Latin Squares in reduced form/Randomizing using Jacobson and Matthews’ Technique: Difference between revisions

From Rosetta Code
Content added Content deleted
(Promote to full task)
Line 773: Line 773:
10.811605 seconds (745.43 k allocations: 157.305 MiB, 0.30% gc time)
10.811605 seconds (745.43 k allocations: 157.305 MiB, 0.30% gc time)
</pre>
</pre>

=={{header|Nim}}==
{{trans|Go}}
<lang Nim>import random, sequtils, strformat, tables, times

type
Vector = seq[int]
Matrix = seq[Vector]
Cube = seq[Matrix]
Array16 = array[16, int]
Array25 = array[25, int]


func newCube(m: Matrix; n: Positive): Cube =
result.setLen(n)
for i in 0..<n:
result[i].setLen(n)
for j in 0..<n:
result[i][j].setLen(n)
let k = if m.len == 0: (i + j) mod n else: m[i][j] - 1
result[i][j][k] = 1


proc shuffle(c: var Cube) =
let n = c[0].len
var proper = true

var rx, ry, rz: int
while true:
rx = rand(n - 1)
ry = rand(n - 1)
rz = rand(n - 1)
if c[rx][ry][rz] == 0: break

while true:
var ox, oy, oz = 0

while ox < n:
if c[ox][ry][rz] == 1: break
inc ox
if not proper and rand(1) == 0:
inc ox
while ox < n:
if c[ox][ry][rz] == 1: break
inc ox

while oy < n:
if c[rx][oy][rz] == 1: break
inc oy
if not proper and rand(1) == 0:
inc oy
while oy < n:
if c[rx][oy][rz] == 1: break
inc oy

while oz < n:
if c[rx][ry][oz] == 1: break
inc oz
if not proper and rand(1) == 0:
inc oz
while oz < n:
if c[rx][ry][oz] == 1: break
inc oz

inc c[rx][ry][rz]
inc c[rx][oy][oz]
inc c[ox][ry][oz]
inc c[ox][oy][rz]

dec c[rx][ry][oz]
dec c[rx][oy][rz]
dec c[ox][ry][rz]
dec c[ox][oy][oz]

if c[ox][oy][oz] < 0:
(rx, ry, rz) = (ox, oy, oz)
proper = false
else:
proper = true
break


func toMatrix(c: Cube): Matrix =
let n = c[0].len
result = newSeqWith(n, newSeq[int](n))
for i in 0..<n:
for j in 0..<n:
for k in 0..<n:
if c[i][j][k] != 0:
result[i][j] = k
break


func toReduced(m: Matrix): Matrix =
let n = m.len
result = m

for j in 0..n-2:
if result[0][j] != j:
for k in j+1..<n:
if result[0][k] == j:
for i in 0..<n:
swap result[i][j], result[i][k]
break

for i in 1..n-2:
if result[i][0] != i:
for k in i+1..<n:
if result[k][0] == i:
for j in 0..<n:
swap result[i][j], result[k][j]
break


func asArray16(m: Matrix): Array16 =
var k = 0
for i in 0..3:
for j in 0..3:
result[k] = m[i][j]
inc k


func asArray25(m: Matrix): Array25 =
var k = 0
for i in 0..4:
for j in 0..4:
result[k] = m[i][j]
inc k


proc printArray16(a: Array16) =
for i in 0..3:
for j in 0..3:
let k = i * 4 + j
stdout.write &"{a[k]+1:2} " # Back to 1 based.
echo()
echo()


proc printMatrix(m: Matrix) =
let n = m.len
for i in 0..<n:
for j in 0..<n:
stdout.write &"{m[i][j]+1:2} " # Back to 1 based.
echo()
echo()


randomize()

# Part 1.
echo "Part 1: 10_000 latin Squares of order 4 in reduced form:\n"
const From1: Matrix = @[@[1, 2, 3, 4], @[2, 1, 4, 3], @[3, 4, 1, 2], @[4, 3, 2, 1]]
var freqs4: CountTable[Array16]
var c = newCube(From1, 4)
for _ in 1..10_000:
c.shuffle()
let m = c.toMatrix
let rm = m.toReduced
let a16 = rm.asArray16
freqs4.inc(a16)

for a, freq in freqs4.pairs:
printArray16(a)
echo &"Occurs {freq} times\n"

# Part 2.
echo "\nPart 2: 10_000 latin squares of order 5 in reduced form:"
const From2: Matrix = @[@[1, 2, 3, 4, 5], @[2, 3, 4, 5, 1], @[3, 4, 5, 1, 2],
@[4, 5, 1, 2, 3], @[5, 1, 2, 3, 4]]
var freqs5: CountTable[Array25]
c = newCube(From2, 5)
for _ in 1..10_000:
c.shuffle()
let m = c.toMatrix
let rm = m.toReduced
let a25 = rm.asArray25
freqs5.inc(a25)

var count = 0
for freq in freqs5.values:
inc count
if count > 1: stdout.write ", "
if (count - 1) mod 8 == 0: echo()
stdout.write &"{count:2}({freq:3})"
echo '\n'

# Part 3.
echo "\nPart 3: 750 latin squares of order 42, showing the last one:\n"
var m42: Matrix
c = newCube(@[], 42)
for i in 1..750:
c.shuffle()
if i == 750:
m42 = c.toMatrix
printMatrix(m42)

# Part 4.
echo "\nPart 4: 1000 latin squares of order 256:\n"
let start = cpuTime()
c = newCube(@[], 256)
for _ in 1..1000:
c.shuffle()
echo &"Generated in {cpuTime() - start:.3f} seconds."</lang>

{{out}}
<pre>Part 1: 10_000 latin Squares of order 4 in reduced form:

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

Occurs 2469 times

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Occurs 2430 times

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

Occurs 2561 times

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Occurs 2540 times


Part 2: 10_000 latin squares of order 5 in reduced form:

1(175), 2(201), 3(209), 4(158), 5(175), 6(190), 7(178), 8(173),
9(172), 10(179), 11(199), 12(170), 13(167), 14(199), 15(166), 16(164),
17(180), 18(189), 19(170), 20(183), 21(165), 22(172), 23(199), 24(190),
25(165), 26(178), 27(178), 28(190), 29(173), 30(187), 31(163), 32(157),
33(179), 34(190), 35(168), 36(209), 37(185), 38(181), 39(161), 40(180),
41(162), 42(161), 43(184), 44(157), 45(195), 46(179), 47(181), 48(161),
49(198), 50(190), 51(176), 52(184), 53(148), 54(209), 55(167), 56(181)


Part 3: 750 latin squares of order 42, showing the last one:

31 27 9 29 25 19 40 35 16 34 32 33 10 13 1 36 17 24 39 14 18 26 38 15 21 42 3 6 12 2 41 28 37 7 5 11 23 20 22 4 30 8
13 33 39 32 16 26 21 25 3 37 22 11 27 41 42 10 7 2 35 18 14 31 5 17 19 29 20 28 38 9 12 40 8 6 23 30 34 36 24 15 4 1
40 7 6 5 21 25 3 4 8 20 1 23 19 35 2 29 24 37 32 39 28 11 9 14 15 26 41 18 36 12 33 16 17 27 38 13 22 34 30 31 42 10
17 40 32 42 15 35 18 41 9 25 6 3 30 1 37 34 19 14 4 31 24 28 21 20 38 13 26 27 10 16 36 22 5 12 39 29 33 11 23 8 7 2
12 9 29 23 8 22 42 32 33 14 30 31 20 18 10 24 36 13 15 16 3 25 17 26 27 19 7 39 41 21 28 5 2 11 4 1 40 35 37 34 6 38
11 2 41 30 3 1 17 22 40 32 5 8 4 14 26 7 10 16 29 9 31 37 25 19 36 27 34 35 24 33 23 21 12 15 20 18 38 39 6 42 13 28
24 26 40 4 9 37 36 13 10 28 15 21 22 27 14 20 34 5 6 23 16 38 29 7 8 12 35 41 33 18 19 17 11 1 30 25 2 32 42 3 31 39
37 18 4 24 42 38 30 31 20 36 39 2 6 11 41 3 15 33 26 13 9 29 40 32 10 28 23 25 22 34 14 35 1 16 27 12 19 21 8 17 5 7
29 39 18 19 37 6 14 1 31 30 2 5 28 8 33 25 23 9 17 21 7 35 20 3 11 16 22 38 15 36 10 32 13 34 26 4 27 40 12 24 41 42
4 16 8 10 19 5 6 24 2 12 40 32 15 29 13 41 20 38 36 28 42 39 23 34 17 11 30 14 21 1 27 31 7 3 37 26 35 33 18 22 25 9
15 29 12 26 5 9 1 23 32 2 36 16 11 30 21 33 13 3 31 41 8 7 14 37 22 10 39 40 6 20 24 27 42 18 17 28 4 38 19 25 35 34
41 22 35 34 28 3 31 17 13 7 23 30 1 4 11 37 29 40 38 10 15 14 24 27 6 21 33 16 2 42 9 8 25 32 18 19 12 5 20 39 36 26
25 37 23 33 26 32 22 6 38 13 11 29 5 31 19 27 40 20 14 7 2 12 36 10 34 39 18 24 1 8 4 42 15 30 41 9 3 17 28 35 16 21
5 20 21 13 23 15 34 27 25 11 19 12 24 16 17 1 26 28 18 36 30 32 42 22 40 3 37 9 35 10 31 41 4 33 29 38 8 14 2 7 39 6
1 12 10 41 14 20 16 33 39 5 27 6 17 23 24 13 38 25 19 15 34 21 28 36 4 30 8 29 32 37 2 9 26 42 7 35 18 22 11 40 3 31
6 24 36 7 2 10 28 29 18 41 12 4 25 40 3 17 35 23 11 5 22 42 31 16 9 33 32 21 37 30 38 13 19 8 34 39 26 1 15 20 27 14
16 30 25 39 4 33 38 9 15 42 24 36 35 3 31 12 32 18 27 8 41 23 22 13 20 7 21 2 11 6 1 26 10 40 28 14 5 29 34 19 37 17
38 3 37 15 11 14 7 8 5 9 41 1 2 24 16 6 12 42 33 27 21 30 32 35 23 25 4 20 18 26 40 36 31 10 22 17 39 28 13 29 34 19
26 21 2 1 12 18 25 40 4 16 17 13 33 9 22 30 27 29 3 34 35 36 15 23 24 37 14 19 7 41 5 39 6 38 11 42 10 8 31 28 32 20
19 31 20 3 1 42 11 36 30 10 13 7 14 26 5 8 22 35 34 12 25 15 33 38 28 23 17 32 27 39 21 29 41 9 6 2 24 16 4 37 18 40
42 10 3 22 35 7 13 5 41 33 34 18 39 28 15 38 14 30 1 37 26 4 16 6 32 40 2 8 31 11 25 12 27 17 19 20 29 24 21 9 23 36
10 1 14 6 13 31 23 15 37 18 28 41 12 42 34 4 39 7 22 17 40 5 19 9 29 8 16 33 26 25 32 24 3 20 35 36 11 2 38 27 21 30
23 25 11 28 39 24 5 18 35 27 10 15 16 22 4 40 42 21 12 30 38 20 37 2 3 1 31 13 14 17 8 19 29 36 9 34 7 6 26 32 33 41
39 36 31 38 20 12 9 37 24 15 7 25 34 21 28 19 41 26 5 22 27 18 8 4 16 17 11 30 23 35 6 1 32 2 13 40 14 42 33 10 29 3
14 5 27 40 34 41 19 21 22 31 8 37 42 17 29 23 9 12 20 25 1 3 26 33 13 38 6 4 30 28 39 10 35 24 2 7 15 18 36 16 11 32
27 17 34 2 22 11 4 42 12 19 26 9 41 37 36 28 31 15 21 6 32 40 18 30 33 20 29 3 39 38 35 14 23 13 16 8 25 7 10 5 1 24
21 14 13 25 27 34 15 20 42 3 4 28 18 5 23 2 30 22 16 26 29 24 41 12 37 6 40 7 9 32 17 38 36 35 10 31 1 19 39 33 8 11
28 23 33 9 30 8 12 3 17 6 18 39 38 36 7 42 16 19 24 32 11 1 10 25 35 2 27 31 5 14 13 34 40 37 15 22 20 41 29 21 26 4
34 19 42 27 31 21 8 16 7 24 14 35 36 38 20 39 33 41 37 40 13 2 4 1 26 15 12 10 28 23 29 6 9 22 3 32 30 25 5 11 17 18
18 11 15 20 36 28 32 26 19 39 42 40 31 25 35 22 8 34 7 38 33 17 6 21 14 9 5 23 4 3 16 30 24 29 1 41 37 13 27 2 10 12
33 41 5 35 18 13 10 19 23 8 31 24 32 20 30 15 28 11 42 1 17 6 27 29 7 4 38 26 3 22 37 2 34 39 25 21 36 9 40 12 14 16
8 38 26 21 24 30 35 11 14 29 3 10 40 32 6 16 5 31 23 2 39 33 12 42 41 34 1 17 25 4 15 18 20 19 36 37 28 27 7 13 9 22
22 6 38 16 33 27 29 28 26 4 21 20 23 34 40 9 1 36 10 11 19 8 35 39 25 31 15 42 17 7 3 37 30 5 14 24 41 12 32 18 2 13
20 34 24 12 32 17 37 14 1 22 25 27 26 7 18 21 11 8 9 29 10 13 39 28 2 35 36 5 19 31 42 15 33 4 40 3 16 30 41 6 38 23
2 28 16 37 29 40 39 34 6 17 35 38 7 33 32 14 4 27 8 19 20 10 3 41 31 36 24 12 42 5 30 11 18 26 21 15 13 23 9 1 22 25
30 42 1 31 41 36 2 39 21 38 9 19 13 6 27 35 37 17 40 3 4 22 11 8 12 18 25 15 34 29 7 23 14 28 24 33 32 10 16 26 20 5
36 35 17 8 7 4 41 30 28 26 33 22 29 39 38 31 18 10 2 20 37 19 13 24 42 5 9 34 16 40 11 25 21 14 32 27 6 3 1 23 12 15
9 13 7 18 6 2 26 38 27 1 29 34 37 12 25 32 3 4 28 35 23 41 30 40 39 24 10 11 8 15 22 20 16 21 42 5 17 31 14 36 19 33
32 15 22 36 38 23 24 10 11 35 20 17 21 19 8 26 2 6 30 42 12 9 34 5 1 14 28 37 29 13 18 7 39 25 33 16 31 4 3 41 40 27
7 8 28 17 10 29 20 12 34 21 16 14 3 2 9 5 6 39 25 4 36 27 1 11 18 32 13 22 40 19 26 33 38 41 31 23 42 15 35 30 24 37
35 4 19 11 17 16 33 2 36 40 38 26 8 10 39 18 21 32 41 24 5 34 7 31 30 22 42 1 13 27 20 3 28 23 12 6 9 37 25 14 15 29
3 32 30 14 40 39 27 7 29 23 37 42 9 15 12 11 25 1 13 33 6 16 2 18 5 41 19 36 20 24 34 4 22 31 8 10 21 26 17 38 28 35


Part 4: 1000 latin squares of order 256:

Generated in 1.306 seconds.</pre>


=={{header|Phix}}==
=={{header|Phix}}==

Revision as of 20:31, 17 June 2021

Task
Latin Squares in reduced form/Randomizing using Jacobson and Matthews’ Technique
You are encouraged to solve this task according to the task description, using any language you may know.

