Law of cosines - triples: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Lua}}: added Lua solution)
(Added Fortran solution candidate)
Line 652: Line 652:
{ 13 13 13 }
{ 13 13 13 }
}
}
</pre>

=={{header|Fortran}}==
<lang fortran>MODULE LAW_OF_COSINES
IMPLICIT NONE

CONTAINS

! Calculate the third side of a triangle using the cosine rule
REAL FUNCTION COSINE_SIDE(SIDE_A, SIDE_B, ANGLE)
INTEGER, INTENT(IN) :: SIDE_A, SIDE_B
REAL(8), INTENT(IN) :: ANGLE
COSINE_SIDE = SIDE_A**2 + SIDE_B**2 - 2*SIDE_A*SIDE_B*COS(ANGLE)
COSINE_SIDE = COSINE_SIDE**0.5
END FUNCTION COSINE_SIDE

! Convert an angle in degrees to radians
REAL(8) FUNCTION DEG2RAD(ANGLE)
REAL(8), INTENT(IN) :: ANGLE
REAL(8), PARAMETER :: PI = 4.0D0*DATAN(1.D0)

DEG2RAD = ANGLE*(PI/180)
END FUNCTION DEG2RAD

! Sort an array of integers
FUNCTION INT_SORTED(ARRAY) RESULT(SORTED)
INTEGER, DIMENSION(:), INTENT(IN) :: ARRAY
INTEGER, DIMENSION(SIZE(ARRAY)) :: SORTED, TEMP
INTEGER :: MAX_VAL, DIVIDE
SORTED = ARRAY
TEMP = ARRAY
DIVIDE = SIZE(ARRAY)

DO WHILE (DIVIDE .NE. 1)
MAX_VAL = MAXVAL(SORTED(1:DIVIDE))
TEMP(DIVIDE) = MAX_VAL
TEMP(MAXLOC(SORTED(1:DIVIDE))) = SORTED(DIVIDE)
SORTED = TEMP
DIVIDE = DIVIDE - 1
END DO
END FUNCTION INT_SORTED

! Append an integer to the end of an array of integers
SUBROUTINE APPEND(ARRAY, ELEMENT)
INTEGER, DIMENSION(:), ALLOCATABLE, INTENT(INOUT) :: ARRAY
INTEGER, DIMENSION(:), ALLOCATABLE :: TEMP
INTEGER :: ELEMENT
INTEGER :: I, ISIZE

IF (ALLOCATED(ARRAY)) THEN
ISIZE = SIZE(ARRAY)
ALLOCATE(TEMP(ISIZE+1))

DO I=1, ISIZE
TEMP(I) = ARRAY(I)
END DO

TEMP(ISIZE+1) = ELEMENT

DEALLOCATE(ARRAY)

CALL MOVE_ALLOC(TEMP, ARRAY)
ELSE
ALLOCATE(ARRAY(1))
ARRAY(1) = ELEMENT
END IF
END SUBROUTINE APPEND

! Check if an array of integers contains a subset
LOGICAL FUNCTION CONTAINS_ARR(ARRAY, ELEMENT)
INTEGER, DIMENSION(:), INTENT(IN) :: ARRAY
INTEGER, DIMENSION(:) :: ELEMENT
INTEGER, DIMENSION(SIZE(ELEMENT)) :: TEMP, SORTED_ELEMENT
INTEGER :: I, COUNTER, J

COUNTER = 0

ELEMENT = INT_SORTED(ELEMENT)

DO I=1,SIZE(ARRAY),SIZE(ELEMENT)
TEMP = ARRAY(I:I+SIZE(ELEMENT)-1)
DO J=1,SIZE(ELEMENT)
IF (ELEMENT(J) .EQ. TEMP(J)) THEN
COUNTER = COUNTER + 1
END IF
END DO

IF (COUNTER .EQ. SIZE(ELEMENT)) THEN
CONTAINS_ARR = .TRUE.
RETURN
END IF
END DO

CONTAINS_ARR = .FALSE.
END FUNCTION CONTAINS_ARR

! Count and print cosine triples for the given angle in degrees
INTEGER FUNCTION COSINE_TRIPLES(MIN_NUM, MAX_NUM, ANGLE, PRINT_RESULTS) RESULT(COUNTER)
INTEGER, INTENT(IN) :: MIN_NUM, MAX_NUM
REAL(8), INTENT(IN) :: ANGLE
LOGICAL, INTENT(IN) :: PRINT_RESULTS
INTEGER, DIMENSION(:), ALLOCATABLE :: CANDIDATES
INTEGER, DIMENSION(3) :: CANDIDATE
INTEGER :: A, B
REAL :: C

COUNTER = 0

DO A = MIN_NUM, MAX_NUM
DO B = MIN_NUM, MAX_NUM
C = COSINE_SIDE(A, B, DEG2RAD(ANGLE))
IF (C .GT. MAX_NUM .OR. MOD(C, 1.) .NE. 0) THEN
CYCLE
END IF

CANDIDATE(1) = A
CANDIDATE(2) = B
CANDIDATE(3) = C
IF (.NOT. CONTAINS_ARR(CANDIDATES, CANDIDATE)) THEN
COUNTER = COUNTER + 1
CALL APPEND(CANDIDATES, CANDIDATE(1))
CALL APPEND(CANDIDATES, CANDIDATE(2))
CALL APPEND(CANDIDATES, CANDIDATE(3))

IF (PRINT_RESULTS) THEN
WRITE(*,'(A,I0,A,I0,A,I0,A)') " (", CANDIDATE(1), ", ", CANDIDATE(2), ", ", CANDIDATE(3), ")"
END IF
END IF
END DO
END DO
END FUNCTION COSINE_TRIPLES
END MODULE LAW_OF_COSINES

! Program prints the cosine triples for the angles 90, 60 and 120 degrees
! by using the cosine rule to find the third side of each candidate and
! checking that this is an integer. Candidates are appended to an array
! after the sides have been sorted into ascending order
! the array is repeatedly checked to ensure there are no duplicates.
PROGRAM LOC
USE LAW_OF_COSINES

REAL(8), DIMENSION(3) :: TEST_ANGLES = (/90., 60., 120./)
INTEGER :: I, COUNTER

DO I = 1,SIZE(TEST_ANGLES)
WRITE(*, '(F0.0, A)') TEST_ANGLES(I), " degree triangles: "
COUNTER = COSINE_TRIPLES(1, 13, TEST_ANGLES(I), .TRUE.)
WRITE(*,'(A, I0)') "TOTAL: ", COUNTER
WRITE(*,*) NEW_LINE('A')
END DO

END PROGRAM LOC</lang>
<pre>
90. degree triangles:
(3, 4, 5)
(5, 12, 13)
(6, 8, 10)
TOTAL: 3


60. degree triangles:
(1, 1, 1)
(2, 2, 2)
(3, 3, 3)
(3, 7, 8)
(4, 4, 4)
(5, 5, 5)
(6, 6, 6)
(7, 7, 7)
(3, 7, 8)
(8, 8, 8)
(9, 9, 9)
(10, 10, 10)
(11, 11, 11)
(12, 12, 12)
(13, 13, 13)
TOTAL: 15


120. degree triangles:
(3, 5, 7)
(7, 8, 13)
TOTAL: 2
</pre>
</pre>



Revision as of 11:47, 5 June 2021

Task
Law of cosines - triples
You are encouraged to solve this task according to the task description, using any language you may know.

The Law of cosines states that for an angle γ, (gamma) of any triangle, if the sides adjacent to the angle are A and B and the side opposite is C; then the lengths of the sides are related by this formula:

           A2 + B2 - 2ABcos(γ) = C2 
Specific angles

For an angle of of   90º   this becomes the more familiar "Pythagoras equation":

           A2 + B2  =  C2           

For an angle of   60º   this becomes the less familiar equation:

           A2 + B2 - AB  =  C2       

And finally for an angle of   120º   this becomes the equation:

           A2 + B2 + AB  =  C2      


Task
  •   Find all integer solutions (in order) to the three specific cases, distinguishing between each angle being considered.
  •   Restrain all sides to the integers   1..13   inclusive.
  •   Show how many results there are for each of the three angles mentioned above.
  •   Display results on this page.


Note: Triangles with the same length sides but different order are to be treated as the same.

Optional Extra credit
  • How many 60° integer triples are there for sides in the range 1..10_000 where the sides are not all of the same length.


Related Task


See also



11l

Translation of: Python

<lang 11l>-V n = 13

F method1(n)

  V squares = (0..n).map(x -> x ^ 2)
  V sqrset = Set(squares)
  Set[(Int, Int, Int)] tri90, tri60, tri120
  L(a) 1..n
     V a2 = squares[a]
     L(b) 1..a
        V b2 = squares[b]
        V c2 = a2 + b2
        I c2 C sqrset
           tri90.add(tuple_sorted((a, b, Int(sqrt(c2)))))
        V ab = a * b
        c2 -= ab
        I c2 C sqrset
           tri60.add(tuple_sorted((a, b, Int(sqrt(c2)))))
        c2 += 2 * ab
        I c2 C sqrset
           tri120.add(tuple_sorted((a, b, Int(sqrt(c2)))))
  R [sorted(Array(tri90)),
     sorted(Array(tri60)),
     sorted(Array(tri120))]

print(‘Integer triangular triples for sides 1..#.:’.format(n)) L(angle, triples) zip([90, 60, 120], method1(n))

  print("  #3° has #. solutions:\n    #.".format(angle, triples.len, triples))

V t60 = method1(10'000)[1] V notsame = sum(t60.filter((a, b, c) -> a != b | b != c).map((a, b, c) -> 1)) print(‘Extra credit: ’notsame)</lang>

Output:
Integer triangular triples for sides 1..13:
   90° has 3 solutions:
    [(3, 4, 5), (5, 12, 13), (6, 8, 10)]
   60° has 15 solutions:
    [(1, 1, 1), (2, 2, 2), (3, 3, 3), (3, 7, 8), (4, 4, 4), (5, 5, 5), (5, 7, 8), (6, 6, 6), (7, 7, 7), (8, 8, 8), (9, 9, 9), (10, 10, 10), (11, 11, 11), (12, 12, 12), (13, 13, 13)]
  120° has 2 solutions:
    [(3, 5, 7), (7, 8, 13)]
Extra credit: 18394

