Longest common subsequence: Difference between revisions

m
(+ AutoHotkey contributed by Laszlo from ahk forums)
 
(353 intermediate revisions by more than 100 users not shown)
Line 1:
{{puzzletask}}[[Category:Recursion]][[Category:Memoization]]
'''Introduction'''
The '''longest common subsequence''' (or '''LCS''') of groups A and B is the longest group of elements from A and B that are common between the two groups and in the same order in each group. For example, the sequences "1234" and "1224533324" have an LCS of "1234":
 
Define a ''subsequence'' to be any output string obtained by deleting zero or more symbols from an input string.
 
The [http://en.wikipedia.org/wiki/Longest_common_subsequence_problem '''Longest Common Subsequence'''] ('''LCS''') is a subsequence of maximum length common to two or more strings.
 
Let ''A'' ≡ ''A''[0]… ''A''[m - 1] and ''B'' ≡ ''B''[0]… ''B''[n - 1], m < n be strings drawn from an alphabet Σ of size s, containing every distinct symbol in A + B.
 
An ordered pair (i, j) will be referred to as a match if ''A''[i] = ''B''[j], where 0 ≤ i < m and 0 ≤ j < n.
 
The set of matches '''M''' defines a relation over matches: '''M'''[i, j] ⇔ (i, j) ∈ '''M'''.
 
Define a ''non-strict'' [https://en.wikipedia.org/wiki/Product_order product-order] (≤) over ordered pairs, such that (i1, j1) ≤ (i2, j2) ⇔ i1 ≤ i2 and j1 ≤ j2. We define (≥) similarly.
 
We say ordered pairs p1 and p2 are ''comparable'' if either p1 ≤ p2 or p1 ≥ p2 holds. If i1 < i2 and j2 < j1 (or i2 < i1 and j1 < j2) then neither p1 ≤ p2 nor p1 ≥ p2 are possible, and we say p1 and p2 are ''incomparable''.
 
Define the ''strict'' product-order (<) over ordered pairs, such that (i1, j1) < (i2, j2) ⇔ i1 < i2 and j1 < j2. We define (>) similarly.
 
A chain '''C''' is a subset of '''M''' consisting of at least one element m; and where either m1 < m2 or m1 > m2 for every pair of distinct elements m1 and m2. An antichain '''D''' is any subset of '''M''' in which every pair of distinct elements m1 and m2 are incomparable.
 
A chain can be visualized as a strictly increasing curve that passes through matches (i, j) in the m*n coordinate space of '''M'''[i, j].
 
Every Common Sequence of length ''q'' corresponds to a chain of cardinality ''q'', over the set of matches '''M'''. Thus, finding an LCS can be restated as the problem of finding a chain of maximum cardinality ''p''.
 
According to [Dilworth 1950], this cardinality ''p'' equals the minimum number of disjoint antichains into which '''M''' can be decomposed. Note that such a decomposition into the minimal number p of disjoint antichains may not be unique.
 
'''Background'''
 
Where the number of symbols appearing in matches is small relative to the length of the input strings, reuse of the symbols increases; and the number of matches will tend towards O(''m*n'') quadratic growth. This occurs, for example, in the Bioinformatics application of nucleotide and protein sequencing.
 
The divide-and-conquer approach of [Hirschberg 1975] limits the space required to O(''n''). However, this approach requires O(''m*n'') time even in the best case.
 
This quadratic time dependency may become prohibitive, given very long input strings. Thus, heuristics are often favored over optimal Dynamic Programming solutions.
 
In the application of comparing file revisions, records from the input files form a large symbol space; and the number of symbols approaches the length of the LCS. In this case the number of matches reduces to linear, O(''n'') growth.
 
A binary search optimization due to [Hunt and Szymanski 1977] can be applied to the basic Dynamic Programming approach, resulting in an expected performance of O(''n log m''). Performance can degrade to O(''m*n log m'') time in the worst case, as the number of matches grows to O(''m*n'').
 
'''Note'''
 
[Rick 2000] describes a linear-space algorithm with a time bound of O(''n*s + p*min(m, n - p)'').
 
'''Legend'''
 
A, B are input strings of lengths m, n respectively
p is the length of the LCS
M is the set of matches (i, j) such that A[i] = B[j]
r is the magnitude of M
s is the magnitude of the alphabet Σ of distinct symbols in A + B
 
'''References'''
 
[Dilworth 1950] "A decomposition theorem for partially ordered sets"
by Robert P. Dilworth, published January 1950,
Annals of Mathematics [Volume 51, Number 1, ''pp.'' 161-166]
 
[Goeman and Clausen 2002] "A New Practical Linear Space Algorithm for the Longest Common
Subsequence Problem" by Heiko Goeman and Michael Clausen,
published 2002, Kybernetika [Volume 38, Issue 1, ''pp.'' 45-66]
 
[Hirschberg 1975] "A linear space algorithm for computing maximal common subsequences"
by Daniel S. Hirschberg, published June 1975
Communications of the ACM [Volume 18, Number 6, ''pp.'' 341-343]
 
[Hunt and McIlroy 1976] "An Algorithm for Differential File Comparison"
by James W. Hunt and M. Douglas McIlroy, June 1976
Computing Science Technical Report, Bell Laboratories 41
 
[Hunt and Szymanski 1977] "A Fast Algorithm for Computing Longest Common Subsequences"
by James W. Hunt and Thomas G. Szymanski, published May 1977
Communications of the ACM [Volume 20, Number 5, ''pp.'' 350-353]
 
[Rick 2000] "Simple and fast linear space computation of longest common subsequences"
by Claus Rick, received 17 March 2000, Information Processing Letters,
Elsevier Science [Volume 75, ''pp.'' 275–281]
<br />
 
'''Examples'''
 
The sequences "1234" and "1224533324" have an LCS of "1234":
'''<u>1234</u>'''
'''<u>12</u>'''245'''<u>3</u>'''332'''<u>4</u>'''
 
For a string example, consider the sequences "thisisatest" and "testing123testing". An LCS would be "tsitest":
'''<u>t</u>'''hi'''<u>si</u>'''sa'''<u>test</u>'''
Line 8 ⟶ 88:
 
In this puzzle, your code only needs to deal with strings. Write a function which returns an LCS of two strings (case-sensitive). You don't need to show multiple LCS's.
 
For more information on this problem please see [[wp:Longest_common_subsequence_problem|Wikipedia]].
 
{{Template:Strings}}
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F lcs(a, b)
V lengths = [[0] * (b.len+1)] * (a.len+1)
L(x) a
V i = L.index
L(y) b
V j = L.index
I x == y
lengths[i + 1][j + 1] = lengths[i][j] + 1
E
lengths[i + 1][j + 1] = max(lengths[i + 1][j], lengths[i][j + 1])
 
V result = ‘’
V j = b.len
L(i) 1..a.len
I lengths[i][j] != lengths[i - 1][j]
result ‘’= a[i - 1]
R result
 
print(lcs(‘1234’, ‘1224533324’))
print(lcs(‘thisisatest’, ‘testing123testing’))</syntaxhighlight>
 
{{out}}
<pre>
1234
tisitst
</pre>
 
=={{header|Ada}}==
Using recursion:
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
<lang ada>
with Ada.Text_IO; use Ada.Text_IO;
 
procedure Test_LCS is
Line 36 ⟶ 150:
begin
Put_Line (LCS ("thisisatest", "testing123testing"));
end Test_LCS;</syntaxhighlight>
{{out}}
</lang>
Sample output:
<pre>
tsitest
</pre>
Non-recursive solution:
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
<lang ada>
with Ada.Text_IO; use Ada.Text_IO;
 
procedure Test_LCS is
Line 88 ⟶ 200:
begin
Put_Line (LCS ("thisisatest", "testing123testing"));
end Test_LCS;</syntaxhighlight>
{{out}}
</lang>
Sample output:
<pre>
tsitest
</pre>
 
=={{header|ALGOL 68}}==
{{trans|Ada}}
 
{{works with|ALGOL 68|Standard - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386}}
<syntaxhighlight lang="algol68">main:(
<lang>
main:(
PROC lcs = (STRING a, b)STRING:
BEGIN
Line 115 ⟶ 225:
END # lcs #;
print((lcs ("thisisatest", "testing123testing"), new line))
)</syntaxhighlight>
)
{{out}}
</lang>
Output:
<pre>
tsitest
</pre>
 
=={{header|APL}}==
{{works with|Dyalog APL}}
<syntaxhighlight lang="apl">lcs←{
⎕IO←0
betterof←{⊃(</+/¨⍺ ⍵)⌽⍺ ⍵} ⍝ better of 2 selections
cmbn←{↑,⊃∘.,/(⊂⊂⍬),⍵} ⍝ combine lists
rr←{∧/↑>/1 ¯1↓[1]¨⊂⍵} ⍝ rising rows
hmrr←{∨/(rr ⍵)∧∧/⍵=⌈\⍵} ⍝ has monotonically rising rows
rnbc←{{⍵/⍳⍴⍵}¨↓[0]×⍵} ⍝ row numbers by column
valid←hmrr∘cmbn∘rnbc ⍝ any valid solutions?
a w←(</⊃∘⍴¨⍺ ⍵)⌽⍺ ⍵ ⍝ longest first
matches←a∘.=w
aps←{⍵[;⍒+⌿⍵]}∘{(⍵/2)⊤⍳2*⍵} ⍝ all possible subsequences
swps←{⍵/⍨∧⌿~(~∨⌿⍺)⌿⍵} ⍝ subsequences with possible solns
sstt←matches swps aps⊃⍴w ⍝ subsequences to try
w/⍨{
⍺←0⍴⍨⊃⍴⍵ ⍝ initial selection
(+/⍺)≥+/⍵[;0]:⍺ ⍝ no scope to improve
this←⍺ betterof{⍵×valid ⍵/matches}⍵[;0] ⍝ try to improve
1=1⊃⍴⍵:this ⍝ nothing left to try
this ∇ 1↓[1]⍵ ⍝ keep looking
}sstt
}</syntaxhighlight>
 
=={{header|Arturo}}==
{{trans|Python}}
<syntaxhighlight lang="rebol">lcs: function [a,b][
ls: new array.of: @[inc size a, inc size b] 0
 
loop.with:'i a 'x [
loop.with:'j b 'y [
ls\[i+1]\[j+1]: (x=y)? -> ls\[i]\[j] + 1
-> max @[ls\[i+1]\[j], ls\[i]\[j+1]]
]
]
[result, x, y]: @[new "", size a, size b]
 
while [and? [x > 0][y > 0]][
if? ls\[x]\[y] = ls\[x-1]\[y] -> x: x-1
else [
if? ls\[x]\[y] = ls\[x]\[y-1] -> y: y-1
else [
result: a\[x-1] ++ result
x: x-1
y: y-1
]
]
]
return result
]
print lcs "1234" "1224533324"
print lcs "thisisatest" "testing123testing"</syntaxhighlight>
 
{{out}}
 
<pre>1234
tsitest</pre>
 
=={{header|AutoHotkey}}==
{{trans|Java}} using dynamic programming<br>
ahk forum: [http://www.autohotkey.com/forum/viewtopic.php?t=44657&start=135 discussion]
<langsyntaxhighlight AutoHotkeylang="autohotkey">lcs(a,b) { ; Longest Common Subsequence of strings, using Dynamic Programming
Loop % StrLen(a)+2 { ; Initialize
i := A_Index-1
Line 150 ⟶ 320:
}
Return t
}</syntaxhighlight>
}</lang>
 
=={{header|BASIC}}==
==={{header|QuickBASIC}}===
{{works with|QuickBasic|4.5}}
{{trans|Java}}
<langsyntaxhighlight lang="qbasic">FUNCTION lcs$ (a$, b$)
IF LEN(a$) = 0 OR LEN(b$) = 0 THEN
lcs$ = ""
Line 169 ⟶ 340:
END IF
END IF
END FUNCTION</langsyntaxhighlight>
 
=={{header|BASIC256}}==
{{trans|FreeBASIC}}
<syntaxhighlight lang="basic256">function LCS(a, b)
if length(a) = 0 or length(b) = 0 then return ""
if right(a, 1) = right(b, 1) then
LCS = LCS(left(a, length(a) - 1), left(b, length(b) - 1)) + right(a, 1)
else
x = LCS(a, left(b, length(b) - 1))
y = LCS(left(a, length(a) - 1), b)
if length(x) > length(y) then return x else return y
end if
end function
 
print LCS("1234", "1224533324")
print LCS("thisisatest", "testing123testing")
end</syntaxhighlight>
 
 
=={{header|BBC BASIC}}==
This makes heavy use of BBC BASIC's shortcut '''LEFT$(a$)''' and '''RIGHT$(a$)''' functions.
<syntaxhighlight lang="bbcbasic"> PRINT FNlcs("1234", "1224533324")
PRINT FNlcs("thisisatest", "testing123testing")
END
DEF FNlcs(a$, b$)
IF a$="" OR b$="" THEN = ""
IF RIGHT$(a$) = RIGHT$(b$) THEN = FNlcs(LEFT$(a$), LEFT$(b$)) + RIGHT$(a$)
LOCAL x$, y$
x$ = FNlcs(a$, LEFT$(b$))
y$ = FNlcs(LEFT$(a$), b$)
IF LEN(y$) > LEN(x$) SWAP x$,y$
= x$</syntaxhighlight>
'''Output:'''
<pre>
1234
tsitest
</pre>
 
=={{header|BQN}}==
It's easier and faster to get only the length of the longest common subsequence, using <code>LcsLen ← ¯1 ⊑ 0¨∘⊢ {𝕩⌈⌈`𝕨+»𝕩}˝ =⌜⟜⌽</code>. This function can be expanded by changing <code>⌈</code> to <code>⊣⍟(>○≠)</code> (choosing from two arguments one that has the greatest length), and replacing the empty length 0 with the empty string <code>""</code> in the right places.
<syntaxhighlight lang="bqn">LCS ← ¯1 ⊑ "" <⊸∾ ""¨∘⊢ ⊣⍟(>○≠){𝕩𝔽¨𝔽`𝕨∾¨""<⊸»𝕩}˝ (=⌜⥊¨⊣)⟜⌽</syntaxhighlight>
Output:
<syntaxhighlight lang="bqn"> "1234" LCS "1224533324"
"1234"
"thisisatest" LCS "testing123testing"
"tsitest"</syntaxhighlight>
 
