Host introspection: Difference between revisions

m
mNo edit summary
m (→‎{{header|Wren}}: Minor tidy)
 
(15 intermediate revisions by 10 users not shown)
Line 13:
 
See also: [[Variable size/Get]]
=={{header|68000 Assembly}}==
It's not possible to get the word size without knowing it in advance. But the 68000's big-endian nature can easily be proven even if the programmer didn't know that it was big-endian already.
Code is called as a subroutine, i.e. <code>JSR TestEndianness</code>. Hardware-specific print routines are unimplemented.
<syntaxhighlight lang="68000devpac">TestEndianness:
LEA UserRam,A0
MOVE.L #$0000FFFF,(A0)
MOVE.B (A0),D0 ;read the 0th byte stored
BEQ isBigEndian ;if this was little endian, the bytes would be stored FF FF 00 00
;must have been little-endian. Spoiler alert: execution will never reach here
LEA LittleEndianMessage,A3
JSR PrintString
rts
isBigEndian:
LEA BigEndianMessage,A3
JSR PrintString
rts
 
BigEndianMessage:
DC.B "BIG-ENDIAN",0
EVEN
LittleEndianMessage:
DC.B "LITTLE-ENDIAN",0
EVEN</syntaxhighlight>
=={{header|8086 Assembly}}==
As with [[68000 Assembly]], there's no way to "prove" the word size without knowing it in advance. But endianness can still be tested for quite easily.
<syntaxhighlight lang="asm"> .model small
.stack 1024
 
.data
 
UserRam BYTE 256 DUP (0)
 
.code
start:
 
mov ax,@data ;assembler calculates this offset for us
mov ds,ax ;the 8086 can only load segment registers from other registers, not directly from immediate values.
 
mov ax,@code
mov es,ax
 
mov ax,3422h
mov word ptr [ds:UserRam],ax
mov bl, byte ptr [ds:UserRam]
call doMonitor ;a routine that prints the contents of
;the 8086's registers to the screen
 
mov ax,4C00h
int 21h ;return to MS-DOS
 
end start</syntaxhighlight>
 
If the 8086 is little-endian, BX will equal 0022, since we loaded the low byte of UserRam into BL (the low half of BX). If it's big-endian, BX will equal 0034.
 
{{out}}
<pre>
Monitor tools created by Keith of Chibiakumas
AX:3422 BX:0022 CX:00FF DX:0192
F :------I--------- IP:0018
SP:03FA BP:091C DI:0400 SI:0388
CS:01A2 DS:01EC ES:01A2 SS:0425
</pre>
 
From this we conclude that the 8086 is indeed a little-endian CPU.
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC Main()
PrintE("All Atari 8-bit computers use little-endian word of 16-bits size.")
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Host_introspection.png Screenshot from Atari 8-bit computer]
<pre>
All Atari 8-bit computers use little-endian word of 16-bits size.
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
with System; use System;
 
Line 22 ⟶ 97:
Put_Line ("Word size" & Integer'Image (Word_Size));
Put_Line ("Endianness " & Bit_Order'Image (Default_Bit_Order));
end Host_Introspection;</langsyntaxhighlight>
 
{{out|Sample output on a Pentium machine}}
Line 35 ⟶ 110:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<langsyntaxhighlight lang="algol68">INT max abs bit = ABS(BIN 1 SHL 1)-1;
INT bits per char = ENTIER (ln(max abs char+1)/ln(max abs bit+1));
INT bits per int = ENTIER (1+ln(max int+1.0)/ln(max abs bit+1));
Line 58 ⟶ 133:
int byte order +:= REPR(abcdi OVER (max abs bit+1) ** shift MOD (max abs char+1))
OD;
printf(($"int byte order: "g,", Hex:",16r8dl$,int byte order, BIN abcdi))</langsyntaxhighlight>
{{out}} (Intel i686):
<pre>
Line 85 ⟶ 160:
 
=={{header|Applesoft BASIC}}==
<langsyntaxhighlight ApplesoftBasiclang="applesoftbasic">1 DATA248,169,153,24,105,1,48
2 DATA6,24,251,144,2,251,56
3 DATA216,105,0,133,251,96
Line 96 ⟶ 171:
10 IF M THEN PRINT M$
11 PRINT "ENDIANNESS: ";
12 PRINT "LITTLE-ENDIAN"</langsyntaxhighlight>
 
=={{header|ARM Assembly}}==
The word size of the ARM is 32-bit, which can't really be proven without knowing it ahead of time.
 
