I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Line circle intersection

Line circle intersection is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

In plane geometry, a line (or segment) may intersect a circle at 0, 1 or 2 points.

Implement a method (function, procedure etc.) in your language which takes as parameters:

• the starting point of a line;
• the point where the line ends;
• the center point of a circle;
• whether the line is a segment or extends to infinity beyond the above points.

The method should return the intersection points (if any) of the circle and the line.

Illustrate your method with some examples (or use the Go examples below).

References

## C

Translation of: Go
`#include <math.h>#include <stdbool.h>#include <stdio.h> const double eps = 1e-14; typedef struct point_t {    double x, y;} point; point make_point(double x, double y) {    point p = { x, y };    return p;} void print_point(point p) {    double x = p.x;    double y = p.y;    if (x == 0) {        x = 0;    }    if (y == 0) {        y = 0;    }    printf("(%g, %g)", x, y);} double sq(double x) {    return x * x;} bool within(double x1, double y1, double x2, double y2, double x, double y) {    double d1 = sqrt(sq(x2 - x1) + sq(y2 - y1));    // distance between end-points    double d2 = sqrt(sq(x - x1) + sq(y - y1));      // distance from point to one end    double d3 = sqrt(sq(x2 - x) + sq(y2 - y));      // distance from point to other end    double delta = d1 - d2 - d3;    return fabs(delta) < eps;   // true if delta is less than a small tolerance} int rxy(double x1, double y1, double x2, double y2, double x, double y, bool segment) {    if (!segment || within(x1, y1, x2, y2, x, y)) {        print_point(make_point(x, y));        return 1;    } else {        return 0;    }} double fx(double A, double B, double C, double x) {    return -(A * x + C) / B;} double fy(double A, double B, double C, double y) {    return -(B * y + C) / A;} // Prints the intersection points (if any) of a circle, center 'cp' with radius 'r',// and either an infinite line containing the points 'p1' and 'p2'// or a segment drawn between those points.void intersects(point p1, point p2, point cp, double r, bool segment) {    double x0 = cp.x, y0 = cp.y;    double x1 = p1.x, y1 = p1.y;    double x2 = p2.x, y2 = p2.y;    double A = y2 - y1;    double B = x1 - x2;    double C = x2 * y1 - x1 * y2;    double a = sq(A) + sq(B);    double b, c, d;    bool bnz = true;    int cnt = 0;     if (fabs(B) >= eps) {        // if B isn't zero or close to it        b = 2 * (A * C + A * B * y0 - sq(B) * x0);        c = sq(C) + 2 * B * C * y0 - sq(B) * (sq(r) - sq(x0) - sq(y0));    } else {        b = 2 * (B * C + A * B * x0 - sq(A) * y0);        c = sq(C) + 2 * A * C * x0 - sq(A) * (sq(r) - sq(x0) - sq(y0));        bnz = false;    }    d = sq(b) - 4 * a * c; // discriminant    if (d < 0) {        // line & circle don't intersect        printf("[]\n");        return;    }     if (d == 0) {        // line is tangent to circle, so just one intersect at most        if (bnz) {            double x = -b / (2 * a);            double y = fx(A, B, C, x);            cnt = rxy(x1, y1, x2, y2, x, y, segment);        } else {            double y = -b / (2 * a);            double x = fy(A, B, C, y);            cnt = rxy(x1, y1, x2, y2, x, y, segment);        }    } else {        // two intersects at most        d = sqrt(d);        if (bnz) {            double x = (-b + d) / (2 * a);            double y = fx(A, B, C, x);            cnt = rxy(x1, y1, x2, y2, x, y, segment);             x = (-b - d) / (2 * a);            y = fx(A, B, C, x);            cnt += rxy(x1, y1, x2, y2, x, y, segment);        } else {            double y = (-b + d) / (2 * a);            double x = fy(A, B, C, y);            cnt = rxy(x1, y1, x2, y2, x, y, segment);             y = (-b - d) / (2 * a);            x = fy(A, B, C, y);            cnt += rxy(x1, y1, x2, y2, x, y, segment);        }    }     if (cnt <= 0) {        printf("[]");    }} int main() {    point cp = make_point(3, -5);    double r = 3.0;    printf("The intersection points (if any) between:\n");    printf("  A circle, center (3, -5) with radius 3, and:\n");    printf("    a line containing the points (-10, 11) and (10, -9) is/are:\n");    printf("      ");    intersects(make_point(-10, 11), make_point(10, -9), cp, r, false);    printf("\n    a segment starting at (-10, 11) and ending at (-11, 12) is/are\n");    printf("      ");    intersects(make_point(-10, 11), make_point(-11, 12), cp, r, true);    printf("\n    a horizontal line containing the points (3, -2) and (7, -2) is/are:\n");    printf("      ");    intersects(make_point(3, -2), make_point(7, -2), cp, r, false);    printf("\n");     cp = make_point(0, 0);    r = 4.0;    printf("  A circle, center (0, 0) with radius 4, and:\n");    printf("    a vertical line containing the points (0, -3) and (0, 6) is/are:\n");    printf("      ");    intersects(make_point(0, -3), make_point(0, 6), cp, r, false);    printf("\n    a vertical segment starting at (0, -3) and ending at (0, 6) is/are:\n");    printf("      ");    intersects(make_point(0, -3), make_point(0, 6), cp, r, true);    printf("\n");     cp = make_point(4,2);    r = 5.0;    printf("  A circle, center (4, 2) with radius 5, and:\n");    printf("    a line containing the points (6, 3) and (10, 7) is/are:\n");    printf("      ");    intersects(make_point(6, 3), make_point(10, 7), cp, r, false);    printf("\n    a segment starting at (7, 4) and ending at (11, 8) is/are:\n");    printf("      ");    intersects(make_point(7, 4), make_point(11, 8), cp, r, true);    printf("\n");     return 0;}`
Output:
```The intersection points (if any) between:
A circle, center (3, -5) with radius 3, and:
a line containing the points (-10, 11) and (10, -9) is/are:
(6, -5)(3, -2)
a segment starting at (-10, 11) and ending at (-11, 12) is/are
[]
a horizontal line containing the points (3, -2) and (7, -2) is/are:
(3, -2)
A circle, center (0, 0) with radius 4, and:
a vertical line containing the points (0, -3) and (0, 6) is/are:
(0, 4)(0, -4)
a vertical segment starting at (0, -3) and ending at (0, 6) is/are:
(0, 4)
A circle, center (4, 2) with radius 5, and:
a line containing the points (6, 3) and (10, 7) is/are:
(8, 5)(1, -2)
a segment starting at (7, 4) and ending at (11, 8) is/are:
(8, 5)```

## C++

Translation of: Kotlin
`#include <iostream>#include <utility>#include <vector> using Point = std::pair<double, double>;constexpr auto eps = 1e-14; std::ostream &operator<<(std::ostream &os, const Point &p) {    auto x = p.first;    if (x == 0.0) {        x = 0.0;    }    auto y = p.second;    if (y == 0.0) {        y = 0.0;    }    return os << '(' << x << ", " << y << ')';} template <typename T>std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {    auto itr = v.cbegin();    auto end = v.cend();     os << '[';    if (itr != end) {        os << *itr;        itr = std::next(itr);    }    while (itr != end) {        os << ", " << *itr;        itr = std::next(itr);    }    return os << ']';} double sq(double x) {    return x * x;} std::vector<Point> intersects(const Point &p1, const Point &p2, const Point &cp, double r, bool segment) {    std::vector<Point> res;    auto x0 = cp.first;    auto y0 = cp.second;    auto x1 = p1.first;    auto y1 = p1.second;    auto x2 = p2.first;    auto y2 = p2.second;    auto A = y2 - y1;    auto B = x1 - x2;    auto C = x2 * y1 - x1 * y2;    auto a = sq(A) + sq(B);    double b, c;    bool bnz = true;    if (abs(B) >= eps) {        b = 2 * (A * C + A * B * y0 - sq(B) * x0);        c = sq(C) + 2 * B * C * y0 - sq(B) * (sq(r) - sq(x0) - sq(y0));    } else {        b = 2 * (B * C + A * B * x0 - sq(A) * y0);        c = sq(C) + 2 * A * C * x0 - sq(A) * (sq(r) - sq(x0) - sq(y0));        bnz = false;    }    auto d = sq(b) - 4 * a * c; // discriminant    if (d < 0) {        return res;    }     // checks whether a point is within a segment    auto within = [x1, y1, x2, y2](double x, double y) {        auto d1 = sqrt(sq(x2 - x1) + sq(y2 - y1));  // distance between end-points        auto d2 = sqrt(sq(x - x1) + sq(y - y1));    // distance from point to one end        auto d3 = sqrt(sq(x2 - x) + sq(y2 - y));    // distance from point to other end        auto delta = d1 - d2 - d3;        return abs(delta) < eps;                    // true if delta is less than a small tolerance    };     auto fx = [A, B, C](double x) {        return -(A * x + C) / B;    };     auto fy = [A, B, C](double y) {        return -(B * y + C) / A;    };     auto rxy = [segment, &res, within](double x, double y) {        if (!segment || within(x, y)) {            res.push_back(std::make_pair(x, y));        }    };     double x, y;    if (d == 0.0) {        // line is tangent to circle, so just one intersect at most        if (bnz) {            x = -b / (2 * a);            y = fx(x);            rxy(x, y);        } else {            y = -b / (2 * a);            x = fy(y);            rxy(x, y);        }    } else {        // two intersects at most        d = sqrt(d);        if (bnz) {            x = (-b + d) / (2 * a);            y = fx(x);            rxy(x, y);            x = (-b - d) / (2 * a);            y = fx(x);            rxy(x, y);        } else {            y = (-b + d) / (2 * a);            x = fy(y);            rxy(x, y);            y = (-b - d) / (2 * a);            x = fy(y);            rxy(x, y);        }    }     return res;} int main() {    std::cout << "The intersection points (if any) between:\n";     auto cp = std::make_pair(3.0, -5.0);    auto r = 3.0;    std::cout << "  A circle, center " << cp << " with radius " << r << ", and:\n";     auto p1 = std::make_pair(-10.0, 11.0);    auto p2 = std::make_pair(10.0, -9.0);    std::cout << "    a line containing the points " << p1 << " and " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, false) << '\n';     p2 = std::make_pair(-10.0, 12.0);    std::cout << "    a segment starting at " << p1 << " and ending at " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, true) << '\n';     p1 = std::make_pair(3.0, -2.0);    p2 = std::make_pair(7.0, -2.0);    std::cout << "    a horizontal line containing the points " << p1 << " and " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, false) << '\n';     cp = std::make_pair(0.0, 0.0);    r = 4.0;    std::cout << "  A circle, center " << cp << " with radius " << r << ", and:\n";     p1 = std::make_pair(0.0, -3.0);    p2 = std::make_pair(0.0, 6.0);    std::cout << "    a vertical line containing the points " << p1 << " and " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, false) << '\n';    std::cout << "    a vertical segment containing the points " << p1 << " and " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, true) << '\n';     cp = std::make_pair(4.0, 2.0);    r = 5.0;    std::cout << "  A circle, center " << cp << " with radius " << r << ", and:\n";     p1 = std::make_pair(6.0, 3.0);    p2 = std::make_pair(10.0, 7.0);    std::cout << "    a line containing the points " << p1 << " and " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, false) << '\n';     p1 = std::make_pair(7.0, 4.0);    p2 = std::make_pair(11.0, 8.0);    std::cout << "    a segment starting at " << p1 << " and ending at " << p2 << " is/are:\n";    std::cout << "     " << intersects(p1, p2, cp, r, true) << '\n';     return 0;}`
Output:
```The intersection points (if any) between:
A circle, center (3, -5) with radius 3, and:
a line containing the points (-10, 11) and (10, -9) is/are:
[(6, -5), (3, -2)]
a segment starting at (-10, 11) and ending at (-10, 12) is/are:
[]
a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3, -2)]
A circle, center (0, 0) with radius 4, and:
a vertical line containing the points (0, -3) and (0, 6) is/are:
[(0, 4), (0, -4)]
a vertical segment containing the points (0, -3) and (0, 6) is/are:
[(0, 4)]
A circle, center (4, 2) with radius 5, and:
a line containing the points (6, 3) and (10, 7) is/are:
[(8, 5), (1, -2)]
a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8, 5)]```