=={{header|Bracmat}}==
<syntaxhighlight lang="bracmat"> ( LCS
= A a ta B b tb prefix
. !arg:(?prefix.@(?A:%?a ?ta).@(?B:%?b ?tb))
& ( !a:!b&LCS$(!prefix !a.!ta.!tb)
| LCS$(!prefix.!A.!tb)&LCS$(!prefix.!ta.!B)
)
| !prefix:? ([>!max:[?max):?lcs
|
)
& 0:?max
& :?lcs
& LCS$(.thisisatest.testing123testing)
& out$(max !max lcs !lcs);</syntaxhighlight>
{{out}}
<pre>max 7 lcs t s i t e s t</pre>
 
=={{header|C}}==
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
#define MAX(a, b) (a > b ? a : b)
 
int lcs (char *a, int n, char *b, int m, char **s) {
int i, j, k, t;
int *z = calloc((n + 1) * (m + 1), sizeof (int));
int **c = calloc((n + 1), sizeof (int *));
for (i = 0; i <= n; i++) {
c[i] = &z[i * (m + 1)];
}
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (a[i - 1] == b[j - 1]) {
c[i][j] = c[i - 1][j - 1] + 1;
}
else {
c[i][j] = MAX(c[i - 1][j], c[i][j - 1]);
}
}
}
t = c[n][m];
*s = malloc(t);
for (i = n, j = m, k = t - 1; k >= 0;) {
if (a[i - 1] == b[j - 1])
(*s)[k] = a[i - 1], i--, j--, k--;
else if (c[i][j - 1] > c[i - 1][j])
j--;
else
i--;
}
free(c);
free(z);
return t;
}
</syntaxhighlight>
Testing
<syntaxhighlight lang="c">int main () {
char a[] = "thisisatest";
char b[] = "testing123testing";
int n = sizeof a - 1;
int m = sizeof b - 1;
char *s = NULL;
int t = lcs(a, n, b, m, &s);
printf("%.*s\n", t, s); // tsitest
return 0;
}</syntaxhighlight>
 
=={{header|C sharp|C#}}==
===With recursion===
<syntaxhighlight lang="csharp">using System;
 
namespace LCS
{
class Program
{
static void Main(string[] args)
{
string word1 = "thisisatest";
string word2 = "testing123testing";
Console.WriteLine(lcsBack(word1, word2));
Console.ReadKey();
}
 
public static string lcsBack(string a, string b)
{
string aSub = a.Substring(0, (a.Length - 1 < 0) ? 0 : a.Length - 1);
string bSub = b.Substring(0, (b.Length - 1 < 0) ? 0 : b.Length - 1);
if (a.Length == 0 || b.Length == 0)
return "";
else if (a[a.Length - 1] == b[b.Length - 1])
return lcsBack(aSub, bSub) + a[a.Length - 1];
else
{
string x = lcsBack(a, bSub);
string y = lcsBack(aSub, b);
return (x.Length > y.Length) ? x : y;
}
}
}
}</syntaxhighlight>
 
=={{header|C++}}==
'''Hunt and Szymanski algorithm'''
<syntaxhighlight lang="cpp">
#include <stdint.h>
#include <string>
#include <memory> // for shared_ptr<>
#include <iostream>
#include <deque>
#include <unordered_map> //[C++11]
#include <algorithm> // for lower_bound()
#include <iterator> // for next() and prev()
 
using namespace std;
 
class LCS {
protected:
// Instances of the Pair linked list class are used to recover the LCS:
class Pair {
public:
uint32_t index1;
uint32_t index2;
shared_ptr<Pair> next;
 
Pair(uint32_t index1, uint32_t index2, shared_ptr<Pair> next = nullptr)
: index1(index1), index2(index2), next(next) {
}
 
static shared_ptr<Pair> Reverse(const shared_ptr<Pair> pairs) {
shared_ptr<Pair> head = nullptr;
for (auto next = pairs; next != nullptr; next = next->next)
head = make_shared<Pair>(next->index1, next->index2, head);
return head;
}
};
 
typedef deque<shared_ptr<Pair>> PAIRS;
typedef deque<uint32_t> INDEXES;
typedef unordered_map<char, INDEXES> CHAR_TO_INDEXES_MAP;
typedef deque<INDEXES*> MATCHES;
 
static uint32_t FindLCS(
MATCHES& indexesOf2MatchedByIndex1, shared_ptr<Pair>* pairs) {
auto traceLCS = pairs != nullptr;
PAIRS chains;
INDEXES prefixEnd;
 
//
//[Assert]After each index1 iteration prefixEnd[index3] is the least index2
// such that the LCS of s1[0:index1] and s2[0:index2] has length index3 + 1
//
uint32_t index1 = 0;
for (const auto& it1 : indexesOf2MatchedByIndex1) {
auto dq2 = *it1;
auto limit = prefixEnd.end();
for (auto it2 = dq2.rbegin(); it2 != dq2.rend(); it2++) {
// Each index1, index2 pair corresponds to a match
auto index2 = *it2;
 
//
// Note: The reverse iterator it2 visits index2 values in descending order,
// allowing in-place update of prefixEnd[]. std::lower_bound() is used to
// perform a binary search.
//
limit = lower_bound(prefixEnd.begin(), limit, index2);
 
//
// Look ahead to the next index2 value to optimize Pairs used by the Hunt
// and Szymanski algorithm. If the next index2 is also an improvement on
// the value currently held in prefixEnd[index3], a new Pair will only be
// superseded on the next index2 iteration.
//
// Verify that a next index2 value exists; and that this value is greater
// than the final index2 value of the LCS prefix at prev(limit):
//
auto preferNextIndex2 = next(it2) != dq2.rend() &&
(limit == prefixEnd.begin() || *prev(limit) < *next(it2));
 
//
// Depending on match redundancy, this optimization may reduce the number
// of Pair allocations by factors ranging from 2 up to 10 or more.
//
if (preferNextIndex2) continue;
 
auto index3 = distance(prefixEnd.begin(), limit);
 
if (limit == prefixEnd.end()) {
// Insert Case
prefixEnd.push_back(index2);
// Refresh limit iterator:
limit = prev(prefixEnd.end());
if (traceLCS) {
chains.push_back(pushPair(chains, index3, index1, index2));
}
}
else if (index2 < *limit) {
// Update Case
// Update limit value:
*limit = index2;
if (traceLCS) {
chains[index3] = pushPair(chains, index3, index1, index2);
}
}
} // next index2
 
index1++;
} // next index1
 
if (traceLCS) {
// Return the LCS as a linked list of matched index pairs:
auto last = chains.empty() ? nullptr : chains.back();
// Reverse longest chain
*pairs = Pair::Reverse(last);
}
 
auto length = prefixEnd.size();
return length;
}
 
private:
static shared_ptr<Pair> pushPair(
PAIRS& chains, const ptrdiff_t& index3, uint32_t& index1, uint32_t& index2) {
auto prefix = index3 > 0 ? chains[index3 - 1] : nullptr;
return make_shared<Pair>(index1, index2, prefix);
}
 
protected:
//
// Match() avoids m*n comparisons by using CHAR_TO_INDEXES_MAP to
// achieve O(m+n) performance, where m and n are the input lengths.
//
// The lookup time can be assumed constant in the case of characters.
// The symbol space is larger in the case of records; but the lookup
// time will be O(log(m+n)), at most.
//
static void Match(
CHAR_TO_INDEXES_MAP& indexesOf2MatchedByChar, MATCHES& indexesOf2MatchedByIndex1,
const string& s1, const string& s2) {
uint32_t index = 0;
for (const auto& it : s2)
indexesOf2MatchedByChar[it].push_back(index++);
 
for (const auto& it : s1) {
auto& dq2 = indexesOf2MatchedByChar[it];
indexesOf2MatchedByIndex1.push_back(&dq2);
}
}
 
static string Select(shared_ptr<Pair> pairs, uint32_t length,
bool right, const string& s1, const string& s2) {
string buffer;
buffer.reserve(length);
for (auto next = pairs; next != nullptr; next = next->next) {
auto c = right ? s2[next->index2] : s1[next->index1];
buffer.push_back(c);
}
return buffer;
}
 
public:
static string Correspondence(const string& s1, const string& s2) {
CHAR_TO_INDEXES_MAP indexesOf2MatchedByChar;
MATCHES indexesOf2MatchedByIndex1; // holds references into indexesOf2MatchedByChar
Match(indexesOf2MatchedByChar, indexesOf2MatchedByIndex1, s1, s2);
shared_ptr<Pair> pairs; // obtain the LCS as index pairs
auto length = FindLCS(indexesOf2MatchedByIndex1, &pairs);
return Select(pairs, length, false, s1, s2);
}
};</syntaxhighlight>
'''Example''':
<syntaxhighlight lang="cpp">
auto s = LCS::Correspondence(s1, s2);
cout << s << endl;</syntaxhighlight>
 
More fully featured examples are available at [https://github.com/CNHume/Samples/tree/master/C%2B%2B/LCS Samples/C++/LCS].
 
=={{header|Clojure}}==
Based on algorithm from Wikipedia.
<syntaxhighlight lang="clojure">(defn longest [xs ys] (if (> (count xs) (count ys)) xs ys))
 
(def lcs
(memoize
(fn [[x & xs] [y & ys]]
(cond
(or (= x nil) (= y nil)) nil
(= x y) (cons x (lcs xs ys))
:else (longest (lcs (cons x xs) ys)
(lcs xs (cons y ys)))))))</syntaxhighlight>
 
=={{header|CoffeeScript}}==
 
<syntaxhighlight lang="coffeescript">
lcs = (s1, s2) ->
len1 = s1.length
len2 = s2.length
# Create a virtual matrix that is (len1 + 1) by (len2 + 1),
# where m[i][j] is the longest common string using only
# the first i chars of s1 and first j chars of s2. The
# matrix is virtual, because we only keep the last two rows
# in memory.
prior_row = ('' for i in [0..len2])
 
for i in [0...len1]
row = ['']
for j in [0...len2]
if s1[i] == s2[j]
row.push prior_row[j] + s1[i]
else
subs1 = row[j]
subs2 = prior_row[j+1]
if subs1.length > subs2.length
row.push subs1
else
row.push subs2
prior_row = row
row[len2]
 
s1 = "thisisatest"
s2 = "testing123testing"
console.log lcs(s1, s2)</syntaxhighlight>
 
=={{header|Common Lisp}}==
Here's a memoizing/dynamic-programming solution that uses an <var>n &times; m</var> array where <var>n</var> and <var>m</var> are the lengths of the input arrays. The first return value is a sequence (of the same type as array1) which is the longest common subsequence. The second return value is the length of the longest common subsequence.
<syntaxhighlight lang="lisp">(defun longest-common-subsequence (array1 array2)
(let* ((l1 (length array1))
(l2 (length array2))
(results (make-array (list l1 l2) :initial-element nil)))
(declare (dynamic-extent results))
(labels ((lcs (start1 start2)
;; if either sequence is empty, return (() 0)
(if (or (eql start1 l1) (eql start2 l2)) (list '() 0)
;; otherwise, return any memoized value
(let ((result (aref results start1 start2)))
(if (not (null result)) result
;; otherwise, compute and store a value
(setf (aref results start1 start2)
(if (eql (aref array1 start1) (aref array2 start2))
;; if they start with the same element,
;; move forward in both sequences
(destructuring-bind (seq len)
(lcs (1+ start1) (1+ start2))
(list (cons (aref array1 start1) seq) (1+ len)))
;; otherwise, move ahead in each separately,
;; and return the better result.
(let ((a (lcs (1+ start1) start2))
(b (lcs start1 (1+ start2))))
(if (> (second a) (second b))
a
b)))))))))
(destructuring-bind (seq len) (lcs 0 0)
(values (coerce seq (type-of array1)) len)))))</syntaxhighlight>
 
For example,
 
<syntaxhighlight lang="lisp">(longest-common-subsequence "123456" "1a2b3c")</syntaxhighlight>
 
produces the two values
 
<syntaxhighlight lang="lisp">"123"
3</syntaxhighlight>
 
===An alternative adopted from Clojure===
 
Here is another version with its own memoization macro:
 
<syntaxhighlight lang="lisp">(defmacro mem-defun (name args body)
(let ((hash-name (gensym)))
`(let ((,hash-name (make-hash-table :test 'equal)))
(defun ,name ,args
(or (gethash (list ,@args) ,hash-name)
(setf (gethash (list ,@args) ,hash-name)
,body))))))
 
(mem-defun lcs (xs ys)
(labels ((longer (a b) (if (> (length a) (length b)) a b)))
(cond ((or (null xs) (null ys)) nil)
((equal (car xs) (car ys)) (cons (car xs) (lcs (cdr xs) (cdr ys))))
(t (longer (lcs (cdr xs) ys)
(lcs xs (cdr ys)))))))</syntaxhighlight>
 
When we test it, we get:
 
<syntaxhighlight lang="lisp">(coerce (lcs (coerce "thisisatest" 'list) (coerce "testing123testing" 'list)) 'string))))
 
"tsitest"</syntaxhighlight>
 
=={{header|D}}==
Both versions don't work correctly with Unicode text.
<lang d>module lcs ;
import std.stdio ;
 
===Recursive version===
T[] lcsr(T)(T[] a, T[] b) { // recursive
<syntaxhighlight lang="d">import std.stdio, std.array;
if(a.length == 0 || b.length == 0) return null ;
 
T[] x = a[1..$] , y = b[1..$] ;
if(aT[0] ==lcs(T)(in bT[0]) returna, in aT[0] ~b) lcsr(x,pure y)nothrow @safe ;{
x = lcsrif (x,a.empty || b.empty) ; y = lcsr(a, y)return null;
if (a[0] == b[0])
return x.length > y.length ? x : y ;
return a[0] ~ lcs(a[1 .. $], b[1 .. $]);
const longest = (T[] x, T[] y) => x.length > y.length ? x : y;
return longest(lcs(a, b[1 .. $]), lcs(a[1 .. $], b));
}
 
void main() {
T imax(T)(T a, T b) { return a > b ? a : b ; }
lcs("thisisatest", "testing123testing").writeln;
}</syntaxhighlight>
{{out}}
<pre>tsitest</pre>
 
T[] lcsi(T)(T[] a, T[] b) { //===Faster dynamic programming version===
The output is the same.
int i,j, m = a.length , n = b.length ;
<syntaxhighlight lang="d">import std.stdio, std.algorithm, std.traits;
int[][] L = new int[][](m + 1,n + 1);
 
T[] res ;
T[] lcs(T)(in T[] a, in T[] b) pure /*nothrow*/ {
for(i = 0 ; i < m ; i++)
for(jauto L = 0new ;uint[][](a.length j+ <1, nb.length ; j++ 1);
 
L[i+1][j+1] = (a[i] == b[j]) ? 1 + L[i][j] : imax(L[i+1][j], L[i][j+1]) ;
while foreach (immutable i; >0 &&.. j >0a.length)
foreach (immutable j; 0 .. b.length)
if(a[i-1] == b[j-1]) {
res ~= a L[i- + 1][j ;+ 1] = (a[i--] ;== b[j--]) ;? (1 + L[i][j]) :
max(L[i + 1][j], L[i][j + 1]);
} else
 
if (L[i][j-1] < L[i-1][j])
Unqual!T[] i-- result;
for (auto i = a.length, j = b.length; i > 0 && j > 0; ) {
else
if (a[i - 1] == b[j -- ;1]) {
result ~= a[i - 1];
return res.reverse ;
i--;
j--;
} else
if (L[i][j - 1] < L[i - 1][j])
i--;
else
j--;
}
 
result.reverse(); // Not nothrow.
return result;
}
 
void main(string[] args) {
writefln(lcsr lcs("thisisatest", "testing123testing")) .writeln;
}</syntaxhighlight>
writefln(lcsi("thisisatest","testing123testing")) ;
 
}</lang>
===Hirschberg algorithm version===
See: http://en.wikipedia.org/wiki/Hirschberg_algorithm
 
This is currently a little slower than the classic dynamic programming version, but it uses a linear amount of memory, so it's usable for much larger inputs. To speed up this code on dmd remove the memory allocations from lensLCS, and do not use the retro range (replace it with foreach_reverse). The output is the same.
 
