
         M(n) = 1
         do 10 k=2, n
             M(n) = M(n) - M(n/k)
10   continue 

C Print table

     write (*,"('The first 99 Mertens numbers are:')")
     write (*,"('   ')",advance='no')
     k = 9
     do 20 n=1, 99
         write (*,'(I3)',advance='no') M(n)
         k = k-1
         if (k .EQ. 0) then
             k=10
             write (*,*)
         end if
20   continue

C Calculate zeroes and crossings

     zero = 0
     cross = 0
     do 30 n=2, 1000
         if (M(n) .EQ. 0) then
             zero = zero + 1
             if (M(n-1) .NE. 0) cross = cross+1
         end if    
30   continue 

40   format("M(N) is zero ",I2," times.")
     write (*,40) zero
50   format("M(N) crosses zero ",I2," times.")
     write (*,50) cross
     end program</lang>
Output:
The first 99 Mertens numbers are:
     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 59 times.

FreeBASIC

<lang freebasic>function padto( i as ubyte, j as integer ) as string

   return wspace(i-len(str(j)))+str(j)

end function

dim as integer M( 1 to 1000 ), n, col, k, psum dim as integer num_zeroes = 0, num_cross = 0 dim as string outstr

M(1) = 1 for n = 2 to 1000

   psum = 0
   for k = 2 to n
       psum += M(int(n/k))
   next k
   M(n) = 1 - psum
   if M(n) = 0 then
       num_zeroes += 1
       if M(n-1)<>0 then
           num_cross += 1
       end if
   end if

next n

print using "There are ### zeroes in the range 1 to 1000."; num_zeroes print using "There are ### crossings in the range 1 to 1000."; num_cross print "The first 100 Mertens numbers are: "

for n=1 to 100

   outstr += padto(3, M(n))+"  "
   if n mod 10 = 0 then
       print outstr
       outstr = ""
   end if

next n</lang>

Output:
There are  92 zeroes in the range 1 to 1000.
There are  59 crossings in the range 1 to 1000.
The first 100 Mertens numbers are: 
  1    0   -1   -1   -2   -1   -2   -2   -2   -1  
 -2   -2   -3   -2   -1   -1   -2   -2   -3   -3  
 -2   -1   -2   -2   -2   -1   -1   -1   -2   -3  
 -4   -4   -3   -2   -1   -1   -2   -1    0    0  
 -1   -2   -3   -3   -3   -2   -3   -3   -3   -3  
 -2   -2   -3   -3   -2   -2   -1    0   -1   -1  
 -2   -1   -1   -1    0   -1   -2   -2   -1   -2  
 -3   -3   -4   -3   -3   -3   -2   -3   -4   -4  
 -4   -3   -4   -4   -3   -2   -1   -1   -2   -2  
 -1   -1    0    1    2    2    1    1    1    1

Go

<lang go>package main

import "fmt"

func mertens(to int) ([]int, int, int) {

   if to < 1 {
       to = 1
   }
   merts := make([]int, to+1)
   primes := []int{2}
   var sum, zeros, crosses int
   for i := 1; i <= to; i++ {
       j := i
       cp := 0      // counts prime factors
       spf := false // true if there is a square prime factor
       for _, p := range primes {
           if p > j {
               break
           }
           if j%p == 0 {
               j /= p
               cp++
           }
           if j%p == 0 {
               spf = true
               break
           }
       }
       if cp == 0 && i > 2 {
           cp = 1
           primes = append(primes, i)
       }
       if !spf {
           if cp%2 == 0 {
               sum++
           } else {
               sum--
           }
       }
       merts[i] = sum
       if sum == 0 {
           zeros++
           if i > 1 && merts[i-1] != 0 {
               crosses++
           }
       }
   }
   return merts, zeros, crosses

}

func main() {

   merts, zeros, crosses := mertens(1000)
   fmt.Println("Mertens sequence - First 199 terms:")
   for i := 0; i < 200; i++ {
       if i == 0 {
           fmt.Print("    ")
           continue
       }
       if i%20 == 0 {
           fmt.Println()
       }
       fmt.Printf("  % d", merts[i])
   }
   fmt.Println("\n\nEquals zero", zeros, "times between 1 and 1000")
   fmt.Println("\nCrosses zero", crosses, "times between 1 and 1000")

}</lang>

Output:
Mertens sequence - First 199 terms:
       1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2  -2  -3  -2  -1  -1  -2  -2  -3
  -3  -2  -1  -2  -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1  -1  -2  -1   0
   0  -1  -2  -3  -3  -3  -2  -3  -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1
  -1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3  -3  -4  -3  -3  -3  -2  -3  -4
  -4  -4  -3  -4  -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2   2   1   1   1
   1   0  -1  -2  -2  -3  -2  -3  -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3
  -3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3  -3  -2  -1  -1  -1  -2  -3  -4
  -4  -3  -2  -1  -1   0   1   1   1   0   0  -1  -1  -1  -2  -1  -1  -2  -1   0
   0   1   1   0   0  -1   0  -1  -1  -1  -2  -2  -2  -3  -4  -4  -4  -3  -2  -3
  -3  -4  -5  -4  -4  -3  -4  -3  -3  -3  -4  -5  -5  -6  -5  -6  -6  -7  -7  -8

Equals zero 92 times between 1 and 1000

Crosses zero 59 times between 1 and 1000

Haskell

<lang haskell>import Data.List.Split (chunksOf) import qualified Data.MemoCombinators as Memo import Math.NumberTheory.Primes (unPrime, factorise) import Text.Printf (printf)

moebius :: Integer -> Int moebius = product . fmap m . factorise

 where
   m (p, e)
     | unPrime p == 0 = 0
     | e == 1 = -1
     | otherwise = 0

mertens :: Integer -> Int mertens = Memo.integral (\n -> sum $ fmap moebius [1..n])

countZeros :: [Integer] -> Int countZeros = length . filter ((==0) . mertens)

crossesZero :: [Integer] -> Int crossesZero = length . go . fmap mertens

 where
   go (x:y:xs) 
     | y == 0 && x /= 0 = y : go (y:xs)
     | otherwise        = go (y:xs)
   go _ = []

main :: IO () main = do

 printf "The first 99 terms for M(1..99):\n\n   "
 mapM_ (printf "%3d" . mertens) [1..9] >> printf "\n"
 mapM_ (\row -> mapM_ (printf "%3d" . mertens) row >> printf "\n") $ chunksOf 10 [10..99]
 printf "\nM(n) is zero %d times for 1 <= n <= 1000.\n" $ countZeros [1..1000]
 printf "M(n) crosses zero %d times for 1 <= n <= 1000.\n" $ crossesZero [1..1000]</lang>
Output:
The first 99 terms for M(1..99):

     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1

M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.