Ada

<lang Ada>with Ada.Text_IO; with Ada.Containers.Ordered_Maps;

procedure Law_Of_Cosines is

  type Angle_Kind is (Angle_60, Angle_90, Angle_120);
  function Is_Triangle (A, B, C : in Positive;
                        Angle   : in Angle_Kind) return Boolean
  is
     A2 : constant Positive := A**2;
     B2 : constant Positive := B**2;
     C2 : constant Positive := C**2;
     AB : constant Positive := A * B;
  begin
     case Angle is
        when Angle_60  =>  return A2 + B2 - AB = C2;
        when Angle_90  =>  return A2 + B2 = C2;
        when Angle_120 =>  return A2 + B2 + AB = C2;
     end case;
  end Is_Triangle;
  procedure Count_Triangles is
     use Ada.Text_IO;
     Count : Natural;
  begin
     for Angle in Angle_Kind loop
        Count := 0;
        Put_Line (Angle'Image & " triangles");
        for A in 1 ..13 loop
           for B in 1 .. A loop
              for C in 1 .. 13 loop
                 if Is_Triangle (A, B, C, Angle) then
                    Put_Line (A'Image & B'Image & C'Image);
                    Count := Count + 1;
                 end if;
              end loop;
           end loop;
        end loop;
        Put_Line ("There are " & Count'Image & " " & Angle'Image &" triangles");
     end loop;
  end Count_Triangles;
  procedure Extra_Credit (Limit : in Natural) is
     use Ada.Text_IO;
     package Square_Maps is new Ada.Containers.Ordered_Maps (Natural, Boolean);
     Squares : Square_Maps.Map;
     Count : Natural :=  0;
  begin
     for C in 1 .. Limit loop
        Squares.Insert (C**2, True);
     end loop;
     for A in 1 .. Limit loop
        for B in 1 .. A loop
           if Squares.Contains (A**2 + B**2 - A * B) then
              Count := Count + 1;
           end if;
        end loop;
     end loop;
     Put_Line ("There are " & Natural'(Count - Limit)'Image &
                 " " & Angle_60'Image &" triangles between 1 and " & Limit'Image & ".");
  end Extra_Credit;

begin

  Count_Triangles;
  Extra_Credit (Limit => 10_000);

end Law_Of_Cosines;</lang>

Output:
ANGLE_60 triangles
 1 1 1
 2 2 2
 3 3 3
 4 4 4
 5 5 5
 6 6 6
 7 7 7
 8 3 7
 8 5 7
 8 8 8
 9 9 9
 10 10 10
 11 11 11
 12 12 12
 13 13 13
There are  15 ANGLE_60 triangles
ANGLE_90 triangles
 4 3 5
 8 6 10
 12 5 13
There are  3 ANGLE_90 triangles
ANGLE_120 triangles
 5 3 7
 8 7 13
There are  2 ANGLE_120 triangles
There are  18394 ANGLE_60 triangles between 1 and  10000.

ALGOL 68

<lang algol68>BEGIN

   # find all integer sided 90, 60 and 120 degree triangles by finding integer solutions for #
   #    a^2 + b^2 = c^2, a^2 + b^2 - ab = c^2, a^2 + b^2 + ab = c^2 where a, b, c in 1 .. 13 #
   INT max side   = 13;                  # max triangle side to consider                     #
   INT max square = max side * max side; # max triangle side squared to consider             #
   [ 1 : max square ]INT root;           # table of square roots                             #
   FOR s TO UPB root DO root[ s     ] := 0 OD;
   FOR s TO max side DO root[ s * s ] := s OD;
   INT tcount := 0;
   [ 1 : max square ]INT ta, tb, tc, tangle;
   # prints solutions for the specified angle                                                #
   PROC print triangles = ( INT angle )VOID:
   BEGIN
       INT scount := 0;
       FOR t TO tcount DO IF tangle[ t ] = angle THEN scount +:= 1 FI OD;
       print( ( whole( scount, -4 ), " ", whole( angle, -3 ), " degree triangles:", newline ) );
       FOR t TO tcount DO
           IF tangle[ t ] = angle THEN
               print( ( "    ", whole( ta[ t ], -3 ), whole( tb[ t ], -3 ), whole( tc[ t ], -3 ), newline ) )
           FI
       OD
   END # print triangles # ;
   # stores the triangle with sides a, b, root[ c2 ] and the specified angle,                #
   # if it is a solution                                                                     #
   PROC try triangle = ( INT a, b, c2, angle )VOID:
       IF  c2 <= max square THEN
           # the third side is small enough                                                  #
           INT c = root[ c2 ];
           IF  c /= 0 THEN
               # the third side is the square of an integer                                  #
               tcount +:= 1;
               ta[     tcount ] := a; tb[ tcount ] := b; tc[ tcount ] := root[ c2 ];
               tangle[ tcount ] := angle
           FI
       FI # try triangle # ;
   # find all triangles                                                                      #
   FOR a TO max side DO
       FOR b FROM a TO max side DO
           try triangle( a, b, ( a * a ) + ( b * b ) - ( a * b ),  60 );
           try triangle( a, b, ( a * a ) + ( b * b ),              90 );
           try triangle( a, b, ( a * a ) + ( b * b ) + ( a * b ), 120 )
       OD
   OD;
   # print the solutions                                                                     #    
   print triangles(  60 );
   print triangles(  90 );
   print triangles( 120 )

END</lang>

Output:
  15  60 degree triangles:
      1  1  1
      2  2  2
      3  3  3
      3  8  7
      4  4  4
      5  5  5
      5  8  7
      6  6  6
      7  7  7
      8  8  8
      9  9  9
     10 10 10
     11 11 11
     12 12 12
     13 13 13
   3  90 degree triangles:
      3  4  5
      5 12 13
      6  8 10
   2 120 degree triangles:
      3  5  7
      7  8 13

AWK

<lang AWK>

  1. syntax: GAWK -f LAW_OF_COSINES_-_TRIPLES.AWK
  2. converted from C

BEGIN {

   description[1] = "90 degrees, a*a + b*b = c*c"
   description[2] = "60 degrees, a*a + b*b - a*b = c*c"
   description[3] = "120 degrees, a*a + b*b + a*b = c*c"
   split("0,1,-1",coeff,",")
   main(13,1,0)
   main(1000,0,1) # 10,000 takes too long
   exit(0)

} function main(max_side_length,show_sides,no_dups, a,b,c,count,k) {

   printf("\nmaximum side length: %d\n",max_side_length)
   for (k=1; k<=3; k++) {
     count = 0
     for (a=1; a<=max_side_length; a++) {
       for (b=1; b<=a; b++) {
         for (c=1; c<=max_side_length; c++) {
           if (a*a + b*b - coeff[k] * a*b == c*c) {
             if (no_dups && (a == b || b == c)) {
               continue
             }
             count++
             if (show_sides) {
               printf("  %d %d %d\n",a,b,c)
             }
           }
         }
       }
     }
     printf("%d triangles, %s\n",count,description[k])
   }

} </lang>

Output:
maximum side length: 13
  4 3 5
  8 6 10
  12 5 13
3 triangles, 90 degrees, a*a + b*b = c*c
  1 1 1
  2 2 2
  3 3 3
  4 4 4
  5 5 5
  6 6 6
  7 7 7
  8 3 7
  8 5 7
  8 8 8
  9 9 9
  10 10 10
  11 11 11
  12 12 12
  13 13 13
15 triangles, 60 degrees, a*a + b*b - a*b = c*c
  5 3 7
  8 7 13
2 triangles, 120 degrees, a*a + b*b + a*b = c*c

maximum side length: 1000
881 triangles, 90 degrees, a*a + b*b = c*c
1260 triangles, 60 degrees, a*a + b*b - a*b = c*c
719 triangles, 120 degrees, a*a + b*b + a*b = c*c

C

A brute force algorithm, O(N^3)

<lang C>/*

* RossetaCode: Law of cosines - triples
*
* An quick and dirty brute force solutions with O(N^3) cost.
* Anyway it is possible set MAX_SIDE_LENGTH equal to 10000 
* and use fast computer to obtain the "extra credit" badge.
*
* Obviously, there are better algorithms.
*/
  1. include <stdio.h>
  2. include <math.h>
  1. define MAX_SIDE_LENGTH 13

//#define DISPLAY_TRIANGLES 1

int main(void) {

   static char description[3][80] = {
       "gamma =  90 degrees,  a*a + b*b       == c*c",
       "gamma =  60 degrees,  a*a + b*b - a*b == c*c",
       "gamma = 120 degrees,  a*a + b*b + a*b == c*c"
   };
   static int coeff[3] = { 0, 1, -1 };
   for (int k = 0; k < 3; k++)
   {
       int counter = 0;
       for (int a = 1; a <= MAX_SIDE_LENGTH; a++)
           for (int b = 1; b <= a; b++)
               for (int c = 1; c <= MAX_SIDE_LENGTH; c++)
                   if (a * a + b * b - coeff[k] * a * b == c * c)
                   {
                       counter++;
  1. ifdef DISPLAY_TRIANGLES
                       printf("  %d  %d  %d\n", a, b, c);
  1. endif
                   }
       printf("%s,  number of triangles = %d\n", description[k], counter);
   }
   return 0;

} </lang>

Output:
gamma =  90 degrees,  a*a + b*b       == c*c,  number of triangles = 3
gamma =  60 degrees,  a*a + b*b - a*b == c*c,  number of triangles = 15
gamma = 120 degrees,  a*a + b*b + a*b == c*c,  number of triangles = 2

An algorithm with O(N^2) cost

<lang C>/*

* RossetaCode: Law of cosines - triples
*
* A solutions with O(N^2) cost.
*/
  1. include <stdio.h>
  2. include <math.h>
  1. define MAX_SIDE_LENGTH 10000

//#define DISPLAY_TRIANGLES

int main(void) {

   static char description[3][80] = {
       "gamma =  90 degrees,  a*a + b*b       == c*c",
       "gamma =  60 degrees,  a*a + b*b - a*b == c*c",
       "gamma = 120 degrees,  a*a + b*b + a*b == c*c"
   };
   static int coeff[3] = { 0, 1, -1 };
   printf("MAX SIDE LENGTH = %d\n\n", MAX_SIDE_LENGTH);
   for (int k = 0; k < 3; k++)
   {
       int counter = 0;
       for (int a = 1; a <= MAX_SIDE_LENGTH; a++)
           for (int b = 1; b <= a; b++)
           {
               int cc = a * a + b * b - coeff[k] * a * b;
               int c = (int)(sqrt(cc) + 0.5);
               if (c <= MAX_SIDE_LENGTH && c * c == cc)
               {
  1. ifdef DISPLAY_TRIANGLES
                   printf("%d %d %d\n", a, b, c);
  1. endif
                   counter++;
               }
           }
       printf("%s,  number of triangles = %d\n", description[k], counter);
   }
   return 0;

} </lang>

Output:
MAX SIDE LENGTH = 10000

gamma =  90 degrees,  a*a + b*b       == c*c,  number of triangles = 12471
gamma =  60 degrees,  a*a + b*b - a*b == c*c,  number of triangles = 28394
gamma = 120 degrees,  a*a + b*b + a*b == c*c,  number of triangles = 10374

C++

<lang cpp>#include <cmath>

  1. include <iostream>
  2. include <tuple>
  3. include <vector>

using triple = std::tuple<int, int, int>;

void print_triple(std::ostream& out, const triple& t) {

   out << '(' << std::get<0>(t) << ',' << std::get<1>(t) << ',' << std::get<2>(t) << ')';