## D

Translation of: C++
`import std.format;import std.math;import std.stdio; immutable EPS = 1e-14; struct Point {    private double x;    private double y;     public this(double x, double y) {        this.x = x;        this.y = y;    }     public double getX() {        return x;    }     public double getY() {        return y;    }     void toString(scope void delegate(const(char)[]) sink, FormatSpec!char fmt) const {        double mx = x;        double my = y;         // eliminate negative zero        if (mx == 0.0) {            mx = 0.0;        }         // eliminate negative zero        if (my == 0.0) {            my = 0.0;        }         sink("(");        formatValue(sink, mx, fmt);        sink(", ");        formatValue(sink, my, fmt);        sink(")");    }} auto sq(T)(T x) {    return x * x;} auto intersects(const Point p1, const Point p2, const Point cp, double r, bool segment) {    auto x0 = cp.x;    auto y0 = cp.y;    auto x1 = p1.x;    auto y1 = p1.y;    auto x2 = p2.x;    auto y2 = p2.y;     auto A = y2 - y1;    auto B = x1 - x2;    auto C = x2 * y1 - x1 * y2;     auto a = sq(A) + sq(B);    double b, c;     bool bnz = true;     Point[] res;     if (abs(B) >= EPS) {        b = 2 * (A * C + A * B * y0 - sq(B) * x0);        c = sq(C) + 2 * B * C * y0 - sq(B) * (sq(r) - sq(x0) - sq(y0));    } else {        b = 2 * (B * C + A * B * x0 - sq(A) * y0);        c = sq(C) + 2 * A * C * x0 - sq(A) * (sq(r) - sq(x0) - sq(y0));        bnz = false;    }     auto d = sq(b) - 4 * a * c; // discriminant    if (d < 0) {        return res;    }     auto within(double x, double y) {        auto d1 = sqrt(sq(x2 - x1) + sq(y2 - y1));  // distance between end-points        auto d2 = sqrt(sq(x - x1) + sq(y - y1));    // distance from point to one end        auto d3 = sqrt(sq(x2 - x) + sq(y2 - y));    // distance from point to other end        auto delta = d1 - d2 - d3;        return abs(delta) < EPS;                    // true if delta is less than a small tolerance    }     auto fx(double x) {        return -(A * x + C) / B;    }     auto fy(double y) {        return -(B * y + C) / A;    }     auto rxy(double x, double y) {        if (!segment || within(x, y)) {            res ~= Point(x, y);        }    }     double x, y;    if (d == 0.0) {        // line is tangent to circle, so just one intersect at most        if (bnz) {            x = -b / (2 * a);            y = fx(x);            rxy(x, y);        } else {            y = -b / (2 * a);            x = fy(y);            rxy(x, y);        }    } else {        // two intersects at most        d = sqrt(d);        if (bnz) {            x = (-b + d) / (2 * a);            y = fx(x);            rxy(x, y);            x = (-b - d) / (2 * a);            y = fx(x);            rxy(x, y);        } else {            y = (-b + d) / (2 * a);            x = fy(y);            rxy(x, y);            y = (-b - d) / (2 * a);            x = fy(y);            rxy(x, y);        }    }     return res;} void main() {    writeln("The intersection points (if any) between:");     auto cp = Point(3.0, -5.0);    auto r = 3.0;    writeln("  A circle, center ", cp, " with radius ", r, ", and:");     auto p1 = Point(-10.0, 11.0);    auto p2 = Point(10.0, -9.0);    writeln("    a line containing the points ", p1, " and ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, false));     p2 = Point(-10.0, 12.0);    writeln("    a segment starting at ", p1, " and ending at ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, true));     p1 = Point(3.0, -2.0);    p2 = Point(7.0, -2.0);    writeln("    a horizontal line containing the points ", p1, " and ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, false));     cp = Point(0.0, 0.0);    r = 4.0;    writeln("  A circle, center ", cp, " with radius ", r, ", and:");     p1 = Point(0.0, -3.0);    p2 = Point(0.0, 6.0);    writeln("    a vertical line containing the points ", p1, " and ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, false));    writeln("    a vertical segment containing the points ", p1, " and ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, true));     cp = Point(4.0, 2.0);    r = 5.0;    writeln("  A circle, center ", cp, " with radius ", r, ", and:");     p1 = Point(6.0, 3.0);    p2 = Point(10.0, 7.0);    writeln("    a line containing the points ", p1, " and ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, false));     p1 = Point(7.0, 4.0);    p2 = Point(11.0, 8.0);    writeln("    a segment starting at ", p1, " and ending at ", p2, " is/are:");    writeln("     ", intersects(p1, p2, cp, r, true));}`
Output:
```The intersection points (if any) between:
A circle, center (3, -5) with radius 3, and:
a line containing the points (-10, 11) and (10, -9) is/are:
[(6, -5), (3, -2)]
a segment starting at (-10, 11) and ending at (-10, 12) is/are:
[]
a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3, -2)]
A circle, center (0, 0) with radius 4, and:
a vertical line containing the points (0, -3) and (0, 6) is/are:
[(0, 4), (0, -4)]
a vertical segment containing the points (0, -3) and (0, 6) is/are:
[(0, 4)]
A circle, center (4, 2) with radius 5, and:
a line containing the points (6, 3) and (10, 7) is/are:
[(8, 5), (1, -2)]
a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8, 5)]```

## Go

`package main import (    "fmt"    "math") const eps = 1e-14 // say type point struct{ x, y float64 } func (p point) String() string {    // hack to get rid of negative zero    // compiler treats 0 and -0 as being same     if p.x == 0 {        p.x = 0    }    if p.y == 0 {        p.y = 0    }    return fmt.Sprintf("(%g, %g)", p.x, p.y)} func sq(x float64) float64 { return x * x } // Returns the intersection points (if any) of a circle, center 'cp' with radius 'r',// and either an infinite line containing the points 'p1' and 'p2'// or a segment drawn between those points.func intersects(p1, p2, cp point, r float64, segment bool) []point {    var res []point    x0, y0 := cp.x, cp.y    x1, y1 := p1.x, p1.y    x2, y2 := p2.x, p2.y    A := y2 - y1    B := x1 - x2    C := x2*y1 - x1*y2    a := sq(A) + sq(B)    var b, c float64    var bnz = true    if math.Abs(B) >= eps { // if B isn't zero or close to it        b = 2 * (A*C + A*B*y0 - sq(B)*x0)        c = sq(C) + 2*B*C*y0 - sq(B)*(sq(r)-sq(x0)-sq(y0))    } else {        b = 2 * (B*C + A*B*x0 - sq(A)*y0)        c = sq(C) + 2*A*C*x0 - sq(A)*(sq(r)-sq(x0)-sq(y0))        bnz = false    }    d := sq(b) - 4*a*c // discriminant    if d < 0 {        // line & circle don't intersect        return res    }     // checks whether a point is within a segment    within := func(x, y float64) bool {        d1 := math.Sqrt(sq(x2-x1) + sq(y2-y1)) // distance between end-points        d2 := math.Sqrt(sq(x-x1) + sq(y-y1))   // distance from point to one end        d3 := math.Sqrt(sq(x2-x) + sq(y2-y))   // distance from point to other end        delta := d1 - d2 - d3        return math.Abs(delta) < eps // true if delta is less than a small tolerance    }     var x, y float64    fx := func() float64 { return -(A*x + C) / B }    fy := func() float64 { return -(B*y + C) / A }    rxy := func() {        if !segment || within(x, y) {            res = append(res, point{x, y})        }    }     if d == 0 {        // line is tangent to circle, so just one intersect at most        if bnz {            x = -b / (2 * a)            y = fx()            rxy()        } else {            y = -b / (2 * a)            x = fy()            rxy()        }    } else {        // two intersects at most        d = math.Sqrt(d)        if bnz {            x = (-b + d) / (2 * a)            y = fx()            rxy()            x = (-b - d) / (2 * a)            y = fx()            rxy()        } else {            y = (-b + d) / (2 * a)            x = fy()            rxy()            y = (-b - d) / (2 * a)            x = fy()            rxy()        }    }    return res} func main() {    cp := point{3, -5}    r := 3.0    fmt.Println("The intersection points (if any) between:")    fmt.Println("\n  A circle, center (3, -5) with radius 3, and:")    fmt.Println("\n    a line containing the points (-10, 11) and (10, -9) is/are:")    fmt.Println("     ", intersects(point{-10, 11}, point{10, -9}, cp, r, false))    fmt.Println("\n    a segment starting at (-10, 11) and ending at (-11, 12) is/are")    fmt.Println("     ", intersects(point{-10, 11}, point{-11, 12}, cp, r, true))    fmt.Println("\n    a horizontal line containing the points (3, -2) and (7, -2) is/are:")    fmt.Println("     ", intersects(point{3, -2}, point{7, -2}, cp, r, false))    cp = point{0, 0}    r = 4.0    fmt.Println("\n  A circle, center (0, 0) with radius 4, and:")    fmt.Println("\n    a vertical line containing the points (0, -3) and (0, 6) is/are:")    fmt.Println("     ", intersects(point{0, -3}, point{0, 6}, cp, r, false))    fmt.Println("\n    a vertical segment starting at (0, -3) and ending at (0, 6) is/are:")    fmt.Println("     ", intersects(point{0, -3}, point{0, 6}, cp, r, true))    cp = point{4, 2}    r = 5.0    fmt.Println("\n  A circle, center (4, 2) with radius 5, and:")    fmt.Println("\n    a line containing the points (6, 3) and (10, 7) is/are:")    fmt.Println("     ", intersects(point{6, 3}, point{10, 7}, cp, r, false))    fmt.Println("\n    a segment starting at (7, 4) and ending at (11, 8) is/are:")    fmt.Println("     ", intersects(point{7, 4}, point{11, 8}, cp, r, true))}`
Output:
```The intersection points (if any) between:

A circle, center (3, -5) with radius 3, and:

a line containing the points (-10, 11) and (10, -9) is/are:
[(6, -5) (3, -2)]

a segment starting at (-10, 11) and ending at (-11, 12) is/are
[]

a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3, -2)]

A circle, center (0, 0) with radius 4, and:

a vertical line containing the points (0, -3) and (0, 6) is/are:
[(0, 4) (0, -4)]

a vertical segment starting at (0, -3) and ending at (0, 6) is/are:
[(0, 4)]

A circle, center (4, 2) with radius 5, and:

a line containing the points (6, 3) and (10, 7) is/are:
[(8, 5) (1, -2)]

a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8, 5)]
```

`import Data.Tuple.Curry main :: IO ()main =  mapM_ putStrLn \$  concatMap    (("" :) . uncurryN task)    [ ((-10, 11), (10, -9), ((3, -5), 3))    , ((-10, 11), (-11, 12), ((3, -5), 3))    , ((3, -2), (7, -2), ((3, -5), 3))    , ((3, -2), (7, -2), ((0, 0), 4))    , ((0, -3), (0, 6), ((0, 0), 4))    , ((6, 3), (10, 7), ((4, 2), 5))    , ((7, 4), (11, 18), ((4, 2), 5))    ] task :: (Double, Double)     -> (Double, Double)     -> ((Double, Double), Double)     -> [String]task pt1 pt2 circle@(pt3@(a3, b3), r) = [line, segment]  where    xs = map fun \$ lineCircleIntersection pt1 pt2 circle    ys = map fun \$ segmentCircleIntersection pt1 pt2 circle    to x = (fromIntegral . round \$ 100 * x) / 100    fun (x, y) = (to x, to y)    yo = show . fun    start = "Intersection: Circle " ++ yo pt3 ++ " " ++ show (to r) ++ " and "    end = yo pt1 ++ " " ++ yo pt2 ++ ": "    line = start ++ "Line " ++ end ++ show xs    segment = start ++ "Segment " ++ end ++ show ys segmentCircleIntersection  :: (Double, Double)  -> (Double, Double)  -> ((Double, Double), Double)  -> [(Double, Double)]segmentCircleIntersection pt1 pt2 circle =  filter (go p1 p2) \$ lineCircleIntersection pt1 pt2 circle  where    [p1, p2]      | pt1 < pt2 = [pt1, pt2]      | otherwise = [pt2, pt1]    go (x, y) (u, v) (i, j)      | x == u = y <= j && j <= v      | otherwise = x <= i && i <= u lineCircleIntersection  :: (Double, Double)  -> (Double, Double)  -> ((Double, Double), Double)  -> [(Double, Double)]lineCircleIntersection (a1, b1) (a2, b2) ((a3, b3), r) = go delta  where    (x1, x2) = (a1 - a3, a2 - a3)    (y1, y2) = (b1 - b3, b2 - b3)    (dx, dy) = (x2 - x1, y2 - y1)    drdr = dx * dx + dy * dy    d = x1 * y2 - x2 * y1    delta = r * r * drdr - d * d    sqrtDelta = sqrt delta    (sgnDy, absDy) = (sgn dy, abs dy)    u1 = (d * dy + sgnDy * dx * sqrtDelta) / drdr    u2 = (d * dy - sgnDy * dx * sqrtDelta) / drdr    v1 = (-d * dx + absDy * sqrtDelta) / drdr    v2 = (-d * dx - absDy * sqrtDelta) / drdr    go x      | 0 > x = []      | 0 == x = [(u1 + a3, v1 + b3)]      | otherwise = [(u1 + a3, v1 + b3), (u2 + a3, v2 + b3)] sgn :: Double -> Doublesgn x  | 0 > x = -1  | otherwise = 1`
Output:
```Intersection: Circle (3.0,-5.0) 3.0 and Line (-10.0,11.0) (10.0,-9.0): [(3.0,-2.0),(6.0,-5.0)]
Intersection: Circle (3.0,-5.0) 3.0 and Segment (-10.0,11.0) (10.0,-9.0): [(3.0,-2.0),(6.0,-5.0)]