J

<lang J>mu =: 0:`(1 - 2 * 2|#@{.)@.(1: = */@{:)@(2&p:)"0 M =: +/@([: mu 1:+i.)

m1000 =: (M"0) 1+i.1000 zero =: +/ m1000 = 0 cross =: +/ (-.*.1:|]) m1000 ~: 0

echo 'The first 99 Merten numbers are' echo 10 10$ __, 99{.m1000 echo 'M(N) is zero ',(":zero),' times.' echo 'M(N) crosses zero ',(":cross),' times.' exit</lang>

Output:
The first 99 Merten numbers are
__  1  0 _1 _1 _2 _1 _2 _2 _2
_1 _2 _2 _3 _2 _1 _1 _2 _2 _3
_3 _2 _1 _2 _2 _2 _1 _1 _1 _2
_3 _4 _4 _3 _2 _1 _1 _2 _1  0
 0 _1 _2 _3 _3 _3 _2 _3 _3 _3
_3 _2 _2 _3 _3 _2 _2 _1  0 _1
_1 _2 _1 _1 _1  0 _1 _2 _2 _1
_2 _3 _3 _4 _3 _3 _3 _2 _3 _4
_4 _4 _3 _4 _4 _3 _2 _1 _1 _2
_2 _1 _1  0  1  2  2  1  1  1
M(N) is zero 92 times.
M(N) crosses zero 0 times.

Java

<lang java> public class MertensFunction {

   public static void main(String[] args) {
       System.out.printf("First 199 terms of the merten function are as follows:%n    ");
       for ( int n = 1 ; n < 200 ; n++ ) {
           System.out.printf("%2d  ", mertenFunction(n));
           if ( (n+1) % 20 == 0 ) {
               System.out.printf("%n");
           }
       }
       
       for ( int exponent = 3 ; exponent<= 8 ; exponent++ ) {
           int zeroCount = 0;
           int zeroCrossingCount = 0;
           int positiveCount = 0;
           int negativeCount = 0;
           int mSum = 0;
           int mMin = Integer.MAX_VALUE;
           int mMinIndex = 0;
           int mMax = Integer.MIN_VALUE;
           int mMaxIndex = 0;
           int nMax = (int) Math.pow(10, exponent);
           for ( int n = 1 ; n <= nMax ; n++ ) {
               int m = mertenFunction(n);
               mSum += m;
               if ( m < mMin ) {
                   mMin = m;
                   mMinIndex = n;
               }
               if ( m > mMax ) {
                   mMax = m;
                   mMaxIndex = n;
               }
               if ( m > 0 ) {
                   positiveCount++;
               }
               if ( m < 0 ) {
                   negativeCount++;
               }
               if ( m == 0 ) {
                   zeroCount++;
               }
               if ( m == 0 && mertenFunction(n - 1) != 0 ) {
                   zeroCrossingCount++;
               }
           }
           System.out.printf("%nFor M(x) with x from 1 to %,d%n", nMax);        
           System.out.printf("The maximum of M(x) is M(%,d) = %,d.%n", mMaxIndex, mMax);
           System.out.printf("The minimum of M(x) is M(%,d) = %,d.%n", mMinIndex, mMin);
           System.out.printf("The sum of M(x) is %,d.%n", mSum);
           System.out.printf("The count of positive M(x) is %,d, count of negative M(x) is %,d.%n", positiveCount, negativeCount);
           System.out.printf("M(x) has %,d zeroes in the interval.%n", zeroCount);
           System.out.printf("M(x) has %,d crossings in the interval.%n", zeroCrossingCount);
       }
   }
   
   private static int MU_MAX = 100_000_000;
   private static int[] MU = null;
   private static int[] MERTEN = null;
       
   //  Compute mobius and merten function via sieve
   private static int mertenFunction(int n) {
       if ( MERTEN != null ) {
           return MERTEN[n];
       }
       
       //  Populate array
       MU = new int[MU_MAX+1];
       MERTEN = new int[MU_MAX+1];
       MERTEN[1] = 1;
       int sqrt = (int) Math.sqrt(MU_MAX);
       for ( int i = 0 ; i < MU_MAX ; i++ ) {
           MU[i] = 1;
       }
       
       for ( int i = 2 ; i <= sqrt ; i++ ) {
           if ( MU[i] == 1 ) {
               //  for each factor found, swap + and -
               for ( int j = i ; j <= MU_MAX ; j += i ) {
                   MU[j] *= -i;
               }
               //  square factor = 0
               for ( int j = i*i ; j <= MU_MAX ; j += i*i ) {
                   MU[j] = 0;
               }
           }
       }
       
       int sum = 1;
       for ( int i = 2 ; i <= MU_MAX ; i++ ) {
           if ( MU[i] == i ) {
               MU[i] = 1;
           }
           else if ( MU[i] == -i ) {
               MU[i] = -1;
           }
           else if ( MU[i] < 0 ) {
               MU[i] = 1;               
           }
           else if ( MU[i] > 0 ) {
               MU[i] = -1;
           }
           sum += MU[i];
           MERTEN[i] = sum;
       }
       return MERTEN[n];
   }

} </lang>

Output:
First 199 terms of the merten function are as follows:
     1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2  -2  -3  -2  -1  -1  -2  -2  -3  
-3  -2  -1  -2  -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1  -1  -2  -1   0  
 0  -1  -2  -3  -3  -3  -2  -3  -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1  
-1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3  -3  -4  -3  -3  -3  -2  -3  -4  
-4  -4  -3  -4  -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2   2   1   1   1  
 1   0  -1  -2  -2  -3  -2  -3  -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3  
-3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3  -3  -2  -1  -1  -1  -2  -3  -4  
-4  -3  -2  -1  -1   0   1   1   1   0   0  -1  -1  -1  -2  -1  -1  -2  -1   0  
 0   1   1   0   0  -1   0  -1  -1  -1  -2  -2  -2  -3  -4  -4  -4  -3  -2  -3  
-3  -4  -5  -4  -4  -3  -4  -3  -3  -3  -4  -5  -5  -6  -5  -6  -6  -7  -7  -8  

For M(x) with x from 1 to 1,000
The maximum of M(x) is M(586) = 7.
The minimum of M(x) is M(665) = -12.
The sum of M(x) is -1,572.
The count of positive M(x) is 254, count of negative M(x) is 654.
M(x) has 92 zeroes in the interval.
M(x) has 59 crossings in the interval.

For M(x) with x from 1 to 10,000
The maximum of M(x) is M(8,511) = 35.
The minimum of M(x) is M(9,861) = -43.
The sum of M(x) is -20,409.
The count of positive M(x) is 3,965, count of negative M(x) is 5,629.
M(x) has 406 zeroes in the interval.
M(x) has 256 crossings in the interval.