Section 3.3 of [Generalised 2-designs with Block Size 3(Andy L. Drizen)] describes a method of generating Latin Squares of order n attributed to Jacobson and Matthews. The purpose of this task is to produce a function which given a valid Latin Square transforms it to another using this method.

part 1

Use one of the 4 Latin Squares in reduced form of order 4 as X0 to generate 10000 Latin Squares using X(n-1) to generate X(n). Convert the resulting Latin Squares to their reduced form, display them and the number of times each is produced.

part 2

As above for order 5, but do not display the squares. Generate the 56 Latin Squares in reduced form of order 5, confirm that all 56 are produced by the Jacobson and Matthews technique and display the number of each produced.

part 3

Generate 750 Latin Squares of order 42 and display the 750th.

part 4

Generate 1000 Latin Squares of order 256. Don't display anything but confirm the approximate time taken and anything else you may find interesting

F#

The Functions

<lang fsharp> // Jacobson and Matthews technique for generating Latin Squares. Nigel Galloway: August 5th., 2019 let R=let N=System.Random() in (fun n->N.Next(n))

let jmLS α X0=

 let X0=Array2D.copy X0
 let N=let N=[|[0..α-1];[α-1..(-1)..0]|] in (fun()->N.[R 2])
 let rec randLS i j z n g s=
   X0.[i,g]<-s; X0.[n,j]<-s
   if X0.[n,g]=s then X0.[n,g]<-z; X0
   else randLS n g s (List.find(fun n->X0.[n,g]=s)(N())) (List.find(fun g->X0.[n,g]=s)(N())) (if (R 2)=0 then let t=X0.[n,g] in X0.[n,g]<-z; t else z)
 let i,j=R α,R α
 let z  =let z=1+(R (α-1)) in if z<X0.[i,j] then z else 1+(z+1)%α
 let n,g,s=let N=[0..α-1] in (List.find(fun n->X0.[n,j]=z) N,List.find(fun n->X0.[i,n]=z) N,X0.[i,j])
 X0.[i,j]<-z; randLS i j z n g s

let asNormLS α=

 let n=Array.init (Array2D.length1 α) (fun n->(α.[n,0]-1,n))|>Map.ofArray
 let g=Array.init (Array2D.length1 α) (fun g->(α.[n.[0],g]-1,g))|>Map.ofArray
 Array2D.init (Array2D.length1 α) (Array2D.length1 α) (fun i j->α.[n.[i],g.[j]])

let randLS α=Seq.unfold(fun g->Some(g,jmLS α g))(Array2D.init α α (fun n g->1+(n+g)%α)) </lang>

The Task

part 1

<lang fsharp> randLS 4 |> Seq.take 10000 |> Seq.map asNormLS |> Seq.countBy id |> Seq.iter(fun n->printf "%A was produced %d times\n\n" (fst n)(snd n)) </lang>

Output:
[[1; 2; 3; 4]
 [2; 3; 4; 1]
 [3; 4; 1; 2]
 [4; 1; 2; 3]] was produced 2920 times

[[1; 2; 3; 4]
 [2; 4; 1; 3]
 [3; 1; 4; 2]
 [4; 3; 2; 1]] was produced 2262 times

[[1; 2; 3; 4]
 [2; 1; 4; 3]
 [3; 4; 2; 1]
 [4; 3; 1; 2]] was produced 2236 times

[[1; 2; 3; 4]
 [2; 1; 4; 3]
 [3; 4; 1; 2]
 [4; 3; 2; 1]] was produced 2582 times
part 2

<lang fsharp> randLS 5 |> Seq.take 10000 |> Seq.map asNormLS |> Seq.countBy id |> Seq.iteri(fun n g->printf "%d(%d) " (n+1) (snd g)); printfn "" </lang>

Output:
1(176) 2(171) 3(174) 4(165) 5(168) 6(182) 7(138) 8(205) 9(165) 10(174) 11(157) 12(187) 13(181) 14(211) 15(184) 16(190) 17(190) 18(192) 19(146) 20(200) 21(162) 22(153) 23(193) 24(156) 25(148) 26(188) 27(186) 28(198) 29(178) 30(217) 31(185) 32(172) 33(223) 34(147) 35(203) 36(167) 37(188) 38(152) 39(165) 40(187) 41(160) 42(199) 43(140) 44(202) 45(186) 46(182) 47(175) 48(161) 49(179) 50(175) 51(201) 52(195) 53(205) 54(183) 55(155) 56(178)
part 3

<lang fsharp> let q=Seq.item 749 (randLS 42) for n in [0..41] do (for g in [0..41] do printf "%3d" q.[n,g]); printfn "" </lang>

Output:
 16  7 41 15 17 40 12  9 10  5 19 29 21 18  8 22  3 36 23 31 11 38 13 30  2 33  6 42 39 14 32 20 28 35 26  1 34 37 27 24  4 25
 38 25 36 32 40 29 35 27  8 26 31 15  9  7 16 11  4  3 12 20 23 33  5 24 41 14 30 34 42 17 39 18 37 22 21 13  1 10  6 19  2 28
  8 34 27 25 21 31  1 23 37 36 26 13 22 24 35 17 10 40 41 30 42  7 15  2 18  3 29 11 32  4 38 39  9  5 16 14 28 12 20 33 19  6
 33 35 13 34 15 24  4 29 41 27  3 17 10 26 39 23 30 32  1 38 16 25 37 14  6 28 19  9 40  5 18  7 42 11 31 20 12 22  2 21  8 36
  2 42 20  1  7 26 11 10 39 41 34 22 40 23 24 29 14 17  5 33 38 30  6 13  3 16 18 19 31 15 28 21 36 37 32 27  8  4 25  9 35 12
 25 33 14 40 28 30 31 24 29  4  8 20 26 38 12 35  2 39 16  6 13 21 18 17  5 41 23  3 36  7 34 22 27  1 10 42 11 19 15 32 37  9
 17 22 35 28 30 18 21  2 15 39  5 40 27 13  1 34 38 37 26 23 41 36  4  3 11  6 20  8  9 10 12 24 31 25  7 29 16 32 42 14 33 19
 14  9 19  7 26 15 10  4 36 25 22 23 39 16  2 40 18  1 38 13 21 37 34 31 35 24 12 27 11  3  5  6 17 20 41 33 32 29  8 30 28 42
  5 27 24 13  2 36 25 30 23  9  6 14 35 15 42 39 16 26 21 34 33 31  3  1 29 12 38 17 37 19 40  4  7  8 22 41 20 28 32 10 18 11
 19 41 28 26  8 10 30 35 18 33 15 27 25 21 29 42 23 12 17  2  5  1 38  6 20  7 34  4 13 36 24 31 14  3 11 32 39 40  9 22 16 37
 41 10  3 19 22  9 27 40  1 29 16 42 33 39 34  7 37 20 11 12  4 18 35  8 28 26 36  5 17 30 25 32  6 15 24 21 13 23 14  2 38 31
 42  3 16 36 33 21 20 14 31 22  9 38 29 19 37 13 28 10 35 18 39 26 25 27  4 30 15 23 41 24 11  1 40  7  5 17  6  2 12  8 34 32
 23 31 34 41 38 33  3 28  4  1 30 25  6  2 20 14 13 24  8 42  7 12 39 32 22 29  5 37 15  9 27 10 35 36 19 40 17 18 16 11 26 21
 37 16 30 11  4 32 42 33 13  6 14  2 15 27 18 31 20 41 39 40  9 24 36  5 10  8  1 26  3 34 22 28 38 19 29 23 21 25 35 12 17  7
  1 19 26 22 16 25 36 39  3 23 41 37 34  6 17 32 40 21 10 27 12  9 31  7 13  4 24 29  8 11  2  5 15 18 35 28 30 20 33 38 42 14
 11 13 23 30 25 41  6 31 14 32 27 36 19 17 10 33 21 15  7  5  8 28 16 35 34 42 40  2 38 39  9 26 20 24 37  4 18  3 22  1 12 29
 24 17 29 38 23 39 32  5 11 15 35 12  8 10 40  1 22 25  2 36 28  4 42 21  9 20  3 31 16 41 13 30 19 34 33 18 27  6  7 37 14 26
 36  4  6 24 12 20  2 34 40 11 32  9 28  8 38 21  5 31 42 17 14 29 19 22 25 15  7 18 30 26  1 13 16 41 23 39 37 33  3 35 10 27
 20 39  2 12 32  7 22  3 17 10 37  6 18 40 27  5 42 35 28  4 24 14 33 29 30 31 26 13 19 23 36 41  1 21  9 11 15  8 34 16 25 38
 35 18 37  6  5 13 29  8 24 19 38 34 12 31 21 10 33  7  3 41 15 42 20 11 27 40 16 14 23  1  4  2 22 32 28  9 25 30 26 39 36 17
 10 32  9 33 39 19 41 38 35 18 28 26 14 30  7  4  1 22 37 21 31 40 27 15 42 34  2 25  5 12 23 36  8  6 17  3 29 24 11 13 20 16
 13 28 39  2 31  8  9 37 21 16 40 19 42 36 41  3 12 14 20 10 17 34  1 33 32 35 25 30 18 38 15 11 24 23  6 26  4  5 29  7 27 22
  7 40 12 39 18  3 16 21 42 17  1 32  5 33 13  6 41  8 29 14 34 35 24 36 38 25 31 28 26 27 20 37 23  2 30 10 22  9 19  4 11 15
  4 21  7 17 35 34 19 25 12 42 11  1 30 28 36 26 32 23 14 29  2 20  8 41 24 27 22 15 10 18 37  9 39 38 13  6  3 16 31 40  5 33
 34 23 42 14 41 27 37  6  9 31  4  5  7  1 25 16 35 30 33 11 19  3 26 12 17 38  8 20 24 13 29 15 32 28 40 22  2 39 18 36 21 10
 30  6 21  9 20 17  5 32 38 13 12 28 16 35 22 36 34 29 40 39 25 15 14 37 33 11  4 41  1  2 19  3 26 27 42  8 10  7 23 31 24 18
  6 38  8 10 42 35 13  1 16 37 21  3 11 34 32 20 29 18 25 22 36  5 30 26 39 23 28 12  2 31  7 19 33 40 14 24  9 41 17 27 15  4
 29 15  1 21 14 11 26 17 30 38 10 33 36 20  4 18 39 16 31  3 35  2 32 28 19 13 42  7 12  8  6 40  5  9 25 37 24 27 41 23 22 34
 21 36 32  8  6 23 15 19  2 14 18  4  3 11  5 28 26 13 34 25 30 17  7 42 16 22 39 40 29 37 33 12 41 10 27 31 35 38 24 20  9  1
 39 20 31 29 19  4 38 16 27 30 24 11  2  3 33 15  8 28 18 37 10 13  9 23 36  1 17 22 25 32 26 35 12 42 34  7 40 14 21  5  6 41
 12 11 17 42  9  2 14  7 22 24 25 31 38 41 15 19 36 33 32 28  1 10 29 40 23 18 37 39  6 21 35 27  3 16  8 30  5 26  4 34 13 20
 18 29 33 16 27 42 40 26  7  8 39 24 41  5 30 38  6  9 13  1 32 22  2 34 12 37 11 10 35 20 14 17 21  4 15 19 23 36 28 25 31  3
 28  2  4 18 11  5 23 20 25 35 42 30 31 14  3  9 24 27 19  7 22  6 12 10  1 32 41 36 21 33 16 34 29 13 39 15 38 17 37 26 40  8
  3 26 11 35 24 37 17 36  6  7 13 41  4 32  9  2 31 34 22 15 29  8 40 18 21  5 27  1 14 16 10 38 25 33 20 12 19 42 39 28 30 23
 31  5 22 27 10  6  8 13 34  2 33  7 32 42 26 12 19  4 15  9 40 16 28 38 37 39 35 24 20 29 17 23 11 14  3 25 41 21 36 18  1 30
 15 24  5 37  3 28  7 22 19 34 20 18 17 12 23  8 25 11 36 16 27 41 10  4 31  2  9 32 33 42 21 14 13 29 38 35 26  1 30  6 39 40
 27 37 25  5 13 16 24 41 28  3  2 10 23  4 14 30 11 38  6 19 26 32 21 20 40  9 33 35 34 22 42  8 18 17 12 36 31 15  1 29  7 39
 26 30 10  3 36 22 33 11  5 20 29 21 13 25 31 37 17  2  9 35 18 27 23 39 14 19 32 16 28  6  8 42  4 12  1 38  7 34 40 15 41 24
 32  8 18 31  1 14 34 12 33 28 17 39 37  9 19 27  7  5 30 24 20 23 11 25 15 36 21  6 22 40 41 16 10 26  4  2 42 35 38  3 29 13
  9 14 40 23 37 38 18 15 20 12 36  8  1 22 28 24 27 42  4 32  6 11 41 19 26 10 13 21  7 25 30 29 34 39  2 16 33 31  5 17  3 35
 22 12 15  4 34  1 39 42 32 40  7 35 20 29 11 25  9  6 24 26 37 19 17 16  8 21 14 38 27 28  3 33 30 31 18  5 36 13 10 41 23  2
 40  1 38 20 29 12 28 18 26 21 23 16 24 37  6 41 15 19 27  8  3 39 22  9  7 17 10 33  4 35 31 25  2 30 36 34 14 11 13 42 32  5
part 4

Generating 1000 Latin Squares of order 256 takes about 1.5secs <lang fsharp> printfn "%d" (Array2D.length1 (Seq.item 999 (randLS 256))) </lang>

Output:
256
Real: 00:00:01.512, CPU: 00:00:01.970, GC gen0: 10, gen1: 10

Go

The J & M implementation is based on the C code here which has been heavily optimized following advice and clarification by Nigel Galloway (see Talk page) on the requirements of this task.