Intersection: Circle (3.0,-5.0) 3.0 and Line (-10.0,11.0) (-11.0,12.0): [(3.0,-2.0),(6.0,-5.0)]
Intersection: Circle (3.0,-5.0) 3.0 and Segment (-10.0,11.0) (-11.0,12.0): []

Intersection: Circle (3.0,-5.0) 3.0 and Line (3.0,-2.0) (7.0,-2.0): [(3.0,-2.0)]
Intersection: Circle (3.0,-5.0) 3.0 and Segment (3.0,-2.0) (7.0,-2.0): [(3.0,-2.0)]

Intersection: Circle (0.0,0.0) 4.0 and Line (3.0,-2.0) (7.0,-2.0): [(3.46,-2.0),(-3.46,-2.0)]
Intersection: Circle (0.0,0.0) 4.0 and Segment (3.0,-2.0) (7.0,-2.0): [(3.46,-2.0)]

Intersection: Circle (0.0,0.0) 4.0 and Line (0.0,-3.0) (0.0,6.0): [(0.0,4.0),(0.0,-4.0)]
Intersection: Circle (0.0,0.0) 4.0 and Segment (0.0,-3.0) (0.0,6.0): [(0.0,4.0)]

Intersection: Circle (4.0,2.0) 5.0 and Line (6.0,3.0) (10.0,7.0): [(8.0,5.0),(1.0,-2.0)]
Intersection: Circle (4.0,2.0) 5.0 and Segment (6.0,3.0) (10.0,7.0): [(8.0,5.0)]

Intersection: Circle (4.0,2.0) 5.0 and Line (7.0,4.0) (11.0,18.0): [(7.46,5.61),(5.03,-2.89)]
Intersection: Circle (4.0,2.0) 5.0 and Segment (7.0,4.0) (11.0,18.0): [(7.46,5.61)]```

## Java

`import java.util.*;import java.awt.geom.*; public class LineCircleIntersection {    public static void main(String[] args) {        try {            demo();        } catch (Exception e) {            e.printStackTrace();        }    }     private static void demo() throws NoninvertibleTransformException {        Point2D center = makePoint(3, -5);        double radius = 3.0;        System.out.println("The intersection points (if any) between:");        System.out.println("\n  A circle, center (3, -5) with radius 3, and:");        System.out.println("\n    a line containing the points (-10, 11) and (10, -9) is/are:");        System.out.println("     " + toString(intersection(makePoint(-10, 11), makePoint(10, -9),                            center, radius, false)));        System.out.println("\n    a segment starting at (-10, 11) and ending at (-11, 12) is/are");        System.out.println("     " + toString(intersection(makePoint(-10, 11), makePoint(-11, 12),                            center, radius, true)));        System.out.println("\n    a horizontal line containing the points (3, -2) and (7, -2) is/are:");        System.out.println("     " + toString(intersection(makePoint(3, -2), makePoint(7, -2), center, radius, false)));        center.setLocation(0, 0);        radius = 4.0;        System.out.println("\n  A circle, center (0, 0) with radius 4, and:");        System.out.println("\n    a vertical line containing the points (0, -3) and (0, 6) is/are:");        System.out.println("     " + toString(intersection(makePoint(0, -3), makePoint(0, 6),                            center, radius, false)));        System.out.println("\n    a vertical segment starting at (0, -3) and ending at (0, 6) is/are:");        System.out.println("     " + toString(intersection(makePoint(0, -3), makePoint(0, 6),                            center, radius, true)));        center.setLocation(4, 2);        radius = 5.0;        System.out.println("\n  A circle, center (4, 2) with radius 5, and:");        System.out.println("\n    a line containing the points (6, 3) and (10, 7) is/are:");        System.out.println("     " + toString(intersection(makePoint(6, 3), makePoint(10, 7),                            center, radius, false)));        System.out.println("\n    a segment starting at (7, 4) and ending at (11, 8) is/are:");        System.out.println("     " + toString(intersection(makePoint(7, 4), makePoint(11, 8),                            center, radius, true)));    }     private static Point2D makePoint(double x, double y) {        return new Point2D.Double(x, y);    }     //    // If center of the circle is at the origin and the line is horizontal,    // it's easy to calculate the points of intersection, so to handle the    // general case, we convert the input to a coordinate system where the    // center of the circle is at the origin and the line is horizontal,    // then convert the points of intersection back to the original    // coordinate system.    //    public static List<Point2D> intersection(Point2D p1, Point2D p2, Point2D center,            double radius, boolean isSegment) throws NoninvertibleTransformException {        List<Point2D> result = new ArrayList<>();        double dx = p2.getX() - p1.getX();        double dy = p2.getY() - p1.getY();        AffineTransform trans = AffineTransform.getRotateInstance(dx, dy);        trans.invert();        trans.translate(-center.getX(), -center.getY());        Point2D p1a = trans.transform(p1, null);        Point2D p2a = trans.transform(p2, null);        double y = p1a.getY();        double minX = Math.min(p1a.getX(), p2a.getX());        double maxX = Math.max(p1a.getX(), p2a.getX());        if (y == radius || y == -radius) {            if (!isSegment || (0 <= maxX && 0 >= minX)) {                p1a.setLocation(0, y);                trans.inverseTransform(p1a, p1a);                result.add(p1a);            }        } else if (y < radius && y > -radius) {            double x = Math.sqrt(radius * radius - y * y);            if (!isSegment || (-x <= maxX && -x >= minX)) {                p1a.setLocation(-x, y);                trans.inverseTransform(p1a, p1a);                result.add(p1a);            }            if (!isSegment || (x <= maxX && x >= minX)) {                p2a.setLocation(x, y);                trans.inverseTransform(p2a, p2a);                result.add(p2a);            }        }        return result;    }     public static String toString(Point2D point) {        return String.format("(%g, %g)", point.getX(), point.getY());    }     public static String toString(List<Point2D> points) {        StringBuilder str = new StringBuilder("[");        for (int i = 0, n = points.size(); i < n; ++i) {            if (i > 0)                str.append(", ");            str.append(toString(points.get(i)));        }        str.append("]");        return str.toString();    }}`
Output:
```The intersection points (if any) between:

A circle, center (3, -5) with radius 3, and:

a line containing the points (-10, 11) and (10, -9) is/are:
[(3.00000, -2.00000), (6.00000, -5.00000)]

a segment starting at (-10, 11) and ending at (-11, 12) is/are
[]

a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3.00000, -2.00000)]

A circle, center (0, 0) with radius 4, and:

a vertical line containing the points (0, -3) and (0, 6) is/are:
[(0.00000, -4.00000), (0.00000, 4.00000)]

a vertical segment starting at (0, -3) and ending at (0, 6) is/are:
[(0.00000, 4.00000)]

A circle, center (4, 2) with radius 5, and:

a line containing the points (6, 3) and (10, 7) is/are:
[(1.00000, -2.00000), (8.00000, 5.00000)]

a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8.00000, 5.00000)]
```

## Julia

Uses the circles and points from the Go example.