For M(x) with x from 1 to 100,000
The maximum of M(x) is M(48,433) = 96.
The minimum of M(x) is M(96,014) = -132.
The sum of M(x) is -516,879.
The count of positive M(x) is 47,830, count of negative M(x) is 50,621.
M(x) has 1,549 zeroes in the interval.
M(x) has 949 crossings in the interval.

For M(x) with x from 1 to 1,000,000
The maximum of M(x) is M(992,998) = 311.
The minimum of M(x) is M(926,265) = -368.
The sum of M(x) is -14,244,200.
The count of positive M(x) is 472,963, count of negative M(x) is 521,676.
M(x) has 5,361 zeroes in the interval.
M(x) has 3,269 crossings in the interval.

For M(x) with x from 1 to 10,000,000
The maximum of M(x) is M(9,993,034) = 1,143.
The minimum of M(x) is M(7,109,110) = -1,078.
The sum of M(x) is -194,680,528.
The count of positive M(x) is 4,938,188, count of negative M(x) is 5,049,266.
M(x) has 12,546 zeroes in the interval.
M(x) has 7,646 crossings in the interval.

For M(x) with x from 1 to 100,000,000
The maximum of M(x) is M(92,418,127) = 3,290.
The minimum of M(x) is M(76,015,339) = -3,448.
The sum of M(x) is -608,757,258.
The count of positive M(x) is 54,659,906, count of negative M(x) is 45,298,186.
M(x) has 41,908 zeroes in the interval.
M(x) has 25,525 crossings in the interval.

Julia

The OEIS A002321 reference suggests the Mertens function has a negative bias, which it does below 1 million, but this bias seems to switch to a positive bias by 1 billion. There may simply be large swings in the bias overall, which get larger and longer as the sequence continues. <lang julia>using Primes, Formatting

function moebius(n::Integer)

   @assert n > 0
   m(p, e) = p == 0 ? 0 : e == 1 ? -1 : 0
   return reduce(*, m(p, e) for (p, e) in factor(n) if p  ≥ 0; init=1)

end μ(n) = moebius(n)

mertens(x) = sum(n -> μ(n), 1:x) M(x) = mertens(x)

print("First 99 terms of the Mertens function for positive integers:\n ") for n in 1:99

   print(lpad(M(n), 3), n % 10 == 9 ? "\n" : "")

end

function maximinM(N)

   z, cros, lastM, maxi, maxM, mini, minM, sumM, pos, neg = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   for i in 1:N
       m = μ(i) + lastM
       if m == 0 && lastM != 0
           cros += 1
       end
       sumM += m
       lastM = m
       if m > maxM
           maxi = i
           maxM = m
       elseif m < minM
           mini = i
           minM = m
       end
       if m > 0
           pos += 1
       elseif m < 0
           neg += 1
       else
           z += 1
       end
   end
   println("\nFor M(x) with x from 1 to $(format(N, commas=true)):")
   println("The maximum of M(x) is M($(format(maxi, commas=true)) = $maxM.")
   println("The minimum of M(x) is M($(format(mini, commas=true))) = $minM.")
   println("The sum of M(x) is $(format(sumM, commas=true)).")
   println("The count of positive M(x) is $(format(pos, commas=true)), count of negative M(x) is $(format(neg, commas=true)).")
   println("M(x) has $(format(z, commas=true)) zeroes in the interval.")
   println("M(x) has $(format(cros, commas=true)) crossings in the interval.")
   diff = pos - neg
   if diff > 0
       println("Positive M(x) exceed negative ones by $(format(diff, commas=true)).")
   else
       println("Negative M(x) exceed positive ones by $(format(-diff, commas=true)).")
   end

end

foreach(maximinM, (1000, 1_000_000, 1_000_000_000))

</lang>

Output:
First 99 terms of the Mertens function for positive integers:
     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1

For M(x) with x from 1 to 1,000:
The maximum of M(x) is M(586 = 7.
The minimum of M(x) is M(665) = -12.
The sum of M(x) is -1,572.
The count of positive M(x) is 254, count of negative M(x) is 654.
M(x) has 92 zeroes in the interval.
M(x) has 59 crossings in the interval.
Negative M(x) exceed positive ones by 400.

For M(x) with x from 1 to 1,000,000:
The maximum of M(x) is M(992,998 = 311.
The minimum of M(x) is M(926,265) = -368.
The sum of M(x) is -14,244,200.
The count of positive M(x) is 472,963, count of negative M(x) is 521,676.
M(x) has 5,361 zeroes in the interval.
M(x) has 3,269 crossings in the interval.
Negative M(x) exceed positive ones by 48,713.

For M(x) with x from 1 to 1,000,000,000:
The maximum of M(x) is M(903,087,703 = 10246.
The minimum of M(x) is M(456,877,618) = -8565.
The sum of M(x) is 510,495,361,261.
The count of positive M(x) is 510,200,302, count of negative M(x) is 489,658,577.
M(x) has 141,121 zeroes in the interval.
M(x) has 85,652 crossings in the interval.
Positive M(x) exceed negative ones by 20,541,725.

MAD

<lang MAD> NORMAL MODE IS INTEGER

           DIMENSION M(1000)
                 
           M(1) = 1
           THROUGH GENMRT, FOR N=2, 1, N.G.1000
           M(N) = 1
           THROUGH GENMRT, FOR K=2, 1, K.G.N

GENMRT M(N) = M(N) - M(N/K)

           PRINT COMMENT $ FIRST 99 MERTEN NUMBERS ARE$
           VECTOR VALUES F9 = $S3,9(I2,S1)*$
           VECTOR VALUES F10 = $10(I2,S1)*$
           
           PRINT FORMAT F9, M(1), M(2), M(3), M(4), M(5), M(6),
         0                  M(7), M(8), M(9)
         
           THROUGH SHOW, FOR N=10, 10, N.GE.100

SHOW PRINT FORMAT F10, M(N), M(N+1), M(N+2), M(N+3), M(N+4),

         0   M(N+5), M(N+6), M(N+7), M(N+8), M(N+9), M(N+10)
         
           ZERO = 0
           CROSS = 0
           THROUGH ZC, FOR N=1, 1, N.G.1000
           WHENEVER M(N).E.0, ZERO = ZERO + 1

ZC WHENEVER M(N).E.0 .AND. M(N-1).NE.0, CROSS = CROSS + 1

           VECTOR VALUES FZ = $13HM(N) IS ZERO ,I2,S1,5HTIMES*$
           PRINT FORMAT FZ, ZERO
           
           VECTOR VALUES FC = $18HM(N) CROSSES ZERO ,I2,S1,5HTIMES*$
           PRINT FORMAT FC, CROSS
           
           END OF PROGRAM </lang>
Output:
FIRST 99 MERTEN NUMBERS ARE
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(N) IS ZERO 92 TIMES
M(N) CROSSES ZERO 59 TIMES