Part 4 is taking about 6.5 seconds on my Celeron @1.6 GHz but will be much faster on a more modern machine. Being able to compute random, uniformly distributed, Latin squares of order 256 reasonably quickly is interesting from a secure communications or cryptographic standpoint as the symbols of such a square can represent the 256 characters of the various extended ASCII encodings. <lang go>package main

import (

   "fmt"
   "math/rand"
   "time"

)

type (

   vector []int
   matrix []vector
   cube   []matrix

)

func toReduced(m matrix) matrix {

   n := len(m)
   r := make(matrix, n)
   for i := 0; i < n; i++ {
       r[i] = make(vector, n)
       copy(r[i], m[i])
   }
   for j := 0; j < n-1; j++ {
       if r[0][j] != j {
           for k := j + 1; k < n; k++ {
               if r[0][k] == j {
                   for i := 0; i < n; i++ {
                       r[i][j], r[i][k] = r[i][k], r[i][j]
                   }
                   break
               }
           }
       }
   }
   for i := 1; i < n-1; i++ {
       if r[i][0] != i {
           for k := i + 1; k < n; k++ {
               if r[k][0] == i {
                   for j := 0; j < n; j++ {
                       r[i][j], r[k][j] = r[k][j], r[i][j]
                   }
                   break
               }
           }
       }
   }
   return r

}

// 'm' is assumed to be 0 based func printMatrix(m matrix) {

   n := len(m)
   for i := 0; i < n; i++ {
       for j := 0; j < n; j++ {
           fmt.Printf("%2d ", m[i][j]+1) // back to 1 based
       }
       fmt.Println()
   }
   fmt.Println()

}

// converts 4 x 4 matrix to 'flat' array func asArray16(m matrix) [16]int {

   var a [16]int
   k := 0
   for i := 0; i < 4; i++ {
       for j := 0; j < 4; j++ {
           a[k] = m[i][j]
           k++
       }
   }
   return a

}

// converts 5 x 5 matrix to 'flat' array func asArray25(m matrix) [25]int {

   var a [25]int
   k := 0
   for i := 0; i < 5; i++ {
       for j := 0; j < 5; j++ {
           a[k] = m[i][j]
           k++
       }
   }
   return a

}

// 'a' is assumed to be 0 based func printArray16(a [16]int) {

   for i := 0; i < 4; i++ {
       for j := 0; j < 4; j++ {
           k := i*4 + j
           fmt.Printf("%2d ", a[k]+1) // back to 1 based
       }
       fmt.Println()
   }
   fmt.Println()

}

func shuffleCube(c cube) {

   n := len(c[0])
   proper := true
   var rx, ry, rz int
   for {
       rx = rand.Intn(n)
       ry = rand.Intn(n)
       rz = rand.Intn(n)
       if c[rx][ry][rz] == 0 {
           break
       }
   }
   for {
       var ox, oy, oz int
       for ; ox < n; ox++ {
           if c[ox][ry][rz] == 1 {
               break
           }
       }
       if !proper && rand.Intn(2) == 0 {
           for ox++; ox < n; ox++ {
               if c[ox][ry][rz] == 1 {
                   break
               }
           }
       }
       for ; oy < n; oy++ {
           if c[rx][oy][rz] == 1 {
               break
           }
       }
       if !proper && rand.Intn(2) == 0 {
           for oy++; oy < n; oy++ {
               if c[rx][oy][rz] == 1 {
                   break
               }
           }
       }
       for ; oz < n; oz++ {
           if c[rx][ry][oz] == 1 {
               break
           }
       }
       if !proper && rand.Intn(2) == 0 {
           for oz++; oz < n; oz++ {
               if c[rx][ry][oz] == 1 {
                   break
               }
           }
       }
       c[rx][ry][rz]++
       c[rx][oy][oz]++
       c[ox][ry][oz]++
       c[ox][oy][rz]++
       c[rx][ry][oz]--
       c[rx][oy][rz]--
       c[ox][ry][rz]--
       c[ox][oy][oz]--
       if c[ox][oy][oz] < 0 {
           rx, ry, rz = ox, oy, oz
           proper = false
       } else {
           proper = true
           break
       }
   }

}

func toMatrix(c cube) matrix {

   n := len(c[0])
   m := make(matrix, n)
   for i := 0; i < n; i++ {
       m[i] = make(vector, n)
   }
   for i := 0; i < n; i++ {
       for j := 0; j < n; j++ {
           for k := 0; k < n; k++ {
               if c[i][j][k] != 0 {
                   m[i][j] = k
                   break
               }
           }
       }
   }
   return m

}

// 'from' matrix is assumed to be 1 based func makeCube(from matrix, n int) cube {

   c := make(cube, n)
   for i := 0; i < n; i++ {
       c[i] = make(matrix, n)
       for j := 0; j < n; j++ {
           c[i][j] = make(vector, n)
           var k int
           if from == nil {
               k = (i + j) % n
           } else {
               k = from[i][j] - 1
           }
           c[i][j][k] = 1
       }
   }
   return c

}

func main() {

   rand.Seed(time.Now().UnixNano())
   // part 1
   fmt.Println("PART 1: 10,000 latin Squares of order 4 in reduced form:\n")
   from := matrix{{1, 2, 3, 4}, {2, 1, 4, 3}, {3, 4, 1, 2}, {4, 3, 2, 1}}
   freqs4 := make(map[[16]int]int, 10000)
   c := makeCube(from, 4)
   for i := 1; i <= 10000; i++ {
       shuffleCube(c)
       m := toMatrix(c)
       rm := toReduced(m)
       a16 := asArray16(rm)
       freqs4[a16]++
   }
   for a, freq := range freqs4 {
       printArray16(a)
       fmt.Printf("Occurs %d times\n\n", freq)
   }
   // part 2
   fmt.Println("\nPART 2: 10,000 latin squares of order 5 in reduced form:")
   from = matrix{{1, 2, 3, 4, 5}, {2, 3, 4, 5, 1}, {3, 4, 5, 1, 2},
       {4, 5, 1, 2, 3}, {5, 1, 2, 3, 4}}
   freqs5 := make(map[[25]int]int, 10000)
   c = makeCube(from, 5)
   for i := 1; i <= 10000; i++ {
       shuffleCube(c)
       m := toMatrix(c)
       rm := toReduced(m)
       a25 := asArray25(rm)
       freqs5[a25]++
   }
   count := 0
   for _, freq := range freqs5 {
       count++
       if count > 1 {
           fmt.Print(", ")
       }
       if (count-1)%8 == 0 {
           fmt.Println()
       }
       fmt.Printf("%2d(%3d)", count, freq)
   }
   fmt.Println("\n")
   // part 3
   fmt.Println("\nPART 3: 750 latin squares of order 42, showing the last one:\n")
   var m42 matrix
   c = makeCube(nil, 42)
   for i := 1; i <= 750; i++ {
       shuffleCube(c)
       if i == 750 {
           m42 = toMatrix(c)
       }
   }
   printMatrix(m42)
   // part 4
   fmt.Println("\nPART 4: 1000 latin squares of order 256:\n")
   start := time.Now()
   c = makeCube(nil, 256)
   for i := 1; i <= 1000; i++ {
       shuffleCube(c)
   }
   elapsed := time.Since(start)
   fmt.Printf("Generated in %s\n", elapsed)

}</lang>

Output:

Sample run:

PART 1: 10,000 latin Squares of order 4 in reduced form:

 1  2  3  4 
 2  1  4  3 
 3  4  2  1 
 4  3  1  2 

Occurs 2550 times

 1  2  3  4 
 2  4  1  3 
 3  1  4  2 
 4  3  2  1 

Occurs 2430 times

 1  2  3  4 
 2  1  4  3 
 3  4  1  2 
 4  3  2  1 

Occurs 2494 times

 1  2  3  4 
 2  3  4  1 
 3  4  1  2 
 4  1  2  3 

Occurs 2526 times


PART 2: 10,000 latin squares of order 5 in reduced form:

 1(165),  2(173),  3(167),  4(204),  5(173),  6(165),  7(215),  8(218), 
 9(168), 10(157), 11(205), 12(152), 13(187), 14(173), 15(215), 16(185), 
17(179), 18(176), 19(179), 20(160), 21(150), 22(166), 23(191), 24(181), 
25(179), 26(192), 27(187), 28(186), 29(176), 30(196), 31(141), 32(187), 
33(165), 34(189), 35(147), 36(175), 37(172), 38(162), 39(180), 40(172), 
41(189), 42(159), 43(197), 44(158), 45(178), 46(179), 47(193), 48(175), 
49(207), 50(174), 51(181), 52(179), 53(193), 54(171), 55(153), 56(204)


PART 3: 750 latin squares of order 42, showing the last one:

29  2 17 41 34 30  8 33 39  7 20 27 12  6 31 14 40 35 25  9 10 32 19 16 24 42  3 26  5 23  1 28  4 13 38 18 21 37 22 15 36 11 
17 15 11 31  9 38 26 10  1 28 37  8 34 41 21 22 12  5 35 36 13 20 29 42 18  3 19 24 39 32 27 23 16 25 33  4 40  6  2 30  7 14 
36 42 35 39 15 34 37 18 32 25 22 31  4 17  3 19 13 11  8 23 12 24 28 27 16  1  6  9 29 40  7  5  2 14 30 26 41 10 21 33 38 20 
21 13 16 42  3 32  2 26 27 17 15 11 25 37 29  6 19 10 12  7 31 18 36  9 39 41 30 40 35 33 22  1 28 38 24  8 34 23  4 20 14  5 
22 39 13  7 38  9 34 41 37 36 35  6 21 26 17 16  4 30 40 20  8 15 25 19 32  2 11 28 23 24 31 10 42  3 27 12 33 14  1 29  5 18 
33 36 34  3 13  4  7 14  2 29  6 12 31 23 26 17  8 20 32 21 19 41 37  5 38 30 25 11 24 35 42 27 18 16 39 15 10 22 28  1  9 40 
14 31  7 22 39 23 32 34 16 33 24  4 40 42 12 25 35 26 18 28 11  3 15 21 20  9 13 19  1 10  2 41 29  6 17 30  5 38 37  8 27 36 
 9  3  6 30 19 39 14 16  4 15 29 28 23 24 32 10 18 41 37 38 40 34  8 25  2 22 31  5 17 26 36 33 13 21 12 35  7 20 11 27 42  1 
 2 18 28  5  6  7 40 35  3 20  8 34 42 39 37 33 26 23 22 13 14  4 12 15 17 25 36 31 16 29 38 19 32 41  1 27 24 11 30  9 10 21 
27 34 19 15 33 22  5 36  9 30 14  1 24  8 38 42 41 39  7 40  4 37 11 23 29 26 18 12  3 21 35 16 20 10 31 25 17 28  6 32  2 13 
41 16  1 35 22 13 20 29  6 38  5 24 19 10 25 27 17 18 11 32  9  7  2 36  4 34 40 21 33 12  8 30 15 42 37 23 14 26  3 39 31 28 
 7  1 15 16 27 31 18 24 20  8 36 38 10 34  9  4 42 29  2  3 26 39  5 22 41 21 37 30 14 11 33 35 25 23 40 28 13 19 17  6 32 12 
 1 10 20 32 23  5 30 12  8  9 21 36 15 14 18 37 33 31 26 39 41 16  6 24 22 35 29 42 27 28  3 38 11  2  7 34  4 40 19 17 13 25 
 6 32 42 11 20 40 27 25 41 22 17 16 26 29 15  7 23 36 39 34 28 13 18  3 10 37  8 14  2 31  4 24  5 19  9 21 38  1 33 12 30 35 
35 40 30 19 21 12 17  4 22 27  3 20 11  9  8 23 24 42 14 10 39 28 26 29 33 13 41 16 34 25 32 37  7 18  5  6 15  2 36 38  1 31 
15 26 40  1 28 20  9 21  7  5 13 18 30 22 10  8  3 25  6  2 17 36 38 31 14 19 35 23 12 27 11 39 24  4 41 32 29 34 42 16 37 33 
 3  6 26 12 32  1 13  8 42 37 25  7  9 16 35  5 29 21 24 27 34 17 14  2 15 11 28 33 20 38 18 22 39 40 23 10 31 30 41 36 19  4 
31 38 36 21 16 26 28 30 15  3 32 41 18  1  6 29  9 17  5 35  7 40 27 37 13 20 23 22 11 19 12 42 34  8 10 14 25 39 24  4 33  2 
40  4 22 38 35 11 21 17 31  1 28 19 37  2 42 24 14 12 13 30 33 25 34 32 27 36 39  3  9 15 10 18  8  5  6 41 26 16 29  7 20 23 
 5 17 39  4 26 14 31 37 35 11 38  3  1 30 19 36 20 33 15 16 21 29  9  6 25 27  2 13 41 34 24 12 10 32 22  7 28 18 40 42 23  8 
 8 29 24 26 31 21 39 23 11 14 19 10 20 15  7 35 32 38  1 12 25 22 16  4  6 40 42 41 18 30 28  2 17 36  3 13 37 33 27  5 34  9 
11 25 14 17 18 24 19 32 33 31  7 26  2 21 20 30 15 27 23 41 29 35 39 28 34 12 10  4  8 42  5 13 37  9 16 40  1 36 38  3  6 22 
26 21 18 25 29 15  1 13 19  2 34 23 38 27 41  3 10 22 17  4 16 11 42 12  8  6  5 35 30 39 37 14  9 24 36 33 20  7 31 28 40 32 
25 27 12 33 17 35 24  9 28 10 42 21  8 13  2 15 34 16  3 18  5 31 41  7 23  4  1  6 22 14 19 36 40 37 26 38 30 32 20 11 39 29 
23 19 25  9 30 37 38 40 14 41 31 17  7  4 16 11  1  6 33  5 24  2  3  8 21 29 34 32 28 22 15 20 12 35 18 36 39 27 10 13 26 42 
34  9 10 13  2  6 22 31 26 40  1 14 41  3 11 12 37 32 27 29 35 19 30 33 28 38 21 25  7  5 16  8 36 15 20 42 23 17 39 18  4 24 
20 11 37 28 41  8 10 15 36 12 26 33 39 32 13  1 25  9 42 19  3  6 24 14  5 23  7 27 38  2 30  4 22 34 35 31 18 29 16 40 21 17 
28 30 21 23 24 29  3  1 10  6 33  2 27 40 14 34 31 15 19 37 18  9  4 13 35  8 12 20 36 16 17 32 41  7 25 39 42  5 26 22 11 38 
32 12  8 40 11 16 23 28 18 42 41 30  3 38 33  2 22 19  4 25 37  1 31 20 36  5  9  7 13 17 14  6 27 39 34 24 35 21 15 26 29 10 
18 37 41 10 36 28 11 42 13 34  2 35  5  7 22 40 39  3 30  1 38 27 20 17 19 33 26 15 25  6 21 29 23 31  4  9 32  8 12 14 24 16 
39 24 29 37 25 19 33 27 17 16 10 40 36 12 30 41 11  4 34 15  2  5 32  1 31 14 38 18 42  3  9  7  6 20 21 22  8 13 23 35 28 26 
19 14  5  8 40  3 29  6 21 26 23 15 16 33 28 31 38 13  9 17 27 12 10 11  7 24 20  1  4 41 39 25 30 22 32  2 36 42 35 34 18 37 
37  7 32 34  8 36 41  2 12 24 16 39 33 31  4 13  6 28 38 22 20 42 40 18  9 10 14 29 26  1 23 15 21 27 19 17 11  3  5 25 35 30 
 4 41 27  2 42 17 15 38 30 35 12 25 13 28 39 20  5  1 16 33 36 23  7 40 37 32 24 10 31  8  6 21 14 26 29 11  3  9 18 19 22 34 
38 35 23 36  4 10 12 11  5 21 27 32 17 25 24 18 28 40 20  6 42 14 22 30 26 39 33  8 37  7 13 34  1 29 15 19  2 41  9 31 16  3 
30 33 31 24 12 41 36 19 23 32  4 37 29 11 34 39 16 14 21 42  6 26  1 38  3 17 22  2 40 18 20  9 35 28 13  5 27 15 25 10  8  7 
42 28  3 14  1 25 16 22 34 23 39  9 35  5 40 26 36  7 10 31 32 21 13 41 30 18  4 38  6 37 29 17 33 12 11 20 19 24  8  2 15 27 
16  5 38  6 10 27  4  3 40 18 11 13 22 35  1 21  2 34 36  8 23 30 17 39 42  7 15 37 32 20 26 31 19 33 28 29  9 25 14 24 12 41 
24 23 33 18 14  2 25 39 29 19  9  5 28 20 27 38  7  8 31 11 15 10 35 34 12 16 32 17 21 36 40  3 26 30 42  1 22  4 13 37 41  6 
12 20  2 29  5 33 42  7 24  4 18 22 14 19 36  9 27 37 28 26 30 38 23 10 11 31 17 34 15 13 41 40  3  1  8 16  6 35 32 21 25 39 
13  8  9 27 37 42  6 20 25 39 40 29 32 18  5 28 30 24 41 14 22 33 21 35  1 15 16 36 10  4 34 26 38 11  2  3 12 31  7 23 17 19 
10 22  4 20  7 18 35  5 38 13 30 42  6 36 23 32 21  2 29 24  1  8 33 26 40 28 27 39 19  9 25 11 31 17 14 37 16 12 34 41  3 15 


PART 4: 1000 latin squares of order 256:

Generated in 6.581088256s

Julia

Translation of: Go

<lang julia>const Cube = Vector{Vector{Vector{Int}}} const Mat = Vector{Vector{Int}}

function reduced(m::Mat)

   n = length(m)
   r = deepcopy(m)
   for j in 1:n-1
       if r[1][j] != j
           for k in j+1:n
               if r[1][k] == j
                   for i in 1:n
                       r[i][j], r[i][k] = r[i][k], r[i][j]
                   end
                   break
               end
           end
       end
   end
   for i in 2:n-1
       if r[i][1] != i
           for k in i+1:n
               if r[k][1] == i
                   for j in 1:n
                       r[i][j], r[k][j] = r[k][j], r[i][j]
                   end
                   break
               end
           end
       end
   end
   return r

end

""" print matrix as small integers, no punctuation """ function print_matrix(m::Mat)

   n = length(m)
   padding = max(2, Int(ceil(log(10, n+1))) + 1)
   for i in 1:n
       for j in 1:n
           print(lpad(m[i][j], padding))
       end
       println()
   end
   println()

end

function shuffle_cube(c::Cube)

   n = length(c)
   proper = true
   rx, ry, rz = 0, 0, 0
   while true
       rx, ry, rz = rand(1:n, 3)
       c[rx][ry][rz] == 0 && break
   end
   while true
       ox = something(findfirst(i -> c[i][ry][rz] == 1, 1:n), n)
       oy = something(findfirst(i -> c[rx][i][rz] == 1, 1:n), n)
       oz = something(findfirst(i -> c[rx][ry][i] == 1, 1:n), n)
       if !proper
           rand() < 1/2 && (ox = something(findlast(i -> c[i][ry][rz] == 1, 1:n), n))
           rand() < 1/2 && (oy = something(findlast(i -> c[rx][i][rz] == 1, 1:n), n))
           rand() < 1/2 && (oz = something(findlast(i -> c[rx][ry][i] == 1, 1:n), n))
       end
       c[rx][ry][rz] += 1
       c[rx][oy][oz] += 1
       c[ox][ry][oz] += 1
       c[ox][oy][rz] += 1
       c[rx][ry][oz] -= 1
       c[rx][oy][rz] -= 1
       c[ox][ry][rz] -= 1
       c[ox][oy][oz] -= 1
       if c[ox][oy][oz] < 0
           rx, ry, rz = ox, oy, oz
           proper = false
       else
           break
       end
   end

end

function matrix(c::Cube)::Mat

   n = length(c)
   m = [[0 for i in 1:n] for j in 1:n]
   for i in 1:n, j in 1:n
       for k in 1:n
           if c[i][j][k] != 0
               m[i][j] = k
               break
           end
       end
   end
   return m

end

function cube(from, n)

   c = [[[0 for i in 1:n] for j in 1:n] for k in 1:n]
   for i in 1:n, j in 1:n
       k = (from isa Nothing) ? mod1(i + j, n) : from[i][j]
       c[i][j][k] = 1
   end
   return c

end

function testJacobsenMatthews()

   # part 1
   println("PART 1: 10,000 latin Squares of order 4 in reduced form:\n")
   from = [[1, 2, 3, 4], [2, 1, 4, 3], [3, 4, 1, 2], [4, 3, 2, 1]]
   freqs4 = Dict{Array, Int}()
   c = cube(from, 4)
   for i in 1:10000
       shuffle_cube(c)
       m = matrix(c)
       rm = reduced(m)
       n = get!(freqs4, rm, 0)
       freqs4[rm] = n + 1
   end
   for (a, freq) in freqs4
       print_matrix(a)
       println("Occurs $freq times\n")
   end
   # part 2
   println("\nPART 2: 10,000 latin squares of order 5 in reduced form:\n")
   from = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2], [4, 5, 1, 2, 3], [5, 1, 2, 3, 4]]
   freqs5 = Dict{Array, Int}()
   c = cube(from, 5)
   for i in 1:10000
       shuffle_cube(c)
       m = matrix(c)
       rm = reduced(m)
       n = get!(freqs5, rm, 0)
       freqs5[rm] = n + 1
   end
   for (i, freq) in enumerate(sort(collect(values(freqs5))))
       i > 1 && (print(", "); (i - 1) % 8 == 0 && println())
       print(lpad(i, 2), "(", lpad(freq, 3), ")")
   end
   println("\n")
   # part 3
   println("\nPART 3: 750 latin squares of order 42, showing the last one:\n")
   m42 = [[0 for i in 1:42] for j in 1:42]
   c = cube(nothing, 42)
   for i in 1:750
       shuffle_cube(c)
       i == 750 && (m42 = matrix(c))
   end
   print_matrix(m42)
   # part 4
   println("\nPART 4: 1000 latin squares of order 256:\n")
   @time begin
       c = cube(nothing, 256)
       for i in 1:1000
           shuffle_cube(c)
       end
   end

end

testJacobsenMatthews()

</lang>

Output:
PART 1: 10,000 latin Squares of order 4 in reduced form:

 1 2 3 4
 2 4 1 3
 3 1 4 2
 4 3 2 1

Occurs 2508 times

 1 2 3 4
 2 1 4 3
 3 4 2 1
 4 3 1 2

Occurs 2427 times

 1 2 3 4
 2 1 4 3
 3 4 1 2
 4 3 2 1

Occurs 2529 times

 1 2 3 4
 2 3 4 1
 3 4 1 2
 4 1 2 3

Occurs 2536 times


PART 2: 10,000 latin squares of order 5 in reduced form:

 1(152),  2(152),  3(153),  4(154),  5(158),  6(160),  7(160),  8(160), 
 9(162), 10(165), 11(166), 12(167), 13(168), 14(170), 15(170), 16(172),
17(172), 18(173), 19(174), 20(174), 21(175), 22(177), 23(177), 24(177),
25(177), 26(178), 27(179), 28(180), 29(180), 30(181), 31(181), 32(182),
33(182), 34(182), 35(183), 36(184), 37(185), 38(185), 39(185), 40(186), 
41(187), 42(187), 43(187), 44(188), 45(189), 46(189), 47(190), 48(195),
49(195), 50(197), 51(197), 52(199), 53(199), 54(199), 55(201), 56(203)


PART 3: 750 latin squares of order 42, showing the last one:

 32 34 23 19  7 42 37  4 38  2 26 25 17 16 22 20 18  8 28 24 40 35  3 33  6  1 41 36 13 39 10 14  9 30 27 29 15  5 12 11 21 31
 19 16 27 14  4 15 31  8 36  3 34 18  2 10 30 42 22 35 41 21 13  5 11 29 37 39  9 12 32  7 33 17 28 40 25 26 23 24 38  6  1 20
 22  7 11 41 14 27  4  3 30 39 38 40 23 36 19  5 25 13 29 37 33  8 15 32 16 34  6 42 24  1 28 18 21 10  9 35 17 20  2 26 31 12
 18 26 38 24 25 14  6 39 40  5 13 21 20 34 29  4  3 22 30 42 12 19 23  8 32 17  7 27 35 28  2 31 15 41 10 36 11  9  1 37 16 33
 37 24 21 15 30 36  2 27  4 11  6 16 26 38 14 31  9 34 39  1  8 41 40 42 17  3 18 33 12 13 22 23 19 35  7  5 25 32 28 10 20 29
  8 38 22 21 26 28 12 37 10 41 35 34 13 24 27 16  2 17 20  6  7 30 42 39 40  4  1 18 36  3 15 33  5 29 19 11 32 25 14 31 23  9
 31 35  2  8 10 39 13 22 20 14 15 24 16 30 21 40 36  4  1  3 23 25 29 26  5 32 33 38  9 37 11 19 18 42 17 41 12  6 34  7 27 28
 29 10 35  4 39 13  5 12 21 18 37 14 40 17 33  7 30 25  2 11 34 22 41 15  3  9 38 31 26 16 32 36 27 19  8  1 20 28 23 24  6 42
  5 14 37 16 19 10 21 17 18 23 29 42 12 11  4 34 35 38  6 28  3 27  9 24  8 30 26  2 41 25  1 13  7 32 36 15 39 31 20 40 33 22
 13 28 31  2 37  7 34  9 24 38  1 30  3 14 40 35 20 12 23 19  4 11 27 25 26 10 15 17 42 36 18  5 22 39 16  6 29 41 21 33  8 32
  7 19 24 10  9 30 15 42 26 34 28 32 36  4 11 41 40 27 13 23 31 18 14  3 20 12  5  1 38 29 35 39 16  8  2 21 37 33 25 17 22  6
 28 22 36  6 21 20 16 34 32 29  8 27 18 42 26 24 12 30  5 39 14 10  4 19 15 31 25  9 40 41 38  2 33 23 35  7  1 37 11 13  3 17
 16 23 30 33 18 38 22  5 41  9  4 12 35 13 37 32 11  6 19 10 42 31 20  1  2  7 17 21 28 15 34 40 29 36  3 14  8 27 24 39 25 26
 20 12 41 13 38 21 23 29 17 10 30  2 25  8 42  3  4 24 18 35 11 40 33 36 22 26 32 19  1  6 14 28 37 31 34  9 27  7 39 16 15  5
 15 36 34 26  1 18 28  6 31 37 17 20 29 41 35 22 10 33 25 32 21  3  7 16 14 42 27 24  5 19  4 11 39 13 40 38 30 23  9 12  2  8
 36 42  1 31 13  3 39 32 27  4 23 28  7  2 18 11  6 19 26 16 22 15 12 41 21  5 34 40 25 38 37 20 30 17 29  8 33 14 10  9 24 35
 33  8  3  7 29  9 40 28  2 19  5 13 15 26 39 37 32  1 14 17 38  4 21 27 41  6 23 34 10 12 36 30 35 24 20 25 42 22 31 18 11 16
 21 37 12  9 17  2 29 16 34  7  3 19 42 40  5 33 31 28 36  8 18 23 22  6 10 41 30 39 20 11 24 25 38 15 13 27 26  4 35 32 14  1
  1 32 29 35 22 40  7 23 28 26 18 37  6 20 16 19 14  9 17 33 41 24 31 38 34 25 12  3 30  2  8 27 36 11 39 42  4 10  5 21 13 15
 42 30  4 18 24 33 27 35 12 16 32 15 41  5 10  6 13 11  7 29  9 14 25 23 19 37  3 20  2 22 31 21 40  1 26 28 36 38 17  8 39 34
 35  5  7 36 23  6 20 15 13 25 19 17 28 32  9  1 33 40 10 26  2 12 39  4 29 38  8 16  3 14 27 24 41 22 11 30 31 21 42 34 37 18
 24 29 28 17 20  4  9 33 19 40 31  6 22 12 25 30 38  5 32 41 39 34 36  2  1  8 37 15 21 26 16 42 10 27 18 23 35 11 13 14  7  3
 30 40 32 39 35 41 14 20  9  6 10 11  4 31 13 23 16  2  3 22 36 29 24  7 25 15 21 28 17 33 12 38 34  5  1 19 18  8 26 27 42 37
 27 25 18 11 15 35 30 41 42 24 33 29 32 23  3  8 21 10 22 31 28 20 19 12 39 36 14  6 34  9  5  1  2 38 37 40 16 26  7  4 17 13
 12 13 40 42 11 26 17 30 39 36 14  4 19 18 20  2 15  7 38 25  5 16 37 21 31 35 29  8  6 27 23 32 24  9 28 22  3  1 33 41 34 10
  2  3  5 23 12 31 33 14 15 21 25  8 24 39 28  9 41 29 27  7 30 13 16 34 38 40  4 37 19 42 17 26  1 20 22 32 10 18  6 36 35 11
 25  9 39 40 33 17 26  1 29 22 24 36 37  7 15 21  8 18 16 30  6 38 35 14 23 28 10 11 27 31 13  3 42 34  4 20 41  2 32  5 12 19
  9 41  6 22  8 12 10 21  7 15  2  5 34 25 31 14  1 16 33 20 37 39 32 17 27 29 19 35 11 18 30  4 13 26 38  3 24 42 36 28 40 23
  6 21 26 29  3 24  8 18 23 42 40 33 38  9 36 27 28 14 11  5 15  7 34 37 12  2 20  4 16 10 41 35 31 25 32 17 19 13 22  1 30 39
 14  4 16 30 31  8 11 25 22 28 41 10  1 19  2 39 37 26 35 15 24  6 38 20 13 27 42  5 23 34 21  9 32 18 33 12  7 17  3 29 36 40
 11  1 25  3  5 32 35  7  8 31 36 39 30 37 24 12 34 41 42 27 10 28  6  9 18 21  2 22 29 23 20 15 17 33 14 13 40 16  4 19 26 38
 34 27 42  1 40 16 32 36  3 30 39 22 33 29 23 17  5 21 24 18 35 26 10 28  4 19 13  7  8 20  9 37 11 12 31  2  6 15 41 25 38 14
 17 39 19 32 42 23 25  2 11  1 20 35 10  3  6 36 27 37  9 13 26 21  8 22 28 33 24 14 18 40  7 29  4 16 12 31 38 34 15 30  5 41
 26 31 17 37  2 29 42 40 14 12 27 23 11  1  7 15 24 32  8 34 25 33 30 10  9 16 22 41  4 35  3  6 20 28  5 39 13 36 19 38 18 21
  4 33 13 20 41 34 18 31  1 17 16 38 27 35  8 28 23 39 15 36 19  9 26 30 42 24 11 32 14 21 25 12  3  7  6 37  5 40 29 22 10  2
 41 20 15  5 36 37 19 38 25 13 42  7 39  6 32 10 26 31 34 12  1 17  2 11 35 18 28 29 22  4 40 16 23 21 24 33 14 30  8  3  9 27
 38 18 10 34  6 11 24 26 37 27 12  3 31 28 17 13 42 15 21 14 16 32  1 40 33 23 36 25 39  5 19 22  8  2 41  4  9 35 30 20 29  7
  3 11 33 12 34 25 38 24  5 35  7 26  9 27  1 18 39 20 37  4 29  2 17 13 30 22 40 23 31 32 42  8  6 14 21 10 28 19 16 15 41 36
 40 17 20 38 27  5  3 13 33  8 22 41 21 15 12 25 29 36 31  9 32  1 28 35 11 14 16 10 37 30  6  7 26  4 42 34  2 39 18 23 19 24
 39  2  9 28 16  1 41 19  6 32 21 31  8 33 34 29  7 23 40 38 20 37  5 18 36 11 35 13 15 17 26 10 14  3 30 24 22 12 27 42  4 25
 10 15  8 27 32 22 36 11 35 20  9  1 14 21 38 26 19  3 12 40 17 42 18  5  7 13 31 30 33 24 39 41 25  6 23 16 34 29 37  2 28  4
 23  6 14 25 28 19  1 10 16 33 11  9  5 22 41 38 17 42  4  2 27 36 13 31 24 20 39 26  7  8 29 34 12 37 15 18 21  3 40 35 32 30


PART 4: 1000 latin squares of order 256:

 10.811605 seconds (745.43 k allocations: 157.305 MiB, 0.30% gc time)

Nim

Translation of: Go

<lang Nim>import random, sequtils, strformat, tables, times

type

 Vector = seq[int]
 Matrix = seq[Vector]
 Cube = seq[Matrix]
 Array16 = array[16, int]
 Array25 = array[25, int]


func newCube(m: Matrix; n: Positive): Cube =

 result.setLen(n)
 for i in 0..<n:
   result[i].setLen(n)
   for j in 0..<n:
     result[i][j].setLen(n)
     let k = if m.len == 0: (i + j) mod n else: m[i][j] - 1
     result[i][j][k] = 1


proc shuffle(c: var Cube) =

 let n = c[0].len
 var proper = true
 var rx, ry, rz: int
 while true:
   rx = rand(n - 1)
   ry = rand(n - 1)
   rz = rand(n - 1)
   if c[rx][ry][rz] == 0: break
 while true:
   var ox, oy, oz = 0
   while ox < n:
     if c[ox][ry][rz] == 1: break
     inc ox
   if not proper and rand(1) == 0:
     inc ox
     while ox < n:
       if c[ox][ry][rz] == 1: break
       inc ox
   while oy < n:
     if c[rx][oy][rz] == 1: break
     inc oy
   if not proper and rand(1) == 0:
     inc oy
     while oy < n:
       if c[rx][oy][rz] == 1: break
       inc oy
   while oz < n:
     if c[rx][ry][oz] == 1: break
     inc oz
   if not proper and rand(1) == 0:
     inc oz
     while oz < n:
       if c[rx][ry][oz] == 1: break
       inc oz
   inc c[rx][ry][rz]
   inc c[rx][oy][oz]
   inc c[ox][ry][oz]
   inc c[ox][oy][rz]
   dec c[rx][ry][oz]
   dec c[rx][oy][rz]
   dec c[ox][ry][rz]
   dec c[ox][oy][oz]
   if c[ox][oy][oz] < 0:
     (rx, ry, rz) = (ox, oy, oz)
     proper = false
   else:
     proper = true
     break


func toMatrix(c: Cube): Matrix =

 let n = c[0].len
 result = newSeqWith(n, newSeq[int](n))
 for i in 0..<n:
   for j in 0..<n:
     for k in 0..<n:
       if c[i][j][k] != 0:
         result[i][j] = k
         break


func toReduced(m: Matrix): Matrix =

 let n = m.len
 result = m
 for j in 0..n-2:
   if result[0][j] != j:
     for k in j+1..<n:
       if result[0][k] == j:
         for i in 0..<n:
           swap result[i][j], result[i][k]
         break
 for i in 1..n-2:
   if result[i][0] != i:
     for k in i+1..<n:
       if result[k][0] == i:
         for j in 0..<n:
           swap result[i][j], result[k][j]
         break


func asArray16(m: Matrix): Array16 =

 var k = 0
 for i in 0..3:
   for j in 0..3:
     result[k] = m[i][j]
     inc k


func asArray25(m: Matrix): Array25 =

 var k = 0
 for i in 0..4:
   for j in 0..4:
     result[k] = m[i][j]
     inc k


proc printArray16(a: Array16) =

 for i in 0..3:
   for j in 0..3:
     let k = i * 4 + j
     stdout.write &"{a[k]+1:2} "   # Back to 1 based.
   echo()
 echo()


proc printMatrix(m: Matrix) =

 let n = m.len
 for i in 0..<n:
   for j in 0..<n:
     stdout.write &"{m[i][j]+1:2} "  # Back to 1 based.
   echo()
 echo()


randomize()

  1. Part 1.

echo "Part 1: 10_000 latin Squares of order 4 in reduced form:\n" const From1: Matrix = @[@[1, 2, 3, 4], @[2, 1, 4, 3], @[3, 4, 1, 2], @[4, 3, 2, 1]] var freqs4: CountTable[Array16] var c = newCube(From1, 4) for _ in 1..10_000:

 c.shuffle()
 let m = c.toMatrix
 let rm = m.toReduced
 let a16 = rm.asArray16
 freqs4.inc(a16)

for a, freq in freqs4.pairs:

 printArray16(a)
 echo &"Occurs {freq} times\n"
  1. Part 2.

echo "\nPart 2: 10_000 latin squares of order 5 in reduced form:" const From2: Matrix = @[@[1, 2, 3, 4, 5], @[2, 3, 4, 5, 1], @[3, 4, 5, 1, 2],

                       @[4, 5, 1, 2, 3], @[5, 1, 2, 3, 4]]

var freqs5: CountTable[Array25] c = newCube(From2, 5) for _ in 1..10_000:

 c.shuffle()
 let m = c.toMatrix
 let rm = m.toReduced
 let a25 = rm.asArray25
 freqs5.inc(a25)

var count = 0 for freq in freqs5.values:

 inc count
 if count > 1: stdout.write ", "
 if (count - 1) mod 8 == 0: echo()
 stdout.write &"{count:2}({freq:3})"

echo '\n'

  1. Part 3.

echo "\nPart 3: 750 latin squares of order 42, showing the last one:\n" var m42: Matrix c = newCube(@[], 42) for i in 1..750:

 c.shuffle()
 if i == 750:
   m42 = c.toMatrix

printMatrix(m42)

  1. Part 4.

echo "\nPart 4: 1000 latin squares of order 256:\n" let start = cpuTime() c = newCube(@[], 256) for _ in 1..1000:

 c.shuffle()

echo &"Generated in {cpuTime() - start:.3f} seconds."</lang>

Output:
Part 1: 10_000 latin Squares of order 4 in reduced form:

 1  2  3  4 
 2  1  4  3 
 3  4  2  1 
 4  3  1  2 

Occurs 2469 times

 1  2  3  4 
 2  4  1  3 
 3  1  4  2 
 4  3  2  1 

Occurs 2430 times

 1  2  3  4 
 2  3  4  1 
 3  4  1  2 
 4  1  2  3 

Occurs 2561 times

 1  2  3  4 
 2  1  4  3 
 3  4  1  2 
 4  3  2  1 

Occurs 2540 times


Part 2: 10_000 latin squares of order 5 in reduced form:

 1(175),  2(201),  3(209),  4(158),  5(175),  6(190),  7(178),  8(173), 
 9(172), 10(179), 11(199), 12(170), 13(167), 14(199), 15(166), 16(164), 
17(180), 18(189), 19(170), 20(183), 21(165), 22(172), 23(199), 24(190), 
25(165), 26(178), 27(178), 28(190), 29(173), 30(187), 31(163), 32(157), 
33(179), 34(190), 35(168), 36(209), 37(185), 38(181), 39(161), 40(180), 
41(162), 42(161), 43(184), 44(157), 45(195), 46(179), 47(181), 48(161), 
49(198), 50(190), 51(176), 52(184), 53(148), 54(209), 55(167), 56(181)


Part 3: 750 latin squares of order 42, showing the last one:

31 27  9 29 25 19 40 35 16 34 32 33 10 13  1 36 17 24 39 14 18 26 38 15 21 42  3  6 12  2 41 28 37  7  5 11 23 20 22  4 30  8 
13 33 39 32 16 26 21 25  3 37 22 11 27 41 42 10  7  2 35 18 14 31  5 17 19 29 20 28 38  9 12 40  8  6 23 30 34 36 24 15  4  1 
40  7  6  5 21 25  3  4  8 20  1 23 19 35  2 29 24 37 32 39 28 11  9 14 15 26 41 18 36 12 33 16 17 27 38 13 22 34 30 31 42 10 
17 40 32 42 15 35 18 41  9 25  6  3 30  1 37 34 19 14  4 31 24 28 21 20 38 13 26 27 10 16 36 22  5 12 39 29 33 11 23  8  7  2 
12  9 29 23  8 22 42 32 33 14 30 31 20 18 10 24 36 13 15 16  3 25 17 26 27 19  7 39 41 21 28  5  2 11  4  1 40 35 37 34  6 38 
11  2 41 30  3  1 17 22 40 32  5  8  4 14 26  7 10 16 29  9 31 37 25 19 36 27 34 35 24 33 23 21 12 15 20 18 38 39  6 42 13 28 
24 26 40  4  9 37 36 13 10 28 15 21 22 27 14 20 34  5  6 23 16 38 29  7  8 12 35 41 33 18 19 17 11  1 30 25  2 32 42  3 31 39 
37 18  4 24 42 38 30 31 20 36 39  2  6 11 41  3 15 33 26 13  9 29 40 32 10 28 23 25 22 34 14 35  1 16 27 12 19 21  8 17  5  7 
29 39 18 19 37  6 14  1 31 30  2  5 28  8 33 25 23  9 17 21  7 35 20  3 11 16 22 38 15 36 10 32 13 34 26  4 27 40 12 24 41 42 
 4 16  8 10 19  5  6 24  2 12 40 32 15 29 13 41 20 38 36 28 42 39 23 34 17 11 30 14 21  1 27 31  7  3 37 26 35 33 18 22 25  9 
15 29 12 26  5  9  1 23 32  2 36 16 11 30 21 33 13  3 31 41  8  7 14 37 22 10 39 40  6 20 24 27 42 18 17 28  4 38 19 25 35 34 
41 22 35 34 28  3 31 17 13  7 23 30  1  4 11 37 29 40 38 10 15 14 24 27  6 21 33 16  2 42  9  8 25 32 18 19 12  5 20 39 36 26 
25 37 23 33 26 32 22  6 38 13 11 29  5 31 19 27 40 20 14  7  2 12 36 10 34 39 18 24  1  8  4 42 15 30 41  9  3 17 28 35 16 21 
 5 20 21 13 23 15 34 27 25 11 19 12 24 16 17  1 26 28 18 36 30 32 42 22 40  3 37  9 35 10 31 41  4 33 29 38  8 14  2  7 39  6 
 1 12 10 41 14 20 16 33 39  5 27  6 17 23 24 13 38 25 19 15 34 21 28 36  4 30  8 29 32 37  2  9 26 42  7 35 18 22 11 40  3 31 
 6 24 36  7  2 10 28 29 18 41 12  4 25 40  3 17 35 23 11  5 22 42 31 16  9 33 32 21 37 30 38 13 19  8 34 39 26  1 15 20 27 14 
16 30 25 39  4 33 38  9 15 42 24 36 35  3 31 12 32 18 27  8 41 23 22 13 20  7 21  2 11  6  1 26 10 40 28 14  5 29 34 19 37 17 
38  3 37 15 11 14  7  8  5  9 41  1  2 24 16  6 12 42 33 27 21 30 32 35 23 25  4 20 18 26 40 36 31 10 22 17 39 28 13 29 34 19 
26 21  2  1 12 18 25 40  4 16 17 13 33  9 22 30 27 29  3 34 35 36 15 23 24 37 14 19  7 41  5 39  6 38 11 42 10  8 31 28 32 20 
19 31 20  3  1 42 11 36 30 10 13  7 14 26  5  8 22 35 34 12 25 15 33 38 28 23 17 32 27 39 21 29 41  9  6  2 24 16  4 37 18 40 
42 10  3 22 35  7 13  5 41 33 34 18 39 28 15 38 14 30  1 37 26  4 16  6 32 40  2  8 31 11 25 12 27 17 19 20 29 24 21  9 23 36 
10  1 14  6 13 31 23 15 37 18 28 41 12 42 34  4 39  7 22 17 40  5 19  9 29  8 16 33 26 25 32 24  3 20 35 36 11  2 38 27 21 30 
23 25 11 28 39 24  5 18 35 27 10 15 16 22  4 40 42 21 12 30 38 20 37  2  3  1 31 13 14 17  8 19 29 36  9 34  7  6 26 32 33 41 
39 36 31 38 20 12  9 37 24 15  7 25 34 21 28 19 41 26  5 22 27 18  8  4 16 17 11 30 23 35  6  1 32  2 13 40 14 42 33 10 29  3 
14  5 27 40 34 41 19 21 22 31  8 37 42 17 29 23  9 12 20 25  1  3 26 33 13 38  6  4 30 28 39 10 35 24  2  7 15 18 36 16 11 32 
27 17 34  2 22 11  4 42 12 19 26  9 41 37 36 28 31 15 21  6 32 40 18 30 33 20 29  3 39 38 35 14 23 13 16  8 25  7 10  5  1 24 
21 14 13 25 27 34 15 20 42  3  4 28 18  5 23  2 30 22 16 26 29 24 41 12 37  6 40  7  9 32 17 38 36 35 10 31  1 19 39 33  8 11 
28 23 33  9 30  8 12  3 17  6 18 39 38 36  7 42 16 19 24 32 11  1 10 25 35  2 27 31  5 14 13 34 40 37 15 22 20 41 29 21 26  4 
34 19 42 27 31 21  8 16  7 24 14 35 36 38 20 39 33 41 37 40 13  2  4  1 26 15 12 10 28 23 29  6  9 22  3 32 30 25  5 11 17 18 
18 11 15 20 36 28 32 26 19 39 42 40 31 25 35 22  8 34  7 38 33 17  6 21 14  9  5 23  4  3 16 30 24 29  1 41 37 13 27  2 10 12 
33 41  5 35 18 13 10 19 23  8 31 24 32 20 30 15 28 11 42  1 17  6 27 29  7  4 38 26  3 22 37  2 34 39 25 21 36  9 40 12 14 16 
 8 38 26 21 24 30 35 11 14 29  3 10 40 32  6 16  5 31 23  2 39 33 12 42 41 34  1 17 25  4 15 18 20 19 36 37 28 27  7 13  9 22 
22  6 38 16 33 27 29 28 26  4 21 20 23 34 40  9  1 36 10 11 19  8 35 39 25 31 15 42 17  7  3 37 30  5 14 24 41 12 32 18  2 13 
20 34 24 12 32 17 37 14  1 22 25 27 26  7 18 21 11  8  9 29 10 13 39 28  2 35 36  5 19 31 42 15 33  4 40  3 16 30 41  6 38 23 
 2 28 16 37 29 40 39 34  6 17 35 38  7 33 32 14  4 27  8 19 20 10  3 41 31 36 24 12 42  5 30 11 18 26 21 15 13 23  9  1 22 25 
30 42  1 31 41 36  2 39 21 38  9 19 13  6 27 35 37 17 40  3  4 22 11  8 12 18 25 15 34 29  7 23 14 28 24 33 32 10 16 26 20  5 
36 35 17  8  7  4 41 30 28 26 33 22 29 39 38 31 18 10  2 20 37 19 13 24 42  5  9 34 16 40 11 25 21 14 32 27  6  3  1 23 12 15 
 9 13  7 18  6  2 26 38 27  1 29 34 37 12 25 32  3  4 28 35 23 41 30 40 39 24 10 11  8 15 22 20 16 21 42  5 17 31 14 36 19 33 
32 15 22 36 38 23 24 10 11 35 20 17 21 19  8 26  2  6 30 42 12  9 34  5  1 14 28 37 29 13 18  7 39 25 33 16 31  4  3 41 40 27 
 7  8 28 17 10 29 20 12 34 21 16 14  3  2  9  5  6 39 25  4 36 27  1 11 18 32 13 22 40 19 26 33 38 41 31 23 42 15 35 30 24 37 
35  4 19 11 17 16 33  2 36 40 38 26  8 10 39 18 21 32 41 24  5 34  7 31 30 22 42  1 13 27 20  3 28 23 12  6  9 37 25 14 15 29 
 3 32 30 14 40 39 27  7 29 23 37 42  9 15 12 11 25  1 13 33  6 16  2 18  5 41 19 36 20 24 34  4 22 31  8 10 21 26 17 38 28 35 


Part 4: 1000 latin squares of order 256:

Generated in 1.306 seconds.

Phix

Translation of: Go
function shuffleCube(sequence c)
    integer n = length(c), rx, ry, rz
    bool bProper = true
    while true do
        rx = rand(n)
        ry = rand(n)
        rz = rand(n)
        if c[rx][ry][rz] == 0 then exit end if
    end while
    while true do
        integer ox, oy, oz
        for i=1 to n do
            ox = i
            if c[ox][ry][rz] == 1 then exit end if
        end for
        if not bProper and rand(2)==2 then
            for i=ox+1 to n do
                ox = i
                if c[ox][ry][rz] == 1 then exit end if
            end for
        end if
        for i=1 to n do
            oy = i
            if c[rx][oy][rz] == 1 then exit end if
        end for
        if not bProper and rand(2)==2 then
            for i=oy+1 to n do
                oy = i
                if c[rx][oy][rz] == 1 then exit end if 
            end for
        end if
        for i=1 to n do
            oz = i
            if c[rx][ry][oz] == 1 then exit end if
        end for
        if not bProper and rand(2)==2 then
            for i=oz+1 to n do
                oz = i
                if c[rx][ry][oz] == 1 then exit end if
            end for
        end if
 
        c[rx][ry][rz] += 1
        c[rx][oy][oz] += 1
        c[ox][ry][oz] += 1
        c[ox][oy][rz] += 1
 
        c[rx][ry][oz] -= 1
        c[rx][oy][rz] -= 1
        c[ox][ry][rz] -= 1
        c[ox][oy][oz] -= 1
 
        if c[ox][oy][oz] < 0 then
            {rx, ry, rz} = {ox, oy, oz}
            bProper = false
        else
            bProper = true
            exit
        end if
    end while
    return c
end function
 
function toMatrix(sequence c)
    integer n = length(c)
    sequence m = repeat(repeat(0,n),n)
    for i=1 to n do
        for j=1 to n do
            for k=1 to n do
                if c[i][j][k] != 0 then
                    m[i][j] = k
                    exit
                end if
            end for
        end for
    end for
    return m
end function
 
function toReduced(sequence m)
    integer n := length(m)
    m = deep_copy(m)
    for j=1 to n-1 do
        if m[1][j]!=j then
            for k=j+1 to n do
                if m[1][k]==j then
                    for i=1 to n do
                        atom mij = m[i][j],
                             mik = m[i][k]
                        m[i][j] = mik
                        m[i][k] = mij

                    end for
                    exit
                end if
            end for
        end if
    end for
    for i=2 to n-1 do
        if m[i][1]!=i then
            for k=i+1 to n do
                if m[k][1]==i then
                    for j=1 to n do
                        atom mij = m[i][j],
                             mkj = m[k][j]
                        m[i][j] = mkj
                        m[k][j] = mij
                    end for
                    exit
                end if
            end for
        end if
    end for
    return m
end function
 
function makeCube(object orig, integer n)
    sequence c = repeat(repeat(repeat(0,n),n),n)
    for i=1 to n do
        for j=1 to n do
            integer k = iff(orig==NULL?mod(i+j,n)+1:orig[i][j])
            c[i][j][k] = 1
        end for
    end for
    return c
end function
 
procedure main()
 
    printf(1,"Part 1: 10,000 latin Squares of order 4 in reduced form:\n\n")
    sequence orig = {{1, 2, 3, 4}, {2, 1, 4, 3}, {3, 4, 1, 2}, {4, 3, 2, 1}},
             c := makeCube(orig, 4), m, rm, fk
    integer freq = new_dict()
    for i=1 to 10000 do
        c = shuffleCube(c)
        m = toMatrix(c)
        rm = toReduced(m)
        setd(rm,getd(rm,freq)+1,freq)
    end for
    fk = getd_all_keys(freq)
    for i=1 to length(fk) do
        printf(1,"%v occurs %d times\n", {fk[i],getd(fk[i],freq)})
    end for
 
    printf(1,"\nPart 2: 10,000 latin squares of order 5 in reduced form:\n\n")
    orig = {{1, 2, 3, 4, 5}, {2, 3, 4, 5, 1}, {3, 4, 5, 1, 2},
            {4, 5, 1, 2, 3}, {5, 1, 2, 3, 4}}
    c = makeCube(orig, 5)
    destroy_dict(freq, justclear:=true)
    for i=1 to 10000 do
        c = shuffleCube(c)
        m = toMatrix(c)
        rm = toReduced(m)
        setd(rm,getd(rm,freq)+1,freq)
    end for
    fk = getd_all_keys(freq)
    for i=1 to length(fk) do
        fk[i] = sprintf("%2d(%3d)", {i,getd(fk[i],freq)})
    end for
    puts(1,join_by(fk,8,7," ","\n"))
    destroy_dict(freq)
 
    -- part 3
    printf(1,"\nPart 3: 750 latin squares of order 42, showing the last one:\n\n")
    c = makeCube(NULL, 42)
    for i=1 to 750 do
        c = shuffleCube(c)
    end for
    m = toMatrix(c)
    integer n := length(m)
    for i=1 to n do
        for j=1 to n do
            m[i,j] = sprintf("%2d",m[i,j])
        end for
        m[i] = join(m[i]," ")
    end for
    printf(1,"%s\n",join(m,"\n"))
 