`using Luxor const centers = [Point(3, -5), Point(0, 0), Point(4, 2)]const rads = [3, 4, 5]const lins = [    [Point(-10, 11), Point(10, -9)], [Point(-10, 11), Point(-11, 12)],     [Point(3, -2), Point(7, -2)], [Point(0, -3), Point(0, 6)],     [Point(6, 3), Point(10, 7)], [Point(7, 4), Point(11, 8)],] println("Center", " "^9, "Radius", " "^4, "Line P1", " "^14, "Line P2", " "^7,    "Segment?   Intersect 1       Intersect 2")for (cr, l, extended) in [(1, 1, true), (1, 2, false), (1, 3, false),         (2, 4, true), (2, 4, false), (3, 5, true), (3, 6, false)]    tup = intersectionlinecircle(lins[l], lins[l], centers[cr], rads[cr])    v = [p for p in tup[2:end] if extended || ispointonline(p, lins[l], lins[l])]    println(rpad(centers[cr], 17), rads[cr], " "^3, rpad(lins[l], 21),        rpad(lins[l], 19), rpad(!extended, 8), isempty(v) ? "" :             length(v) == 2 ? rpad(v, 18) * string(v) : v)end `
Output:
```Center         Radius    Line P1              Line P2       Segment?   Intersect 1       Intersect 2
Point(3.0, -5.0) 3   Point(-10.0, 11.0)   Point(10.0, -9.0)  false   Point(6.0, -5.0)  Point(3.0, -2.0)
Point(3.0, -5.0) 3   Point(-10.0, 11.0)   Point(-11.0, 12.0) true
Point(3.0, -5.0) 3   Point(3.0, -2.0)     Point(7.0, -2.0)   true    Point(3.0, -2.0)
Point(0.0, 0.0)  4   Point(0.0, -3.0)     Point(0.0, 6.0)    false   Point(0.0, 4.0)   Point(0.0, -4.0)
Point(0.0, 0.0)  4   Point(0.0, -3.0)     Point(0.0, 6.0)    true    Point(0.0, 4.0)
Point(4.0, 2.0)  5   Point(6.0, 3.0)      Point(10.0, 7.0)   false   Point(8.0, 5.0)   Point(1.0, -2.0)
Point(4.0, 2.0)  5   Point(7.0, 4.0)      Point(11.0, 8.0)   true    Point(8.0, 5.0)
```

## Kotlin

Translation of: Go
`import kotlin.math.absoluteValueimport kotlin.math.sqrt const val eps = 1e-14 class Point(val x: Double, val y: Double) {    override fun toString(): String {        var xv = x        if (xv == 0.0) {            xv = 0.0        }        var yv = y        if (yv == 0.0) {            yv = 0.0        }        return "(\$xv, \$yv)"    }} fun sq(x: Double): Double {    return x * x} fun intersects(p1: Point, p2: Point, cp: Point, r: Double, segment: Boolean): MutableList<Point> {    val res = mutableListOf<Point>()    val x0 = cp.x    val y0 = cp.y    val x1 = p1.x    val y1 = p1.y    val x2 = p2.x    val y2 = p2.y    val A = y2 - y1    val B = x1 - x2    val C = x2 * y1 - x1 * y2    val a = sq(A) + sq(B)    val b: Double    val c: Double    var bnz = true    if (B.absoluteValue >= eps) {        b = 2 * (A * C + A * B * y0 - sq(B) * x0)        c = sq(C) + 2 * B * C * y0 - sq(B) * (sq(r) - sq(x0) - sq(y0))    } else {        b = 2 * (B * C + A * B * x0 - sq(A) * y0)        c = sq(C) + 2 * A * C * x0 - sq(A) * (sq(r) - sq(x0) - sq(y0))        bnz = false    }    var d = sq(b) - 4 * a * c // discriminant    if (d < 0) {        return res    }     // checks whether a point is within a segment    fun within(x: Double, y: Double): Boolean {        val d1 = sqrt(sq(x2 - x1) + sq(y2 - y1)) // distance between end-points        val d2 = sqrt(sq(x - x1) + sq(y - y1))   // distance from point to one end        val d3 = sqrt(sq(x2 - x) + sq(y2 - y))   // distance from point to other end        val delta = d1 - d2 - d3        return delta.absoluteValue < eps // true if delta is less than a small tolerance    }     var x = 0.0    fun fx(): Double {        return -(A * x + C) / B    }     var y = 0.0    fun fy(): Double {        return -(B * y + C) / A    }     fun rxy() {        if (!segment || within(x, y)) {            res.add(Point(x, y))        }    }     if (d == 0.0) {        // line is tangent to circle, so just one intersect at most        if (bnz) {            x = -b / (2 * a)            y = fx()            rxy()        } else {            y = -b / (2 * a)            x = fy()            rxy()        }    } else {        // two intersects at most        d = sqrt(d)        if (bnz) {            x = (-b + d) / (2 * a)            y = fx()            rxy()            x = (-b - d) / (2 * a)            y = fx()            rxy()        } else {            y = (-b + d) / (2 * a)            x = fy()            rxy()            y = (-b - d) / (2 * a)            x = fy()            rxy()        }    }     return res} fun main() {    println("The intersection points (if any) between:")     var cp = Point(3.0, -5.0)    var r = 3.0    println("  A circle, center \$cp with radius \$r, and:")     var p1 = Point(-10.0, 11.0)    var p2 = Point(10.0, -9.0)    println("    a line containing the points \$p1 and \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, false)}")     p2 = Point(-10.0, 12.0)    println("    a segment starting at \$p1 and ending at \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, true)}")     p1 = Point(3.0, -2.0)    p2 = Point(7.0, -2.0)    println("    a horizontal line containing the points \$p1 and \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, false)}")     cp = Point(0.0, 0.0)    r = 4.0    println("  A circle, center \$cp with radius \$r, and:")     p1 = Point(0.0, -3.0)    p2 = Point(0.0, 6.0)    println("    a vertical line containing the points \$p1 and \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, false)}")    println("    a vertical segment containing the points \$p1 and \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, true)}")     cp = Point(4.0, 2.0)    r = 5.0    println("  A circle, center \$cp with radius \$r, and:")     p1 = Point(6.0, 3.0)    p2 = Point(10.0, 7.0)    println("    a line containing the points \$p1 and \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, false)}")     p1 = Point(7.0, 4.0)    p2 = Point(11.0, 8.0)    println("    a segment starting at \$p1 and ending at \$p2 is/are:")    println("     \${intersects(p1, p2, cp, r, true)}")}`
Output:
```The intersection points (if any) between:
A circle, center (3.0, -5.0) with radius 3.0, and:
a line containing the points (-10.0, 11.0) and (10.0, -9.0) is/are:
[(6.0, -5.0), (3.0, -2.0)]
a segment starting at (-10.0, 11.0) and ending at (-10.0, 12.0) is/are:
[]
a horizontal line containing the points (3.0, -2.0) and (7.0, -2.0) is/are:
[(3.0, -2.0)]
A circle, center (0.0, 0.0) with radius 4.0, and:
a vertical line containing the points (0.0, -3.0) and (0.0, 6.0) is/are:
[(0.0, 4.0), (0.0, -4.0)]
a vertical segment containing the points (0.0, -3.0) and (0.0, 6.0) is/are:
[(0.0, 4.0)]
A circle, center (4.0, 2.0) with radius 5.0, and:
a line containing the points (6.0, 3.0) and (10.0, 7.0) is/are:
[(8.0, 5.0), (1.0, -2.0)]
a segment starting at (7.0, 4.0) and ending at (11.0, 8.0) is/are:
[(8.0, 5.0)]```

## Lua

Translation of: C++
`EPS = 1e-14 function pts(p)    local x, y = p.x, p.y    if x == 0 then        x = 0    end    if y == 0 then        y = 0    end    return "(" .. x .. ", " .. y .. ")"end function lts(pl)    local str = "["    for i,p in pairs(pl) do        if i > 1 then            str = str .. ", "        end        str = str .. pts(p)    end    return str .. "]"end function sq(x)    return x * xend function intersects(p1, p2, cp, r, segment)    local res = {}    local x0, y0 = cp.x, cp.y    local x1, y1 = p1.x, p1.y    local x2, y2 = p2.x, p2.y    local A = y2 - y1    local B = x1 - x2    local C = x2 * y1 - x1 * y2    local a = sq(A) + sq(B)    local b, c    local bnz = true    if math.abs(B) >= EPS then        b = 2 * (A * C + A * B * y0 - sq(B) * x0)        c = sq(C) + 2 * B * C * y0 - sq(B) * (sq(r) - sq(x0) - sq(y0))    else        b = 2 * (B * C + A * B * x0 - sq(A) * y0)        c = sq(C) + 2 * A * C * x0 - sq(A) * (sq(r) - sq(x0) - sq(y0))        bnz = false    end    local d = sq(b) - 4 * a * c -- discriminant    if d < 0 then        return res    end     -- checks whether a point is within a segment    function within(x, y)        local d1 = math.sqrt(sq(x2 - x1) + sq(y2 - y1)) -- distance between end-points        local d2 = math.sqrt(sq(x - x1) + sq(y - y1))   -- distance from point to one end        local d3 = math.sqrt(sq(x2 - x) + sq(y2 - y))   -- distance from point to other end        local delta = d1 - d2 - d3        return math.abs(delta) < EPS    end     function fx(x)        return -(A * x + C) / B    end     function fy(y)        return -(B * y + C) / A    end     function rxy(x, y)        if not segment or within(x, y) then            table.insert(res, {x=x, y=y})        end    end     local x, y    if d == 0 then        -- line is tangent to circle, so just one intersect at most        if bnz then            x = -b / (2 * a)            y = fx(x)            rxy(x, y)        else            y = -b / (2 * a)            x = fy(y)            rxy(x, y)        end    else        -- two intersects at most        d = math.sqrt(d)        if bnz then            x = (-b + d) / (2 * a)            y = fx(x)            rxy(x, y)            x = (-b - d) / (2 * a)            y = fx(x)            rxy(x, y)        else            y = (-b + d) / (2 * a)            x = fy(y)            rxy(x, y)            y = (-b - d) / (2 * a)            x = fy(y)            rxy(x, y)        end    end     return resend function main()    print("The intersection points (if any) between:")     local cp = {x=3, y=-5}    local r = 3    print("  A circle, center " .. pts(cp) .. " with radius " .. r .. ", and:")     local p1 = {x=-10, y=11}    local p2 = {x=10, y=-9}    print("    a line containing the points " .. pts(p1) .. " and " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, false)))     p2 = {x=-10, y=12}    print("    a segment starting at " .. pts(p1) .. " and ending at " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, true)))     p1 = {x=3, y=-2}    p2 = {x=7, y=-2}    print("    a horizontal line containing the points " .. pts(p1) .. " and " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, false)))     cp = {x=0, y=0}    r = 4    print("  A circle, center " .. pts(cp) .. " with radius " .. r .. ", and:")     p1 = {x=0, y=-3}    p2 = {x=0, y=6}    print("    a vertical line containing the points " .. pts(p1) .. " and " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, false)))    print("    a vertical segment starting at " .. pts(p1) .. " and ending at " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, true)))     cp = {x=4, y=2}    r = 5    print("  A circle, center " .. pts(cp) .. " with radius " .. r .. ", and:")     p1 = {x=6, y=3}    p2 = {x=10, y=7}    print("    a line containing the points " .. pts(p1) .. " and " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, false)))     p1 = {x=7, y=4}    p2 = {x=11, y=8}    print("    a segment starting at " .. pts(p1) .. " and ending at " .. pts(p2) .. " is/are:")    print("      " .. lts(intersects(p1, p2, cp, r, true)))end main()`
Output:
```The intersection points (if any) between:
A circle, center (3, -5) with radius 3, and:
a line containing the points (-10, 11) and (10, -9) is/are:
[(6, -5), (3, -2)]
a segment starting at (-10, 11) and ending at (-10, 12) is/are:
[]
a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3, -2)]
A circle, center (0, 0) with radius 4, and:
a vertical line containing the points (0, -3) and (0, 6) is/are:
[(0, 4), (0, -4)]
a vertical segment starting at (0, -3) and ending at (0, 6) is/are:
[(0, 4)]
A circle, center (4, 2) with radius 5, and:
a line containing the points (6, 3) and (10, 7) is/are:
[(8, 5), (1, -2)]
a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8, 5)]```