Pascal

Works with: Free Pascal

Nearly the same as Square-free_integers#Pascal Instead here marking all multiples, starting at factor 2, of a prime by incrementing the factor count.
runtime ~log(n)*n <lang pascal>program Merten; {$IFDEF FPC}

 {$MODE DELPHI}
 {$Optimization ON,ALL}

{$ELSE}

  {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils;

const

 BigLimit = 10*1000*1000*1000;//1e10

type

 tSieveElement = Int8;
 tpSieve = pInt8;
 tMoebVal = array[-1..1] of Int64;

var

 MertensValues : array[-40000..50500] of NativeInt;
 primes : array of byte;
 sieve : array of tSieveElement;

procedure CompactPrimes; //searching for needed primes //last primes are marked with -1 var

 pSieve : tpSieve;
 i,lmt,dp:NativeInt;

Begin

 setlength(Primes,74500);//suffices for primes to calc square upto 1e12
 //extract difference of primes
 i := 2;
 lmt := 0;
 dp := 2;
 pSieve :=@sieve[0];
 repeat
   IF pSieve[i]= 0 then
   Begin
     //mark for Moebius
     pSieve[i]:= -1;
     primes[lmt] := dp;
     dp := 0;
     inc(lmt);
   end;
   inc(dp);
   inc(i);
 until i*i >BigLimit;
 setlength(Primes,lmt+1);
 repeat
   IF pSieve[i]= 0 then
     //mark for Moebius
     pSieve[i]:= -1;
   inc(i);
 until i >BigLimit;

end;

procedure SieveSquares; //mark all powers >=2 of prime => all powers = 2 is sufficient var

 pSieve : tpSieve;
 i,sq,k,prime : NativeInt;

Begin

 pSieve := @sieve[0];
 prime := 0;
 For i := 0 to High(primes) do
 Begin
   prime := prime+primes[i];
   sq := prime*prime;
   k := sq;
   if sq > BigLimit then
     break;
   repeat
     pSieve[k] := 0;
     inc(k,sq);
   until k> BigLimit;
 end;

end;

procedure initPrimes; var

 pSieve : tpSieve;
 fakt,
 sieveprime : NativeUint;

begin

 pSieve := @sieve[0];
 sieveprime := 2;
 repeat
   if pSieve[sieveprime]=0 then
   begin
     fakt := sieveprime+sieveprime;
     while fakt <=BigLimit do
     Begin
       //count divisors
       inc(pSieve[fakt]);
       inc(fakt,sieveprime);
     end;
   end;
   inc(sieveprime);
 until sieveprime>BigLimit DIV 2;
 //Möbius of 1
 pSieve[1] := 1;
 //convert to Moebius
 For fakt := 2 to BigLimit do
 Begin
   sieveprime := pSieve[fakt];
   IF sieveprime<>0 then
     pSieve[fakt] := 1-(2*(sieveprime AND 1)) ;
 end;
 CompactPrimes;
 SieveSquares;

end;

procedure OutMerten10(Lmt,ZeroCross:NativeInt;Const MoebVal:tMoebVal); var

 i,j: NativeInt;

Begin

 Writeln(lmt:11,MoebVal[-1]:11,MoebVal[1]:11,MoebVal[-1]+MoebVal[1]:11,
 MoebVal[-1]-MoebVal[1]:7,MoebVal[0]:11);
 i:= low(MertensValues);
 while MertensValues[i] = 0 do
   inc(i);
 j:= High(MertensValues);
 while MertensValues[j] = 0 do
   dec(j);
 write('Merten min ',i:6,' max ',j:6,' zeros ',MertensValues[0]:8);
 writeln(' zeroCross ',ZeroCross);
 writeln;

end;

procedure Count_x10; var

 MoebCount: tMoebVal;
 pSieve : tpSieve;
 i,lmt,Merten,Moebius,LastMert,ZeroCross: NativeInt;

begin

 writeln('[1 to limit]');
 Writeln('Limit        Moeb. odd   Moeb.even  sqr-free Merten     Zeros');
 pSieve := @sieve[0];
 For i := -1 to 1 do
   MoebCount[i]:=0;
 ZeroCross := 0;
 LastMert :=1;
 Merten :=0;
 lmt := 10;
 i := 1;
 repeat
   while i <= lmt do
   Begin
     Moebius := pSieve[i];
     inc(MoebCount[Moebius]);
     inc(Merten,Moebius);
     inc(MertensValues[Merten]);//MoebCount[1]-MoebCount[-1]]);
     inc(ZeroCross,ORD( (Merten = 0) AND (LastMert <> 0)));
     LastMert := Merten;
     inc(i);
   end;
   OutMerten10(Lmt,ZeroCross,MoebCount);
   IF lmt >= BigLimit then
     BREAK;
   lmt := lmt*10;
   IF lmt >BigLimit then
     lmt := BigLimit;
 until false;
 writeln;

end;

procedure OutMerten(lmt:NativeInt); var

 i,k,m : NativeInt;

Begin

 iF lmt> BigLimit then
   lmt := BigLimit;
 writeln('Mertens numbers from 1 to ',lmt);
 k := 9;
 write(:3);
 m := 0;
 For i := 1 to lmt do
 Begin
   inc(m,sieve[i]);
   write(m:3);
   dec(k);
   IF k = 0 then
   Begin
     writeln;
     k := 10;
   end;
 end;
 writeln;

end;

procedure OutMoebius(lmt:NativeInt); var

 i,k : NativeInt;

Begin

 iF lmt> BigLimit then
   lmt := BigLimit;
 writeln('Möbius numbers from 1 to ',lmt);
 k := 19;
 write(:3);
 For i := 1 to lmt do
 Begin
   write(sieve[i]:3);
   dec(k);
   IF k = 0 then
   Begin
     writeln;
     k := 20;
   end;
 end;
 writeln;

end;

Begin

 setlength(sieve,BigLimit+1);
 InitPrimes;
 SieveSquares;
 Count_x10;
 OutMoebius(199);
 OutMerten(99);
 setlength(primes,0);
 setlength(sieve,0);

end.</lang>

Output:
[1 to limit]
Limit        Moeb. odd   Moeb.even  sqr-free Merten     Zero's
         10          4          3          7      1          3
Merten min     -2 max      1 zero's        1 zeroCross 1

        100         30         31         61     -1         39
Merten min     -4 max      2 zero's        6 zeroCross 5

       1000        303        305        608     -2        392
Merten min    -12 max      7 zero's       92 zeroCross 59

      10000       3053       3030       6083     23       3917
Merten min    -43 max     35 zero's      406 zeroCross 256