The ARM CPU's endianness can be set to either little-endian or big-endian. Not all ARM CPUs have this feature, but this test will work regardless of whether the endian switch features exist on any particular model or not. The easiest way to test endianness is to write a word to RAM, then read the 0th byte from that memory location and see what it is. (The example below uses VASM syntax.)
 
<syntaxhighlight lang="arm assembly">EndianTest:
mov r0,#0xFF
mov r1,#0x02000000 ;an arbitrary memory location on the Game Boy Advance.
;(The GBA is always little-endian but this test doesn't use that knowledge to prove it.)
str r0,[r1] ;on a little-endian CPU a hexdump of 0x02000000 would be: FF 00 00 00
;on a big-endian CPU it would be: 00 00 00 FF
ldrB r0,[r1] ;load just the byte at 0x02000000. If the machine is big-endian this will load 00; if little-endian, 0xFF.
cmp r0,#0
beq isBigEndian
;else, do whatever is needed to display "little-endian" to the screen. This part isn't implemented.</syntaxhighlight>
=={{header|Babel}}==
<langsyntaxhighlight lang="babel">main :
{ "Word size: " << msize 3 shl %d << " bits" cr <<
"Endianness: " << { endian } { "little" } { "big" } ifte cr << }</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> DIM P% 8
!P% = -1
I% = 0 : REPEAT I% += 1 : UNTIL P%?I%=0
Line 110 ⟶ 200:
!P% = 1
IF P%?0 = 1 THEN PRINT "Little-endian"
IF P%?(I%-1) = 1 THEN PRINT "Big-endian"</langsyntaxhighlight>
The 'word size' is reported as the number of bytes accessed by the ! indirection operator, which is 4 in all current versions of BBC BASIC.
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stddef.h> /* for size_t */
#include <limits.h> /* for CHAR_BIT */
Line 135 ⟶ 225:
printf("big endian\n");
return 0;
}</langsyntaxhighlight>
 
On POSIX-compatible systems, the following also tests the endianness (this makes use of the fact that network order is big endian):
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <arpa/inet.h>
 
Line 147 ⟶ 237:
else
printf("little endian\n");
}</langsyntaxhighlight>
 
=={{header|C sharp}}==
<langsyntaxhighlight lang="csharp">static void Main()
{
Console.WriteLine("Word size = {0} bytes,",sizeof(int));
Line 158 ⟶ 248:
else
Console.WriteLine("Big-endian.");
}</langsyntaxhighlight>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <bit>
#include <iostream>
 
int main()
{
std::cout << "int is " << sizeof(int) << " bytes\n";
std::cout << "a pointer is " << sizeof(int*) << " bytes\n\n";
 
if (std::endian::native == std::endian::big)
{
std::cout << "platform is big-endian\n";
}
else
{
std::cout << "host is little-endian\n";
}
}</syntaxhighlight>
{{out}}
<pre>
int is 4 bytes
a pointer is 8 bytes
 
host is little-endian
</pre>
 
=={{header|Caché ObjectScript}}==
Line 169 ⟶ 285:
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(println "word size: " (System/getProperty "sun.arch.data.model"))
(println "endianness: " (System/getProperty "sun.cpu.endian"))</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
Line 177 ⟶ 293:
 
The [http://www.lispworks.com/documentation/HyperSpec/Body/c_enviro.htm Environment] has some implementation-specific functions that might provide a good hint, e.g.,
<langsyntaxhighlight lang="lisp">(machine-type) ;; => "X86-64" on SBCL here</langsyntaxhighlight>
 
The [http://www.cliki.net/features *features*] list also provides useful information, e.g., some compilers declare :LITTLE-ENDIAN there.
Line 184 ⟶ 300:
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.system;
 
writeln("Word size = ", size_t.sizeof * 8, " bits.");
writeln(endian == Endian.littleEndian ? "Little" : "Big", " endian.");
}</langsyntaxhighlight>
{{out}}
<pre>Word size = 64 bits.
Line 195 ⟶ 311:
 
=={{header|Delphi}}==
<langsyntaxhighlight Delphilang="delphi">program HostIntrospection ;
 
{$APPTYPE CONSOLE}
Line 204 ⟶ 320:
Writeln('word size: ', SizeOf(Integer));
Writeln('endianness: little endian'); // Windows is always little endian
end.</langsyntaxhighlight>
 