## Perl

`use strict;use warnings;use feature 'say';use List::Util 'sum'; sub find_intersection {   my(\$P1, \$P2, \$center, \$radius) = @_;   my @d = (\$\$P2 -     \$\$P1, \$\$P2 -     \$\$P1);   my @f = (\$\$P1 - \$\$center, \$\$P1 - \$\$center);   my \$a = sum map { \$_**2 } @d;   my \$b = 2 * (\$f*\$d + \$f*\$d);   my \$c = sum(map { \$_**2 } @f) - \$radius**2;   my \$D =  \$b**2 - 4*\$a*\$c;    return unless \$D >= 0;   my (\$t1, \$t2) = ( (-\$b - sqrt \$D) / (2*\$a), (-\$b + sqrt \$D) / (2*\$a) );   return unless \$t1 >= 0 and \$t1 <= 1 or \$t2 >= 0 and \$t2  <= 1;    my (\$dx, \$dy) = (\$\$P2 - \$\$P1, \$\$P2 - \$\$P1);   return ([\$dx*\$t1 + \$\$P1, \$dy*\$t1 + \$\$P1],           [\$dx*\$t2 + \$\$P1, \$dy*\$t2 + \$\$P1])} my @data = (   [ [-10, 11], [ 10, -9], [3, -5], 3 ],   [ [-10, 11], [-11, 12], [3, -5], 3 ],   [ [  3, -2], [  7, -2], [3, -5], 3 ],   [ [  3, -2], [  7, -2], [0,  0], 4 ],   [ [  0, -3], [  0,  6], [0,  0], 4 ],   [ [  6,  3], [ 10,  7], [4,  2], 5 ],   [ [  7,  4], [ 11, 18], [4,  2], 5 ],); sub rnd { map { sprintf('%.2f', \$_) =~ s/\.00//r } @_ } for my \$d (@data) {   my @solution = find_intersection @\$d , @\$d , @\$d, @\$d;   say 'For input: ' . join ', ', (map { '('. join(',', @\$_) .')' } @\$d[0,1,2]), @\$d;   say 'Solutions: ' . (@solution > 1 ? join ', ', map { '('. join(',', rnd @\$_) .')' } @solution : 'None');   say '';}`
Output:
```For input: (-10,11), (10,-9), (3,-5), 3
Solutions: (3,-2), (6,-5)

For input: (-10,11), (-11,12), (3,-5), 3
Solutions: None

For input: (3,-2), (7,-2), (3,-5), 3
Solutions: (3,-2), (3,-2)

For input: (3,-2), (7,-2), (0,0), 4
Solutions: (-3.46,-2), (3.46,-2)

For input: (0,-3), (0,6), (0,0), 4
Solutions: (0,-4), (0,4)

For input: (6,3), (10,7), (4,2), 5
Solutions: (1,-2), (8,5)

For input: (7,4), (11,18), (4,2), 5
Solutions: (5.03,-2.89), (7.46,5.61)```

## Phix

Translation of: Go
Translation of: zkl
`constant epsilon = 1e-14 -- sayatom cx, cy, r, x1, y1, x2, y2 function sq(atom x) return x*x end function function within(atom x, y)    --    -- checks whether a point is within a segment    -- ie:    <-------d1------->    --        <--d2--><---d3--->    -- within, d2+d3 ~= d1    --   x1,y1^      ^x,y      ^x2,y2    -- vs:    --  <-d2->    --  <-----------d3--------->    -- not "", d2+d3 > d1    --  ^x,y - and obviously ditto when x,y is (say) out here^    --    -- (obviously only works when x,y is on the same line as x1,y1 to x2,y2)    --    atom d1 := sqrt(sq(x2-x1) + sq(y2-y1)), -- distance between end-points         d2 := sqrt(sq(x -x1) + sq(y -y1)), -- distance from point to one end         d3 := sqrt(sq(x2-x ) + sq(y2-y )), -- distance from point to other end         delta := (d2 + d3) - d1    return abs(delta) < epsilon -- true if delta is less than a small toleranceend function function pf(atom x,y)    return sprintf("(%g,%g)",{x,y})end function function intersects(bool bSegment)---- Returns the intersection points (if any) of a circle, center (cx,cy) with radius r,-- and line containing the points (x1,y1) and (x2,y2) being either infinite or limited-- to the segment drawn between those points.--    sequence res = {}    atom A = y2 - y1,       sqA = sq(A),         B = x1 - x2,       sqB = sq(B),         C = x2*y1 - x1*y2, sqC = sq(C),         sqr = r*r-cx*cx-cy*cy,         a := sqA + sqB,         b, c    bool bDivA = false    if abs(B)<epsilon then  -- B is zero or close to it        b = 2 * (B*C + A*B*cx - sqA*cy)        c = sqC + 2*A*C*cx - sqA*sqr        bDivA = true -- (and later divide by A instead!)    else        b = 2 * (A*C + A*B*cy - sqB*cx)        c = sqC + 2*B*C*cy - sqB*sqr    end if    atom d := b*b - 4*a*c -- discriminant    if d>=0 then -- (-ve means line & circle do not intersect)        d = sqrt(d)        atom ux,uy, vx,vy        if bDivA then                   {uy,vy} = sq_div(sq_sub({+d,-d},b),2*a)            {ux,vx} = sq_div(sq_sub(sq_mul(-B,{uy,vy}),C),A)        else            {ux,vx} = sq_div(sq_sub({+d,-d},b),2*a)            {uy,vy} = sq_div(sq_sub(sq_mul(-A,{ux,vx}),C),B)        end if        if not bSegment or within(ux,uy) then            res = append(res,pf(ux,uy))        end if        if d!=0 and (not bSegment or within(vx,vy)) then            res = append(res,pf(vx,vy))        end if                  end if    return resend function --                cx cy r    x1 y1  x2 y2 bSegmentconstant tests = {{3,-5,3,{{-10,11, 10,-9,false},                           {-10,11,-11,12,true},                           {  3,-2,  7,-2,false}}},                  {0, 0,4,{{  0,-3,  0, 6,false},                           {  0,-3,  0, 6,true}}},                  {4, 2,5,{{  6, 3, 10, 7,false},                           {  7, 4, 11, 8,true}}}} for t=1 to length(tests) do    {cx, cy, r, sequence lines} = tests[t]    string circle = sprintf("Circle at %s radius %d",{pf(cx,cy),r})    for l=1 to length(lines) do        {x1, y1, x2, y2, bool bSegment} = lines[l]        sequence res = intersects(bSegment)        string ls = iff(bSegment?"segment":"   line"),               at = iff(length(res)?"intersect at "&join(res," and ")                                   :"do not intersect")        printf(1,"%s and %s %s to %s %s.\n",{circle,ls,pf(x1,y1),pf(x2,y2),at})        circle = repeat(' ',length(circle))    end forend for`
Output:
```Circle at (3,-5) radius 3 and    line (-10,11) to (10,-9) intersect at (6,-5) and (3,-2).
and segment (-10,11) to (-11,12) do not intersect.
and    line (3,-2) to (7,-2) intersect at (3,-2).
Circle at (0,0) radius 4 and    line (0,-3) to (0,6) intersect at (0,4) and (0,-4).
and segment (0,-3) to (0,6) intersect at (0,4).
Circle at (4,2) radius 5 and    line (6,3) to (10,7) intersect at (8,5) and (1,-2).
and segment (7,4) to (11,8) intersect at (8,5).
```

## Raku

(formerly Perl 6) Extend solution space to 3D. Reference: this SO question and answers

`sub LineCircularOBJintersection(@P1, @P2, @Centre, \Radius) {   my @d = @P2 »-« @P1 ;           # d   my @f = @P1 »-« @Centre ;       # c    my \a = [+] @d»²;               # d dot d   my \b = 2 * ([+] @f »*« @d);    # 2 * f dot d   my \c = ([+] @f»²) - Radius²;   # f dot f - r²   my \Δ =  b²-(4*a*c);            # discriminant    if (Δ < 0) {      return [];   } else {      my (\t1,\t2) = (-b - Δ.sqrt)/(2*a), (-b + Δ.sqrt)/(2*a);      if 0 ≤ t1|t2 ≤ 1 {         return @P1 »+« ( @P2 »-« @P1 ) »*» t1, @P1 »+« ( @P2 »-« @P1 ) »*» t2      } else {         return []      }   }} my \DATA = [   [ <-10 11>, < 10 -9>, <3 -5>, 3 ],   [ <-10 11>, <-11 12>, <3 -5>, 3 ],   [ <  3 -2>, <  7 -2>, <3 -5>, 3 ],   [ <  3 -2>, <  7 -2>, <0  0>, 4 ],   [ <  0 -3>, <  0  6>, <0  0>, 4 ],   [ <  6  3>, < 10  7>, <4  2>, 5 ],   [ <  7  4>, < 11 18>, <4  2>, 5 ],   [ <5  2 −2.26 >, <0.77 2 4>, <1 4 0>, 4 ]]; for DATA {   my @solution = LineCircularOBJintersection \$_ , \$_ , \$_, \$_;   say "For data set: ", \$_;   say "Solution(s) is/are: ", @solution.Bool ?? @solution !! "None";}`
Output:
```For data set: [(-10 11) (10 -9) (3 -5) 3]
Solution(s) is/are: [(3 -2) (6 -5)]
For data set: [(-10 11) (-11 12) (3 -5) 3]
Solution(s) is/are: None
For data set: [(3 -2) (7 -2) (3 -5) 3]
Solution(s) is/are: [(3 -2) (3 -2)]
For data set: [(3 -2) (7 -2) (0 0) 4]
Solution(s) is/are: [(-3.4641016151377544 -2) (3.4641016151377544 -2)]