}

void print_vector(std::ostream& out, const std::vector<triple>& vec) {

   if (vec.empty())
       return;
   auto i = vec.begin();
   print_triple(out, *i++);
   for (; i != vec.end(); ++i) {
       out << ' ';
       print_triple(out, *i);
   }
   out << "\n\n";

}

int isqrt(int n) {

   return static_cast<int>(std::sqrt(n));

}

int main() {

   const int min = 1, max = 13;
   std::vector<triple> solutions90, solutions60, solutions120;
   for (int a = min; a <= max; ++a) {
       int a2 = a * a;
       for (int b = a; b <= max; ++b) {
           int b2 = b * b, ab = a * b;
           int c2 = a2 + b2;
           int c = isqrt(c2);
           if (c <= max && c * c == c2)
               solutions90.emplace_back(a, b, c);
           else {
               c2 = a2 + b2 - ab;
               c = isqrt(c2);
               if (c <= max && c * c == c2)
                   solutions60.emplace_back(a, b, c);
               else {
                   c2 = a2 + b2 + ab;
                   c = isqrt(c2);
                   if (c <= max && c * c == c2)
                       solutions120.emplace_back(a, b, c);
               }
           }
       }
   }
   std::cout << "There are " << solutions60.size() << " solutions for gamma = 60 degrees:\n";
   print_vector(std::cout, solutions60);
   std::cout << "There are " << solutions90.size() << " solutions for gamma = 90 degrees:\n";
   print_vector(std::cout, solutions90);
   std::cout << "There are " << solutions120.size() << " solutions for gamma = 120 degrees:\n";
   print_vector(std::cout, solutions120);
   
   const int max2 = 10000;
   int count = 0;
   for (int a = min; a <= max2; ++a) {
       for (int b = a + 1; b <= max2; ++b) {
           int c2 = a * a + b * b - a * b;
           int c = isqrt(c2);
           if (c <= max2 && c * c == c2)
               ++count;
       }
   }
   std::cout << "There are " << count << " solutions for gamma = 60 degrees in the range "
       << min << " to " << max2 << " where the sides are not all of the same length.\n";
   return 0;

}</lang>

Output:
There are 15 solutions for gamma = 60 degrees:
(1,1,1) (2,2,2) (3,3,3) (3,8,7) (4,4,4) (5,5,5) (5,8,7) (6,6,6) (7,7,7) (8,8,8) (9,9,9) (10,10,10) (11,11,11) (12,12,12) (13,13,13)

There are 3 solutions for gamma = 90 degrees:
(3,4,5) (5,12,13) (6,8,10)

There are 2 solutions for gamma = 120 degrees:
(3,5,7) (7,8,13)

There are 18394 solutions for gamma = 60 degrees in the range 1 to 10000 where the sides are not all of the same length.

C#

<lang csharp>using System; using System.Collections.Generic; using static System.Linq.Enumerable;

public static class LawOfCosinesTriples {

   public static void Main2() {
       PrintTriples(60, 13);
       PrintTriples(90, 13);
       PrintTriples(120, 13);
       PrintTriples(60, 10_000, true, false);
   }
   private static void PrintTriples(int degrees, int maxSideLength, bool notAllTheSameLength = false, bool print = true) {
       string s = $"{degrees} degree triangles in range 1..{maxSideLength}";
       if (notAllTheSameLength) s += " where not all sides are the same";
       Console.WriteLine(s);
       int count = 0;
       var triples = FindTriples(degrees, maxSideLength);
       if (notAllTheSameLength) triples = triples.Where(NotAllTheSameLength);
       foreach (var triple in triples) {
           count++;
           if (print) Console.WriteLine(triple);
       }
       Console.WriteLine($"{count} solutions");
   }
   private static IEnumerable<(int a, int b, int c)> FindTriples(int degrees, int maxSideLength) {
       double radians = degrees * Math.PI / 180;
       int coefficient = (int)Math.Round(Math.Cos(radians) * -2, MidpointRounding.AwayFromZero);
       int maxSideLengthSquared = maxSideLength * maxSideLength;
       return
           from a in Range(1, maxSideLength)
           from b in Range(1, a)
           let cc = a * a + b * b + a * b * coefficient
           where cc <= maxSideLengthSquared
           let c = (int)Math.Sqrt(cc)
           where c * c == cc
           select (a, b, c);
   }
   private static bool NotAllTheSameLength((int a, int b, int c) triple) => triple.a != triple.b || triple.a != triple.c;

}</lang>

Output:
60 degree triangles in range 1..13
(1, 1, 1)
(2, 2, 2)
(3, 3, 3)
(4, 4, 4)
(5, 5, 5)
(6, 6, 6)
(7, 7, 7)
(8, 3, 7)
(8, 5, 7)
(8, 8, 8)
(9, 9, 9)
(10, 10, 10)
(11, 11, 11)
(12, 12, 12)
(13, 13, 13)
15 solutions
90 degree triangles in range 1..13
(4, 3, 5)
(8, 6, 10)
(12, 5, 13)
3 solutions
120 degree triangles in range 1..13
(5, 3, 7)
(8, 7, 13)
2 solutions
60 degree triangles in range 1..10000 where not all sides are the same
18394 solutions

Factor

<lang factor>USING: backtrack formatting kernel locals math math.ranges sequences sets sorting ; IN: rosetta-code.law-of-cosines

triples ( quot -- seq )
   [
       V{ } clone :> seen        
       13 [1,b] dup dup [ amb-lazy ] tri@ :> ( a b c )
       a sq b sq + a b quot call( x x x -- x ) c sq =
       { b a c } seen member? not and
       must-be-true { a b c } dup seen push
   ] bag-of ;
show-solutions ( quot angle -- )
   [ triples { } like dup length ] dip rot
   "%d solutions for %d degrees:\n%u\n\n" printf ;

[ * + ] 120 [ 2drop 0 - ] 90 [ * - ] 60 [ show-solutions ] 2tri@</lang>

Output:
2 solutions for 120 degrees:
{ { 3 5 7 } { 7 8 13 } }

3 solutions for 90 degrees:
{ { 3 4 5 } { 5 12 13 } { 6 8 10 } }

15 solutions for 60 degrees:
{
    { 1 1 1 }
    { 2 2 2 }
    { 3 3 3 }
    { 3 8 7 }
    { 4 4 4 }
    { 5 5 5 }
    { 5 8 7 }
    { 6 6 6 }
    { 7 7 7 }
    { 8 8 8 }
    { 9 9 9 }
    { 10 10 10 }
    { 11 11 11 }
    { 12 12 12 }
    { 13 13 13 }
}

Fortran

<lang fortran>MODULE LAW_OF_COSINES

   IMPLICIT NONE
   CONTAINS
   ! Calculate the third side of a triangle using the cosine rule
   REAL FUNCTION COSINE_SIDE(SIDE_A, SIDE_B, ANGLE)
       INTEGER, INTENT(IN) :: SIDE_A, SIDE_B
       REAL(8), INTENT(IN) :: ANGLE
       
       COSINE_SIDE = SIDE_A**2 + SIDE_B**2 - 2*SIDE_A*SIDE_B*COS(ANGLE)
       COSINE_SIDE = COSINE_SIDE**0.5
   END FUNCTION COSINE_SIDE
   ! Convert an angle in degrees to radians
   REAL(8) FUNCTION DEG2RAD(ANGLE)
       REAL(8), INTENT(IN) :: ANGLE
       REAL(8), PARAMETER :: PI = 4.0D0*DATAN(1.D0)
       DEG2RAD = ANGLE*(PI/180)
   END FUNCTION DEG2RAD
   ! Sort an array of integers
   FUNCTION INT_SORTED(ARRAY) RESULT(SORTED)
       INTEGER, DIMENSION(:), INTENT(IN) :: ARRAY
       INTEGER, DIMENSION(SIZE(ARRAY)) :: SORTED, TEMP
       INTEGER :: MAX_VAL, DIVIDE
           
       SORTED = ARRAY
       TEMP = ARRAY
       DIVIDE = SIZE(ARRAY)
       DO WHILE (DIVIDE .NE. 1)
           MAX_VAL = MAXVAL(SORTED(1:DIVIDE))
           TEMP(DIVIDE) = MAX_VAL
           TEMP(MAXLOC(SORTED(1:DIVIDE))) = SORTED(DIVIDE)
           SORTED = TEMP
           DIVIDE = DIVIDE - 1
       END DO
   END FUNCTION INT_SORTED
   ! Append an integer to the end of an array of integers
   SUBROUTINE APPEND(ARRAY, ELEMENT)
       INTEGER, DIMENSION(:), ALLOCATABLE, INTENT(INOUT) :: ARRAY
       INTEGER, DIMENSION(:), ALLOCATABLE :: TEMP
       INTEGER :: ELEMENT
       INTEGER :: I, ISIZE
       IF (ALLOCATED(ARRAY)) THEN
           ISIZE = SIZE(ARRAY)
           ALLOCATE(TEMP(ISIZE+1))
           DO I=1, ISIZE
               TEMP(I) = ARRAY(I)
           END DO
           TEMP(ISIZE+1) = ELEMENT
           DEALLOCATE(ARRAY)
           CALL MOVE_ALLOC(TEMP, ARRAY)
       ELSE
           ALLOCATE(ARRAY(1))
           ARRAY(1) = ELEMENT
       END IF
       
   END SUBROUTINE APPEND
   ! Check if an array of integers contains a subset
   LOGICAL FUNCTION CONTAINS_ARR(ARRAY, ELEMENT)
       INTEGER, DIMENSION(:), INTENT(IN) :: ARRAY
       INTEGER, DIMENSION(:) :: ELEMENT
       INTEGER, DIMENSION(SIZE(ELEMENT)) :: TEMP, SORTED_ELEMENT
       INTEGER :: I, COUNTER, J
       COUNTER = 0
       ELEMENT = INT_SORTED(ELEMENT)
       DO I=1,SIZE(ARRAY),SIZE(ELEMENT)
           TEMP = ARRAY(I:I+SIZE(ELEMENT)-1)
           DO J=1,SIZE(ELEMENT)
               IF (ELEMENT(J) .EQ. TEMP(J)) THEN
                   COUNTER = COUNTER + 1
               END IF
           END DO
           IF (COUNTER .EQ. SIZE(ELEMENT)) THEN
               CONTAINS_ARR = .TRUE.
               RETURN
           END IF
       END DO
       CONTAINS_ARR = .FALSE.
   END FUNCTION CONTAINS_ARR
   ! Count and print cosine triples for the given angle in degrees
   INTEGER FUNCTION COSINE_TRIPLES(MIN_NUM, MAX_NUM, ANGLE, PRINT_RESULTS) RESULT(COUNTER)
       INTEGER, INTENT(IN) :: MIN_NUM, MAX_NUM
       REAL(8), INTENT(IN) :: ANGLE
       LOGICAL, INTENT(IN) :: PRINT_RESULTS
       INTEGER, DIMENSION(:), ALLOCATABLE :: CANDIDATES
       INTEGER, DIMENSION(3) :: CANDIDATE
       INTEGER :: A, B
       REAL :: C
       COUNTER = 0
       DO A = MIN_NUM, MAX_NUM
           DO B = MIN_NUM, MAX_NUM
               C = COSINE_SIDE(A, B, DEG2RAD(ANGLE))
               IF (C .GT. MAX_NUM .OR. MOD(C, 1.) .NE. 0) THEN
                   CYCLE
               END IF
               CANDIDATE(1) = A
               CANDIDATE(2) = B
               CANDIDATE(3) = C
               IF (.NOT. CONTAINS_ARR(CANDIDATES, CANDIDATE)) THEN
                   COUNTER = COUNTER + 1
                   CALL APPEND(CANDIDATES, CANDIDATE(1))
                   CALL APPEND(CANDIDATES, CANDIDATE(2))
                   CALL APPEND(CANDIDATES, CANDIDATE(3))
                   IF (PRINT_RESULTS) THEN
                       WRITE(*,'(A,I0,A,I0,A,I0,A)') " (", CANDIDATE(1), ", ", CANDIDATE(2), ", ", CANDIDATE(3), ")"
                   END IF
               END IF
           END DO
       END DO
   END FUNCTION COSINE_TRIPLES
                 