Adapted from Python code: http://wordaligned.org/articles/longest-common-subsequence
 
<syntaxhighlight lang="d">import std.stdio, std.algorithm, std.range, std.array, std.string, std.typecons;
 
uint[] lensLCS(R)(R xs, R ys) pure nothrow @safe {
auto prev = new typeof(return)(1 + ys.length);
auto curr = new typeof(return)(1 + ys.length);
 
foreach (immutable x; xs) {
swap(curr, prev);
size_t i = 0;
foreach (immutable y; ys) {
curr[i + 1] = (x == y) ? prev[i] + 1 : max(curr[i], prev[i + 1]);
i++;
}
}
 
return curr;
}
 
void calculateLCS(T)(in T[] xs, in T[] ys, bool[] xs_in_lcs,
in size_t idx=0) pure nothrow @safe {
immutable nx = xs.length;
immutable ny = ys.length;
 
if (nx == 0)
return;
 
if (nx == 1) {
if (ys.canFind(xs[0]))
xs_in_lcs[idx] = true;
} else {
immutable mid = nx / 2;
const xb = xs[0.. mid];
const xe = xs[mid .. $];
immutable ll_b = lensLCS(xb, ys);
 
const ll_e = lensLCS(xe.retro, ys.retro); // retro is slow with dmd.
 
//immutable k = iota(ny + 1)
// .reduce!(max!(j => ll_b[j] + ll_e[ny - j]));
immutable k = iota(ny + 1)
.minPos!((i, j) => tuple(ll_b[i] + ll_e[ny - i]) >
tuple(ll_b[j] + ll_e[ny - j]))[0];
 
calculateLCS(xb, ys[0 .. k], xs_in_lcs, idx);
calculateLCS(xe, ys[k .. $], xs_in_lcs, idx + mid);
}
}
 
const(T)[] lcs(T)(in T[] xs, in T[] ys) pure /*nothrow*/ @safe {
auto xs_in_lcs = new bool[xs.length];
calculateLCS(xs, ys, xs_in_lcs);
return zip(xs, xs_in_lcs).filter!q{ a[1] }.map!q{ a[0] }.array; // Not nothrow.
}
 
string lcsString(in string s1, in string s2) pure /*nothrow*/ @safe {
return lcs(s1.representation, s2.representation).assumeUTF;
}
 
void main() {
lcsString("thisisatest", "testing123testing").writeln;
}</syntaxhighlight>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:math';
 
String lcsRecursion(String a, String b) {
int aLen = a.length;
int bLen = b.length;
 
if (aLen == 0 || bLen == 0) {
return "";
} else if (a[aLen-1] == b[bLen-1]) {
return lcsRecursion(a.substring(0,aLen-1),b.substring(0,bLen-1)) + a[aLen-1];
} else {
var x = lcsRecursion(a, b.substring(0,bLen-1));
var y = lcsRecursion(a.substring(0,aLen-1), b);
return (x.length > y.length) ? x : y;
}
}
 
String lcsDynamic(String a, String b) {
var lengths = new List<List<int>>.generate(a.length + 1,
(_) => new List.filled(b.length+1, 0), growable: false);
 
// row 0 and column 0 are initialized to 0 already
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < b.length; j++) {
if (a[i] == b[j]) {
lengths[i+1][j+1] = lengths[i][j] + 1;
} else {
lengths[i+1][j+1] = max(lengths[i+1][j], lengths[i][j+1]);
}
}
}
 
// read the substring out from the matrix
StringBuffer reversedLcsBuffer = new StringBuffer();
for (int x = a.length, y = b.length; x != 0 && y != 0;) {
if (lengths[x][y] == lengths[x-1][y]) {
x--;
} else if (lengths[x][y] == lengths[x][y-1]) {
y--;
} else {
assert(a[x-1] == b[y-1]);
reversedLcsBuffer.write(a[x-1]);
x--;
y--;
}
}
 
// reverse String
var reversedLCS = reversedLcsBuffer.toString();
var lcsBuffer = new StringBuffer();
for(var i = reversedLCS.length - 1; i>=0; i--) {
lcsBuffer.write(reversedLCS[i]);
}
return lcsBuffer.toString();
}
 
void main() {
print("lcsDynamic('1234', '1224533324') = ${lcsDynamic('1234', '1224533324')}");
print("lcsDynamic('thisisatest', 'testing123testing') = ${lcsDynamic('thisisatest', 'testing123testing')}");
print("lcsDynamic('', 'x') = ${lcsDynamic('', 'x')}");
print("lcsDynamic('x', 'x') = ${lcsDynamic('x', 'x')}");
print('');
print("lcsRecursion('1234', '1224533324') = ${lcsRecursion('1234', '1224533324')}");
print("lcsRecursion('thisisatest', 'testing123testing') = ${lcsRecursion('thisisatest', 'testing123testing')}");
print("lcsRecursion('', 'x') = ${lcsRecursion('', 'x')}");
print("lcsRecursion('x', 'x') = ${lcsRecursion('x', 'x')}");
}
</syntaxhighlight>
{{out}}
<pre>lcsDynamic('1234', '1224533324') = 1234
lcsDynamic('thisisatest', 'testing123testing') = tsitest
lcsDynamic('', 'x') =
lcsDynamic('x', 'x') = x
 
lcsRecursion('1234', '1224533324') = 1234
lcsRecursion('thisisatest', 'testing123testing') = tsitest
lcsRecursion('', 'x') =
lcsRecursion('x', 'x') = x</pre>
 
=={{header|EasyLang}}==
{{trans|BASIC256}}
<syntaxhighlight>
func$ right a$ n .
return substr a$ (len a$ - n + 1) n
.
func$ left a$ n .
if n < 0
n = len a$ + n
.
return substr a$ 1 n
.
func$ lcs a$ b$ .
if len a$ = 0 or len b$ = 0
return ""
.
if right a$ 1 = right b$ 1
return lcs left a$ -1 left b$ -1 & right a$ 1
.
x$ = lcs a$ left b$ -1
y$ = lcs left a$ -1 b$
if len x$ > len y$
return x$
else
return y$
.
.
print lcs "1234" "1224533324"
print lcs "thisisatest" "testing123testing"
</syntaxhighlight>
 
{{out}}
<pre>
1234
tsitest
</pre>
 
=={{header|Egison}}==
 
<syntaxhighlight lang="egison">
(define $common-seqs
(lambda [$xs $ys]
(match-all [xs ys] [(list char) (list char)]
[[(loop $i [1 $n] <join _ <cons $c_i ...>> _)
(loop $i [1 ,n] <join _ <cons ,c_i ...>> _)]
(map (lambda [$i] c_i) (between 1 n))])))
 
(define $lcs (compose common-seqs rac))
</syntaxhighlight>
'''Output:'''
<syntaxhighlight lang="egison">
> (lcs "thisisatest" "testing123testing"))
"tsitest"
</syntaxhighlight>
 
=={{header|Elixir}}==
{{works with|Elixir|1.3}}
===Simple recursion===
This solution is Brute force. It is slow
{{trans|Ruby}}
<syntaxhighlight lang="elixir">defmodule LCS do
def lcs(a, b) do
lcs(to_charlist(a), to_charlist(b), []) |> to_string
end
defp lcs([h|at], [h|bt], res), do: lcs(at, bt, [h|res])
defp lcs([_|at]=a, [_|bt]=b, res) do
Enum.max_by([lcs(a, bt, res), lcs(at, b, res)], &length/1)
end
defp lcs(_, _, res), do: res |> Enum.reverse
end
 
IO.puts LCS.lcs("thisisatest", "testing123testing")
IO.puts LCS.lcs('1234','1224533324')</syntaxhighlight>
 
===Dynamic Programming===
{{trans|Erlang}}
<syntaxhighlight lang="elixir">defmodule LCS do
def lcs_length(s,t), do: lcs_length(s,t,Map.new) |> elem(0)
defp lcs_length([],t,cache), do: {0,Map.put(cache,{[],t},0)}
defp lcs_length(s,[],cache), do: {0,Map.put(cache,{s,[]},0)}
defp lcs_length([h|st]=s,[h|tt]=t,cache) do
{l,c} = lcs_length(st,tt,cache)
{l+1,Map.put(c,{s,t},l+1)}
end
defp lcs_length([_sh|st]=s,[_th|tt]=t,cache) do
if Map.has_key?(cache,{s,t}) do
{Map.get(cache,{s,t}),cache}
else
{l1,c1} = lcs_length(s,tt,cache)
{l2,c2} = lcs_length(st,t,c1)
l = max(l1,l2)
{l,Map.put(c2,{s,t},l)}
end
end
def lcs(s,t) do
{s,t} = {to_charlist(s),to_charlist(t)}
{_,c} = lcs_length(s,t,Map.new)
lcs(s,t,c,[]) |> to_string
end
defp lcs([],_,_,acc), do: Enum.reverse(acc)
defp lcs(_,[],_,acc), do: Enum.reverse(acc)
defp lcs([h|st],[h|tt],cache,acc), do: lcs(st,tt,cache,[h|acc])
defp lcs([_sh|st]=s,[_th|tt]=t,cache,acc) do
if Map.get(cache,{s,tt}) > Map.get(cache,{st,t}) do
lcs(s,tt,cache,acc)
else
lcs(st,t,cache,acc)
end
end
end
 
IO.puts LCS.lcs("thisisatest","testing123testing")
IO.puts LCS.lcs("1234","1224533324")</syntaxhighlight>
 
{{out}}
<pre>
tsitest
1234
</pre>
Referring to LCS [[Shortest common supersequence#Elixir|here]].
 
=={{header|Erlang}}==
This implementation also includes the ability to calculate the length of the longest common subsequence. In calculating that length, we generate a cache which can be traversed to generate the longest common subsequence.
<syntaxhighlight lang="erlang">
module(lcs).
-compile(export_all).
 
lcs_length(S,T) ->
{L,_C} = lcs_length(S,T,dict:new()),
L.
 
lcs_length([]=S,T,Cache) ->
{0,dict:store({S,T},0,Cache)};
lcs_length(S,[]=T,Cache) ->
{0,dict:store({S,T},0,Cache)};
lcs_length([H|ST]=S,[H|TT]=T,Cache) ->
{L,C} = lcs_length(ST,TT,Cache),
{L+1,dict:store({S,T},L+1,C)};
lcs_length([_SH|ST]=S,[_TH|TT]=T,Cache) ->
case dict:is_key({S,T},Cache) of
true -> {dict:fetch({S,T},Cache),Cache};
false ->
{L1,C1} = lcs_length(S,TT,Cache),
{L2,C2} = lcs_length(ST,T,C1),
L = lists:max([L1,L2]),
{L,dict:store({S,T},L,C2)}
end.
 
lcs(S,T) ->
{_,C} = lcs_length(S,T,dict:new()),
lcs(S,T,C,[]).
 
lcs([],_,_,Acc) ->
lists:reverse(Acc);
lcs(_,[],_,Acc) ->
lists:reverse(Acc);
lcs([H|ST],[H|TT],Cache,Acc) ->
lcs(ST,TT,Cache,[H|Acc]);
lcs([_SH|ST]=S,[_TH|TT]=T,Cache,Acc) ->
case dict:fetch({S,TT},Cache) > dict:fetch({ST,T},Cache) of
true ->
lcs(S,TT,Cache, Acc);
false ->
lcs(ST,T,Cache,Acc)
end.
</syntaxhighlight>
'''Output:'''
<syntaxhighlight lang="erlang">
77> lcs:lcs("thisisatest","testing123testing").
"tsitest"
78> lcs:lcs("1234","1224533324").
"1234"
</syntaxhighlight>
 
We can also use the process dictionary to memoize the recursive implementation:
 
<syntaxhighlight lang="erlang">
lcs(Xs0, Ys0) ->
CacheKey = {lcs_cache, Xs0, Ys0},
case get(CacheKey)
of undefined ->
Result =
case {Xs0, Ys0}
of {[], _} -> []
; {_, []} -> []
; {[Same | Xs], [Same | Ys]} ->
[Same | lcs(Xs, Ys)]
; {[_ | XsRest]=XsAll, [_ | YsRest]=YsAll} ->
A = lcs(XsRest, YsAll),
B = lcs(XsAll , YsRest),
case length(A) > length(B)
of true -> A
; false -> B
end
end,
undefined = put(CacheKey, Result),
Result
; Result ->
Result
end.
</syntaxhighlight>
 
Similar to the above, but without using the process dictionary:
<syntaxhighlight lang="erlang">
-module(lcs).
 
%% API exports
-export([
lcs/2
]).
 
%%====================================================================
%% API functions
%%====================================================================
 
lcs(A, B) ->
{LCS, _Cache} = get_lcs(A, B, [], #{}),
lists:reverse(LCS).
 