For data set: [(0 -3) (0 6) (0 0) 4]
Solution(s) is/are: [(0 -4) (0 4)]
For data set: [(6 3) (10 7) (4 2) 5]
Solution(s) is/are: [(1 -2) (8 5)]
For data set: [(7 4) (11 18) (4 2) 5]
Solution(s) is/are: [(5.030680985703315 -2.892616550038399) (7.459885052032535 5.60959768211387)]
For data set: [(5 2 −2.26) (0.77 2 4) (1 4 0) 4]
Solution(s) is/are: [(4.2615520237084015 2 -1.1671668246843006) (1.13386504516801 2 3.461514141193441)]
```

## REXX

The formulae used for this REXX version were taken from the MathWorld webpage:   circle line intersection.

`/*REXX program calculates  where  (or if)  a  line  intersects  (or tengents)  a cirle. *//*───────────────────────────────────── line= x1,y1  x2,y2;   circle is at 0,0, radius=r*/parse arg x1 y1 x2 y2 cx cy r .                  /*obtain optional arguments from the CL*/if x1=='' | x1==","  then x1=  0                 /*Not specified?  Then use the default.*/if y1=='' | y1==","  then y1= -3                 /* "      "         "   "   "     "    */if x2=='' | x2==","  then x2=  0                 /* "      "         "   "   "     "    */if y2=='' | y2==","  then y2=  6                 /* "      "         "   "   "     "    */if cx=='' | cx==","  then cx=  0                 /* "      "         "   "   "     "    */if cy=='' | cy==","  then cy=  0                 /* "      "         "   "   "     "    */if r =='' | r ==","  then r =  4                 /* "      "         "   "   "     "    */x_1= x1;         x1= x1 + cx;        y_1= y1;        y1= y1 + cyx_2= x2;         x2= x2 + cx;        y_2= y2;        y2= y2 + cydx= x2 - x1;     dy= y2 - y1                                        dr2= dx**2 + dy**2  D=  x1 * y2   -   x2 * y1;               r2= r**2;    D2= D**2                                   \$= sqrt(r2 * dr2  -  D2)ix1= ( D * dy   +   sgn(dy) * dx * \$) / dr2ix2= ( D * dy   -   sgn(dy) * dx * \$) / dr2iy1= (-D * dx   +   abs(dy)      * \$) / dr2iy2= (-D * dx   -   abs(dy)      * \$) / dr2incidence= (r2 * dr2  -  D2)  /  1say 'incidence='   incidence                         @potla= 'points on the line are: 'if incidence<0  then do                     say @potla ' ('||x_1","y_1')  and  ('||x_2","y_2')  are: '  ix1","iy1                     say "The line doesn't intersect the circle with radius: "   r                     endif incidence=0  then do                     say @potla ' ('||x_1","y_1')  and  ('||x_2","y_2')  are: '  ix1","iy1                     say "The line is tangent to circle with radius: "           r                     endif incidence>0  then do                     say @potla ' ('||x_1","y_1')  and  ('||x_2","y_2')  are: '  ix1","iy1                     say "The line is secant to circle with radius: "            r                     endexit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/sgn:  procedure;  if arg(1)<0  then return -1;           return 1/*──────────────────────────────────────────────────────────────────────────────────────*/sqrt: procedure; parse arg x;  if x=0  then return 0;  d=digits();  numeric digits;  h=d+6      numeric form; m.=9; parse value format(x,2,1,,0) 'E0' with g "E" _ .; g=g *.5'e'_ %2        do j=0  while h>9;      m.j= h;              h= h%2 + 1;      end  /*j*/        do k=j+5  to 0  by -1;  numeric digits m.k;  g= (g+x/g) *.5;  end  /*k*/; return g`
output   when using the default inputs:
```incidence= 1296
points on the line are:   (0,-3)  and  (0,6)  are:  0,4
The line is secant to circle with radius:  4
```

## Swift

Translation of: Java
`import Foundationimport CoreGraphics func lineCircleIntersection(start: NSPoint, end: NSPoint, center: NSPoint,                            radius: CGFloat, segment: Bool) -> [NSPoint] {    var result: [NSPoint] = []    let angle = atan2(end.y - start.y, end.x - start.x)    var at = AffineTransform(rotationByRadians: angle)    at.invert()    at.translate(x: -center.x, y: -center.y)    let p1 = at.transform(start)    let p2 = at.transform(end)    let minX = min(p1.x, p2.x), maxX = max(p1.x, p2.x)    let y = p1.y    at.invert()    func addPoint(x: CGFloat, y: CGFloat) {        if !segment || (x <= maxX && x >= minX) {            result.append(at.transform(NSMakePoint(x, y)))        }    }    if y == radius || y == -radius {        addPoint(x: 0, y: y)    } else if y < radius && y > -radius {        let x = (radius * radius - y * y).squareRoot()        addPoint(x: -x, y: y)        addPoint(x: x, y: y)    }    return result} func toString(points: [NSPoint]) -> String {    var result = "["    result += points.map{String(format: "(%.4f, %.4f)", \$0.x, \$0.y)}.joined(separator: ", ")    result += "]"    return result} var center = NSMakePoint(3, -5)var radius: CGFloat = 3 print("The intersection points (if any) between:")print("\n  A circle, center (3, -5) with radius 3, and:")print("\n    a line containing the points (-10, 11) and (10, -9) is/are:")var points = lineCircleIntersection(start: NSMakePoint(-10, 11), end: NSMakePoint(10, -9),                                    center: center, radius: radius,                                    segment: false)print("     \(toString(points: points))")print("\n    a segment starting at (-10, 11) and ending at (-11, 12) is/are")points = lineCircleIntersection(start: NSMakePoint(-10, 11), end: NSMakePoint(-11, 12),                                center: center, radius: radius,                                segment: true)print("     \(toString(points: points))")print("\n    a horizontal line containing the points (3, -2) and (7, -2) is/are:")points = lineCircleIntersection(start: NSMakePoint(3, -2), end: NSMakePoint(7, -2),                                center: center, radius: radius,                                segment: false)print("     \(toString(points: points))") center.x = 0center.y = 0radius = 4 print("\n  A circle, center (0, 0) with radius 4, and:")print("\n    a vertical line containing the points (0, -3) and (0, 6) is/are:")points = lineCircleIntersection(start: NSMakePoint(0, -3), end: NSMakePoint(0, 6),                                center: center, radius: radius,                                segment: false)print("     \(toString(points: points))")print("\n    a vertical segment starting at (0, -3) and ending at (0, 6) is/are:")points = lineCircleIntersection(start: NSMakePoint(0, -3), end: NSMakePoint(0, 6),                                center: center, radius: radius,                                segment: true)print("     \(toString(points: points))") center.x = 4center.y = 2radius = 5 print("\n  A circle, center (4, 2) with radius 5, and:")print("\n    a line containing the points (6, 3) and (10, 7) is/are:")points = lineCircleIntersection(start: NSMakePoint(6, 3), end: NSMakePoint(10, 7),                                center: center, radius: radius,                                segment: false)print("     \(toString(points: points))")print("\n    a segment starting at (7, 4) and ending at (11, 8) is/are:")points = lineCircleIntersection(start: NSMakePoint(7, 4), end: NSMakePoint(11, 8),                                center: center, radius: radius,                                segment: true)print("     \(toString(points: points))")`
Output:
```The intersection points (if any) between:

A circle, center (3, -5) with radius 3, and:

a line containing the points (-10, 11) and (10, -9) is/are:
[(3.0000, -2.0000), (6.0000, -5.0000)]

a segment starting at (-10, 11) and ending at (-11, 12) is/are
[]

a horizontal line containing the points (3, -2) and (7, -2) is/are:
[(3.0000, -2.0000)]

A circle, center (0, 0) with radius 4, and:

a vertical line containing the points (0, -3) and (0, 6) is/are:
[(-0.0000, -4.0000), (0.0000, 4.0000)]

a vertical segment starting at (0, -3) and ending at (0, 6) is/are:
[(0.0000, 4.0000)]

A circle, center (4, 2) with radius 5, and:

a line containing the points (6, 3) and (10, 7) is/are:
[(1.0000, -2.0000), (8.0000, 5.0000)]

a segment starting at (7, 4) and ending at (11, 8) is/are:
[(8.0000, 5.0000)]
```

## zkl

Translation of: Go
`const EPS=1e-14;	// a close-ness to zero    // p1,p2 are (x,y), circle is ( (x,y),r )fcn intersectLineCircle(p1,p2, circle, segment=False)	// assume line{   cx,cy := circle.apply("toFloat");   r     := circle.toFloat();   x1,y1 := p1.apply("toFloat");   x2,y2 := p2.apply("toFloat");   A,B,C,a := (y2 - y1),  (x1 - x2),  (x2*y1 - x1*y2),  (A*A + B*B);   b,c,bnz := 0,0,True;   if(B.closeTo(0,EPS)){ // B is zero or close to it      b   = 2.0 * (B*C + A*B*cx - A*A*cy);      c   = C*C + 2.0*A*C*cx - A*A*(r*r - cx*cx - cy*cy);      bnz = False   }else{      b   = 2.0*( A*C + A*B*cy - B*B*cx );      c   = C*C + 2.0*B*C*cy - B*B*( r*r - cx*cx - cy*cy );   }   d := b*b - 4.0*a*c;		// discriminant   if(d<0.0){			// no real solution?  zero --> one solution      if (d>-0.005) d=0.0;	// close enough to zero      else return(T);		// no intersection   }   d=d.sqrt();    reg ux,uy, vx,vy;   if(bnz){      ux,vx = (-b + d) / (2*a),  (-b - d) / (2*a);      uy,vy = -(A*ux + C) / B,   -(A*vx + C) / B;   }else{      uy,vy = (-b + d) / (2*a), (-b - d) / (2*a);      ux,vx = -(B*uy + C) / A,  -(B*vy + C) / A;   }    if(segment){      within:='wrap(x,y){  // is (x,y) within segment p1 p2?	 d1:=( (x2 - x1).pow(2) + (y2 - y1).pow(2) ).sqrt();	 d2:=( (x  - x1).pow(2) + (y  - y1).pow(2) ).sqrt();	 d3:=( (x2 - x) .pow(2) + (y2 - y) .pow(2) ).sqrt();	 (d1 - d2 - d3).closeTo(0,EPS);      };       i1,i2 := within(ux,uy), within(vx,vy);      if(d==0) return(if(i1) T(ux,uy) else T);      return(T( i1 and T(ux,uy), i2 and T(vx,vy) ).filter())   }    if(d==0)  return( T( T(ux,uy) ) );   return( T(ux,uy), T(vx,vy) )}`
`circle:=T( T(3,-5),3 ); p1,p2 := T(-10,11), T( 10,-9);println("Circle @ ",circle); lcpp(p1,p2,circle);p2:=T(-11,12);               lcpp(p1,p2,circle,True);p1,p2 := T(3,-2), T(7,-2);   lcpp(p1,p2,circle); circle:=T( T(0,0),4 ); p1,p2 := T(0,-3), T(0,6);println("\nCircle @ ",circle);lcpp(p1,p2,circle);lcpp(p1,p2,circle,True); circle:=T( T(4,2),5 ); p1,p2 := T(6,3), T(10,7);println("\nCircle @ ",circle);lcpp(p1,p2,circle);p1,p2 := T(7,4), T(11,8); lcpp(p1,p2,circle,True); fcn lcpp(p1,p2,circle,segment=False){   println("  %s %s -- %s intersects at %s"      .fmt(segment and "Segment" or "Line   ",           p1,p2,intersectLineCircle(p1,p2, circle,segment)));}`
Output:
```Circle @ L(L(3,-5),3)
Line    L(-10,11) -- L(10,-9) intersects at L(L(6,-5),L(3,-2))
Segment L(-10,11) -- L(-11,12) intersects at L()
Line    L(3,-2) -- L(7,-2) intersects at L(L(3,-2))

Circle @ L(L(0,0),4)
Line    L(0,-3) -- L(0,6) intersects at L(L(0,4),L(0,-4))
Segment L(0,-3) -- L(0,6) intersects at L(L(0,4))

Circle @ L(L(4,2),5)
Line    L(6,3) -- L(10,7) intersects at L(L(8,5),L(1,-2))
Segment L(7,4) -- L(11,8) intersects at L(L(8,5))
```