END MODULE LAW_OF_COSINES

! Program prints the cosine triples for the angles 90, 60 and 120 degrees ! by using the cosine rule to find the third side of each candidate and ! checking that this is an integer. Candidates are appended to an array ! after the sides have been sorted into ascending order ! the array is repeatedly checked to ensure there are no duplicates. PROGRAM LOC

   USE LAW_OF_COSINES
   REAL(8), DIMENSION(3) :: TEST_ANGLES = (/90., 60., 120./)
   INTEGER :: I, COUNTER
   DO I = 1,SIZE(TEST_ANGLES)
       WRITE(*, '(F0.0, A)') TEST_ANGLES(I), " degree triangles: " 
       COUNTER = COSINE_TRIPLES(1, 13, TEST_ANGLES(I), .TRUE.)
       WRITE(*,'(A, I0)') "TOTAL: ", COUNTER
       WRITE(*,*) NEW_LINE('A')
   END DO

END PROGRAM LOC</lang>

90. degree triangles:
 (3, 4, 5)
 (5, 12, 13)
 (6, 8, 10)
TOTAL: 3


60. degree triangles:
 (1, 1, 1)
 (2, 2, 2)
 (3, 3, 3)
 (3, 7, 8)
 (4, 4, 4)
 (5, 5, 5)
 (6, 6, 6)
 (7, 7, 7)
 (3, 7, 8)
 (8, 8, 8)
 (9, 9, 9)
 (10, 10, 10)
 (11, 11, 11)
 (12, 12, 12)
 (13, 13, 13)
TOTAL: 15


120. degree triangles:
 (3, 5, 7)
 (7, 8, 13)
TOTAL: 2

FreeBASIC

<lang freebasic>' version 03-03-2019 ' compile with: fbc -s console

  1. Define max 13
  1. Define Format(_x) Right(" " + Str(_x), 4)

Dim As UInteger a, b, c, a2, b2, c2, c60 , c90, c120 Dim As String s60, s90, s120

For a = 1 To max

   a2 = a * a
   For b = a To max
       b2 = b * b
       ' 60 degrees
       c2 = a2 + b * b - a * b
       c = Sqr(c2)
       If c * c = c2 AndAlso c <= max Then
           s60 += Format(a) + Format(b) + Format(c) + Chr(10, 13)
           c60 += 1
       End If
       ' 90 degrees
       c2 = a2 + b * b
       c = Sqr(c2)
       If c * c = c2 AndAlso c <= max Then
           s90 += Format(a) + Format(b) + Format(c) + Chr(10, 13)
           c90 += 1
       End If
       ' 120 degrees
       c2 = a2 + b * b + a * b
       c = Sqr(c2)
       If c * c = c2 AndAlso c <= max Then
           s120 += Format(a) + Format(b) + Format(c) + Chr(10, 13)
           c120 += 1
       End If
   Next

Next


Print Using "###: 60 degree triangles"; c60 Print s60 Print

Print Using "###: 90 degree triangles"; c90 Print s90 Print

Print Using "###: 120 degree triangles"; c120 Print s120 Print

  1. Undef max
  2. Define max 10000

c60 = 0 For a = 1 To max

   a2 = a * a
   For b = a +1 To max
       c2 = a2 + b * (b - a)
       c = Sqr(c2)
       If c * c = c2 AndAlso c <= max Then
           c60 += 1
       End If
   Next

Next

Print "For 60 degree triangles in the range [1, 10000]" Print "There are "; c60; " triangles that have different length for a, b and c"

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
 15: 60 degree triangles
   1   1   1
   2   2   2
   3   3   3
   3   8   7
   4   4   4
   5   5   5
   5   8   7
   6   6   6
   7   7   7
   8   8   8
   9   9   9
  10  10  10
  11  11  11
  12  12  12
  13  13  13


  3: 90 degree triangles
   3   4   5
   5  12  13
   6   8  10


  2: 120 degree triangles
   3   5   7
   7   8  13


For 60 degree triangles in the range [1, 10000]
There are 18394 triangles that have different length for a, b and c

Go

<lang go>package main

import "fmt"

type triple struct{ a, b, c int }

var squares13 = make(map[int]int, 13) var squares10000 = make(map[int]int, 10000)

func init() {

   for i := 1; i <= 13; i++ {
       squares13[i*i] = i
   }
   for i := 1; i <= 10000; i++ {
       squares10000[i*i] = i
   }

}

func solve(angle, maxLen int, allowSame bool) []triple {

   var solutions []triple
   for a := 1; a <= maxLen; a++ {
       for b := a; b <= maxLen; b++ {
           lhs := a*a + b*b
           if angle != 90 {
               switch angle {
               case 60:
                   lhs -= a * b
               case 120:
                   lhs += a * b
               default:
                   panic("Angle must be 60, 90 or 120 degrees")
               }
           }
           switch maxLen {
           case 13:
               if c, ok := squares13[lhs]; ok {
                   if !allowSame && a == b && b == c {
                       continue
                   }
                   solutions = append(solutions, triple{a, b, c})
               }
           case 10000:
               if c, ok := squares10000[lhs]; ok {
                   if !allowSame && a == b && b == c {
                       continue
                   }
                   solutions = append(solutions, triple{a, b, c})
               }
           default:
               panic("Maximum length must be either 13 or 10000")
           }
       }
   }
   return solutions

}

func main() {

   fmt.Print("For sides in the range [1, 13] ")
   fmt.Println("where they can all be of the same length:-\n")
   angles := []int{90, 60, 120}
   var solutions []triple
   for _, angle := range angles {
       solutions = solve(angle, 13, true)
       fmt.Printf("  For an angle of %d degrees", angle)
       fmt.Println(" there are", len(solutions), "solutions, namely:")
       fmt.Printf("  %v\n", solutions)
       fmt.Println()
   }
   fmt.Print("For sides in the range [1, 10000] ")
   fmt.Println("where they cannot ALL be of the same length:-\n")
   solutions = solve(60, 10000, false)
   fmt.Print("  For an angle of 60 degrees")
   fmt.Println(" there are", len(solutions), "solutions.")

}</lang>

Output:
For sides in the range [1, 13] where they can all be of the same length:-

  For an angle of 90 degrees there are 3 solutions, namely:
  [{3 4 5} {5 12 13} {6 8 10}]

  For an angle of 60 degrees there are 15 solutions, namely:
  [{1 1 1} {2 2 2} {3 3 3} {3 8 7} {4 4 4} {5 5 5} {5 8 7} {6 6 6} {7 7 7} {8 8 8} {9 9 9} {10 10 10} {11 11 11} {12 12 12} {13 13 13}]

  For an angle of 120 degrees there are 2 solutions, namely:
  [{3 5 7} {7 8 13}]

For sides in the range [1, 10000] where they cannot ALL be of the same length:-

  For an angle of 60 degrees there are 18394 solutions.

Haskell

<lang haskell>import qualified Data.Map.Strict as Map import qualified Data.Set as Set import Data.Monoid ((<>))

triangles

 :: (Map.Map Int Int -> Int -> Int -> Int -> Int -> Maybe Int)
 -> Int
 -> [(Int, Int, Int)]

triangles f n =

 let mapRoots = Map.fromList $ ((,) =<< (^ 2)) <$> [1 .. n]
 in Set.elems $
    foldr
      (\(suma2b2, a, b) triSet ->
          (case f mapRoots suma2b2 (a * b) a b of
             Just c -> Set.insert (a, b, c) triSet
             _ -> triSet))
      (Set.fromList [])
      ([1 .. n] >>=
       (\a -> (flip (,,) a =<< (a * a +) . (>>= id) (*)) <$> [1 .. a]))


-- TESTS ------------------------------------------------------------------------

f90, f60, f60ne, f120 :: Map.Map Int Int -> Int -> Int -> Int -> Int -> Maybe Int f90 dct x2 ab a b = Map.lookup x2 dct

f60 dct x2 ab a b = Map.lookup (x2 - ab) dct

f120 dct x2 ab a b = Map.lookup (x2 + ab) dct

f60ne dct x2 ab a b

 | a == b = Nothing
 | otherwise = Map.lookup (x2 - ab) dct

main :: IO () main = do

 putStrLn
   (unlines $
    "Triangles of maximum side 13\n" :
    zipWith
      (\f n ->
          let solns = triangles f 13
          in show (length solns) <> " solutions for " <> show n <>
             " degrees:\n" <>
             unlines (show <$> solns))
      [f120, f90, f60]
      [120, 90, 60])
 putStrLn "60 degrees - uneven triangles of maximum side 10000. Total:"
 print $ length $ triangles f60ne 10000</lang>
Output:
Triangles of maximum side 13

2 solutions for 120 degrees:
(5,3,7)
(8,7,13)

3 solutions for 90 degrees:
(4,3,5)
(8,6,10)
(12,5,13)

15 solutions for 60 degrees:
(1,1,1)
(2,2,2)
(3,3,3)
(4,4,4)
(5,5,5)
(6,6,6)
(7,7,7)
(8,3,7)
(8,5,7)
(8,8,8)
(9,9,9)
(10,10,10)
(11,11,11)
(12,12,12)
(13,13,13)


60 degrees - uneven triangles of maximum side 10000. Total:
18394

J

Solution: <lang j>load 'trig stats' RHS=: *: NB. right-hand-side of Cosine Law LHS=: +/@:*:@] - cos@rfd@[ * 2 * */@] NB. Left-hand-side of Cosine Law

solve=: 4 :0

 adjsides=. >: 2 combrep y
 oppside=. >: i. y
 idx=. (RHS oppside) i. x LHS"1 adjsides
 adjsides ((#~ idx ~: #) ,. ({~ idx -. #)@]) oppside