%%====================================================================
%% Internal functions
%%=====================================================
 
get_lcs(A, B, Acc, Cache) ->
case maps:find({A, B, Acc}, Cache) of
{ok, LCS} -> {LCS, Cache};
error ->
{NewLCS, NewCache} = compute_lcs(A, B, Acc, Cache),
{NewLCS, NewCache#{ {A, B, Acc} => NewLCS }}
end.
 
compute_lcs(A, B, Acc, Cache) when length(A) == 0 orelse length(B) == 0 ->
{Acc, Cache};
compute_lcs([Token |ATail], [Token |BTail], Acc, Cache) ->
get_lcs(ATail, BTail, [Token |Acc], Cache);
compute_lcs([_AToken |ATail]=A, [_BToken |BTail]=B, Acc, Cache) ->
{LCSA, CacheA} = get_lcs(A, BTail, Acc, Cache),
{LCSB, CacheB} = get_lcs(ATail, B, Acc, CacheA),
LCS = case length(LCSA) > length(LCSB) of
true -> LCSA;
false -> LCSB
end,
{LCS, CacheB}.
</syntaxhighlight>
 
'''Output:'''
<syntaxhighlight lang="erlang">
48> lcs:lcs("thisisatest", "testing123testing").
"tsitest"
</syntaxhighlight>
 
=={{header|F Sharp|F#}}==
Copied and slightly adapted from OCaml (direct recursion)
<syntaxhighlight lang="fsharp">open System
 
let longest xs ys = if List.length xs > List.length ys then xs else ys
let rec lcs a b =
match a, b with
| [], _
| _, [] -> []
| x::xs, y::ys ->
if x = y then
x :: lcs xs ys
else
longest (lcs a ys) (lcs xs b)
 
[<EntryPoint>]
let main argv =
let split (str:string) = List.init str.Length (fun i -> str.[i])
printfn "%A" (String.Join("",
(lcs (split "thisisatest") (split "testing123testing"))))
0
</syntaxhighlight>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USE: lcs
"thisisatest" "testing123testing" lcs print</syntaxhighlight>
{{out}}
<pre>
tsitest
</pre>
 
=={{header|Fortran}}==
Line 212 ⟶ 1,272:
Using the <tt>iso_varying_string</tt> module which can be found [http://www.fortran.com/iso_varying_string.f95 here] (or equivalent module conforming to the ISO/IEC 1539-2:2000 API or to a subset according to the need of this code: <code>char</code>, <code>len</code>, <code>//</code>, <code>extract</code>, <code>==</code>, <code>=</code>)
 
<langsyntaxhighlight lang="fortran">program lcstest
use iso_varying_string
implicit none
Line 249 ⟶ 1,309:
end function lcs
 
end program lcstest</langsyntaxhighlight>
 
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">Function LCS(a As String, b As String) As String
Dim As String x, y
If Len(a) = 0 Or Len(b) = 0 Then
Return ""
Elseif Right(a, 1) = Right(b, 1) Then
LCS = LCS(Left(a, Len(a) - 1), Left(b, Len(b) - 1)) + Right(a, 1)
Else
x = LCS(a, Left(b, Len(b) - 1))
y = LCS(Left(a, Len(a) - 1), b)
If Len(x) > Len(y) Then Return x Else Return y
End If
End Function
 
Print LCS("1234", "1224533324")
Print LCS("thisisatest", "testing123testing")
Sleep</syntaxhighlight>
 
 
=={{header|Go}}==
{{trans|Java}}
===Recursion===
Brute force
<syntaxhighlight lang="go">func lcs(a, b string) string {
aLen := len(a)
bLen := len(b)
if aLen == 0 || bLen == 0 {
return ""
} else if a[aLen-1] == b[bLen-1] {
return lcs(a[:aLen-1], b[:bLen-1]) + string(a[aLen-1])
}
x := lcs(a, b[:bLen-1])
y := lcs(a[:aLen-1], b)
if len(x) > len(y) {
return x
}
return y
}</syntaxhighlight>
 
===Dynamic Programming===
<syntaxhighlight lang="go">func lcs(a, b string) string {
arunes := []rune(a)
brunes := []rune(b)
aLen := len(arunes)
bLen := len(brunes)
lengths := make([][]int, aLen+1)
for i := 0; i <= aLen; i++ {
lengths[i] = make([]int, bLen+1)
}
// row 0 and column 0 are initialized to 0 already
 
for i := 0; i < aLen; i++ {
for j := 0; j < bLen; j++ {
if arunes[i] == brunes[j] {
lengths[i+1][j+1] = lengths[i][j] + 1
} else if lengths[i+1][j] > lengths[i][j+1] {
lengths[i+1][j+1] = lengths[i+1][j]
} else {
lengths[i+1][j+1] = lengths[i][j+1]
}
}
}
 
// read the substring out from the matrix
s := make([]rune, 0, lengths[aLen][bLen])
for x, y := aLen, bLen; x != 0 && y != 0; {
if lengths[x][y] == lengths[x-1][y] {
x--
} else if lengths[x][y] == lengths[x][y-1] {
y--
} else {
s = append(s, arunes[x-1])
x--
y--
}
}
// reverse string
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
return string(s)
}</syntaxhighlight>
 
=={{header|Groovy}}==
Recursive solution:
<syntaxhighlight lang="groovy">def lcs(xstr, ystr) {
if (xstr == "" || ystr == "") {
return "";
}
 
def x = xstr[0];
def y = ystr[0];
 
def xs = xstr.size() > 1 ? xstr[1..-1] : "";
def ys = ystr.size() > 1 ? ystr[1..-1] : "";
 
if (x == y) {
return (x + lcs(xs, ys));
}
 
def lcs1 = lcs(xstr, ys);
def lcs2 = lcs(xs, ystr);
 
lcs1.size() > lcs2.size() ? lcs1 : lcs2;
}
 
println(lcs("1234", "1224533324"));
println(lcs("thisisatest", "testing123testing"));</syntaxhighlight>
{{out}}
<pre>1234
tsitest</pre>
 
=={{header|Haskell}}==
 
The [http[wp://en.wikipedia.org/wiki/Longest_common_subsequence#Solution_for_two_sequences |Wikipedia solution]] translates directly into Haskell, with the only difference that equal characters are added in front:
 
<syntaxhighlight lang="haskell">longest xs ys = if length xs > length ys then xs else ys
<pre>
longest xs ys = if length xs > length ys then xs else ys
 
lcs [] _ = []
Line 262 ⟶ 1,434:
lcs (x:xs) (y:ys)
| x == y = x : lcs xs ys
| otherwise = longest (lcs (x:xs) ys) (lcs xs (y:ys))</syntaxhighlight>
 
</pre>
A Memoized version of the naive algorithm.
 
<syntaxhighlight lang="haskell">import qualified Data.MemoCombinators as M
 
lcs = memoize lcsm
where
lcsm [] _ = []
lcsm _ [] = []
lcsm (x:xs) (y:ys)
| x == y = x : lcs xs ys
| otherwise = maxl (lcs (x:xs) ys) (lcs xs (y:ys))
 
maxl x y = if length x > length y then x else y
memoize = M.memo2 mString mString
mString = M.list M.char -- Chars, but you can specify any type you need for the memo</syntaxhighlight>
 
Memoization (aka dynamic programming) of that uses ''zip'' to make both the index and the character available:
 
<pre>
<syntaxhighlight lang="haskell">import Data.Array
 
lcs xs ys = a!(0,0) where
Line 278 ⟶ 1,465:
f x y i j
| x == y = x : a!(i+1,j+1)
| otherwise = longest (a!(i,j+1)) (a!(i+1,j))</syntaxhighlight>
All 3 solutions work of course not only with strings, but also with any other list. Example:
</pre>
<syntaxhighlight lang="haskell">*Main> lcs "thisisatest" "testing123testing"
Both solutions work of course not only with strings, but also with any other list. Example:
"tsitest"</syntaxhighlight>
<pre>
The dynamic programming version without using arrays:
*Main> lcs "thisisatest" "testing123testing"
<syntaxhighlight lang="haskell">import Data.List
"tsitest"
 
</pre>
longest xs ys = if length xs > length ys then xs else ys
 
lcs xs ys = head $ foldr(\xs -> map head. scanr1 f. zipWith (\x y -> [x,y]) xs) e m where
m = map (\x -> flip (++) [[]] $ map (\y -> [x | x==y]) ys) xs
e = replicate (length ys) []
f [a,b] [c,d]
| null a = longest b c: [b]
| otherwise = (a++d):[b]</syntaxhighlight>
 
 
Simple and slow solution:
 
<syntaxhighlight lang="haskell">import Data.Ord
import Data.List
 
-- longest common
lcs xs ys = maximumBy (comparing length) $ intersect (subsequences xs) (subsequences ys)
 
main = print $ lcs "thisisatest" "testing123testing"</syntaxhighlight>
{{out}}
<pre>"tsitest"</pre>
 
=={{header|Icon}} and {{header|Unicon}}==
This solution is a modified variant of the recursive solution. The modifications include (a) deleting all characters not common to both strings and (b) stripping off common prefixes and suffixes in a single step.
 
{{libheader|Icon Programming Library}} [http://www.cs.arizona.edu/icon/library/src/procs/strings.icn Uses deletec from strings]
 
<syntaxhighlight lang="icon">procedure main()
LCSTEST("thisisatest","testing123testing")
LCSTEST("","x")
LCSTEST("x","x")
LCSTEST("beginning-middle-ending","beginning-diddle-dum-ending")
end
 
link strings
 
procedure LCSTEST(a,b) #: helper to show inputs and results
write("lcs( ",image(a),", ",image(b)," ) = ",image(res := lcs(a,b)))
return res
end
 
procedure lcs(a,b) #: return longest common sub-sequence of characters (modified recursive method)
local i,x,y
local c,nc
 
if *(a|b) = 0 then return "" # done if either string is empty
if a == b then return a # done if equal
 
if *(a ++ b -- (c := a ** b)) > 0 then { # find all characters not in common
a := deletec(a,nc := ~c) # .. remove
b := deletec(b,nc) # .. remove
} # only unequal strings and shared characters beyond
 
i := 0 ; while a[i+1] == b[i+1] do i +:=1 # find common prefix ...
if *(x := a[1+:i]) > 0 then # if any
return x || lcs(a[i+1:0],b[i+1:0]) # ... remove and process remainder
 
i := 0 ; while a[-(i+1)] == b[-(i+1)] do i +:=1 # find common suffix ...
if *(y := a[0-:i]) > 0 then # if any
return lcs(a[1:-i],b[1:-i]) || y # ... remove and process remainder
 
return if *(x := lcs(a,b[1:-1])) > *(y := lcs(a[1:-1],b)) then x else y # divide, discard, and keep longest
end</syntaxhighlight>
{{out}}
<pre>lcs( "thisisatest", "testing123testing" ) = "tsitest"
lcs( "", "x" ) = ""
lcs( "x", "x" ) = "x"
lcs( "beginning-middle-ending", "beginning-diddle-dum-ending" ) = "beginning-iddle-ending"</pre>
 
=={{header|J}}==
<syntaxhighlight lang="j">lcs=: dyad define
|.x{~ 0{"1 cullOne^:_ (\:~~ +/@|"1)(\:{."1) 4$.$. x =/ y
)
 
cullOne=: verb define
if.cullOne=: (#y){~[: =<@<@< First0=.0(=[: (i. 10:) 1,[: *./[: |: 2 >/\]) y:: ]</syntaxhighlight>
 
do. y else. y #~ 0 First0}(#y)#1 end.
Here's [[Longest_common_subsequence/J|another approach]]:
)
 
<syntaxhighlight lang="j">mergeSq=: ;@}: ~.@, {.@;@{. ,&.> 3 {:: 4&{.
common=: 2 2 <@mergeSq@,;.3^:_ [: (<@#&.> i.@$) =/
lcs=: [ {~ 0 {"1 ,&$ #: 0 ({:: (#~ [: (= >./) #@>)) 0 ({:: ,) common</syntaxhighlight>
 
Example use (works with either definition of lcs):
 
<syntaxhighlight lang="j"> 'thisisatest' lcs 'testing123testing'
tsitest</syntaxhighlight>
 
'''Dynamic programming version'''
<syntaxhighlight lang="j">longest=: ]`[@.(>&#)
upd=:{:@[,~ ({.@[ ,&.> {:@])`({:@[ longest&.> {.@])@.(0 = #&>@{.@[)
lcs=: 0{:: [: ([: {.&> [: upd&.>/\.<"1@:,.)/ a:,.~a:,~=/{"1 a:,.<"0@[</syntaxhighlight>
'''Output:'''
<syntaxhighlight lang="j"> '1234' lcs '1224533324'
1234
 
'thisisatest' lcs 'testing123testing'
tsitest</syntaxhighlight>
 
'''Recursion'''
<syntaxhighlight lang="j">lcs=:;(($:}.) longest }.@[ $: ])`({.@[,$:&}.)@.(=&{.)`((i.0)"_)@.(+.&(0=#))&((e.#[)&>/) ;~</syntaxhighlight>
 
=={{header|Java}}==
===Recursion===
This is not a particularly fast algorithm, but it gets the job done eventually. The speed is a result of many recursive function calls.
<langsyntaxhighlight lang="java">public static String lcs(String a, String b){
int aLen = a.length();
int bLen = b.length();
Line 311 ⟶ 1,589:
return (x.length() > y.length()) ? x : y;
}
}</langsyntaxhighlight>
 
===Dynamic Programming===
<langsyntaxhighlight lang="java">public static String lcs(String a, String b) {
int[][] lengths = new int[a.length()+1][b.length()+1];
 
Line 344 ⟶ 1,622:
 
return sb.reverse().toString();
}</langsyntaxhighlight>
 
=={{header|JavaScript}}==
===Recursion===
{{trans|Java}}
This is more or less a translation of the recursive Java version above.
<syntaxhighlight lang="javascript">function lcs(a, b) {
var aSub = a.substr(0, a.length - 1);
var bSub = b.substr(0, b.length - 1);
if (a.length === 0 || b.length === 0) {
return '';
} else if (a.charAt(a.length - 1) === b.charAt(b.length - 1)) {
return lcs(aSub, bSub) + a.charAt(a.length - 1);
} else {
var x = lcs(a, bSub);
var y = lcs(aSub, b);
return (x.length > y.length) ? x : y;
}
}</syntaxhighlight>
 
ES6 recursive implementation
 
<syntaxhighlight lang="javascript">
const longest = (xs, ys) => (xs.length > ys.length) ? xs : ys;
 
const lcs = (xx, yy) => {
if (!xx.length || !yy.length) { return ''; }
const [x, ...xs] = xx;
const [y, ...ys] = yy;
 
return (x === y) ? (x + lcs(xs, ys)) : longest(lcs(xx, ys), lcs(xs, yy));
};</syntaxhighlight>
 
===Dynamic Programming===
This version runs in O(mn) time and consumes O(mn) space.
Factoring out loop edge cases could get a small constant time improvement, and it's fairly trivial to edit the final loop to produce a full diff in addition to the lcs.
<syntaxhighlight lang="javascript">function lcs(x,y){
var s,i,j,m,n,
lcs=[],row=[],c=[],
left,diag,latch;
//make sure shorter string is the column string
if(m<n){s=x;x=y;y=s;}
m = x.length;
n = y.length;
//build the c-table
for(j=0;j<n;row[j++]=0);
for(i=0;i<m;i++){
c[i] = row = row.slice();
for(diag=0,j=0;j<n;j++,diag=latch){
latch=row[j];
if(x[i] == y[j]){row[j] = diag+1;}
else{
left = row[j-1]||0;
if(left>row[j]){row[j] = left;}
}
}
}
i--,j--;
//row[j] now contains the length of the lcs
//recover the lcs from the table
while(i>-1&&j>-1){
switch(c[i][j]){
default: j--;
lcs.unshift(x[i]);
case (i&&c[i-1][j]): i--;
continue;
case (j&&c[i][j-1]): j--;
}
}
return lcs.join('');
}</syntaxhighlight>
 
'''BUG note: In line 6, m and n are not yet initialized, and so x and y are never swapped.'''
'''Swapping is useless here, and becomes wrong when extending the algorithm to produce a diff.'''
 