     100000      30421      30373      60794     48      39206
Merten min   -132 max     96 zero's     1549 zeroCross 949

    1000000     303857     304069     607926   -212     392074
Merten min   -368 max    311 zero's     5361 zeroCross 3269

   10000000    3039127    3040164    6079291  -1037    3920709
Merten min  -1078 max   1143 zero's    12546 zeroCross 7646

  100000000   30395383   30397311   60792694  -1928   39207306
Merten min  -3448 max   3290 zero's    41908 zeroCross 25525

 1000000000  303963673  303963451  607927124    222  392072876
Merten min  -8565 max  10246 zero's   141121 zeroCross 85652

10000000000 3039652332 3039618610 6079270942  33722 3920729058
Merten min -35517 max  50286 zero's   431822 zeroCross 262605


Möbius numbers from 1 to 199
     1 -1 -1  0 -1  1 -1  0  0  1 -1  0 -1  1  1  0 -1  0 -1
  0  1  1 -1  0  0  1  0  0 -1 -1 -1  0  1  1  1  0 -1  1  1
  0 -1 -1 -1  0  0  1 -1  0  0  0  1  0 -1  0  1  0  1  1 -1
  0 -1  1  0  0  1 -1 -1  0  1 -1 -1  0 -1  1  0  0  1 -1 -1
  0  0  1 -1  0  1  1  1  0 -1  0  1  0  1  1  1  0 -1  0  0
  0 -1 -1 -1  0 -1  1 -1  0 -1 -1  1  0 -1 -1  1  0  0  1  1
  0  0  1  1  0  0  0 -1  0  1 -1 -1  0  1  1  0  0 -1 -1 -1
  0  1  1  1  0  1  1  0  0 -1  0 -1  0  0 -1  1  0 -1  1  1
  0  1  0 -1  0 -1  1 -1  0  0 -1  0  0 -1 -1  0  0  1  1 -1
  0 -1 -1  1  0  1 -1  1  0  0 -1 -1  0 -1  1 -1  0 -1  0 -1

Mertens numbers from 1 to 99
     1  0 -1 -1 -2 -1 -2 -2 -2
 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2
 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3
 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1
 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2
 -2 -1 -1  0  1  2  2  1  1  1

real    3m54,249s = 234s //BigLimit = 100*1000*1000;takes 2.017s

Perl

<lang perl>use utf8; use strict; use warnings; use feature 'say'; use List::Util 'uniq';

sub prime_factors {

   my ($n, $d, @factors) = (shift, 1);
   while ($n > 1 and $d++) {
       $n /= $d, push @factors, $d until $n % $d;
   }
   @factors

}

sub μ {

   my @p = prime_factors(shift);
   @p == uniq(@p) ? 0 == @p%2 ? 1 : -1 : 0

}

sub progressive_sum {

   my @sum = shift @_;
   push @sum, $sum[-1] + $_ for @_;
   @sum

}

my($upto, $show, @möebius) = (1000, 199, ()); push @möebius, μ($_) for 1..$upto; my @mertens = progressive_sum @möebius;

say "Mertens sequence - First $show terms:\n" .

   (' 'x4 . sprintf "@{['%4d' x $show]}", @mertens[0..$show-1]) =~ s/((.){80})/$1\n/gr .
   sprintf("\nEquals zero %3d times between 1 and $upto", scalar grep { ! $_ } @mertens) .
   sprintf "\nCrosses zero%3d times between 1 and $upto", scalar grep { ! $mertens[$_-1] and $mertens[$_] } 1 .. @mertens;</lang>
Output:
Mertens sequence - First 199 terms:
       1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2  -2  -3  -2  -1  -1  -2  -2  -3
  -3  -2  -1  -2  -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1  -1  -2  -1   0
   0  -1  -2  -3  -3  -3  -2  -3  -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1
  -1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3  -3  -4  -3  -3  -3  -2  -3  -4
  -4  -4  -3  -4  -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2   2   1   1   1
   1   0  -1  -2  -2  -3  -2  -3  -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3
  -3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3  -3  -2  -1  -1  -1  -2  -3  -4
  -4  -3  -2  -1  -1   0   1   1   1   0   0  -1  -1  -1  -2  -1  -1  -2  -1   0
   0   1   1   0   0  -1   0  -1  -1  -1  -2  -2  -2  -3  -4  -4  -4  -3  -2  -3
  -3  -4  -5  -4  -4  -3  -4  -3  -3  -3  -4  -5  -5  -6  -5  -6  -6  -7  -7  -8

Equals zero  92 times between 1 and 1000
Crosses zero 59 times between 1 and 1000

Phix

Based on the stackexchange link, short and sweet but not very fast: 1.4s just for the first 1000... <lang Phix>function Mertens(integer n)

   integer res = 1
   for k=2 to n do
       res -= Mertens(floor(n/k))
   end for
   return res

end function sequence s = {" ."} for i=1 to 143 do s = append(s,sprintf("%3d",Mertens(i))) end for puts(1,join_by(s,1,12," "))

integer prev = 1, zeroes = 0, crosses = 0 for n=2 to 1000 do

   integer m = Mertens(n)
   if m=0 then
       zeroes += 1
       crosses += prev!=0 
   end if
   prev = m

end for printf(1,"\nMertens[1..1000] equals zero %d times and crosses zero %d times\n",{zeroes,crosses})</lang>

Output:

Matches the wp table:

  .   1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2
 -2  -3  -2  -1  -1  -2  -2  -3  -3  -2  -1  -2
 -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1
 -1  -2  -1   0   0  -1  -2  -3  -3  -3  -2  -3
 -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1
 -1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3
 -3  -4  -3  -3  -3  -2  -3  -4  -4  -4  -3  -4
 -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2
  2   1   1   1   1   0  -1  -2  -2  -3  -2  -3
 -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3
 -3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3
 -3  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1

Mertens[1..1000] equals zero 92 times and crosses zero 59 times

Prolog

Works with: SWI Prolog

<lang prolog>:- dynamic mertens_number_cache/2.

mertens_number(1, 1):- !. mertens_number(N, M):-

   mertens_number_cache(N, M),
   !.

mertens_number(N, M):-

   N >= 2,
   mertens_number(N, 2, M, 0),
   assertz(mertens_number_cache(N, M)).

mertens_number(N, N, M, M):- !. mertens_number(N, K, M, S):-

   N1 is N // K,
   mertens_number(N1, M1),
   K1 is K + 1,
   S1 is S - M1,
   mertens_number(N, K1, M, S1).

print_mertens_numbers(Count):-

   print_mertens_numbers(Count, 0).