    -- part 4
    printf(1,"\nPART 4: 1000 latin squares of order 256:\n\n")
    atom t0 = time()
    c = makeCube(NULL, 256)
    for i=1 to 1000 do
        c = shuffleCube(c)
    end for
    printf(1,"Generated in %s\n", elapsed(time()-t0))
end procedure
main()
Output:
Part 1: 10,000 latin Squares of order 4 in reduced form:

{{1,2,3,4},{2,1,4,3},{3,4,1,2},{4,3,2,1}} occurs 2503 times
{{1,2,3,4},{2,1,4,3},{3,4,2,1},{4,3,1,2}} occurs 2560 times
{{1,2,3,4},{2,3,4,1},{3,4,1,2},{4,1,2,3}} occurs 2510 times
{{1,2,3,4},{2,4,1,3},{3,1,4,2},{4,3,2,1}} occurs 2427 times

Part 2: 10,000 latin squares of order 5 in reduced form:

 1(172)  9(197) 17(228) 25(166) 33(171) 41(224) 49(171)
 2(168) 10(162) 18(216) 26(227) 34(172) 42(155) 50(226)
 3(159) 11(198) 19(206) 27(165) 35(189) 43(190) 51(174)
 4(170) 12(207) 20(159) 28(166) 36(177) 44(171) 52(196)
 5(211) 13(148) 21(172) 29(173) 37(183) 45(189) 53(197)
 6(169) 14(163) 22(128) 30(179) 38(184) 46(138) 54(173)
 7(168) 15(155) 23(146) 31(170) 39(187) 47(170) 55(206)
 8(193) 16(177) 24(146) 32(176) 40(157) 48(183) 56(177)

Part 3: 750 latin squares of order 42, showing the last one:

 5 29 15  7 25 26  2 35 21 39  8 12 17 31  3 20 23 22 40 34 13 32 27 38  9  6 36 41 11 19  4 42 10 28 33 18 30 16  1 14 37 24
34 17 22 12 38 28 20 42 15 10  4  3 30 16 35 23 11 19 31  8 32  1 33 36 24  2 18 39  9 41 40 26 25 27 29  5  7 37 21 13  6 14
23 14 41 38  2 36  4 34 29 16 11 10 24 13 26 31 30 12 28 18  7 21 40 42 27  9 37 35  1  3 17 22 20  5  6 33 32 39 25 19 15  8
29 21 27 41  3 10 12 23  4 18 39  1 11  6 20 34  2 35 36 37 40  5 14 26 17 42 24 33 32 16 28  8 13 30 15  9 25 19 38  7 31 22
 8 32 10 17 30 15 18 13 19  6 26 29 34 42 28 40 24 23 33  7  3  4 12 37 38 36  1 21 41 20 16 25  5 11  2 39 14 22 31 35  9 27
27 40 39 16 11 23 14 20  6  4 19 28 36 12 31 24 42 10 35 33 17 18 30  3 21  5 38 15  7  1  9 34  8 32 37 13  2 26 29 22 25 41
31 39 29 22 20  6 11 17 16 19 41 36 35 33 30 14  4  2 15 24 21 10 25  1 18 12 40 28  5 37 32 27  3 13 42 38  9 34 26  8  7 23
11 33 42 28 14  7  6 24 37 26 13 35  9  5 19 18 15 20 25 41 30 17  3 12 22  8 21 27 39 10 34 40 32 36  4 31 23 29  2 38 16  1
20 11  7  8 32 31 40 37 42 13 21 22 26  2 12 29  1 27  6 14 19 41 38 17 36 25  4  5 30 15 24 35 16 34 39  3 28 23  9 18 33 10
24  9 28 40 33 29  3  7 34 11 16 27  2 30 42 25 21 13 41 10 38  8 39 35 12 26 19 20 23 31  5 32  1 22 14  6  4 15 37 36 17 18
 2  8 23 37 27  9 38 36 13 24 31 14 29  7  6 42  3 34 18 32  1 20 22 41 25 30 33 16 15  4 11 10 26 39 21 28 17 40 19  5 12 35
13  2 26 15 10 40 39  6 33 29 42 34 12 17 11 28 22 32 14 25 24 37 21  5  8 23 30  9 18  7 41 31  4  3 27 19 16 35 20  1 38 36
22 23 34 31 28 25 36 38  9 32 30  8  3 11 17 41 26 39 24  6  2 35 13  4  7 21 29 18 14 27 19 37 15 20 16 12 10 33 40 42  1  5
36 28 20 11 29 39 22 41 35  7  5 15 31 24  8 19 27 37  1 38 16 13  6  2 32 40 14 25 33 17 21  4 34 23 30 10 18 42 12  9 26  3
 6 25  8  2 17 33 19 12  1 38 40 39  5 32 18  7 34 30  9 11 15  3 31 23 37 24 27 14 20 28 36 16 21 42 13 29 41  4 35 10 22 26
14 24 38 32 12  3 15  2 17 28 36 40 19 26  1 27 29 41  8  5 23 42 20 13 10 34  6 31 16 35 30  7 11 18 22 21 33 25  4 37 39  9
39 30  5 20  1 22  9 40 36 27  7 33 37 18 29 38 25 42  4 21 14 31 10 28 26 15 16  8  3 13 35 19 41  2 32 24 12 11 17 23 34  6
35 18 17 14 13 41 25 31  2  3 32 24 10 19 22 33  6  1 16 23  9 15  8 39  5  7 11 12 42 34 37 28 38  4 26 20 40 36 27 21 30 29
 9 19 24 26 42 16  7 30 10 40 29  4 33  8 38 22 14 25 37 28  5 27 41 32  1 13 17 36 34 39 23 11 31  6 35  2 20 21 18 15  3 12
12 22 37  1  4 20 32  3 30 25 28 26  6 14 36 11 39 21 38 29 27 24  7 16 15 31  9 34 10 33 13 18 40 35  5 17 19  8 42 41 23  2
 3 16 31 42  7 17 37 25 23 36 15 18 27 22  5 21 40  9 10 39  4 26 29  6  2 33 41 19 35  8 12 20 28 38 24 32 11  1 34 30 14 13
19 41 36 34 21 18 26 29 27 20 14 16 38 40  7 15 32  3 17  4 10 28 35 33 13 22  8  6 25 42 31 23  2 37  9 30  1 12  5 24 11 39
25  4 12 29 26 37 16  9 22 30  6 23 40 21 15 35 20 38 19 42 11  2  1 18  3 41  5 10 28 36 33 39 27 24 34  8 31 32 14 17 13  7
41 12 14 33 40 35 28 15  7  9  1  5 13 23 27 32  8 17 26 31 42 34 37 19 30 38 20 22  2  6 39 21 36 29 18 16  3 24 11  4 10 25
26 20  3 19 16 30  5 14  8 41 10  7 25 15 21 13 38 36 39 22 28 23 17 27 33 37 34 32  4  2 29 12  9 31  1 42 24 18  6 40 35 11
10  1 25 36 37 24  8 26  3 12 34 42 18 38 41 16  9 14 32 35 31 30  5 22 39 27  7  4 13 29  6 15 23 19 28 11 21  2 33 20 40 17
37 35 40 13 39  8 31 33 38 15 12 32 16 41 34  6  5 11 30 27 20 22 26 14 29 18 28 23 36 21 25  2  7  1 17  4 42  9 10  3 24 19
30 34  2 24 35  1 23 10 20 42 22 37 15 39  9 17 12  4  5 26 18 38 16 29 31  3 25 11 21 14  8 41  6 40 19  7 13 27 28 32 36 33
16  7 19 21 18 27 29 22 39 35  2 38 28 20 40  9 36  8 12  1 41 33 15 31 11 10 42 24  6 32 26 17 37 14 25 23  5 13  3 34  4 30
32  3 11 25  5 12  1  4 18 31 33 19 41  9 37 10  7 24 13 40  6 16 42 21 34 20 26  2 38 22 15 14 35 17 23 36  8 30 39 27 29 28
 1 13 30 39 36  4 34 32 12 14 17  6 23 27 24  3 41 40 11 20 22  9 28 15 42 16  2 29 31  5  7 33 19 21 10 35 26 38  8 25 18 37
18 38  4 23 41 19 35 21 26 33 37 20 42 28 13  5 10  7  3 15 25 39 32  9 14 17 31 40 29 24  1 36 30  8 12 34 27  6 22 11  2 16
 4 27 21  3  8 42 41 16 40 37 18  2 22 25 32 36 17  5 23 30 29  6  9 34 19 35 15 13 24 11 14  1 12 10 38 26 39 20  7 33 28 31
40 26  9 30  6 21 42 19  5  2  3 31  4 35 23 37 28 15 20 13 34 12 11  8 16 14 39 17 22 25 27 38 18 33  7  1 36 10 24 29 41 32
28 15  1  4 19 11 24  5 31  8 23 17 21 34 14 26 37 18  7  2 35 29 36 10  6 39 32 30 27 38  3  9 33 16 20 25 22 41 13 12 42 40
21 10 35 27 31  2 13 39 28  5  9 41  1 36  4  8 19 29 34 16 33 40 24 25 20 11 22  7 12 18 42 30 14 26  3 37 15 17 23  6 32 38
17 42 18  6 23  5 33  1 24 34 35 30  7 37 16 12 31 26 21 19 39 14  4 11 41 32 10  3 40  9 38 13 22 25 36 27 29 28 15  2  8 20
42  6 13 35 22 32 10  8 14 21 24 11 39  1  2  4 18 33 27  9 12 25 23 40 28 29  3 26 37 30 20  5 17 41 31 15 38  7 36 16 19 34
 7 36 16  5  9 34 21 11 32 22 20 25  8 10 33 30 35 31 29 12 26 19  2 24  4  1 13 38 17 23 18  6 39 15 40 14 37  3 41 28 27 42
15 37 32  9 24 38 27 28 41 17 25 13 20 29 10 39 33  6  2 36  8  7 18 30 35  4 23  1 19 26 22  3 42 12 11 40 34 14 16 31  5 21
33 31  6 18 34 14 17 27 25  1 38 21 32  4 39  2 13 16 42  3 36 11 19  7 23 28 12 37  8 40 10 29 24  9 41 22 35  5 30 26 20 15
38  5 33 10 15 13 30 18 11 23 27  9 14  3 25  1 16 28 22 17 37 36 34 20 40 19 35 42 26 12  2 24 29  7  8 41  6 31 32 39 21  4

PART 4: 1000 latin squares of order 256:

Generated in 19.5s

Unfortunately the last part of this task exposes the relatively poor performance of subscripting in phix.

Wren

Translation of: Go
Library: Wren-fmt
Library: Wren-seq

<lang ecmascript>import "random" for Random import "/fmt" for Fmt import "/seq" for Lst

var rand = Random.new()

var toReduced = Fn.new { |m|

   var n = m.count
   var r = List.filled(n, null)
   for (i in 0...n) r[i] = m[i].toList
   for (j in 0...n-1) {
       if (r[0][j] != j) {
           for (k in j+1...n) {
               if (r[0][k] == j) {
                   for (i in 0...n) r[i].swap(j, k)
                   break
               }
           }
       }
   }
   for (i in 1...n-1) {
       if (r[i][0] != i) {
           for (k in i+1...n) {
               if (r[k][0] == i) {
                   for (j in 0...n) {
                       var t = r[i][j]
                       r[i][j] = r[k][j]
                       r[k][j] = t
                   }
                   break
               }
           }
       }
   }
   return r

}

// 'm' is assumed to be 0 based var printMatrix = Fn.new { |m|

   var n = m.count
   for (i in 0...n) {
       for (j in 0...n) Fmt.write("$2d ", m[i][j]+1) // back to 1 based
       System.print()
   }
   System.print()

}

// converts 4 x 4 matrix to 'flat' list var asList16 = Fn.new { |m| Lst.flatten(m) }

// converts 5 x 5 matrix to 'flat' list var asList25 = Fn.new { |m| Lst.flatten(m) }

// 'a' is assumed to be 0 based var printList16 = Fn.new { |a|

   for (i in 0...4) {
       for (j in 0...4) {
           var k = i*4 + j
           Fmt.write("$2d ", a[k]+1) // back to 1 based
       }
       System.print()
   }
   System.print()

}

var shuffleCube = Fn.new { |c|

   var n = c[0].count
   var proper = true
   var rx
   var ry
   var rz
   while (true) {
       rx = rand.int(n)
       ry = rand.int(n)
       rz = rand.int(n)
       if (c[rx][ry][rz] == 0) break
   }
   while (true) {
       var ox = 0
       var oy = 0
       var oz = 0
       while (ox < n) {
           if (c[ox][ry][rz] == 1) break
           ox = ox + 1
       }
       if (!proper && rand.int(2) == 0) {
           ox = ox + 1
           while (ox < n) {
               if (c[ox][ry][rz] == 1) break
               ox = ox + 1
           }
       }
       while (oy < n) {
           if (c[rx][oy][rz] == 1) break
           oy = oy + 1
       }
       if (!proper && rand.int(2) == 0) {
           oy = oy + 1
           while (oy < n) {
               if (c[rx][oy][rz] == 1) break
               oy = oy + 1
           }
       }
       while (oz < n) {
           if (c[rx][ry][oz] == 1) break
           oz = oz + 1
       }
       if (!proper && rand.int(2) == 0) {
           oz = oz + 1
           while (oz < n) {
               if (c[rx][ry][oz] == 1) break
               oz = oz + 1
           }
       }
       c[rx][ry][rz] = c[rx][ry][rz] + 1
       c[rx][oy][oz] = c[rx][oy][oz] + 1
       c[ox][ry][oz] = c[ox][ry][oz] + 1
       c[ox][oy][rz] = c[ox][oy][rz] + 1
       c[rx][ry][oz] = c[rx][ry][oz] - 1
       c[rx][oy][rz] = c[rx][oy][rz] - 1
       c[ox][ry][rz] = c[ox][ry][rz] - 1
       c[ox][oy][oz] = c[ox][oy][oz] - 1
       if (c[ox][oy][oz] < 0) {
           rx = ox
           ry = oy
           rz = oz
           proper = false
       } else {
           proper = true
           break
       }
   }