The final loop can be modified to concatenate maximal common substrings rather than individual characters:
<syntaxhighlight lang="javascript"> var t=i;
while(i>-1&&j>-1){
switch(c[i][j]){
default:i--,j--;
continue;
case (i&&c[i-1][j]):
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}
t=--i;
continue;
case (j&&c[i][j-1]): j--;
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}
t=i;
}
}
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}</syntaxhighlight>
 
===Greedy Algorithm===
This is an heuristic algorithm that won't always return the correct answer, but is significantly faster and less memory intensive than the dynamic programming version, in exchange for giving up the ability to re-use the table to find alternate solutions and greater complexity in generating diffs. Note that this implementation uses a binary buffer for additional efficiency gains, but it's simple to transform to use string or array concatenation;
<syntaxhighlight lang="javascript">function lcs_greedy(x,y){
var p1, i, idx,
symbols = {},
r = 0,
p = 0,
l = 0,
m = x.length,
n = y.length,
s = new Buffer((m < n) ? n : m);
 
p1 = popsym(0);
 
for (i = 0; i < m; i++) {
p = (r === p) ? p1 : popsym(i);
p1 = popsym(i + 1);
if (p > p1) {
i += 1;
idx = p1;
} else {
idx = p;
}
 
if (idx === n) {
p = popsym(i);
} else {
r = idx;
s[l] = x.charCodeAt(i);
l += 1;
}
}
return s.toString('utf8', 0, l);
function popsym(index) {
var s = x[index],
pos = symbols[s] + 1;
 
pos = y.indexOf(s, ((pos > r) ? pos : r));
if (pos === -1) { pos = n; }
symbols[s] = pos;
return pos;
}
}</syntaxhighlight>
 
Note that it won't return the correct answer for all inputs. For example: <syntaxhighlight lang="javascript">lcs_greedy('bcaaaade', 'deaaaabc'); // 'bc' instead of 'aaaa'</syntaxhighlight>
 
=={{header|jq}}==
Naive recursive version:
<syntaxhighlight lang="jq">def lcs(xstr; ystr):
if (xstr == "" or ystr == "") then ""
else
xstr[0:1] as $x
| xstr[1:] as $xs
| ystr[1:] as $ys
| if ($x == ystr[0:1]) then ($x + lcs($xs; $ys))
else
lcs(xstr; $ys) as $one
| lcs($xs; ystr) as $two
| if ($one|length) > ($two|length) then $one else $two end
end
end;</syntaxhighlight>
 
Example:
<syntaxhighlight lang="jq">lcs("1234"; "1224533324"),
lcs("thisisatest"; "testing123testing")</syntaxhighlight>
Output:<syntaxhighlight lang="sh">
# jq -n -f lcs-recursive.jq
"1234"
"tsitest"</syntaxhighlight>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
<syntaxhighlight lang="julia">longest(a::String, b::String) = length(a) ≥ length(b) ? a : b
 
"""
julia> lcsrecursive("thisisatest", "testing123testing")
"tsitest"
"""
# Recursive
function lcsrecursive(xstr::String, ystr::String)
if length(xstr) == 0 || length(ystr) == 0
return ""
end
 
x, xs, y, ys = xstr[1], xstr[2:end], ystr[1], ystr[2:end]
if x == y
return string(x, lcsrecursive(xs, ys))
else
return longest(lcsrecursive(xstr, ys), lcsrecursive(xs, ystr))
end
end
 
# Dynamic
function lcsdynamic(a::String, b::String)
lengths = zeros(Int, length(a) + 1, length(b) + 1)
 
# row 0 and column 0 are initialized to 0 already
for (i, x) in enumerate(a), (j, y) in enumerate(b)
if x == y
lengths[i+1, j+1] = lengths[i, j] + 1
else
lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1])
end
end
 
# read the substring out from the matrix
result = ""
x, y = length(a) + 1, length(b) + 1
while x > 1 && y > 1
if lengths[x, y] == lengths[x-1, y]
x -= 1
elseif lengths[x, y] == lengths[x, y-1]
y -= 1
else
@assert a[x-1] == b[y-1]
result = string(a[x-1], result)
x -= 1
y -= 1
end
end
 
return result
end
 
 
@show lcsrecursive("thisisatest", "testing123testing")
@time lcsrecursive("thisisatest", "testing123testing")
@show lcsdynamic("thisisatest", "testing123testing")
@time lcsdynamic("thisisatest", "testing123testing")</syntaxhighlight>
 
{{out}}
<pre>lcsrecursive("thisisatest", "testing123testing") = "tsitest"
0.038153 seconds (537.77 k allocations: 16.415 MiB)
lcsdynamic("thisisatest", "testing123testing") = "tsitest"
0.000004 seconds (12 allocations: 2.141 KiB)</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.2
 
fun lcs(x: String, y: String): String {
if (x.length == 0 || y.length == 0) return ""
val x1 = x.dropLast(1)
val y1 = y.dropLast(1)
if (x.last() == y.last()) return lcs(x1, y1) + x.last()
val x2 = lcs(x, y1)
val y2 = lcs(x1, y)
return if (x2.length > y2.length) x2 else y2
}
 
fun main(args: Array<String>) {
val x = "thisisatest"
val y = "testing123testing"
println(lcs(x, y))
}</syntaxhighlight>
 
{{out}}
<pre>
tsitest
</pre>
 
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">
'variation of BASIC example
w$="aebdef"
z$="cacbc"
print lcs$(w$,z$)
 
'output:
'ab
 
wait
 
FUNCTION lcs$(a$, b$)
IF LEN(a$) = 0 OR LEN(b$) = 0 THEN
lcs$ = ""
exit function
end if
 
IF RIGHT$(a$, 1) = RIGHT$(b$, 1) THEN
lcs$ = lcs$(LEFT$(a$, LEN(a$) - 1), LEFT$(b$, LEN(b$) - 1)) + RIGHT$(a$, 1)
exit function
ELSE
x$ = lcs$(a$, LEFT$(b$, LEN(b$) - 1))
y$ = lcs$(LEFT$(a$, LEN(a$) - 1), b$)
IF LEN(x$) > LEN(y$) THEN
lcs$ = x$
exit function
ELSE
lcs$ = y$
exit function
END IF
END IF
END FUNCTION
</syntaxhighlight>
 
=={{header|Logo}}==
This implementation works on both words and lists.
<syntaxhighlight lang="logo">to longest :s :t
<lang logo>
to longest :s :t
output ifelse greater? count :s count :t [:s] [:t]
end
Line 357 ⟶ 1,922:
if equal? first :s first :t [output combine first :s lcs bf :s bf :t]
output longest lcs :s bf :t lcs bf :s :t
end</syntaxhighlight>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">function LCS( a, b )
if #a == 0 or #b == 0 then
return ""
elseif string.sub( a, -1, -1 ) == string.sub( b, -1, -1 ) then
return LCS( string.sub( a, 1, -2 ), string.sub( b, 1, -2 ) ) .. string.sub( a, -1, -1 )
else
local a_sub = LCS( a, string.sub( b, 1, -2 ) )
local b_sub = LCS( string.sub( a, 1, -2 ), b )
if #a_sub > #b_sub then
return a_sub
else
return b_sub
end
end
end
</lang>
 
print( LCS( "thisisatest", "testing123testing" ) )</syntaxhighlight>
=={{header|Mathematica}}==
 
=={{header|M4}}==
<syntaxhighlight lang="m4">define(`set2d',`define(`$1[$2][$3]',`$4')')
define(`get2d',`defn($1[$2][$3])')
define(`tryboth',
`pushdef(`x',lcs(`$1',substr(`$2',1),`$1 $2'))`'pushdef(`y',
lcs(substr(`$1',1),`$2',`$1 $2'))`'ifelse(eval(len(x)>len(y)),1,
`x',`y')`'popdef(`x')`'popdef(`y')')
define(`checkfirst',
`ifelse(substr(`$1',0,1),substr(`$2',0,1),
`substr(`$1',0,1)`'lcs(substr(`$1',1),substr(`$2',1))',
`tryboth(`$1',`$2')')')
define(`lcs',
`ifelse(get2d(`c',`$1',`$2'),`',
`pushdef(`a',ifelse(
`$1',`',`',
`$2',`',`',
`checkfirst(`$1',`$2')'))`'a`'set2d(`c',`$1',`$2',a)`'popdef(`a')',
`get2d(`c',`$1',`$2')')')
 
lcs(`1234',`1224533324')
 
lcs(`thisisatest',`testing123testing')</syntaxhighlight>
Note: the caching (set2d/get2d) obscures the code even more than usual, but is necessary in order to get the second test to run in a reasonable amount of time.
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">
> StringTools:-LongestCommonSubSequence( "thisisatest", "testing123testing" );
"tsitest"
</syntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
A built-in function can do this for us:
<syntaxhighlight lang="mathematica">a = "thisisatest";
<lang Mathematica>
a = "thisisatest";
b = "testing123testing";
LongestCommonSequence[a, b]</syntaxhighlight>
</lang>
gives:
<syntaxhighlight lang Mathematica="mathematica">tsitest</langsyntaxhighlight>
Note that Mathematica also has a built-in function called LongestCommonSubsequence[a,b]:
 
Line 379 ⟶ 1,991:
''finds the longest sequence of contiguous or disjoint elements common to the strings or lists a and b.''
 
I added this note because the name of this article suggests LongestCommonSubsequence does the job, however LongestCommonSubsequenceLongestCommonSequence performs the puzzle-description.
 
=={{header|Nim}}==
===Recursion===
{{trans|Python}}
<syntaxhighlight lang="nim">proc lcs(x, y: string): string =
if x == "" or y == "":
return ""
 
if x[0] == y[0]:
return x[0] & lcs(x[1..x.high], y[1..y.high])
 
let a = lcs(x, y[1..y.high])
let b = lcs(x[1..x.high], y)
result = if a.len > b.len: a else: b
 
echo lcs("1234", "1224533324")
echo lcs("thisisatest", "testing123testing")</syntaxhighlight>
 
This recursive version is not efficient but the execution time can be greatly improved by using memoization.
 
===Dynamic Programming===
{{trans|Python}}
<syntaxhighlight lang="nim">proc lcs(a, b: string): string =
var ls = newSeq[seq[int]](a.len+1)
for i in 0 .. a.len:
ls[i].newSeq(b.len+1)
 
for i, x in a:
for j, y in b:
if x == y:
ls[i+1][j+1] = ls[i][j] + 1
else:
ls[i+1][j+1] = max(ls[i+1][j], ls[i][j+1])
 
result = ""
var x = a.len
var y = b.len
while x > 0 and y > 0:
if ls[x][y] == ls[x-1][y]:
dec x
elif ls[x][y] == ls[x][y-1]:
dec y
else:
assert a[x-1] == b[y-1]
result = a[x-1] & result
dec x
dec y
 
echo lcs("1234", "1224533324")
echo lcs("thisisatest", "testing123testing")</syntaxhighlight>
 
=={{header|OCaml}}==
===Recursion===
from Haskell
<langsyntaxhighlight lang="ocaml">let longest xs ys = if List.length xs > List.length ys then xs else ys
 
let rec lcs a b = match a, b with
Line 394 ⟶ 2,055:
x :: lcs xs ys
else
longest (lcs a ys) (lcs xs b)</langsyntaxhighlight>
 
===Memoized recursion===
<syntaxhighlight lang="ocaml">
let lcs xs ys =
let cache = Hashtbl.create 16 in
let rec lcs xs ys =
try Hashtbl.find cache (xs, ys) with
| Not_found ->
let result =
match xs, ys with
| [], _ -> []
| _, [] -> []
| x :: xs, y :: ys when x = y ->
x :: lcs xs ys
| _ :: xs_rest, _ :: ys_rest ->
let a = lcs xs_rest ys in
let b = lcs xs ys_rest in
if (List.length a) > (List.length b) then a else b
in
Hashtbl.add cache (xs, ys) result;
result
in
lcs xs ys</syntaxhighlight>
 
===Dynamic programming===
<langsyntaxhighlight lang="ocaml">let lcs xs' ys' =
let xs = Array.of_list xs'
and ys = Array.of_list ys' in
Line 411 ⟶ 2,095:
done
done;
a.(0).(0)</langsyntaxhighlight>
 
Because both solutions only work with lists, here are some functions to convert to and from strings:
<langsyntaxhighlight lang="ocaml">let list_of_string str =
let result = ref [] in
String.iter (fun x -> result := x :: !result)
Line 423 ⟶ 2,107:
let result = String.create (List.length lst) in
ignore (List.fold_left (fun i x -> result.[i] <- x; i+1) 0 lst);
result</langsyntaxhighlight>
 