=={{header|Erlang}}==
To find the word size:
<langsyntaxhighlight lang="erlang">1> erlang:system_info(wordsize).
4</langsyntaxhighlight>
 
In the case of endianness, Erlang's bit syntax by default has a 'native' option which lets you use what is supported natively.
Line 215 ⟶ 331:
However, one could write one by using bit syntax, setting endianness and then comparing to the native format:
 
<langsyntaxhighlight lang="erlang">1> <<1:4/native-unit:8>>.
<<1,0,0,0>>
2> <<1:4/big-unit:8>>
<<0,0,0,1>>
3> <<1:4/little-unit:8>>.
<<1,0,0,0>></langsyntaxhighlight>
 
And so the following function would output endianness:
 
<langsyntaxhighlight lang="erlang">endianness() when <<1:4/native-unit:8>> =:= <<1:4/big-unit:8>> -> big;
endianness() -> little.</langsyntaxhighlight>
 
=={{header|F_Sharp|F#}}==
A lot of research before I finally came up with an answer to this that isn't dependent on the machine it was compiled on. Works on Win32 machines only (obviously, due to the interop). I think that strictly speaking, I should be double checking the OS version before making the call to wow64Process, but I'm not worrying about it.
<langsyntaxhighlight lang="fsharp">open System
open System.Runtime.InteropServices
open System.Diagnostics
Line 242 ⟶ 358:
f64Bit
let IsLittleEndian() = BitConverter.IsLittleEndian
(IsLittleEndian(), Is64Bit())</langsyntaxhighlight>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: alien.c-types alien.data io layouts ;
"Word size: " write cell 8 * .
"Endianness: " write little-endian? "little" "big" ? print</langsyntaxhighlight>
 
=={{header|Forth}}==
<langsyntaxhighlight lang="forth">: endian
cr 1 cells . ." address units per cell"
s" ADDRESS-UNIT-BITS" environment? if cr . ." bits per address unit" then
cr 1 here ! here c@ if ." little" else ." big" then ." endian" ;</langsyntaxhighlight>
This relies on '''c@''' being a byte fetch (4 chars = 1 cells). Although it is on most architectures, ANS Forth only guarantees that 1 chars <= 1 cells. Some Forths like OpenFirmware have explicitly sized fetches, like b@.
 
=={{header|Fortran}}==
{{works with|Fortran|90 and later< 2018}}
<langsyntaxhighlight lang="fortran"> integer :: i
character(len=1) :: c(20)
equivalence (c, i)
Line 270 ⟶ 386:
ELSE
WRITE(*,*) "Little Endian"
END IF</langsyntaxhighlight>
{{works with|Fortran| 77 and later}}
<syntaxhighlight lang="fortran">
PROGRAM endianness
IMPLICIT NONE
INTEGER(KIND=4) :: i = 1
 
!ISHFT(INTEGER, SHIFT) : Left shift if SHIFT > 0
!ISHFT(INTEGER, SHIFT) : Right shift if SHIFT < 0
IF (ISHFT(i,1) .EQ. 0) THEN
WRITE(*,FMT='(A)') 'Architechture is Big Endian'
ELSE
WRITE(*,FMT='(A)') 'Architecture is Little Endian'
END IF
 
RETURN
 
STOP
END PROGRAM endianness
</syntaxhighlight>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0 Win64 (so little endian, 8 byte word size, expected)
 
' uses intrinsic defines, set by the compiler
Line 289 ⟶ 424:
#EndIf
 
Sleep</langsyntaxhighlight>
 
{{out}}
Line 298 ⟶ 433:
 
=={{header|Frink}}==
<langsyntaxhighlight lang="frink">
println["Word size: " + callJava["java.lang.System", "getProperty", "sun.arch.data.model"]]
println["Endianness: " + callJava["java.lang.System", "getProperty", "sun.cpu.endian"]]
</syntaxhighlight>
</lang>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 374 ⟶ 509:
}
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 407 ⟶ 542:
</pre>
Alternative technique:
<langsyntaxhighlight lang="go">package main
 
import (
Line 423 ⟶ 558:
fmt.Println(f.FileHeader.ByteOrder)
f.Close()
}</langsyntaxhighlight>
{{out}}
<pre>
Line 431 ⟶ 566:
=={{header|Groovy}}==
Solution follows [[Java]]:
<langsyntaxhighlight lang="groovy">println "word size: ${System.getProperty('sun.arch.data.model')}"
println "endianness: ${System.getProperty('sun.cpu.endian')}"</langsyntaxhighlight>
 