print_mertens_numbers(Count, Count):-!. print_mertens_numbers(Count, N):-

   (N == 0 ->
       write('   ')
       ;
       mertens_number(N, M),
       writef('%3r', [M])
   ),
   N1 is N + 1,
   Column is N1 mod 20,
   (N > 0, Column == 0 ->
       nl
       ;
       true
   ),
   print_mertens_numbers(Count, N1).

count_zeros(From, To, Z, C):-

   count_zeros(From, To, Z, C, 0, 0, 0).

count_zeros(From, To, Z, C, Z, C, _):-

   From > To,
   !.

count_zeros(From, To, Z, C, Z1, C1, P):-

   mertens_number(From, M),
   (M == 0 -> Z2 is Z1 + 1 ; Z2 = Z1),
   (M == 0, P \= 0 -> C2 is C1 + 1 ; C2 = C1),
   Next is From + 1,
   count_zeros(Next, To, Z, C, Z2, C2, M).

main:-

   writeln('First 199 Mertens numbers:'),
   print_mertens_numbers(200),
   count_zeros(1, 1000, Z, C),
   writef('M(n) is zero %t times for 1 <= n <= 1000.\n', [Z]),
   writef('M(n) crosses zero %t times for 1 <= n <= 1000.\n', [C]).</lang>
Output:
First 199 Mertens numbers:
     1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
 -3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
  0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
 -1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
 -4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
  1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
 -3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
 -4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
  0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
 -3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8
M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.

Python

<lang python>def mertens(count):

   """Generate Mertens numbers"""
   m = [None, 1]
   for n in range(2, count+1):
       m.append(1)
       for k in range(2, n+1):
           m[n] -= m[n//k]
   return m
   

ms = mertens(1000)

print("The first 99 Mertens numbers are:") print(" ", end=' ') col = 1 for n in ms[1:100]:

   print("{:2d}".format(n), end=' ')
   col += 1
   if col == 10:
       print()
       col = 0
       

zeroes = sum(x==0 for x in ms) crosses = sum(a!=0 and b==0 for a,b in zip(ms, ms[1:])) print("M(N) equals zero {} times.".format(zeroes)) print("M(N) crosses zero {} times.".format(crosses))</lang>

Output:
The first 99 Mertens numbers are:
    1  0 -1 -1 -2 -1 -2 -2 -2
-1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2
-3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3
-3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1
-2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2
-2 -1 -1  0  1  2  2  1  1  1
M(N) equals zero 92 times.
M(N) crosses zero 59 times.

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.11

Mertens number is not defined for n == 0. Raku arrays are indexed from 0 so store a blank value at position zero to keep x and M(x) aligned.

<lang perl6>use Prime::Factor;

sub μ (Int \n) {

   return 0 if n %% 4 or n %% 9 or n %% 25 or n %% 49 or n %% 121;
   my @p = prime-factors(n);
   +@p == +@p.unique ?? +@p %% 2 ?? 1 !! -1 !! 0

}

my @mertens = lazy [\+] flat , 1, (2..*).hyper.map: -> \n { μ(n) };

put "Mertens sequence - First 199 terms:\n",

   @mertens[^200]».fmt('%3s').batch(20).join("\n"),
   "\n\nEquals zero ", +@mertens[1..1000].grep( !* ),
   ' times between 1 and 1000', "\n\nCrosses zero ",
   +@mertens[1..1000].kv.grep( {!$^v and @mertens[$^k]} ),
   " times between 1 and 1000\n\nFirst Mertens equal to:";

for 10, 20, 30 … 100 -> $threshold {

   printf "%4d: M(%d)\n", -$threshold, @mertens.first: * == -$threshold, :k;
   printf "%4d: M(%d)\n",  $threshold, @mertens.first: * ==  $threshold, :k;

}</lang>

Output:
Mertens sequence - First 199 terms:
      1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2  -2  -3  -2  -1  -1  -2  -2  -3
 -3  -2  -1  -2  -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1  -1  -2  -1   0
  0  -1  -2  -3  -3  -3  -2  -3  -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1
 -1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3  -3  -4  -3  -3  -3  -2  -3  -4
 -4  -4  -3  -4  -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2   2   1   1   1
  1   0  -1  -2  -2  -3  -2  -3  -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3
 -3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3  -3  -2  -1  -1  -1  -2  -3  -4
 -4  -3  -2  -1  -1   0   1   1   1   0   0  -1  -1  -1  -2  -1  -1  -2  -1   0
  0   1   1   0   0  -1   0  -1  -1  -1  -2  -2  -2  -3  -4  -4  -4  -3  -2  -3
 -3  -4  -5  -4  -4  -3  -4  -3  -3  -3  -4  -5  -5  -6  -5  -6  -6  -7  -7  -8

Equals zero 92 times between 1 and 1000

Crosses zero 59 times between 1 and 1000

First Mertens equal to:
 -10: M(659)
  10: M(1393)
 -20: M(2791)
  20: M(3277)
 -30: M(9717)
  30: M(8503)
 -40: M(9831)
  40: M(11770)
 -50: M(24018)
  50: M(19119)
 -60: M(24105)
  60: M(31841)
 -70: M(24170)
  70: M(31962)
 -80: M(42789)
  80: M(48202)
 -90: M(59026)
  90: M(48405)
-100: M(59426)
 100: M(114717)

REXX

The   Mertens   function is named after Franz Mertens.

Programming note:   This REXX version supports the specifying of the low and high values to be generated,
as well as the "group" size for the grid   (it can be specified as   1   which will show a vertical list).

A null value will be shown as a bullet (•) when showing the Möbius and/or Mertens value of for zero   (which can be changed easily).

The above "feature" was added to make the grid to be aligned with other solutions. <lang rexx>/*REXX pgm computes & shows a value grid of the Mertens function for a range of integers*/ parse arg LO HI grp eqZ xZ . /*obtain optional arguments from the CL*/ if LO== | LO=="," then LO= 0 /*Not specified? Then use the default.*/ if HI== | HI=="," then HI= 199 /* " " " " " " */ if grp== | grp=="," then grp= 20 /* " " " " " " */ if eqZ== | eqZ=="," then eqZ= 1000 /* " " " " " " */ if xZ== | xZ=="," then xZ= 1000 /* " " " " " " */ call genP /*generate primes up to max √ HIHI */

              call Franz LO, HI

if eqZ>0 then call Franz 1,-eqZ if xZ>0 then call Franz -1, xZ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ Franz: parse arg a 1 oa,b 1 ob; @Mertens=' The Mertens sequence from ' a= abs(a); b= abs(b); grid= oa>=0 & ob>=0 /*semaphore used to show a grid title. */ if grid then say center(@Mertens LO " ──► " HI" ", max(50, grp*3), '═') /*show title*/

        else say

zeros= 0 /*# of 0's found for Mertens function.*/ Xzero= 0 /*number of times that zero was crossed*/ prev= $= /*$ holds output grid of GRP numbers. */