Both solutions work. Example:
Line 431 ⟶ 2,115:
- : string = "tsitest"
</pre>
 
=={{header|Oz}}==
{{trans|Haskell}}
 
Recursive solution:
<syntaxhighlight lang="oz">declare
fun {LCS Xs Ys}
case [Xs Ys]
of [nil _] then nil
[] [_ nil] then nil
[] [X|Xr Y|Yr] andthen X==Y then X|{LCS Xr Yr}
[] [_|Xr _|Yr] then {Longest {LCS Xs Yr} {LCS Xr Ys}}
end
end
 
fun {Longest Xs Ys}
if {Length Xs} > {Length Ys} then Xs else Ys end
end
in
{System.showInfo {LCS "thisisatest" "testing123testing"}}</syntaxhighlight>
 
=={{header|Pascal}}==
{{trans|Fortran}}
<syntaxhighlight lang="pascal">Program LongestCommonSubsequence(output);
function lcs(a, b: string): string;
var
x, y: string;
lenga, lengb: integer;
begin
lenga := length(a);
lengb := length(b);
lcs := '';
if (lenga > 0) and (lengb > 0) then
if a[lenga] = b[lengb] then
lcs := lcs(copy(a, 1, lenga-1), copy(b, 1, lengb-1)) + a[lenga]
else
begin
x := lcs(a, copy(b, 1, lengb-1));
y := lcs(copy(a, 1, lenga-1), b);
if length(x) > length(y) then
lcs := x
else
lcs := y;
end;
end;
 
var
s1, s2: string;
begin
s1 := 'thisisatest';
s2 := 'testing123testing';
writeln (lcs(s1, s2));
s1 := '1234';
s2 := '1224533324';
writeln (lcs(s1, s2));
end.</syntaxhighlight>
{{out}}
<pre>:> ./LongestCommonSequence
tsitest
1234
</pre>
 
=={{header|Perl}}==
<syntaxhighlight lang="perl">sub lcs {
my ($a, $b) = @_;
if (!length($a) || !length($b)) {
return "";
}
if (substr($a, 0, 1) eq substr($b, 0, 1)) {
return substr($a, 0, 1) . lcs(substr($a, 1), substr($b, 1));
}
my $c = lcs(substr($a, 1), $b) || "";
my $d = lcs($a, substr($b, 1)) || "";
return length($c) > length($d) ? $c : $d;
}
 
print lcs("thisisatest", "testing123testing") . "\n";</syntaxhighlight>
 
===Alternate letting regex do all the work===
<syntaxhighlight lang="perl">use strict;
use warnings;
use feature 'bitwise';
 
print "lcs is ", lcs('thisisatest', 'testing123testing'), "\n";
 
sub lcs
{
my ($c, $d) = @_;
for my $len ( reverse 1 .. length($c &. $d) )
{
"$c\n$d" =~ join '.*', ('(.)') x $len, "\n", map "\\$_", 1 .. $len and
return join '', @{^CAPTURE};
}
return '';
}</syntaxhighlight>
{{out}}
<pre>lcs is tastiest</pre>
 
=={{header|Phix}}==
If you want this to work with (utf8) Unicode text, just chuck the inputs through utf8_to_utf32() first (and the output through utf32_to_utf8()).
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">""</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">and</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">[$]=</span><span style="color: #000000;">b</span><span style="color: #0000FF;">[$]</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">],</span><span style="color: #000000;">b</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">])&</span><span style="color: #000000;">a</span><span style="color: #0000FF;">[$]</span>
<span style="color: #008080;">else</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">]),</span>
<span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">],</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">l</span><span style="color: #0000FF;">)></span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">)?</span><span style="color: #000000;">l</span><span style="color: #0000FF;">:</span><span style="color: #000000;">r</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #008000;">"1234"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"1224533324"</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #008000;">"thisisatest"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"testing123testing"</span><span style="color: #0000FF;">}}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">string</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
"1234"
"tsitest"
</pre>
===Alternate version===
same output
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">LCSLength</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">Y</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">C</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">X</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">X</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]=</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">:=</span> <span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]+</span><span style="color: #000000;">1</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">:=</span> <span style="color: #7060A8;">max</span><span style="color: #0000FF;">(</span><span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">],</span> <span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">])</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">C</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">backtrack</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">C</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">Y</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">or</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">return</span> <span style="color: #008000;">""</span>
<span style="color: #008080;">elsif</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]=</span><span style="color: #000000;">Y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">backtrack</span><span style="color: #0000FF;">(</span><span style="color: #000000;">C</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">Y</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span> <span style="color: #0000FF;">&</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">else</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]></span><span style="color: #000000;">C</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">][</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">backtrack</span><span style="color: #0000FF;">(</span><span style="color: #000000;">C</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">Y</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">else</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">backtrack</span><span style="color: #0000FF;">(</span><span style="color: #000000;">C</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">X</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">Y</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">backtrack</span><span style="color: #0000FF;">(</span><span style="color: #000000;">LCSLength</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">),</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #008000;">"1234"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"1224533324"</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #008000;">"thisisatest"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"testing123testing"</span><span style="color: #0000FF;">}}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">string</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">lcs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
 
=={{header|Picat}}==
===Wikipedia algorithm===
With some added trickery for a 1-based language.
<syntaxhighlight lang="picat">lcs_wiki(X,Y) = V =>
[C, _Len] = lcs_length(X,Y),
V = backTrace(C,X,Y,X.length+1,Y.length+1).
 
lcs_length(X, Y) = V=>
M = X.length,
N = Y.length,
C = [[0 : J in 1..N+1] : I in 1..N+1],
foreach(I in 2..M+1,J in 2..N+1)
if X[I-1] == Y[J-1] then
C[I,J] := C[I-1,J-1] + 1
else
C[I,J] := max([C[I,J-1], C[I-1,J]])
end
end,
V = [C, C[M+1,N+1]].
 
backTrace(C, X, Y, I, J) = V =>
if I == 1; J == 1 then
V = ""
elseif X[I-1] == Y[J-1] then
V = backTrace(C, X, Y, I-1, J-1) ++ [X[I-1]]
else
if C[I,J-1] > C[I-1,J] then
V = backTrace(C, X, Y, I, J-1)
else
V = backTrace(C, X, Y, I-1, J)
end
end.</syntaxhighlight>
 
===Rule-based===
{{trans|SETL}}
<syntaxhighlight lang="picat">table
lcs_rule(A, B) = "", (A == ""; B == "") => true.
lcs_rule(A, B) = [A[1]] ++ lcs_rule(butfirst(A), butfirst(B)), A[1] == B[1] => true.
lcs_rule(A, B) = longest(lcs_rule(butfirst(A), B), lcs_rule(A, butfirst(B))) => true.
 
% Return the longest string of A and B
longest(A, B) = cond(A.length > B.length, A, B).
% butfirst (everything except first element)
butfirst(A) = [A[I] : I in 2..A.length].</syntaxhighlight>
 
===Test===
<syntaxhighlight lang="picat">go =>
Tests = [["thisisatest","testing123testing"],
["XMJYAUZ", "MZJAWXU"],
["1234", "1224533324"],
["beginning-middle-ending","beginning-diddle-dum-ending"]
],
Funs = [lcs_wiki,lcs_rule],
 
foreach(Fun in Funs)
println(fun=Fun),
foreach(Test in Tests)
printf("%w : %w\n", Test, apply(Fun,Test[1],Test[2]))
end,
nl
end,
 
nl.</syntaxhighlight>
 
{{out}}
<pre>fun = lcs_wiki
[thisisatest,testing123testing] : tsitest
[XMJYAUZ,MZJAWXU] : MJAU
[1234,1224533324] : 1234
[beginning-middle-ending,beginning-diddle-dum-ending] : beginning-iddle-ending
 
fun = lcs_rule
[thisisatest,testing123testing] : tsitest
[XMJYAUZ,MZJAWXU] : MJAU
[1234,1224533324] : 1234
[beginning-middle-ending,beginning-diddle-dum-ending] : beginning-iddle-ending</pre>
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">(de commonSequences (A B)
(when A
(conc
(when (member (car A) B)
(mapcar '((L) (cons (car A) L))
(cons NIL (commonSequences (cdr A) (cdr @))) ) )
(commonSequences (cdr A) B) ) ) )
 
(maxi length
(commonSequences
(chop "thisisatest")
(chop "testing123testing") ) )</syntaxhighlight>
{{out}}
<pre>-> ("t" "s" "i" "t" "e" "s" "t")</pre>
 
=={{header|PowerShell}}==
Returns a sequence (array) of a type:
<syntaxhighlight lang="powershell">
function Get-Lcs ($ReferenceObject, $DifferenceObject)
{
$longestCommonSubsequence = @()
$x = $ReferenceObject.Length
$y = $DifferenceObject.Length
 
$lengths = New-Object -TypeName 'System.Object[,]' -ArgumentList ($x + 1), ($y + 1)
 
for($i = 0; $i -lt $x; $i++)
{
for ($j = 0; $j -lt $y; $j++)
{
if ($ReferenceObject[$i] -ceq $DifferenceObject[$j])
{
$lengths[($i+1),($j+1)] = $lengths[$i,$j] + 1
}
else
{
$lengths[($i+1),($j+1)] = [Math]::Max(($lengths[($i+1),$j]),($lengths[$i,($j+1)]))
}
}
}
 
while (($x -ne 0) -and ($y -ne 0))
{
if ( $lengths[$x,$y] -eq $lengths[($x-1),$y])
{
--$x
}
elseif ($lengths[$x,$y] -eq $lengths[$x,($y-1)])
{
--$y
}
else
{
if ($ReferenceObject[($x-1)] -ceq $DifferenceObject[($y-1)])
{
$longestCommonSubsequence = ,($ReferenceObject[($x-1)]) + $longestCommonSubsequence
}
 
--$x
--$y
}
}
 
$longestCommonSubsequence
}
</syntaxhighlight>
Returns the character array as a string:
<syntaxhighlight lang="powershell">
(Get-Lcs -ReferenceObject "thisisatest" -DifferenceObject "testing123testing") -join ""
</syntaxhighlight>
{{Out}}
<pre>
tsitest
</pre>
Returns an array of integers:
<syntaxhighlight lang="powershell">
Get-Lcs -ReferenceObject @(1,2,3,4) -DifferenceObject @(1,2,2,4,5,3,3,3,2,4)
</syntaxhighlight>
{{Out}}
<pre>
1
2
3
4
</pre>
Given two lists of objects, return the LCS of the ID property:
<syntaxhighlight lang="powershell">
$list1
 
ID X Y
-- - -
1 101 201
2 102 202
3 103 203
4 104 204
5 105 205
6 106 206
7 107 207
8 108 208
9 109 209
 
$list2
 
ID X Y
-- - -
1 101 201
3 103 203
5 105 205
7 107 207
9 109 209
 
Get-Lcs -ReferenceObject $list1.ID -DifferenceObject $list2.ID
</syntaxhighlight>
{{Out}}
<pre>
1
3
5
7
9
</pre>
 
=={{header|Prolog}}==
===Recursive Version===
First version:
<syntaxhighlight lang="prolog">test :-
time(lcs("thisisatest", "testing123testing", Lcs)),
writef('%s',[Lcs]).
lcs([ H|L1],[ H|L2],[H|Lcs]) :- !,
lcs(L1,L2,Lcs).
 
lcs([H1|L1],[H2|L2],Lcs):-
lcs( L1 ,[H2|L2],Lcs1),
lcs([H1|L1], L2 ,Lcs2),
longest(Lcs1,Lcs2,Lcs),!.
 
lcs(_,_,[]).
 
 
longest(L1,L2,Longest) :-
length(L1,Length1),
length(L2,Length2),
((Length1 > Length2) -> Longest = L1; Longest = L2).</syntaxhighlight>
Second version, with memoization:
<syntaxhighlight lang="prolog">%declare that we will add lcs_db facts during runtime
:- dynamic lcs_db/3.
 
test :-
retractall(lcs_db(_,_,_)), %clear the database of known results
time(lcs("thisisatest", "testing123testing", Lcs)),
writef('%s',[Lcs]).
 
 
% check if the result is known
lcs(L1,L2,Lcs) :-
lcs_db(L1,L2,Lcs),!.
 
lcs([ H|L1],[ H|L2],[H|Lcs]) :- !,
lcs(L1,L2,Lcs).
 
lcs([H1|L1],[H2|L2],Lcs) :-
lcs( L1 ,[H2|L2],Lcs1),
lcs([H1|L1], L2 ,Lcs2),
longest(Lcs1,Lcs2,Lcs),!,
assert(lcs_db([H1|L1],[H2|L2],Lcs)).
 
lcs(_,_,[]).
 
 
longest(L1,L2,Longest) :-
length(L1,Length1),
length(L2,Length2),
((Length1 > Length2) -> Longest = L1; Longest = L2).</syntaxhighlight>
{{out|Demonstrating}}
Example for "beginning-middle-ending" and "beginning-diddle-dum-ending" <BR>
First version :
<syntaxhighlight lang="prolog">?- time(lcs("beginning-middle-ending","beginning-diddle-dum-ending", Lcs)),writef('%s', [Lcs]).
% 10,875,184 inferences, 1.840 CPU in 1.996 seconds (92% CPU, 5910426 Lips)
beginning-iddle-ending</syntaxhighlight>
Second version which is much faster :
<syntaxhighlight lang="prolog">?- time(lcs("beginning-middle-ending","beginning-diddle-dum-ending", Lcs)),writef('%s', [Lcs]).
% 2,376 inferences, 0.010 CPU in 0.003 seconds (300% CPU, 237600 Lips)
beginning-iddle-ending</syntaxhighlight>
 
=={{header|PureBasic}}==
{{trans|Basic}}
<syntaxhighlight lang="purebasic">Procedure.s lcs(a$, b$)
Protected x$ , lcs$
If Len(a$) = 0 Or Len(b$) = 0
lcs$ = ""
ElseIf Right(a$, 1) = Right(b$, 1)
lcs$ = lcs(Left(a$, Len(a$) - 1), Left(b$, Len(b$) - 1)) + Right(a$, 1)
Else
x$ = lcs(a$, Left(b$, Len(b$) - 1))
y$ = lcs(Left(a$, Len(a$) - 1), b$)
If Len(x$) > Len(y$)
lcs$ = x$
Else
lcs$ = y$
EndIf
EndIf
ProcedureReturn lcs$
EndProcedure
OpenConsole()
PrintN( lcs("thisisatest", "testing123testing"))
PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""</syntaxhighlight>
 
=={{header|Python}}==
The simplest way is to use [http://mlpy.sourceforge.net/docs/3.5/lcs.html LCS within mlpy package]
 