)</lang> Example: <lang j> 60 90 120 solve&.> 13 +--------+-------+------+ | 1 1 1|3 4 5|3 5 7| | 2 2 2|5 12 13|7 8 13| | 3 3 3|6 8 10| | | 3 8 7| | | | 4 4 4| | | | 5 5 5| | | | 5 8 7| | | | 6 6 6| | | | 7 7 7| | | | 8 8 8| | | | 9 9 9| | | |10 10 10| | | |11 11 11| | | |12 12 12| | | |13 13 13| | | +--------+-------+------+

  60 #@(solve -. _3 ]\ 3 # >:@i.@]) 10000  NB. optional extra credit

18394</lang>

Java

<lang java> public class LawOfCosines {

   public static void main(String[] args) {
       generateTriples(13);
       generateTriples60(10000);
   }
   
   private static void generateTriples(int max) {
       for ( int coeff : new int[] {0, -1, 1} ) {
           int count = 0;
           System.out.printf("Max side length %d, formula:  a*a + b*b %s= c*c%n", max, coeff == 0 ? "" : (coeff<0 ? "-"  : "+") + " a*b ");
           for ( int a = 1 ; a <= max ; a++ ) {
               for ( int b = 1 ; b <= a ; b++ ) {
                   int val = a*a + b*b + coeff*a*b;
                   int c = (int) (Math.sqrt(val) + .5d);
                   if ( c > max ) {
                       break;
                   }
                   if ( c*c == val ) {
                       System.out.printf("  (%d, %d, %d)%n", a, b ,c);
                       count++;
                   }
               }
           }
           System.out.printf("%d triangles%n", count);
       }        
   }
   private static void generateTriples60(int max) {
       int count = 0;
       System.out.printf("%nExtra Credit.%nMax side length %d, sides different length, formula:  a*a + b*b - a*b = c*c%n", max);
       for ( int a = 1 ; a <= max ; a++ ) {
           for ( int b = 1 ; b < a ; b++ ) {
               int val = a*a + b*b - a*b;
               int c = (int) (Math.sqrt(val) + .5d);
               if ( c*c == val ) {
                   count++;
               }
           }
       }
       System.out.printf("%d triangles%n", count);
   }

} </lang>

Output:
Max side length 13, formula:  a*a + b*b = c*c
  (4, 3, 5)
  (8, 6, 10)
  (12, 5, 13)
3 triangles
Max side length 13, formula:  a*a + b*b - a*b = c*c
  (1, 1, 1)
  (2, 2, 2)
  (3, 3, 3)
  (4, 4, 4)
  (5, 5, 5)
  (6, 6, 6)
  (7, 7, 7)
  (8, 3, 7)
  (8, 5, 7)
  (8, 8, 8)
  (9, 9, 9)
  (10, 10, 10)
  (11, 11, 11)
  (12, 12, 12)
  (13, 13, 13)
15 triangles
Max side length 13, formula:  a*a + b*b + a*b = c*c
  (5, 3, 7)
  (8, 7, 13)
2 triangles

Extra Credit.
Max side length 10000, sides different length, formula:  a*a + b*b - a*b = c*c
18394 triangles

JavaScript

<lang JavaScript>(() => {

   'use strict';
   // main :: IO ()
   const main = () => {
       const
           f90 = dct => x2 => dct[x2],
           f60 = dct => (x2, ab) => dct[x2 - ab],
           f120 = dct => (x2, ab) => dct[x2 + ab],
           f60unequal = dct => (x2, ab, a, b) =>
           (a !== b) ? (
               dct[x2 - ab]
           ) : undefined;


       // triangles :: Dict -> (Int -> Int -> Int -> Int -> Maybe Int)
       //                   -> [String]
       const triangles = (f, n) => {
           const
               xs = enumFromTo(1, n),
               fr = f(xs.reduce((a, x) => (a[x * x] = x, a), {})),
               gc = xs.reduce((a, _) => a, {}),
               setSoln = new Set();
           return (
               xs.forEach(
                   a => {
                       const a2 = a * a;
                       enumFromTo(1, 1 + a).forEach(
                           b => {
                               const
                                   suma2b2 = a2 + b * b,
                                   c = fr(suma2b2, a * b, a, b);
                               if (undefined !== c) {
                                   setSoln.add([a, b, c].sort())
                               };
                           }
                       );
                   }
               ),
               Array.from(setSoln.keys())
           );
       };
       const
           result = 'Triangles of maximum side 13:\n\n' +
           unlines(
               zipWith(
                   (s, f) => {
                       const ks = triangles(f, 13);
                       return ks.length.toString() + ' solutions for ' + s +
                           ' degrees:\n' + unlines(ks) + '\n';
                   },
                   ['120', '90', '60'],
                   [f120, f90, f60]
               )
           ) + '\nUneven triangles of maximum side 10000. Total:\n' +
           triangles(f60unequal, 10000).length
       return (
           //console.log(result),
           result
       );
   };


   // GENERIC FUNCTIONS ----------------------------
   // concatMap :: (a -> [b]) -> [a] -> [b]
   const concatMap = (f, xs) =>
       xs.reduce((a, x) => a.concat(f(x)), []);
   // enumFromTo :: Int -> Int -> [Int]
   const enumFromTo = (m, n) =>
       m <= n ? iterateUntil(
           x => n <= x,
           x => 1 + x,
           m
       ) : [];
   // iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
   const iterateUntil = (p, f, x) => {
       const vs = [x];
       let h = x;
       while (!p(h))(h = f(h), vs.push(h));
       return vs;
   };
   // Returns Infinity over objects without finite length
   // this enables zip and zipWith to choose the shorter
   // argument when one non-finite like cycle, repeat etc
   // length :: [a] -> Int
   const length = xs => xs.length || Infinity;
   // take :: Int -> [a] -> [a]
   // take :: Int -> String -> String
   const take = (n, xs) =>
       xs.constructor.constructor.name !== 'GeneratorFunction' ? (
           xs.slice(0, n)
       ) : [].concat.apply([], Array.from({
           length: n
       }, () => {
           const x = xs.next();
           return x.done ? [] : [x.value];
       }));
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // Use of `take` and `length` here allows zipping with non-finite lists
   // i.e. generators like cycle, repeat, iterate.
   // Use of `take` and `length` here allows zipping with non-finite lists
   // i.e. generators like cycle, repeat, iterate.
   // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
   const zipWith = (f, xs, ys) => {
       const
           lng = Math.min(length(xs), length(ys)),
           as = take(lng, xs),
           bs = take(lng, ys);
       return Array.from({
           length: lng
       }, (_, i) => f(as[i], bs[i], i));
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Triangles of maximum side 13:

2 solutions for 120 degrees:
3,5,7
13,7,8

3 solutions for 90 degrees:
3,4,5
10,6,8
12,13,5

15 solutions for 60 degrees:
1,1,1
2,2,2
3,3,3
4,4,4
5,5,5
6,6,6
7,7,7
3,7,8
5,7,8
8,8,8
9,9,9
10,10,10
11,11,11
12,12,12
13,13,13

Uneven triangles of maximum side 10000. Total:
18394
[Finished in 3.444s]

Julia

Translation of: zkl

<lang julia>sqdict(n) = Dict([(x*x, x) for x in 1:n]) numnotsame(arrarr) = sum(map(x -> !all(y -> y == x[1], x), arrarr))

function filtertriangles(N)

   sqd = sqdict(N)
   t60 = Vector{Vector{Int}}()
   t90 = Vector{Vector{Int}}()
   t120 = Vector{Vector{Int}}()
   for x in 1:N, y in 1:x
       xsq, ysq, xy = (x*x, y*y, x*y)
       if haskey(sqd, xsq + ysq - xy)
           push!(t60, sort([x, y, sqd[xsq + ysq - xy]]))
       elseif haskey(sqd, xsq + ysq)
           push!(t90, sort([x, y, sqd[xsq + ysq]]))
       elseif haskey(sqd, xsq + ysq + xy)
           push!(t120, sort([x, y, sqd[xsq + ysq + xy]]))
       end
   end
   t60, t90, t120

end

tri60, tri90, tri120 = filtertriangles(13) println("Integer triples for 1 <= side length <= 13:\n") println("Angle 60:"); for t in tri60 println(t) end println("Angle 90:"); for t in tri90 println(t) end println("Angle 120:"); for t in tri120 println(t) end println("\nFor sizes N through 10000, there are $(numnotsame(filtertriangles(10000)[1])) 60 degree triples with nonequal sides.")

</lang>

Output:

Integer triples for 1 <= side length <= 13:

Angle 60: [1, 1, 1] [2, 2, 2] [3, 3, 3] [4, 4, 4] [5, 5, 5] [6, 6, 6] [7, 7, 7] [3, 7, 8] [5, 7, 8] [8, 8, 8] [9, 9, 9] [10, 10, 10] [11, 11, 11] [12, 12, 12] [13, 13, 13] Angle 90: [3, 4, 5] [6, 8, 10] [5, 12, 13] Angle 120: [3, 5, 7] [7, 8, 13]

For sizes N through 10000, there are 18394 60 degree triples with nonequal sides.

Kotlin

Translation of: Go

<lang scala>// Version 1.2.70

val squares13 = mutableMapOf<Int, Int>() val squares10000 = mutableMapOf<Int, Int>()

class Trio(val a: Int, val b: Int, val c: Int) {

   override fun toString() = "($a $b $c)"

}

fun init() {

   for (i in 1..13) squares13.put(i * i, i)
   for (i in 1..10000) squares10000.put(i * i, i)

}

fun solve(angle :Int, maxLen: Int, allowSame: Boolean): List<Trio> {

   val solutions = mutableListOf<Trio>()
   for (a in 1..maxLen) {
       inner@ for (b in a..maxLen) {
           var lhs = a * a + b * b
           if (angle != 90) {
               when (angle) {
                   60   -> lhs -= a * b
                   120  -> lhs += a * b
                   else -> throw RuntimeException("Angle must be 60, 90 or 120 degrees")
               }
           }
           when (maxLen) {
               13 -> {
                   val c = squares13[lhs]
                   if (c != null) {
                       if (!allowSame && a == b && b == c) continue@inner
                       solutions.add(Trio(a, b, c))
                   }
               }
               10000 -> {
                   val c = squares10000[lhs]
                   if (c != null) {
                       if (!allowSame && a == b && b == c) continue@inner
                       solutions.add(Trio(a, b, c))
                   }
               }
               else -> throw RuntimeException("Maximum length must be either 13 or 10000")
           }
       }
   }
   return solutions

}

fun main(args: Array<String>) {

   init()
   print("For sides in the range [1, 13] ")
   println("where they can all be of the same length:-\n")
   val angles = intArrayOf(90, 60, 120)
   lateinit var solutions: List<Trio>
   for (angle in angles) {
       solutions = solve(angle, 13, true)
       print("  For an angle of ${angle} degrees")
       println(" there are ${solutions.size} solutions, namely:")
       println("  ${solutions.joinToString(" ", "[", "]")}\n")
   }
   print("For sides in the range [1, 10000] ")
   println("where they cannot ALL be of the same length:-\n")
   solutions = solve(60, 10000, false)
   print("  For an angle of 60 degrees")
   println(" there are ${solutions.size} solutions.")