  do j=a  to b;     _= Mertens(j)               /*process some numbers from  LO ──► HI.*/
  if _==0  then zeros= zeros + 1                /*Is Zero?  Then bump the zeros counter*/
  if _==0  then if prev\==0 then Xzero= Xzero+1 /*prev ¬=0?   "   "    "  Xzero    "   */
  prev= _
  if grid  then $= $ right(_, 2)                /*build grid if A & B are non─negative.*/
  if words($)==grp  then do;  say substr($, 2);  $=    /*show grid if fully populated,*/
                         end                           /*  and nullify it for more #s.*/
  end   /*j*/                                   /*for small grids, using wordCnt is OK.*/

if $\== then say substr($, 2) /*handle any residual numbers not shown*/ if oa<0 then say @Mertens a " to " b ' has crossed zero ' Xzero " times." if ob<0 then say @Mertens a " to " b ' has ' zeros " zeros." return /*──────────────────────────────────────────────────────────────────────────────────────*/ Mertens: procedure expose @. !. M.; parse arg n /*obtain a integer to be tested for mu.*/

        if M.n\==.  then return M.n             /*was computed before?  Then return it.*/
        if n<1      then return '∙'             /*handle special cases of non─positive#*/
        m= 0                                    /*the sum of all the  MU's  (so far).  */
             do k=1  for n;   m= m + mobius(k)  /*sum the  MU's  up to  N.             */
             end   /*k*/                        /* [↑] mobius function uses memoization*/
        M.n= m;          return m               /*return the sum of all the  MU's.     */

/*──────────────────────────────────────────────────────────────────────────────────────*/ mobius: procedure expose @. !.; parse arg x 1 ox /*obtain a integer to be tested for mu.*/

       if !.x\==.  then return !.x              /*X computed before?  Return that value*/
       if x<1      then return '∙'              /*handle special case of non-positive #*/
       #= 0                                     /*start with a  mu  value of zero.     */
            do k=1;  p= @.k                     /*get the  Kth  (pre─generated)  prime.*/
            if p>x  then leave                  /*prime (P)   > X?    Then we're done. */
            if p*p>x  then do;   #= #+1;  leave /*prime (P**2 > X?    Bump # and leave.*/
                           end
            if x//p==0  then do; #= #+1         /*X divisible by P?   Bump mu number.  */
                                 x= x % p       /*                    Divide by prime. */
                                 if x//p==0  then return 0  /*X÷by P?  Then return zero*/
                             end
            end   /*k*/                         /*#  (below) is almost always small, <9*/
       !.ox=  -1 ** #;        return !.ox       /*raise -1 to the mu power, memoize it.*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ genP: !.=.; M.=!.; hihi= max(HI, eqZ, xZ) /*initialize 2 arrays for memoization. */

     @.1=2;  @.2=3; @.3=5; @.4=7; @.5=11; @.6= 13; nP=6 /*assign low primes; # primes. */
      do lim=nP  until lim*lim>=hihi;  end      /*only keep primes up to the sqrt(HI). */
      do j=@.nP+4  by 2  to hihi                /*only find odd primes from here on.   */
         do k=3  while k*k<=j                   /*divide by some generated odd primes. */
         if j // @.k==0  then iterate j         /*Is J divisible by  P?  Then not prime*/
         end   /*k*/                            /* [↓]  a prime  (J)  has been found.  */
      nP= nP+1;  if nP<=HI  then @.nP=j         /*bump prime count; assign prime to  @.*/
      end      /*j*/;            return</lang>
output   when using the default inputs:

Output note:   note the use of a bullet (•) to signify that a "null" is being shown (for the 0th entry).

══════════ The Mertens sequence from  0  ──►  199 ══════════
 ∙  1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
 1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
-3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
-4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
 0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
-3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8

 The Mertens sequence from  1  to  1000  has  92  zeros.

 The Mertens sequence from  1  to  1000  has crossed zero  59  times.

Sidef

Built-in: <lang ruby>say mertens(123456789) #=> 1170 say mertens(1234567890) #=> 9163</lang>

Algorithm for computing M(n) in sublinear time:

<lang ruby>func mertens(n) is cached {

   var lookup_size    = (2 * n.iroot(3)**2)
   var mertens_lookup = [0]
   for k in (1..lookup_size) {
       mertens_lookup[k] = (mertens_lookup[k-1] + k.moebius)
   }
   static cache = Hash()
   func (n) {
       if (n <= lookup_size) {
           return mertens_lookup[n]
       }
       if (cache.has(n)) {
           return cache{n}
       }
       var M = 1
       var s = n.isqrt
       for k in (2 .. floor(n/(s+1))) {
           M -= __FUNC__(floor(n/k))
       }
       for k in (1..s) {
           M -= (mertens_lookup[k] * (floor(n/k) - floor(n/(k+1))))
       }
       cache{n} = M
   }(n)

}</lang>

Task: <lang ruby>with (200) {|n|

   say "Mertens function in the range 1..#{n}:"
   (1..n).map { mertens(_) }.slices(20).each {|line|
       say line.map{ "%2s" % _ }.join(' ')
   }

}

with (1000) {|n|

   say "\nIn the range 1..#{n}, there are:"
   say (1..n->count_by { mertens(_)==0 }, " zeros")
   say (1..n->count_by { mertens(_)==0 && mertens(_-1)!=0 }, " zero crossings")

}</lang>

Output:
Mertens function in the range 1..200:
 1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3 -3
-2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0  0
-1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1 -1
-2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4 -4
-4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1  1
 0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3 -3
-3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4 -4
-3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0  0
 1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3 -3
-4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8 -8

In the range 1..1000, there are:
92 zeros
59 zero crossings

Swift

Translation of: C

<lang swift>import Foundation

func mertensNumbers(max: Int) -> [Int] {

   var mertens = Array(repeating: 1, count: max + 1)
   for n in 2...max {
       for k in 2...n {
           mertens[n] -= mertens[n / k]
       }
   }
   return mertens

}

let max = 1000 let mertens = mertensNumbers(max: max)

let count = 200 let columns = 20 print("First \(count - 1) Mertens numbers:") for i in 0..<count {

   if i % columns > 0 {
       print(" ", terminator: "")
   }
   print(i == 0 ? "  " : String(format: "%2d", mertens[i]), terminator: "")
   if (i + 1) % columns == 0 {
       print()
   }

}

var zero = 0, cross = 0, previous = 0 for i in 1...max {

   let m = mertens[i]
   if m == 0 {
       zero += 1
       if previous != 0 {
           cross += 1
       }
   }
   previous = m

} print("M(n) is zero \(zero) times for 1 <= n <= \(max).") print("M(n) crosses zero \(cross) times for 1 <= n <= \(max).")</lang>

Output:
First 199 Mertens numbers:
    1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3
-3 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0
 0 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1
-1 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4
-4 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1
 1  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3
-3 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4
-4 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0
 0  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3
-3 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8
M(n) is zero 92 times for 1 <= n <= 1000.
M(n) crosses zero 59 times for 1 <= n <= 1000.