===Recursion===
This solution is similar to the Haskell one. It is slow.
<langsyntaxhighlight lang="python">def lcs(xstr, ystr):
"""
>>> lcs('thisisatest', 'testing123testing')
Line 444 ⟶ 2,590:
x, xs, y, ys = xstr[0], xstr[1:], ystr[0], ystr[1:]
if x == y:
return x + str(lcs(xs, ys)) + x
else:
return max(lcs(xstr, ys), lcs(xs, ystr), key=len)</langsyntaxhighlight>
Test it:
<syntaxhighlight lang="python">if __name__=="__main__":
<lang python>
import doctest; doctest.testmod()</syntaxhighlight>
if __name__=="__main__":
import doctest; doctest.testmod()
</lang>
 
===Dynamic Programming===
<syntaxhighlight lang="python">def lcs(a, b):
{{trans|Java}}
# generate matrix of length of longest common subsequence for substrings of both words
<lang python>def lcs(a, b):
lengths = [[0] for* j in range(len(b)+1)] for i_ in range(len(a)+1)]
# row 0 and column 0 are initialized to 0 already
for i, x in enumerate(a):
for j, y in enumerate(b):
Line 463 ⟶ 2,606:
lengths[i+1][j+1] = lengths[i][j] + 1
else:
lengths[i+1][j+1] = \max(lengths[i+1][j], lengths[i][j+1])
max(lengths[i+1][j], lengths[i][j+1])
# read the substring out from the matrix
result = ""
x, y = len(a), len(b)
while x != 0 and y != 0:
if lengths[x][y] == lengths[x-1][y]:
x -= 1
elif lengths[x][y] == lengths[x][y-1]:
y -= 1
else:
assert a[x-1] == b[y-1]
result = a[x-1] + result
x -= 1
y -= 1
return result</lang>
 
# read a substring from the matrix
=={{header|Ruby}}==
result = ''
j = len(b)
for i in range(1, len(a)+1):
if lengths[i][j] != lengths[i-1][j]:
result += a[i-1]
 
return result</syntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">#lang racket
(define (longest xs ys)
(if (> (length xs) (length ys))
xs ys))
 
(define memo (make-hash))
(define (lookup xs ys)
(hash-ref memo (cons xs ys) #f))
(define (store xs ys r)
(hash-set! memo (cons xs ys) r)
r)
 
(define (lcs/list sx sy)
(or (lookup sx sy)
(store sx sy
(match* (sx sy)
[((cons x xs) (cons y ys))
(if (equal? x y)
(cons x (lcs/list xs ys))
(longest (lcs/list sx ys) (lcs/list xs sy)))]
[(_ _) '()]))))
 
(define (lcs sx sy)
(list->string (lcs/list (string->list sx) (string->list sy))))
 
(lcs "thisisatest" "testing123testing")</syntaxhighlight>
{{out}}
<pre>"tsitest"></pre>
 
=={{header|Raku}}==
(formerly Perl 6)
===Recursion===
{{works with|rakudo|2015-09-16}}
This solution is similar to the Haskell one. It is slow.
<syntaxhighlight lang="raku" line>say lcs("thisisatest", "testing123testing");sub lcs(Str $xstr, Str $ystr) {
return "" unless $xstr && $ystr;
 
my ($x, $xs, $y, $ys) = $xstr.substr(0, 1), $xstr.substr(1), $ystr.substr(0, 1), $ystr.substr(1);
return $x eq $y
?? $x ~ lcs($xs, $ys)
!! max(:by{ $^a.chars }, lcs($xstr, $ys), lcs($xs, $ystr) );
}
 
say lcs("thisisatest", "testing123testing");</syntaxhighlight>
 
===Dynamic Programming===
{{trans|Java}}
<syntaxhighlight lang="raku" line>
sub lcs(Str $xstr, Str $ystr) {
my ($xlen, $ylen) = ($xstr, $ystr)>>.chars;
my @lengths = map {[(0) xx ($ylen+1)]}, 0..$xlen;
 
for $xstr.comb.kv -> $i, $x {
for $ystr.comb.kv -> $j, $y {
@lengths[$i+1][$j+1] = $x eq $y ?? @lengths[$i][$j]+1 !! (@lengths[$i+1][$j], @lengths[$i][$j+1]).max;
}
}
 
my @x = $xstr.comb;
my ($x, $y) = ($xlen, $ylen);
my $result = "";
while $x != 0 && $y != 0 {
if @lengths[$x][$y] == @lengths[$x-1][$y] {
$x--;
}
elsif @lengths[$x][$y] == @lengths[$x][$y-1] {
$y--;
}
else {
$result = @x[$x-1] ~ $result;
$x--;
$y--;
}
}
 
return $result;
}
 
say lcs("thisisatest", "testing123testing");</syntaxhighlight>
 
===Bit Vector===
Bit parallel dynamic programming with nearly linear complexity O(n). It is fast.
<syntaxhighlight lang="raku" line>sub lcs(Str $xstr, Str $ystr) {
my (@a, @b) := ($xstr, $ystr)».comb;
my (%positions, @Vs, $lcs);
 
for @a.kv -> $i, $x { %positions{$x} +|= 1 +< ($i % @a) }
 
my $S = +^ 0;
for (0 ..^ @b) -> $j {
my $u = $S +& (%positions{@b[$j]} // 0);
@Vs[$j] = $S = ($S + $u) +| ($S - $u)
}
 
my ($i, $j) = @a-1, @b-1;
while ($i ≥ 0 and $j ≥ 0) {
unless (@Vs[$j] +& (1 +< $i)) {
$lcs [R~]= @a[$i] unless $j and ^@Vs[$j-1] +& (1 +< $i);
$j--
}
$i--
}
$lcs
}
 
say lcs("thisisatest", "testing123testing");</syntaxhighlight>
 
=={{header|ReasonML}}==
 
<syntaxhighlight lang="ocaml">
let longest = (xs, ys) =>
if (List.length(xs) > List.length(ys)) {
xs;
} else {
ys;
};
 
let rec lcs = (a, b) =>
switch (a, b) {
| ([], _)
| (_, []) => []
| ([x, ...xs], [y, ...ys]) =>
if (x == y) {
[x, ...lcs(xs, ys)];
} else {
longest(lcs(a, ys), lcs(xs, b));
}
};
</syntaxhighlight>
 
=={{header|REXX}}==
<syntaxhighlight lang="rexx">/*REXX program tests the LCS (Longest Common Subsequence) subroutine. */
parse arg aaa bbb . /*obtain optional arguments from the CL*/
say 'string A =' aaa /*echo the string A to the screen. */
say 'string B =' bbb /* " " " B " " " */
say ' LCS =' LCS(aaa, bbb) /*tell the Longest Common Sequence. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
LCS: procedure; parse arg a,b,z /*Longest Common Subsequence. */
/*reduce recursions, removes the */
/*chars in A ¬ in B, and vice─versa.*/
if z=='' then return LCS( LCS(a,b,0), LCS(b,a,0), 9) /*Is Z null? Do recurse. */
j= length(a)
if z==0 then do /*a special invocation: shrink Z. */
do j=1 for j; _= substr(a, j, 1)
if pos(_, b)\==0 then z= z || _
end /*j*/
return substr(z, 2)
end
k= length(b)
if j==0 | k==0 then return '' /*Is either string null? Bupkis. */
_= substr(a, j, 1)
if _==substr(b, k, 1) then return LCS( substr(a, 1, j - 1), substr(b, 1, k - 1), 9)_
x= LCS(a, substr(b, 1, k - 1), 9)
y= LCS( substr(a, 1, j - 1), b, 9)
if length(x)>length(y) then return x
return y</syntaxhighlight>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> 1234 &nbsp; 1224533324 </tt>}}
<pre>
string A = 1234
string B = 1224533324
LCS = 1234
</pre>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> thisisatest &nbsp; testing123testing </tt>}}
<pre>
string A = thisisatest
string B = testing123testing
LCS = tsitest
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
see longest("1267834", "1224533324") + nl
func longest a, b
if a = "" or b = "" return "" ok
if right(a, 1) = right(b, 1)
lcs = longest(left(a, len(a) - 1), left(b, len(b) - 1)) + right(a, 1)
return lcs
else
x1 = longest(a, left(b, len(b) - 1))
x2 = longest(left(a, len(a) - 1), b)
if len(x1) > len(x2)
lcs = x1
return lcs
else
lcs = x2
return lcs ok ok
</syntaxhighlight>
Output:
<pre>
1234
</pre>
 
=={{header|Ruby}}==
===Recursion===
This solution is similar to the Haskell one. It is slow (The time complexity is exponential.)
{{works with|Ruby|1.9}}
<langsyntaxhighlight lang="ruby">=begin
irb(main):001:0> lcs('thisisatest', 'testing123testing')
=> "tsitest"
=end
def lcs(xstr, ystr)
return "" if xstr.empty? || ystr.empty?
x, xs, y, ys = xstr[0..0], xstr[1..-1], ystr[0..0], ystr[1..-1]
if x == y
x + lcs(xs, ys)
else
[lcs(xstr, ys), lcs(xs, ystr)].max_by {|x| x.size}
end
end</syntaxhighlight>
 
===Dynamic programming===
{{works with|Ruby|1.9}}
 
Walker class for the LCS matrix:
 
<syntaxhighlight lang="ruby">class LCS
SELF, LEFT, UP, DIAG = [0,0], [0,-1], [-1,0], [-1,-1]
def initialize(a, b)
@m = Array.new(a.length) { Array.new(b.length) }
a.each_char.with_index do |x, i|
b.each_char.with_index do |y, j|
match(x, y, i, j)
end
end
end
def match(c, d, i, j)
@i, @j = i, j
@m[i][j] = compute_entry(c, d)
end
def lookup(x, y) [@i+x, @j+y] end
def valid?(i=@i, j=@j) i >= 0 && j >= 0 end
def peek(x, y)
i, j = lookup(x, y)
valid?(i, j) ? @m[i][j] : 0
end
def compute_entry(c, d)
c == d ? peek(*DIAG) + 1 : [peek(*LEFT), peek(*UP)].max
end
def backtrack
@i, @j = @m.length-1, @m[0].length-1
y = []
y << @i+1 if backstep? while valid?
y.reverse
end
def backtrack2
@i, @j = @m.length-1, @m[0].length-1
y = []
y << @j+1 if backstep? while valid?
[backtrack, y.reverse]
end
def backstep?
backstep = compute_backstep
@i, @j = lookup(*backstep)
backstep == DIAG
end
def compute_backstep
case peek(*SELF)
when peek(*LEFT) then LEFT
when peek(*UP) then UP
else DIAG
end
end
end
 
def lcs(a, b)
walker = LCS.new(a, b)
walker.backtrack.map{|i| a[i]}.join
end
 
if $0 == __FILE__
puts lcs('thisisatest', 'testing123testing')
puts lcs("rosettacode", "raisethysword")
end</syntaxhighlight>
 
{{out}}
<pre>
tsitest
rsetod
</pre>
Referring to LCS [[Levenshtein distance/Alignment#Ruby|here]] and [[Shortest common supersequence#Ruby|here]].
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">a$ = "aebdaef"
b$ = "cacbac"
print lcs$(a$,b$)
end
 
FUNCTION lcs$(a$, b$)
IF a$ = "" OR b$ = "" THEN
lcs$ = ""
goto [ext]
end if
 
IF RIGHT$(a$, 1) = RIGHT$(b$, 1) THEN
lcs$ = lcs$(LEFT$(a$, LEN(a$) - 1), LEFT$(b$, LEN(b$) - 1)) + RIGHT$(a$, 1)
goto [ext]
ELSE
x1$ = lcs$(a$, LEFT$(b$, LEN(b$) - 1))
x2$ = lcs$(LEFT$(a$, LEN(a$) - 1), b$)
IF LEN(x1$) > LEN(x2$) THEN
lcs$ = x1$
goto [ext]
ELSE
lcs$ = x2$
goto [ext]
END IF
END IF
[ext]
END FUNCTION</syntaxhighlight><pre>aba</pre>
 
=={{header|Rust}}==
Dynamic programming version:
<syntaxhighlight lang="rust">
use std::cmp;
 
fn lcs(string1: String, string2: String) -> (usize, String){
let total_rows = string1.len() + 1;
let total_columns = string2.len() + 1;
// rust doesn't allow accessing string by index
let string1_chars = string1.as_bytes();
let string2_chars = string2.as_bytes();
 
let mut table = vec![vec![0; total_columns]; total_rows];
 
for row in 1..total_rows{
for col in 1..total_columns {
if string1_chars[row - 1] == string2_chars[col - 1]{
table[row][col] = table[row - 1][col - 1] + 1;
} else {
table[row][col] = cmp::max(table[row][col-1], table[row-1][col]);
}
}
}
 
let mut common_seq = Vec::new();
let mut x = total_rows - 1;
let mut y = total_columns - 1;
 
while x != 0 && y != 0 {
// Check element above is equal
if table[x][y] == table[x - 1][y] {
x = x - 1;
}
// check element to the left is equal
else if table[x][y] == table[x][y - 1] {
y = y - 1;
}
else {
// check the two element at the respective x,y position is same
assert_eq!(string1_chars[x-1], string2_chars[y-1]);
let char = string1_chars[x - 1];
common_seq.push(char);
x = x - 1;
y = y - 1;
}
}
common_seq.reverse();
(table[total_rows - 1][total_columns - 1], String::from_utf8(common_seq).unwrap())
}
 
fn main() {
let res = lcs("abcdaf".to_string(), "acbcf".to_string());
assert_eq!((4 as usize, "abcf".to_string()), res);
let res = lcs("thisisatest".to_string(), "testing123testing".to_string());
assert_eq!((7 as usize, "tsitest".to_string()), res);
// LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.
let res = lcs("AGGTAB".to_string(), "GXTXAYB".to_string());
assert_eq!((4 as usize, "GTAB".to_string()), res);
}</syntaxhighlight>
 
=={{header|Scala}}==
{{works with|Scala 2.13}}
Using lazily evaluated lists:
<syntaxhighlight lang="scala"> def lcsLazy[T](u: IndexedSeq[T], v: IndexedSeq[T]): IndexedSeq[T] = {
def su = subsets(u).to(LazyList)
def sv = subsets(v).to(LazyList)
su.intersect(sv).headOption match{
case Some(sub) => sub
case None => IndexedSeq[T]()
}
}
def subsets[T](u: IndexedSeq[T]): Iterator[IndexedSeq[T]] = {
u.indices.reverseIterator.flatMap{n => u.indices.combinations(n + 1).map(_.map(u))}
}</syntaxhighlight>
 