}</lang>

Output:
For sides in the range [1, 13] where they can all be of the same length:-

  For an angle of 90 degrees there are 3 solutions, namely:
  [(3 4 5) (5 12 13) (6 8 10)]

  For an angle of 60 degrees there are 15 solutions, namely:
  [(1 1 1) (2 2 2) (3 3 3) (3 8 7) (4 4 4) (5 5 5) (5 8 7) (6 6 6) (7 7 7) (8 8 8) (9 9 9) (10 10 10) (11 11 11) (12 12 12) (13 13 13)]

  For an angle of 120 degrees there are 2 solutions, namely:
  [(3 5 7) (7 8 13)]

For sides in the range [1, 10000] where they cannot ALL be of the same length:-

  For an angle of 60 degrees there are 18394 solutions.

Lua

<lang lua>function solve(angle, maxlen, filter)

 local squares, roots, solutions = {}, {}, {}
 local cos2 = ({[60]=-1,[90]=0,[120]=1})[angle]
 for i = 1, maxlen do squares[i], roots[i^2] = i^2, i end
 for a = 1, maxlen do
   for b = a, maxlen do
     local lhs = squares[a] + squares[b] + cos2*a*b
     local c = roots[lhs]
     if c and (not filter or filter(a,b,c)) then
       solutions[#solutions+1] = {a=a,b=b,c=c}
     end
   end
 end
 print(angle.."° on 1.."..maxlen.." has "..#solutions.." solutions")
 if not filter then
   for i,v in ipairs(solutions) do print("",v.a,v.b,v.c) end
 end

end solve(90, 13) solve(60, 13) solve(120, 13) function fexcr(a,b,c) return a~=b or b~=c end solve(60, 10000, fexcr) -- extra credit solve(90, 10000, fexcr) -- more extra credit solve(120, 10000, fexcr) -- even more extra credit</lang>

Output:
90° on 1..13 has 3 solutions
        3       4       5
        5       12      13
        6       8       10
60° on 1..13 has 15 solutions
        1       1       1
        2       2       2
        3       3       3
        3       8       7
        4       4       4
        5       5       5
        5       8       7
        6       6       6
        7       7       7
        8       8       8
        9       9       9
        10      10      10
        11      11      11
        12      12      12
        13      13      13
120° on 1..13 has 2 solutions
        3       5       7
        7       8       13
60° on 1..10000 has 18394 solutions
90° on 1..10000 has 12471 solutions
120° on 1..10000 has 10374 solutions

Nim

<lang nim>import strformat import tables

  1. Generate tables at compile time. This eliminates the initialization at
  2. the expense of a bigger executable.

const square13 = block:

 var tmp = newSeq[tuple[a, b: int]]()
 for i in 1..13:
   tmp.add((i * i, i))
 toTable(tmp)
 

const square10000 = block:

 var tmp = newSeq[tuple[a, b: int]]()
 for i in 1..10000:
   tmp.add((i * i, i))
 toTable(tmp)

proc solve(angle, maxLen: int, allowSame: bool): seq[tuple[a, b, c: int]] =

 result = newSeq[tuple[a, b, c: int]]()
 for a in 1..maxLen:
   for b in a..maxLen:
     var lhs = a * a + b * b
     if angle != 90:
       case angle
       of 60:
         dec lhs, a * b
       of 120:
         inc lhs, a * b
       else:
         raise newException(IOError, "Angle must be 60, 90 or 120 degrees")
     case maxLen
     of 13:
       var c = square13.getOrDefault(lhs)
       if (not allowSame and a == b and b == c) or c == 0:
         continue
       result.add((a, b, c))
     of 10000:
       var c = square10000.getOrDefault(lhs)
       if (not allowSame and a == b and b == c) or c == 0:
         continue
       result.add((a, b, c))
     else:
       raise newException(IOError, "Maximum length must be either 13 or 10000")

echo "For sides in the range [1, 13] where they can all be the same length:\n" let angles = [90, 60, 120] for angle in angles:

 var solutions = solve(angle, 13, true)
 echo fmt"    For an angle of {angle} degrees there are {len(solutions)} solutions, to wit:"
 write(stdout, "    ")
 for i in 0..<len(solutions):
   write(stdout, fmt"{solutions[i]:25}")
   if i mod 3 == 2:
     write(stdout, "\n    ")
 write(stdout, "\n")

echo "\nFor sides in the range [1, 10000] where they cannot ALL be of the same length:\n" var solutions = solve(60, 10000, false) echo fmt" For an angle of 60 degrees there are {len(solutions)} solutions."</lang>

Output:
For sides in the range [1, 13] where they can all be the same length:

    For an angle of 90 degrees there are 3 solutions, to wit:
    (a: 3, b: 4, c: 5)       (a: 5, b: 12, c: 13)     (a: 6, b: 8, c: 10)      
    
    For an angle of 60 degrees there are 15 solutions, to wit:
    (a: 1, b: 1, c: 1)       (a: 2, b: 2, c: 2)       (a: 3, b: 3, c: 3)       
    (a: 3, b: 8, c: 7)       (a: 4, b: 4, c: 4)       (a: 5, b: 5, c: 5)       
    (a: 5, b: 8, c: 7)       (a: 6, b: 6, c: 6)       (a: 7, b: 7, c: 7)       
    (a: 8, b: 8, c: 8)       (a: 9, b: 9, c: 9)       (a: 10, b: 10, c: 10)    
    (a: 11, b: 11, c: 11)    (a: 12, b: 12, c: 12)    (a: 13, b: 13, c: 13)    
    
    For an angle of 120 degrees there are 2 solutions, to wit:
    (a: 3, b: 5, c: 7)       (a: 7, b: 8, c: 13)      

For sides in the range [1, 10000] where they cannot ALL be of the same length:

    For an angle of 60 degrees there are 18394 solutions.

Perl

Translation of: Raku

<lang perl>use utf8; binmode STDOUT, "utf8:"; use Sort::Naturally;

sub triples {

   my($n,$angle) = @_;
   my(@triples,%sq);
   $sq{$_**2}=$_ for 1..$n;
   for $a (1..$n-1) {
     for $b ($a+1..$n) {
       my $ab = $a*$a + $b*$b;
       my $cos = $angle == 60  ? $ab - $a * $b :
                 $angle == 120 ? $ab + $a * $b :
                                 $ab;
       if ($angle == 60) {
           push @triples, "$a $sq{$cos} $b" if exists $sq{$cos};
       } else {
           push @triples, "$a $b $sq{$cos}" if exists $sq{$cos};
       }
     }
   }
   @triples;

}

$n = 13; print "Integer triangular triples for sides 1..$n:\n"; for my $angle (120, 90, 60) {

  my @itt = triples($n,$angle);
  if ($angle == 60) { push @itt, "$_ $_ $_" for 1..$n }
  printf "Angle %3d° has %2d solutions: %s\n", $angle, scalar @itt,
        join ', ', nsort @itt;

}

printf "Non-equilateral n=10000/60°: %d\n", scalar triples(10000,60);</lang>

Output:
Integer triangular triples for sides 1..13:
Angle 120° has  2 solutions: 3 5 7, 7 8 13
Angle  90° has  3 solutions: 3 4 5, 6 8 10, 5 12 13
Angle  60° has 15 solutions: 1 1 1, 2 2 2, 3 3 3, 3 7 8, 4 4 4, 5 5 5, 5 7 8, 6 6 6, 7 7 7, 8 8 8, 9 9 9, 10 10 10, 11 11 11, 12 12 12, 13 13 13
Non-equilateral n=10000/60°: 18394

Phix

Using a simple flat sequence of 100 million elements (well within the language limits) proved significantly faster than a dictionary (5x or so). <lang Phix>sequence squares = repeat(0,10000*10000) for c=1 to 10000 do

   squares[c*c] = c

end for

function solve(integer angle, maxlen, bool samelen=true)

   sequence res = {}
   for a=1 to maxlen do
       integer a2 = a*a
       for b=a to maxlen do
           integer c2 = a2+b*b
           if angle!=90 then
               if    angle=60  then c2 -= a*b
               elsif angle=120 then c2 += a*b
               else crash("angle must be 60/90/120")
               end if  
           end if
           integer c = iff(c2>length(squares)?0:squares[c2])
           if c!=0 and c<=maxlen then
               if samelen or a!=b or b!=c then
                   res = append(res,{a,b,c})
               end if
           end if
       end for
   end for
   return res

end function

procedure show(string fmt,sequence res, bool full=true)

   printf(1,fmt,{length(res),iff(full?sprint(res):"")})

end procedure

puts(1,"Integer triangular triples for sides 1..13:\n") show("Angle 60 has %2d solutions: %s\n",solve( 60,13)) show("Angle 90 has %2d solutions: %s\n",solve( 90,13)) show("Angle 120 has %2d solutions: %s\n",solve(120,13)) show("Non-equilateral angle 60 triangles for sides 1..10000: %d%s\n",solve(60,10000,false),false)</lang>

Output:
Integer triangular triples for sides 1..13:
Angle  60 has 15 solutions: {{1,1,1},{2,2,2},{3,3,3},{3,8,7},{4,4,4},{5,5,5},{5,8,7},{6,6,6},{7,7,7},{8,8,8},{9,9,9},{10,10,10},{11,11,11},{12,12,12},{13,13,13}}
Angle  90 has  3 solutions: {{3,4,5},{5,12,13},{6,8,10}}
Angle 120 has  2 solutions: {{3,5,7},{7,8,13}}
Non-equilateral angle 60 triangles for sides 1..10000: 18394

Prolog

Works with: SWI Prolog

<lang prolog>find_solutions(Limit, Solutions):-

   find_solutions(Limit, Solutions, Limit, []).

find_solutions(_, S, 0, S):-

   !.

find_solutions(Limit, Solutions, A, S):-

   find_solutions1(Limit, A, A, S1, S),
   A_next is A - 1,
   find_solutions(Limit, Solutions, A_next, S1).

find_solutions1(Limit, _, B, Triples, Triples):-

   B > Limit,
   !.

find_solutions1(Limit, A, B, [Triple|Triples], T):-

   is_solution(Limit, A, B, Triple),
   !,
   B_next is B + 1,
   find_solutions1(Limit, A, B_next, Triples, T).

find_solutions1(Limit, A, B, Triples, T):-

   B_next is B + 1,
   find_solutions1(Limit, A, B_next, Triples, T).

is_solution(Limit, A, B, t(Angle, A, B, C)):-

   X is A * A + B * B,
   Y is A * B,
   (
       Angle = 90, C is round(sqrt(X)), X is C * C
       ;
       Angle = 120, C2 is X + Y, C is round(sqrt(C2)), C2 is C * C
       ;
       Angle = 60, C2 is X - Y, C is round(sqrt(C2)), C2 is C * C
   ),
   C =< Limit,
   !.