Wren

Library: Wren-fmt
Library: Wren-math

<lang ecmascript>import "/fmt" for Fmt import "/math" for Int

var isSquareFree = Fn.new { |n|

   var i = 2
   while (i * i <= n) {
       if (n%(i*i) == 0) return false
       i = (i > 2) ? i + 2 : i + 1
   }
   return true

}

var mu = Fn.new { |n|

   if (n < 1) Fiber.abort("Argument must be a positive integer")
   if (n == 1) return 1
   var sqFree = isSquareFree.call(n)
   var factors = Int.primeFactors(n)
   if (sqFree && factors.count % 2 == 0) return 1
   if (sqFree) return -1
   return 0

}

var M = Fn.new { |x| (1..x).reduce { |sum, n| sum + mu.call(n) } }

System.print("The first 199 Mertens numbers are:") for (i in 0..9) {

   for (j in 0..19) {
       if (i == 0 && j == 0) {
           System.write("    ")
       } else {
           System.write("%(Fmt.dm(3, M.call(i*20 + j))) ")
       }
   }
   System.print()

}

// use the recurrence relationship for the last 2 parts rather than calling M directly var count = 0 var mertens = M.call(1) for (i in 2..1000) {

   mertens = mertens + mu.call(i)
   if (mertens == 0) count = count + 1

} System.print("\nThe Mertens function is zero %(count) times in the range [1, 1000].")

count = 0 var prev = M.call(1) for (i in 2..1000) {

   var next = prev + mu.call(i)
   if (next == 0 && prev != 0) count = count + 1
   prev = next

} System.print("\nThe Mertens function crosses zero %(count) times in the range [1, 1000].")</lang>

Output:
The first 199 Mertens numbers are:
      1   0  -1  -1  -2  -1  -2  -2  -2  -1  -2  -2  -3  -2  -1  -1  -2  -2  -3 
 -3  -2  -1  -2  -2  -2  -1  -1  -1  -2  -3  -4  -4  -3  -2  -1  -1  -2  -1   0 
  0  -1  -2  -3  -3  -3  -2  -3  -3  -3  -3  -2  -2  -3  -3  -2  -2  -1   0  -1 
 -1  -2  -1  -1  -1   0  -1  -2  -2  -1  -2  -3  -3  -4  -3  -3  -3  -2  -3  -4 
 -4  -4  -3  -4  -4  -3  -2  -1  -1  -2  -2  -1  -1   0   1   2   2   1   1   1 
  1   0  -1  -2  -2  -3  -2  -3  -3  -4  -5  -4  -4  -5  -6  -5  -5  -5  -4  -3 
 -3  -3  -2  -1  -1  -1  -1  -2  -2  -1  -2  -3  -3  -2  -1  -1  -1  -2  -3  -4 
 -4  -3  -2  -1  -1   0   1   1   1   0   0  -1  -1  -1  -2  -1  -1  -2  -1   0 
  0   1   1   0   0  -1   0  -1  -1  -1  -2  -2  -2  -3  -4  -4  -4  -3  -2  -3 
 -3  -4  -5  -4  -4  -3  -4  -3  -3  -3  -4  -5  -5  -6  -5  -6  -6  -7  -7  -8 

The Mertens function is zero 92 times in the range [1, 1000].

The Mertens function crosses zero 59 times in the range [1, 1000].

zkl

<lang zkl>fcn mertensW(n){

  [1..].tweak(fcn(n,pm){
     pm.incN(mobius(n));
     pm.value
  }.fp1(Ref(0)))

} fcn mobius(n){

  pf:=primeFactors(n);
  sq:=pf.filter1('wrap(f){ (n % (f*f))==0 });  // False if square free
  if(sq==False){ if(pf.len().isEven) 1 else -1 }
  else 0

} fcn primeFactors(n){ // Return a list of prime factors of n

  acc:=fcn(n,k,acc,maxD){  // k is 2,3,5,7,9,... not optimum
     if(n==1 or k>maxD) acc.close();
     else{

q,r:=n.divr(k); // divr-->(quotient,remainder) if(r==0) return(self.fcn(q,k,acc.write(k),q.toFloat().sqrt())); return(self.fcn(n,k+1+k.isOdd,acc,maxD)) # both are tail recursion

     }
  }(n,2,Sink(List),n.toFloat().sqrt());
  m:=acc.reduce('*,1);      // mulitply factors
  if(n!=m) acc.append(n/m); // opps, missed last factor
  else acc;

}</lang> <lang zkl>mertensW().walk(199) .pump(Console.println, T(Void.Read,19,False), fcn{ vm.arglist.pump(String,"%3d".fmt) });

println("\nIn the first 1,000 terms of the Mertens sequence there are:"); otm:=mertensW().pump(1_000,List); otm.reduce(fcn(s,m){ s + (m==0) },0) : println(_," zeros"); otm.reduce(fcn(p,m,rs){ rs.incN(m==0 and p!=0); m }.fp2( s:=Ref(0) )); println(s.value," zero crossings");</lang>

Output:
  1  0 -1 -1 -2 -1 -2 -2 -2 -1 -2 -2 -3 -2 -1 -1 -2 -2 -3 -3
 -2 -1 -2 -2 -2 -1 -1 -1 -2 -3 -4 -4 -3 -2 -1 -1 -2 -1  0  0
 -1 -2 -3 -3 -3 -2 -3 -3 -3 -3 -2 -2 -3 -3 -2 -2 -1  0 -1 -1
 -2 -1 -1 -1  0 -1 -2 -2 -1 -2 -3 -3 -4 -3 -3 -3 -2 -3 -4 -4
 -4 -3 -4 -4 -3 -2 -1 -1 -2 -2 -1 -1  0  1  2  2  1  1  1  1
  0 -1 -2 -2 -3 -2 -3 -3 -4 -5 -4 -4 -5 -6 -5 -5 -5 -4 -3 -3
 -3 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -1 -1 -1 -2 -3 -4 -4
 -3 -2 -1 -1  0  1  1  1  0  0 -1 -1 -1 -2 -1 -1 -2 -1  0  0
  1  1  0  0 -1  0 -1 -1 -1 -2 -2 -2 -3 -4 -4 -4 -3 -2 -3 -3
 -4 -5 -4 -4 -3 -4 -3 -3 -3 -4 -5 -5 -6 -5 -6 -6 -7 -7 -8

In the first 1,000 terms of the Mertens sequence there are:
92 zeros
59 zero crossings