}

var toMatrix = Fn.new { |c|

   var n = c[0].count
   var m = List.filled(n, null)
   for (i in 0...n) m[i] = List.filled(n, 0)
   for (i in 0...n) {
       for (j in 0...n) {
           for (k in 0...n) {
               if (c[i][j][k] != 0) {
                   m[i][j] = k
                   break
               }
           }
       }
   }
   return m

}

// 'from' matrix is assumed to be 1 based var makeCube = Fn.new { |from, n|

   var c = List.filled(n, null)
   for (i in 0...n) {
       c[i] = List.filled(n, null)
       for (j in 0...n) {
           c[i][j] = List.filled(n, 0)
           var k = (!from) ? (i + j) % n : from[i][j] - 1
           c[i][j][k] = 1
       }
   }
   return c

}

// part 1 System.print("PART 1: 10,000 latin Squares of order 4 in reduced form:\n") var from = [ [1, 2, 3, 4], [2, 1, 4, 3], [3, 4, 1, 2], [4, 3, 2, 1] ] var freqs4 = {} var c = makeCube.call(from, 4) for (i in 1..10000) {

   shuffleCube.call(c)
   var m = toMatrix.call(c)
   var rm = toReduced.call(m)
   var a16 = asList16.call(rm)
   var a16s = a16.toString // can't use a list as a map key so convert it to string
   freqs4[a16s] = freqs4[a16s] ? freqs4[a16s] + 1 : 1

} for (me in freqs4) {

   printList16.call(me.key[1..-2].split(", ").map { |n| Num.fromString(n) }.toList)
   Fmt.print("Occurs $d times\n", me.value)

}

// part 2 System.print("\nPART 2: 10,000 latin squares of order 5 in reduced form:") from = [ [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2],

        [4, 5, 1, 2, 3], [5, 1, 2, 3, 4] ]

var freqs5 = {} c = makeCube.call(from, 5) for (i in 1..10000) {

   shuffleCube.call(c)
   var m = toMatrix.call(c)
   var rm = toReduced.call(m)
   var a25 = asList25.call(rm)
   var a25s = a25.toString // can't use a list as a map key so convert it to string
   freqs5[a25s] = freqs5[a25s] ? freqs5[a25s] + 1 : 1

} var count = 0 for (freq in freqs5.values) {

   count = count + 1
   if (count > 1) System.write(", ")
   if ((count-1) % 8 == 0) System.print()
   Fmt.write("$2d($3d)", count, freq)

} System.print("\n")

// part 3 System.print("\nPART 3: 750 latin squares of order 42, showing the last one:\n") var m42 c = makeCube.call(null, 42) for (i in 1..750) {

   shuffleCube.call(c)
   if (i == 750) m42 = toMatrix.call(c)

} printMatrix.call(m42)

// part 4 System.print("\nPART 4: 1,000 latin squares of order 256:\n") var start = System.clock c = makeCube.call(null, 256) for (i in 1..1000) shuffleCube.call(c) var elapsed = System.clock - start Fmt.print("Generated in $s seconds", elapsed)</lang>

Output:

Sample run:

PART 1: 10,000 latin Squares of order 4 in reduced form:

 1  2  3  4 
 2  1  4  3 
 3  4  2  1 
 4  3  1  2 

Occurs 2510 times

 1  2  3  4 
 2  3  4  1 
 3  4  1  2 
 4  1  2  3 

Occurs 2498 times

 1  2  3  4 
 2  1  4  3 
 3  4  1  2 
 4  3  2  1 

Occurs 2506 times

 1  2  3  4 
 2  4  1  3 
 3  1  4  2 
 4  3  2  1 

Occurs 2486 times


PART 2: 10,000 latin squares of order 5 in reduced form:

 1(187),  2(179),  3(186),  4(176),  5(177),  6(189),  7(193),  8(182), 
 9(168), 10(169), 11(147), 12(200), 13(198), 14(169), 15(200), 16(173), 
17(184), 18(179), 19(151), 20(174), 21(160), 22(198), 23(153), 24(184), 
25(170), 26(180), 27(171), 28(180), 29(184), 30(178), 31(197), 32(173), 
33(185), 34(181), 35(200), 36(188), 37(176), 38(196), 39(193), 40(183), 
41(163), 42(163), 43(173), 44(178), 45(177), 46(160), 47(155), 48(165), 
49(181), 50(188), 51(187), 52(182), 53(162), 54(192), 55(183), 56(180)


PART 3: 750 latin squares of order 42, showing the last one:

22 31 16 23 19 21  1 17  9 20 15  3 13 25  2 38 34 14 41  5 26 24 11 12  6 27  4 33 39  8 40 30 29 36 42 32  7 10 37 18 28 35 
 7 19 17 16 13 20 32 27 39 34 22 26  5 23 31  4 15  3 29 42 10 12  9  6 38  2 24  1 40 21 36 37 30 35 41 28 25 33 18  8 11 14 
21 15 11 40 25 18  4 14 38 13 32  8  2 39 37 10 35 24 31  7  1 16 20 42 34  6  9 28 26 30 23 41 36 33 19 27 29  3  5 17 12 22 
14 32 36 21  7  2 22 41 13 23 27  6 34 12 42 31 37 38 16 19  5 28 17  4 39  9 40  3 11 18 15  1 24 20 29 33 10 35 25 30 26  8 
 9 10 20 37 35 38 40 33 32 12 18 27 19 42  4  1 17 11  7 13 15 14 36  8 25 39 28  6 16  5  2  3 21 23 34 31 41 29 30 26 22 24 
 3 14  5 28 30  6  7 25 10  1 41 36 42  8 40 33 39 32  2 16 27 18 29 15 24 20 17 23 37 11 26  9 38 12 13 19  4 31 22 35 34 21 
33 28  6 18 22 27 30 38 36 39 14 21 37 26 15 12 10 23 32  3 17 29 24 35 41 16  1  8 20 34  9 13 25 11  5 40 31  7 42 19  4  2 
23 17  4 36 11 32 29 20 35  5 16 14 10 31 39  9 40 37 42  1 30 15  6  2 12  8 33 13  7 28 18 38 22 21 26 34 19 24 27 25 41  3 
40 25 13  1 14 24 17 16 42  6 11 28 15 20  8  7 27 35 26 21 41 39 18 31 19  3 34 30 33  9 37 29 12 22 36  5  2 38  4 32 23 10 
26  4  7 10 41 39 16 19  8 24 40 23  1  2  6 34 14  5  3 15 12 13 21 25 30 29 36 18 38 32 28 42  9 31 35 17 37 27 11 22 20 33 
27  5 23 17 21  4  6  9  3  7 25 18 32 14 34 19 33 31 28 12 20 38 15 36  2 22 13 35 41 10 11  8  1 39 30 37 24 26 29 42 16 40 
19  1 21 11 34 22  3 10 26 42 38 12 39 37 14 32 36  9 13  2  7 31 30 24 20 17 29 40 18 41  4 27 23 16  6 35 28 15 33  5  8 25 
18  3 33  7 27 14  9  8 15  2 34 38  4  6 13 40 41 28 17 31 24 26 37 32 29 19 11  5 10 36 42 35 20  1 22 30 12 16 21 23 25 39 
 4  9 41  5 36 34 39 24 25 11 29 31 40  3 32 18  8 17 21 26 14 27 38 10 35 30 19 15  1 23  7 33 28  2 16  6 22 42 13 20 37 12 
15 39 25 19 10  3  8  6 11 14 21  4 20 17 41 30 28 12 37 18 32 40 31 26 13 33  7 42 34 16 27 23  5 38 24 36 35 22  1  2  9 29 
36  8 19 13 16  9 27 11 17 32  1  5 21 41 28 24  3 26 39 33 42  7 10 18 22 25 37  4  6 35 34 20 15 30 40 12 38 14  2 31 29 23 
31 12 27  3 23 13 25 30  2  9  4 35 22 18 24 26 20  6 36 34 33 11 19 17 14  5 42 29  8 37 16 28 41 10 38 21  1 39 32  7 40 15 
35 33 28 20  1 37 26  3 21 27 13 40 38 19 25  2 22  4 12 32  8 23 39 29 11 18  6  7  5 17 30 24 16 41 14 42 36  9 15 34 10 31 
32 13  1 14  9  8 23 34 19 30 35 29 11 33 16 36  2 21 18 37  4 20 12 22  3 38 31 17 42 24  5 25 10 26 39  7 40 28  6 15 27 41 
24  7 26 30 39  5 41 21 12 22  3 15 36 40 33  6 42 29 10 28 11 34 35 19  4  1  8 37 27 14 38 17 31 25  2 13 32 23 20 16 18  9 
30 34 38 35  6 25 15 22 40 16 10 32  3 27 11 20 18 33 19 24 39  8  2  5 23 21 26 36 13  1 41  4 17 42 31 29 14 37 12  9  7 28 
34 21 18 39  8 26 10 32 37 33 12  2 28  4 38 17 24 36 30 25  9 35 40 16 42  7 41 22  3 29  1 11 27  5 15 20 13 19 23 14 31  6 
37 35  8 25 29 10 38 31 23 21 36 13 30 34 26 27 19  2  4  9  6 42 22 11 16 28 32 20 15  7 24  5 40 14 12 41 18  1 39  3 33 17 
10 36 40  4  2  7  5 35  1 41  9 20 31 16 29 23 38 34 33  6 28 21 32 39 27 37 22 26 25 15 13 14  8  3 18 11 30 17 24 12 19 42 
 5 29 37 12 31 16 18 13 33 38 39 22  6 30 19 28 11 40 20 27 35  2 42 14 15 10 23 21  9  4 25  7 34 17 32 24  8 36 41  1  3 26 
29 41 31  9 40  1 20  2  6 28 30 17 23 38 21 42  7 16 11 39 25  4 26 33 18 15 27 14 35 19 22 12 37 24 10  3  5  8 34 13 36 32 
 1 26 32  8 18 17 11 12 29 35  7 42 24  9 20 13  6 22  5 36 31 37 16 41 40 23 10 38  4 33 21 19  2 27 25 14 15 34  3 28 39 30 
12 11 15 41 42 35 36 29 18 40 33 10 17 21 22 39  5  1 34 30 37  3  7 23 31 24  2 19 28 26 14 32  4  8 20 25 16  6  9 27 38 13 
38 22 10 33  4 28 24 36 20 18  8  9 35 13 12 15 32  7 23 17 29  5 25 27  1 41 30 16 14  6 31 26 11 19  3  2 34 21 40 39 42 37 
42 27 39 24  3 11 13 26 41 25 28 37 18 29 35 14  4 19 38 23  2 22  1 20  9 36  5 31 30 12 33  6 32 15  7  8 21 40 16 10 17 34 
28 20  9 26 38 33 19  1 30 36 42 11  7 15 23 37 25 27 24 35 13  6 41 21  5  4 12 34 32 31  8 22 14 29 17 39  3 18 10 40  2 16 
13 37 35 42 33 15 31 28 14  3 19 34 16 32 30 25 23  8 27 11 36  9  5  7 10 12 39 24 29 22  6  2 26 40 21 18 20 41 17  4  1 38 
11  2 34 38 26 23 28  5 24 15 37 30  8 10  7 29 21 41 22 14 40 25 33 13 17 31 16  9 12 42 19 18  3 32 27  4 39 20 36  6 35  1 
17 42 30  2 28 29 33 37 22 31 20  7 14  5  9 35 12 13 40 38 23  1 27 34 32 26 15 41 19  3 39 10 18  4 11 16  6 25  8 21 24 36 
 2 16 42  6 12 36 14 23 34 37 17 25  9 22 27 41 31 20 15  4  3 10 28  1  7 13 35 11 21 39 29 40 19 18  8 26 33 32 38 24 30  5 
 8  6 14 31 24 30 21  7  5 19 26 16 25  1 36  3 29 42 35 10 18 17  4 40 37 34 38 32 22  2 12 39 33 13 23  9 27 11 28 41 15 20 
20 40 12 29 37 42 34  4 27 26  2 33 41  7 10 22  1 15 25  8 38 36  3 30 21 32 18 39 24 13 35 16  6  9 28 23 17  5 31 11 14 19 
16 18 24 22 20 41 42 40 28  8 23  1 12 11  3 21 26 39  6 29 34 32 14 37 33 35 25 10  2 38 17 31 13  7  4 15  9 30 19 36  5 27 
41 30  2 34  5 12 37 15 16 17 24 39 33 36 18  8 13 10 14 20 22 19 23 38 26 40  3 25 31 27 32 21 35 28  9  1 42  4  7 29  6 11 
39 23  3 15 32 40  2 18  7 29 31 24 27 35  5 16  9 30  1 22 19 41  8 28 36 14 20 12 17 25 10 34 42  6 33 38 11 13 26 37 21  4 
25 24 29 27 17 31 35 42  4 10  6 19 26 28  1  5 30 18  9 41 16 33 13  3  8 11 21  2 36 40 20 15 39 34 37 22 23 12 14 38 32  7 
 6 38 22 32 15 19 12 39 31  4  5 41 29 24 17 11 16 25  8 40 21 30 34  9 28 42 14 27 23 20  3 36  7 37  1 10 26  2 35 33 13 18 


PART 4: 1,000 latin squares of order 256:

Generated in 10.828862 seconds