write_triples(Angle, Solutions):-

   find_triples(Angle, Solutions, List, 0, Count),
   writef('There are %w solutions for gamma = %w:\n', [Count, Angle]),
   write_triples1(List),
   nl.

find_triples(_, [], [], Count, Count):-

   !.

find_triples(Angle, [Triple|Triples], [Triple|Result], C, Count):-

   Triple = t(Angle, _, _, _),
   !,
   C1 is C + 1,
   find_triples(Angle, Triples, Result, C1, Count).

find_triples(Angle, [_|Triples], Result, C, Count):-

   find_triples(Angle, Triples, Result, C, Count).

write_triples1([]):-!. write_triples1([t(_, A, B, C)]):-

   writef('(%w,%w,%w)\n', [A, B, C]),
   !.

write_triples1([t(_, A, B, C)|Triples]):-

   writef('(%w,%w,%w) ', [A, B, C]),
   write_triples1(Triples).

main:-

   find_solutions(13, Solutions),
   write_triples(60, Solutions),
   write_triples(90, Solutions),
   write_triples(120, Solutions).</lang>
Output:
There are 15 solutions for gamma = 60:
(1,1,1) (2,2,2) (3,3,3) (3,8,7) (4,4,4) (5,5,5) (5,8,7) (6,6,6) (7,7,7) (8,8,8) (9,9,9) (10,10,10) (11,11,11) (12,12,12) (13,13,13)

There are 3 solutions for gamma = 90:
(3,4,5) (5,12,13) (6,8,10)

There are 2 solutions for gamma = 120:
(3,5,7) (7,8,13)

Python

Sets

<lang python>N = 13

def method1(N=N):

   squares = [x**2 for x in range(0, N+1)]
   sqrset = set(squares)
   tri90, tri60, tri120 = (set() for _ in range(3))
   for a in range(1, N+1):
       a2 = squares[a]
       for b in range(1, a + 1):
           b2 = squares[b]
           c2 = a2 + b2
           if c2 in sqrset:
               tri90.add(tuple(sorted((a, b, int(c2**0.5)))))
           ab = a * b
           c2 -= ab
           if c2 in sqrset:
               tri60.add(tuple(sorted((a, b, int(c2**0.5)))))
           c2 += 2 * ab
           if c2 in sqrset:
               tri120.add(tuple(sorted((a, b, int(c2**0.5)))))
   return  sorted(tri90), sorted(tri60), sorted(tri120)
  1. %%

if __name__ == '__main__':

   print(f'Integer triangular triples for sides 1..{N}:')
   for angle, triples in zip([90, 60, 120], method1(N)):
       print(f'  {angle:3}° has {len(triples)} solutions:\n    {triples}')
   _, t60, _ = method1(10_000)
   notsame = sum(1 for a, b, c in t60 if a != b or b != c)
   print('Extra credit:', notsame)</lang>
Output:
Integer triangular triples for sides 1..13:
   90° has 3 solutions:
    [(3, 4, 5), (5, 12, 13), (6, 8, 10)]
   60° has 15 solutions:
    [(1, 1, 1), (2, 2, 2), (3, 3, 3), (3, 7, 8), (4, 4, 4), (5, 5, 5), (5, 7, 8), (6, 6, 6), (7, 7, 7), (8, 8, 8), (9, 9, 9), (10, 10, 10), (11, 11, 11), (12, 12, 12), (13, 13, 13)]
  120° has 2 solutions:
    [(3, 5, 7), (7, 8, 13)]
Extra credit: 18394

Dictionaries

A variant Python draft based on dictionaries. (Test functions are passed as parameters to the main function.) <lang python>from itertools import (starmap)


def f90(dct):

   return lambda x2, ab, a, b: dct.get(x2, None)


def f60(dct):

   return lambda x2, ab, a, b: dct.get(x2 - ab, None)


def f120(dct):

   return lambda x2, ab, a, b: dct.get(x2 + ab, None)


def f60unequal(dct):

   return lambda x2, ab, a, b: (
       dct.get(x2 - ab, None) if a != b else None
   )


  1. triangles :: Dict -> (Int -> Int -> Int -> Int -> Maybe Int)
  2. -> [String]

def triangles(f, n):

   upto = enumFromTo(1)
   xs = upto(n)
   dctSquares = dict(zip(xs, [x**2 for x in xs]))
   dctRoots = {v: k for k, v in dctSquares.items()}
   fr = f(dctRoots)
   dct = {}
   for a in xs:
       a2 = dctSquares[a]
       for b in upto(a):
           suma2b2 = a2 + dctSquares[b]
           c = fr(suma2b2, a * b, a, b)
           if (c is not None):
               dct[str(sorted([a, b, c]))] = 1
   return list(dct.keys())


def main():

   print(
       'Triangles of maximum side 13\n\n' +
       unlines(
           zipWith(
               lambda f, n: (
                   lambda ks=triangles(f, 13): (
                       str(len(ks)) + ' solutions for ' +
                       str(n) + ' degrees:\n' +
                       unlines(ks) + '\n'
                   )
               )()
           )([f120, f90, f60])
            ([120, 90, 60])
       ) + '\n\n' +
       '60 degrees - uneven triangles of maximum side 10000. Total:\n' +
       str(len(triangles(f60unequal, 10000)))
   )


  1. GENERIC --------------------------------------------------------------
  1. enumFromTo :: Int -> Int -> [Int]

def enumFromTo(m):

   return lambda n: list(range(m, 1 + n))


  1. unlines :: [String] -> String

def unlines(xs):

   return '\n'.join(xs)


  1. zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

def zipWith(f):

   return lambda xs: lambda ys: (
       list(starmap(f, zip(xs, ys)))
   )


if __name__ == '__main__':

   main()</lang>
Output:
Triangles of maximum side 13

2 solutions for 120 degrees:
[3, 5, 7]
[7, 8, 13]

3 solutions for 90 degrees:
[3, 4, 5]
[6, 8, 10]
[5, 12, 13]

15 solutions for 60 degrees:
[1, 1, 1]
[2, 2, 2]
[3, 3, 3]
[4, 4, 4]
[5, 5, 5]
[6, 6, 6]
[7, 7, 7]
[3, 7, 8]
[5, 7, 8]
[8, 8, 8]
[9, 9, 9]
[10, 10, 10]
[11, 11, 11]
[12, 12, 12]
[13, 13, 13]


60 degrees - uneven triangles of maximum side 10000. Total:
18394

Raku

(formerly Perl 6) In each routine, race is used to allow concurrent operations, requiring the use of the atomic increment operator, ⚛++, to safely update @triples, which must be declared fixed-sized, as an auto-resizing array is not thread-safe. At exit, default values in @triples are filtered out with the test !eqv Any. <lang perl6>multi triples (60, $n) {

   my %sq = (1..$n).map: { .² => $_ };
   my atomicint $i = 0;
   my @triples[2*$n];
   (1..^$n).race(:8degree).map: -> $a {
       for $a^..$n -> $b {
           my $cos = $a * $a + $b * $b - $a * $b;
           @triples[$i⚛++] = $a, %sq{$cos}, $b if %sq{$cos}:exists;
       }
   }
   @triples.grep: so *;

}

multi triples (90, $n) {

   my %sq = (1..$n).map: { .² => $_ };
   my atomicint $i = 0;
   my @triples[2*$n];
   (1..^$n).race(:8degree).map: -> $a {
       for $a^..$n -> $b {
           my $cos = $a * $a + $b * $b;
           @triples[$i⚛++] = $a, $b, %sq{$cos} and last if %sq{$cos}:exists;
       }
   }
   @triples.grep: so *;

}

multi triples (120, $n) {

   my %sq = (1..$n).map: { .² => $_ };
   my atomicint $i = 0;
   my @triples[2*$n];
   (1..^$n).race(:8degree).map: -> $a {
       for $a^..$n -> $b {
           my $cos = $a * $a + $b * $b + $a * $b;
           @triples[$i⚛++] = $a, $b, %sq{$cos} and last if %sq{$cos}:exists;
       }
   }
   @triples.grep: so *;

}

use Sort::Naturally;

my $n = 13; say "Integer triangular triples for sides 1..$n:"; for 120, 90, 60 -> $angle {

   my @itt = triples($angle, $n);
   if $angle == 60 { push @itt, "$_ $_ $_" for 1..$n }
   printf "Angle %3d° has %2d solutions: %s\n", $angle, +@itt, @itt.sort(&naturally).join(', ');

}

my ($angle, $count) = 60, 10_000; say "\nExtra credit:"; say "$angle° integer triples in the range 1..$count where the sides are not all the same length: ", +triples($angle, $count);</lang>

Output:
Integer triangular triples for sides 1..13:
Angle 120° has  2 solutions: 3 5 7, 7 8 13
Angle  90° has  3 solutions: 3 4 5, 5 12 13, 6 8 10
Angle  60° has 15 solutions: 1 1 1, 2 2 2, 3 3 3, 3 7 8, 4 4 4, 5 5 5, 5 7 8, 6 6 6, 7 7 7, 8 8 8, 9 9 9, 10 10 10, 11 11 11, 12 12 12, 13 13 13

Extra credit:
60° integer triples in the range 1..10000 where the sides are not all the same length: 18394

REXX

(Using some optimization and memoization.)

Instead of coding a general purpose subroutine (or function) to solve all of the task's requirements,   it was decided to
write three very similar   do   loops (triple nested) to provide the answers for the three requirements.

Three arguments   (from the command line)   can be specified which indicates the maximum length of the triangle sides
(the default is   13,   as per the task's requirement)   for each of the three types of angles   (60º, 90º, and 120º)   for
the triangles.   If the maximum length of the triangle's number of sides is positive,   it indicates that the triangle sides are
displayed,   as well as a total number of triangles found.