Using recursion:
<syntaxhighlight lang="scala"> def lcsRec[T]: (IndexedSeq[T], IndexedSeq[T]) => IndexedSeq[T] = {
case (a +: as, b +: bs) if a == b => a +: lcsRec(as, bs)
case (as, bs) if as.isEmpty || bs.isEmpty => IndexedSeq[T]()
case (a +: as, b +: bs) =>
val (s1, s2) = (lcsRec(a +: as, bs), lcsRec(as, b +: bs))
if(s1.length > s2.length) s1 else s2
}</syntaxhighlight>
 
{{out}}
<pre>scala> lcsLazy("thisisatest", "testing123testing").mkString
res0: String = tsitest
 
scala> lcsRec("thisisatest", "testing123testing").mkString
res1: String = tsitest</pre>
{{works with|Scala 2.9.3}}
Recursive version:
<syntaxhighlight lang="scala"> def lcs[T]: (List[T], List[T]) => List[T] = {
case (_, Nil) => Nil
case (Nil, _) => Nil
case (x :: xs, y :: ys) if x == y => x :: lcs(xs, ys)
case (x :: xs, y :: ys) => {
(lcs(x :: xs, ys), lcs(xs, y :: ys)) match {
case (xs, ys) if xs.length > ys.length => xs
case (xs, ys) => ys
}
}
}</syntaxhighlight>
 
The dynamic programming version:
 
<syntaxhighlight lang="scala"> case class Memoized[A1, A2, B](f: (A1, A2) => B) extends ((A1, A2) => B) {
val cache = scala.collection.mutable.Map.empty[(A1, A2), B]
def apply(x: A1, y: A2) = cache.getOrElseUpdate((x, y), f(x, y))
}
 
lazy val lcsM: Memoized[List[Char], List[Char], List[Char]] = Memoized {
case (_, Nil) => Nil
case (Nil, _) => Nil
case (x :: xs, y :: ys) if x == y => x :: lcsM(xs, ys)
case (x :: xs, y :: ys) => {
(lcsM(x :: xs, ys), lcsM(xs, y :: ys)) match {
case (xs, ys) if xs.length > ys.length => xs
case (xs, ys) => ys
}
}
}</syntaxhighlight>
 
{{out}}
scala> lcsM("thisiaatest".toList, "testing123testing".toList).mkString
res0: String = tsitest
 
=={{header|Scheme}}==
 
Port from Clojure.
 
<syntaxhighlight lang="scheme">
;; using srfi-69
(define (memoize proc)
(let ((results (make-hash-table)))
(lambda args
(or (hash-table-ref results args (lambda () #f))
(let ((r (apply proc args)))
(hash-table-set! results args r)
r)))))
 
(define (longest xs ys)
(if (> (length xs)
(length ys))
xs ys))
 
(define lcs
(memoize
(lambda (seqx seqy)
(if (pair? seqx)
(let ((x (car seqx))
(xs (cdr seqx)))
(if (pair? seqy)
(let ((y (car seqy))
(ys (cdr seqy)))
(if (equal? x y)
(cons x (lcs xs ys))
(longest (lcs seqx ys)
(lcs xs seqy))))
'()))
'()))))
</syntaxhighlight>
 
Testing:
<syntaxhighlight lang="scheme">
 
(test-group
"lcs"
(test '() (lcs '(a b c) '(A B C)))
(test '(a) (lcs '(a a a) '(A A a)))
(test '() (lcs '() '(a b c)))
(test '() (lcs '(a b c) '()))
(test '(a c) (lcs '(a b c) '(a B c)))
(test '(b) (lcs '(a b c) '(A b C)))
(test '( b d e f g h j)
(lcs '(a b d e f g h i j)
'(A b c d e f F a g h j))))
</syntaxhighlight>
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const func string: lcs (in string: a, in string: b) is func
result
var string: lcs is "";
local
var string: x is "";
var string: y is "";
begin
if a <> "" and b <> "" then
if a[length(a)] = b[length(b)] then
lcs := lcs(a[.. pred(length(a))], b[.. pred(length(b))]) & str(a[length(a)]);
else
x := lcs(a, b[.. pred(length(b))]);
y := lcs(a[.. pred(length(a))], b);
if length(x) > length(y) then
lcs := x;
else
lcs := y;
end if;
end if;
end if;
end func;
 
const proc: main is func
begin
writeln(lcs("thisisatest", "testing123testing"));
writeln(lcs("1234", "1224533324"));
end func;</syntaxhighlight>
 
Output:
<pre>
tsitest
1234
</pre>
 
=={{header|SequenceL}}==
{{trans|C#}}
 
It is interesting to note that x and y are computed in parallel, dividing work across threads repeatedly down through the recursion.
 
<syntaxhighlight lang="sequencel">import <Utilities/Sequence.sl>;
lcsBack(a(1), b(1)) :=
x, xs, y, ys = xstr[0..0], xstr[1..-1], ystr[0..0], ystr[1..-1]
if x == ylet
xaSub +:= lcsallButLast(xs, ysa);
bSub := allButLast(b);
x := lcsBack(a, bSub);
y := lcsBack(aSub, b);
in
[] when size(a) = 0 or size(b) = 0
else
[lcslcsBack(xstraSub, ysbSub), lcs(xs,++ ystr[last(a)].max_by {|x|when x.size}last(a) = last(b)
endelse
x when size(x) > size(y)
end</lang>
else
y;
 
main(args(2)) :=
===Dynamic Programming===
lcsBack(args[1], args[2]) when size(args) >=2
else
lcsBack("thisisatest", "testing123testing");</syntaxhighlight>
 
{{out}}
<pre>
"tsitest"
</pre>
 
=={{header|SETL}}==
Recursive; Also works on tuples (vectors)
<syntaxhighlight lang="setl"> op .longest(a, b);
return if #a > #b then a else b end;
end .longest;
procedure lcs(a, b);
if exists empty in {a, b} | #empty = 0 then
return empty;
elseif a(1) = b(1) then
return a(1) + lcs(a(2..), b(2..));
else
return lcs(a(2..), b) .longest lcs(a, b(2..));
end;
end lcs;</syntaxhighlight>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func lcs(xstr, ystr) is cached {
 
xstr.is_empty && return xstr
ystr.is_empty && return ystr
 
var(x, xs, y, ys) = (xstr.first(1), xstr.slice(1),
ystr.first(1), ystr.slice(1))
 
if (x == y) {
x + lcs(xs, ys)
} else {
[lcs(xstr, ys), lcs(xs, ystr)].max_by { .len }
}
}
 
say lcs("thisisatest", "testing123testing")</syntaxhighlight>
{{out}}
<pre>
tsitest
</pre>
 
=={{header|Slate}}==
We define this on the <tt>Sequence</tt> type since there is nothing string-specific about the concept.
===Recursion===
{{trans|Java}}
<syntaxhighlight lang="slate">s1@(Sequence traits) longestCommonSubsequenceWith: s2@(Sequence traits)
<lang ruby>def lcs(a, b)
[
lengths = Array.new(a.size+1) { Array.new(b.size+1) { 0 } }
s1 isEmpty \/ s2 isEmpty ifTrue: [^ {}].
# row 0 and column 0 are initialized to 0 already
s1 last = s2 last
a.split('').each_with_index { |x, i|
ifTrue: [(s1 allButLast longestCommonSubsequenceWith: s2 allButLast) copyWith: s1 last]
b.split('').each_with_index { |y, j|
ifFalse: if[| x ==y y|
x: (s1 lengths[i+1][j+1]longestCommonSubsequenceWith: =s2 lengths[i][j] + 1allButLast).
y: (s1 allButLast longestCommonSubsequenceWith: s2).
else
x length > y length ifTrue: lengths[i+1][j+1x] =ifFalse: \[y]]
].</syntaxhighlight>
[lengths[i+1][j], lengths[i][j+1]].max
===Dynamic Programming===
end
{{trans|Ruby}}
<syntaxhighlight lang="slate">s1@(Sequence traits) longestCommonSubsequenceWith: s2@(Sequence traits)
[| lengths |
lengths: (ArrayMD newWithDimensions: {s1 length `cache. s2 length `cache} defaultElement: 0).
s1 doWithIndex: [| :elem1 :index1 |
s2 doWithIndex: [| :elem2 :index2 |
elem1 = elem2
ifTrue: [lengths at: {index1 + 1. index2 + 1} put: (lengths at: {index1. index2}) + 1]
ifFalse: [lengths at: {index1 + 1. index2 + 1} put:
((lengths at: {index1 + 1. index2}) max: (lengths at: {index1. index2 + 1}))]]].
([| :result index1 index2 |
index1: s1 length.
index2: s2 length.
[index1 isPositive /\ index2 isPositive]
whileTrue:
[(lengths at: {index1. index2}) = (lengths at: {index1 - 1. index2})
ifTrue: [index1: index1 - 1]
ifFalse: [(lengths at: {index1. index2}) = (lengths at: {index1. index2 - 1})]
ifTrue: [index2: index2 - 1]
ifFalse: ["assert: (s1 at: index1 - 1) = (s2 at: index2 - 1)."
result nextPut: (s1 at: index1 - 1).
index1: index1 - 1.
index2: index2 - 1]]
] writingAs: s1) reverse
].</syntaxhighlight>
 
=={{header|Swift}}==
Swift 5.1
===Recursion===
<syntaxhighlight lang="swift">rlcs(_ s1: String, _ s2: String) -> String {
if s1.count == 0 || s2.count == 0 {
return ""
} else if s1[s1.index(s1.endIndex, offsetBy: -1)] == s2[s2.index(s2.endIndex, offsetBy: -1)] {
return rlcs(String(s1[s1.startIndex..<s1.index(s1.endIndex, offsetBy: -1)]),
String(s2[s2.startIndex..<s2.index(s2.endIndex, offsetBy: -1)])) + String(s1[s1.index(s1.endIndex, offsetBy: -1)])
} else {
let str1 = rlcs(s1, String(s2[s2.startIndex..<s2.index(s2.endIndex, offsetBy: -1)]))
let str2 = rlcs(String(s1[s1.startIndex..<s1.index(s1.endIndex, offsetBy: -1)]), s2)
 
return str1.count > str2.count ? str1 : str2
}
}</syntaxhighlight>
 
===Dynamic Programming===
<syntaxhighlight lang="swift">func lcs(_ s1: String, _ s2: String) -> String {
var lens = Array(
repeating:Array(repeating: 0, count: s2.count + 1),
count: s1.count + 1
)
for i in 0..<s1.count {
for j in 0..<s2.count {
if s1[s1.index(s1.startIndex, offsetBy: i)] == s2[s2.index(s2.startIndex, offsetBy: j)] {
lens[i + 1][j + 1] = lens[i][j] + 1
} else {
lens[i + 1][j + 1] = max(lens[i + 1][j], lens[i][j + 1])
}
}
}
# read the substring out from the matrix
resultvar returnStr = ""
var x, y = a.size, bs1.sizecount
while x != 0 andvar y != 0s2.count
while x != 0 if&& lengths[x][y] =!= lengths[x-1][y]0 {
if lens[x][y] == lens[x - 1][y] {
x -= 1
elsif} lengthselse if lens[x][y] == lengthslens[x][y - 1] {
y -= 1
} else {
#returnStr assert+= aString(s1[s1.index(s1.startIndex, offsetBy: x -1] == b[y-1)])
result << a[x-1]
x -= 1
y -= 1
end}
end}
result.reverse
return String(returnStr.reversed())
end</lang>
}</syntaxhighlight>
 
=={{header|Tcl}}==
Both solutions translated from the Java.
===Recursive===
{{trans|Java}}
<lang tcl>proc r_lcs {a b} {
<syntaxhighlight lang="tcl">proc r_lcs {a b} {
if {$a eq "" || $b eq ""} {return ""}
set a_ [string range $a 1 end]
Line 546 ⟶ 3,336:
return [expr {[string length $x] > [string length $y] ? $x :$y}]
}
}</langsyntaxhighlight>
===Dynamic===
{{trans|Java}}
{{works with|Tcl|8.5}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
namespace import ::tcl::mathop::+
namespace import ::tcl::mathop::-
Line 572 ⟶ 3,363:
set x $la
set y $lb
while {$x > 0 && $xy > 0} {
if {[lindex $lengths $x $y] == [lindex $lengths [- $x 1] $y]} {
incr x -1
Line 587 ⟶ 3,378:
}
return [string reverse $result]
}</langsyntaxhighlight>
 
===Performance Comparison===
<langsyntaxhighlight lang="tcl">% time {d_lcs thisisatest testing123testing} 10
637.5 microseconds per iteration
% time {r_lcs thisisatest testing123testing} 10
1275566.8 microseconds per iteration</langsyntaxhighlight>
 
=={{header|Ursala}}==
This uses the same recursive algorithm as in the Haskell example,
and works on lists of any type.
<syntaxhighlight lang="ursala">#import std
 
lcs = ~&alrB^& ~&E?abh/~&alh2fabt2RC @faltPrXlrtPXXPW leql?/~&r ~&l</syntaxhighlight>
test program:
<syntaxhighlight lang="ursala">#cast %s
 
example = lcs('thisisatest','testing123testing')</syntaxhighlight>
{{out}}
<pre>'tsitest'</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
<syntaxhighlight lang="wren">var lcs // recursive
lcs = Fn.new { |x, y|
if (x.count == 0 || y.count == 0) return ""
var x1 = x[0...-1]
var y1 = y[0...-1]
if (x[-1] == y[-1]) return lcs.call(x1, y1) + x[-1]
var x2 = lcs.call(x, y1)
var y2 = lcs.call(x1, y)
return (x2.count > y2.count) ? x2 : y2
}
 
var x = "thisisatest"
var y = "testing123testing"
System.print(lcs.call(x, y))</syntaxhighlight>
 
{{out}}
<pre>
tsitest
</pre>
 
=={{header|zkl}}==
This is quite vile in terms of [time] efficiency, another algorithm should be used for real work.
{{trans|D}}
<syntaxhighlight lang="zkl">fcn lcs(a,b){
if(not a or not b) return("");
if (a[0]==b[0]) return(a[0] + self.fcn(a[1,*],b[1,*]));
return(fcn(x,y){if(x.len()>y.len())x else y}(lcs(a,b[1,*]),lcs(a[1,*],b)))
}</syntaxhighlight>
The last line looks strange but it is just return(lambda longest(lcs.lcs))
{{out}}
<pre>
zkl: lcs("thisisatest", "testing123testing")
tsitest
</pre>
2,022

edits