If the maximum length of the triangle sides is negative,   only the   number   of triangles are displayed   (using the
absolute value of the negative number). <lang rexx>/*REXX pgm finds integer sided triangles that satisfy Law of cosines for 60º, 90º, 120º.*/ parse arg os1 os2 os3 os4 . /*obtain optional arguments from the CL*/ if os1== | os1=="," then os1= 13; s1=abs(os1) /*Not specified? Then use the default.*/ if os2== | os2=="," then os2= 13; s2=abs(os2) /* " " " " " " */ if os3== | os3=="," then os3= 13; s3=abs(os3) /* " " " " " " */ if os4== | os4=="," then os4= -0; s4=abs(os4) /* " " " " " " */ @.= /*@: array holds squares, max of sides*/

                     do j=1  for max(s1, s2, s3, s4);  @.j= j * j    /*use memoization.*/
                     end   /*j*/

if s1>0 then call s1 /*handle the triangle case for 120º. */ if s2>0 then call s2 /*handle the triangle case for 90º. */ if s3>0 then call s3 /*handle the triangle case for 60º. */ if s4>0 then call s4 /*handle the case for unique sides. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? dAng: w= length(s); ang= ' 'd"º " uq' '; ss= s * s; @sol= " solutions found for"; return foot: say right(commas(#) @sol ang "(sides up to" commas(arg(1) +0)')', 65); say; return head: #= 0; parse arg d,uq,s; @= ','; call dAng; say center(ang, 65, '═'); return show: #=#+1; arg p; if p>0 then say ' ('right(a,w)@ right(b,w)@ right(c,w)")"; return /*──────────────────────────────────────────────────────────────────────────────────────*/ s1: call head 120,,s1 /*────────── 120º: a² + b² + ab ≡ c² */

            do     a=1    for s1;         ap1= a + 1
              do   b=ap1  for s1-ap1+1;   x= @.a + @.b + a*b;     if x>ss  then iterate a
                do c=b+1  for s1-b+1  until @.c>x
                if x==@.c  then do;  call show os1;  iterate b;  end
                end   /*c*/
              end     /*b*/
            end       /*a*/
     call foot s1;                        return

/*──────────────────────────────────────────────────────────────────────────────────────*/ s2: call head 90,,s2 /*────────── 90º: a² + b² ≡ c² */

            do     a=1    for s2;         ap1= a + 1
              do   b=ap1  for s2-ap1+1;   x= @.a + @.b;           if x>ss  then iterate a
                do c=b+1  for s2-b+2  until @.c>x
                if x==@.c  then do;  call show os2;  iterate b;  end
                end   /*c*/
              end     /*b*/
            end       /*a*/
     call foot s2;                        return

/*──────────────────────────────────────────────────────────────────────────────────────*/ s3: call head 60,,s3 /*────────── 60º: a² + b² ─ ab ≡ c² */

            do     a=1   for s3;          s3ma= s3 - a + 1
              do   b=a   for s3ma;        x= @.a + @.b - a*b;     if x>ss  then iterate a
                do c=a   for s3ma  until @.c>x
                if x==@.c  then do;  call show os3;  iterate b;  end
                end   /*c*/
              end     /*b*/
            end       /*a*/
     call foot s2;                        return

/*──────────────────────────────────────────────────────────────────────────────────────*/ s4: call head 60, 'unique', os4 /*────────── 60º: a² + b² ─ ab ≡ c² */

            do     a=1    for s4;         ap1= a + 1;    s4map1= s4 - ap1 + 1
              do   b=ap1  for s4map1;     x= @.a + @.b - a*b;     if x>ss  then iterate a
                do c=ap1  for s4map1  until @.c>x
                if x==@.c  then do;  call show os4;  iterate b;  end
                end   /*c*/
              end     /*b*/
            end       /*a*/
     call foot s4;                        return</lang>
output   when using the default number of sides for the input:     13
═════════════════════════════ 120º ══════════════════════════════
     ( 3,  5,  7)
     ( 7,  8, 13)
                   2  solutions found for  120º  (sides up to 13)

══════════════════════════════ 90º ══════════════════════════════
     ( 3,  4,  5)
     ( 5, 12, 13)
     ( 6,  8, 10)
                    3  solutions found for  90º  (sides up to 13)

══════════════════════════════ 60º ══════════════════════════════
     ( 1,  1,  1)
     ( 2,  2,  2)
     ( 3,  3,  3)
     ( 3,  8,  7)
     ( 4,  4,  4)
     ( 5,  5,  5)
     ( 5,  8,  7)
     ( 6,  6,  6)
     ( 7,  7,  7)
     ( 8,  8,  8)
     ( 9,  9,  9)
     (10, 10, 10)
     (11, 11, 11)
     (12, 12, 12)
     (13, 13, 13)
                   15  solutions found for  60º  (sides up to 13)
output   when using the inputs of:     0   0   0   -10000

Note that the first three computations are bypassed because of the three zero (0) numbers,   the negative ten thousand indicates to find all the triangles with sides up to 10,000,   but not list the triangles, it just reports the   number   of solutions found.

══════════════════════════ 60º  unique ══════════════════════════
    18,394  solutions found for  60º  unique (sides up to 10,000)

Ruby

<lang ruby>grouped = (1..13).to_a.repeated_permutation(3).group_by do |a,b,c|

 sumaabb, ab = a*a + b*b, a*b
 case c*c
   when sumaabb      then 90
   when sumaabb - ab then 60
   when sumaabb + ab then 120
 end

end

grouped.delete(nil) res = grouped.transform_values{|v| v.map(&:sort).uniq }

res.each do |k,v|

 puts "For an angle of #{k} there are #{v.size} solutions:"
 puts v.inspect, "\n"

end </lang>

Output:
For an angle of 60 there are 15 solutions:
[[1, 1, 1], [2, 2, 2], [3, 3, 3], [3, 7, 8], [4, 4, 4], [5, 5, 5], [5, 7, 8], [6, 6, 6], [7, 7, 7], [8, 8, 8], [9, 9, 9], [10, 10, 10], [11, 11, 11], [12, 12, 12], [13, 13, 13]]

For an angle of 90 there are 3 solutions:
[[3, 4, 5], [5, 12, 13], [6, 8, 10]]

For an angle of 120 there are 2 solutions:
[[3, 5, 7], [7, 8, 13]]

Extra credit: <lang ruby>n = 10_000 ar = (1..n).to_a squares = {} ar.each{|i| squares[i*i] = true } count = ar.combination(2).count{|a,b| squares.key?(a*a + b*b - a*b)}

puts "There are #{count} 60° triangles with unequal sides of max size #{n}." </lang>

Output:
There are 18394 60° triangles with unequal sides of max size 10000.

Wren

Translation of: Go

<lang ecmascript>var squares13 = {} var squares10000 = {}

var initMaps = Fn.new {

   for (i in 1..13) squares13[i*i] = i
   for (i in 1..10000) squares10000[i*i] = i

}

var solve = Fn.new { |angle, maxLen, allowSame|

   var solutions = []
   for (a in 1..maxLen) {
       for (b in a..maxLen) {
           var lhs = a*a + b*b
           if (angle != 90) {
               if (angle == 60) {
                   lhs = lhs - a*b
               } else if (angle == 120) {
                   lhs = lhs + a*b
               } else {
                   Fiber.abort("Angle must be 60, 90 or 120 degrees")
               }
           }
           if (maxLen == 13) {
               var c = squares13[lhs]
               if (c != null) {
                   if (allowSame || a != b || b != c) {
                       solutions.add([a, b, c])
                   }
               }
           } else if (maxLen == 10000) {                 
               var c = squares10000[lhs]
               if (c != null) {
                   if (allowSame || a != b || b != c) {
                       solutions.add([a, b, c])
                   }
               }
           } else {
               Fiber.abort("Maximum length must be either 13 or 10000")
           }
       }
   }
   return solutions

}

initMaps.call() System.write("For sides in the range [1, 13] ") System.print("where they can all be of the same length:-\n") var angles = [90, 60, 120] var solutions = [] for (angle in angles) {

   solutions = solve.call(angle, 13, true)
   System.write("  For an angle of %(angle) degrees")
   System.print(" there are %(solutions.count) solutions, namely:")
   System.print("  %(solutions)")
   System.print()

} System.write("For sides in the range [1, 10000] ") System.print("where they cannot ALL be of the same length:-\n") solutions = solve.call(60, 10000, false) System.write(" For an angle of 60 degrees") System.print(" there are %(solutions.count) solutions.")</lang>

Output:
For sides in the range [1, 13] where they can all be of the same length:-

  For an angle of 90 degrees there are 3 solutions, namely:
  [[3, 4, 5], [5, 12, 13], [6, 8, 10]]

  For an angle of 60 degrees there are 15 solutions, namely:
  [[1, 1, 1], [2, 2, 2], [3, 3, 3], [3, 8, 7], [4, 4, 4], [5, 5, 5], [5, 8, 7], [6, 6, 6], [7, 7, 7], [8, 8, 8], [9, 9, 9], [10, 10, 10], [11, 11, 11], [12, 12, 12], [13, 13, 13]]

  For an angle of 120 degrees there are 2 solutions, namely:
  [[3, 5, 7], [7, 8, 13]]

For sides in the range [1, 10000] where they cannot ALL be of the same length:-

  For an angle of 60 degrees there are 18394 solutions.

zkl

<lang zkl>fcn tritri(N=13){

  sqrset:=[0..N].pump(Dictionary().add.fp1(True),fcn(n){ n*n });
  tri90, tri60, tri120 := List(),List(),List();
  foreach a,b in ([1..N],[1..a]){
     aa,bb := a*a,b*b;
     ab,c  := a*b, aa + bb - ab;	// 60*
     if(sqrset.holds(c)){ tri60.append(abc(a,b,c)); continue; }
     c=aa + bb;			// 90*
     if(sqrset.holds(c)){ tri90.append(abc(a,b,c)); continue; }
     c=aa + bb + ab;			// 120*
     if(sqrset.holds(c))  tri120.append(abc(a,b,c));
  }
  List(tri60,tri90,tri120)

} fcn abc(a,b,c){ List(a,b).sort().append(c.toFloat().sqrt().toInt()) } fcn triToStr(tri){ // ((c,d,e),(a,b,c))-->"(a,b,c),(c,d,e)"

  tri.sort(fcn(t1,t2){ t1[0]<t2[0] })
     .apply("concat",",").apply("(%s)".fmt).concat(",")

}</lang> <lang zkl>N:=13; println("Integer triangular triples for sides 1..%d:".fmt(N)); foreach angle, triples in (T(60,90,120).zip(tritri(N))){

  println(" %3d\U00B0; has %d solutions:\n    %s"
          .fmt(angle,triples.len(),triToStr(triples)));

}</lang>

Output:
Integer triangular triples for sides 1..13:
  60° has 15 solutions:
    (1,1,1),(2,2,2),(3,8,7),(3,3,3),(4,4,4),(5,8,7),(5,5,5),(6,6,6),(7,7,7),(8,8,8),(9,9,9),(10,10,10),(11,11,11),(12,12,12),(13,13,13)
  90° has 3 solutions:
    (3,4,5),(5,12,13),(6,8,10)
 120° has 2 solutions:
    (3,5,7),(7,8,13)

Extra credit: <lang zkl>fcn tri60(N){ // special case 60*

  sqrset:=[1..N].pump(Dictionary().add.fp1(True),fcn(n){ n*n });
  n60:=0;
  foreach a,b in ([1..N],[1..a]){
     c:=a*a + b*b - a*b;
     if(sqrset.holds(c) and a!=b!=c) n60+=1;
  }
  n60

}</lang> <lang zkl>N:=10_000; println(("60\U00b0; triangle where side lengths are unique,\n"

  "   side lengths 1..%,d, there are %,d solutions.").fmt(N,tri60(N)));</lang>
Output:
60° triangle where side lengths are unique,
   side lengths 1..10,000, there are 18,394 solutions.