{{out}}
Line 439 ⟶ 574:
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.Bits
import ADNS.Endian -- http://hackage.haskell.org/package/hsdns
 
Line 446 ⟶ 581:
putStrLn $ "Endianness: " ++ show endian
where
bitsize = show $ bitSize (undefined :: Int)</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
 
<langsyntaxhighlight lang="unicon">procedure main()
write(if 0 = ishift(1,-1) then "little" else "big"," endian")
if match("flags",line := !open("/proc/cpuinfo")) then # Unix-like only
write(if find(" lm ",line) then 64 else 32," bits per word")
else write("Cannot determine word size.")
end</langsyntaxhighlight>
 
Sample run:
Line 468 ⟶ 603:
=={{header|J}}==
 
<langsyntaxhighlight lang="j"> IF64 {32 64
64</langsyntaxhighlight>
 
This returns <code>32</code> in 32 bit J.
 
This value could also be calculated, exercising left shift of bits in a 2s complement fixed width integer:<syntaxhighlight lang="j"> 2+2^.>./1&(33 b.)^:a:1
64</syntaxhighlight>
 
Note that this mechanism is testing the interpreter, and not the OS or Hardware. (Though, of course, you cannot run a 64 bit interpreter on a machine that does not support it.)
Line 477 ⟶ 615:
That said, this does not deal with endianness. For the most part, J programs do not need to know their own endianness. When converting to and from binary format you can specify "native", "little endian" and "big endian", and it's rare that you have an interface which would need anything else. That said, you can inspect the binary representation of a simple constant:
 
<langsyntaxhighlight lang="j"> ":&> (|: 32 64 ;"0 big`little) {"_1~ 2 2 #: 16b_e0 + a. i. 0 { 3!:1 ''
64
little</langsyntaxhighlight>
 
=={{header|Java}}==
Line 486 ⟶ 624:
{{works with|Java|1.4}}
 
<langsyntaxhighlight lang="java">import java.nio.ByteOrder;
 
public class ShowByteOrder {
Line 493 ⟶ 631:
System.out.println(ByteOrder.nativeOrder());
}
}</langsyntaxhighlight>
 
Some JVMs also have system properties for the word size and byte order.
 
<langsyntaxhighlight lang="java">System.out.println("word size: "+System.getProperty("sun.arch.data.model"));
System.out.println("endianness: "+System.getProperty("sun.cpu.endian"));</langsyntaxhighlight>
 
=={{header|Julia}}==
<code>Julia</code> creates <code>ENDIAN_BOM</code> a 32 bit unsigned integer out of an array of 4 8 bit unsigned integers to serve as an endianness marker.
<syntaxhighlight lang="julia">
<lang Julia>
print("This host's word size is ", WORD_SIZE, ".")
if ENDIAN_BOM == 0x04030201
Line 511 ⟶ 649:
println("ENDIAN_BOM = ", ENDIAN_BOM, ", which is confusing")
end
</syntaxhighlight>
</lang>
 
{{out}}
Line 520 ⟶ 658:
=={{header|Kotlin}}==
The following is not guaranteed to work on all JVMs but is working fine on my x64 Windows 10 machine:
<langsyntaxhighlight lang="scala">// version 1.0.6
 
fun main(args: Array<String>) {
println("Word size : ${System.getProperty("sun.arch.data.model")} bits")
println("Endianness: ${System.getProperty("sun.cpu.endian")}-endian")
}</langsyntaxhighlight>
 
{{out}}
Line 532 ⟶ 670:
Endianness: little-endian
</pre>
 
=={{header|Lua}}==
Pure/native Lua can't do this (and essentially doesn't care). However, Lua is often used in a scripting environment, where such issues may be important, and any needed support would be expected to be provided by the host or some other external library. Here using ffi:
<syntaxhighlight lang="lua">ffi = require("ffi")
print("size of int (in bytes): " .. ffi.sizeof(ffi.new("int")))
print("size of pointer (in bytes): " .. ffi.sizeof(ffi.new("int*")))
print((ffi.abi("le") and "little" or "big") .. " endian")</syntaxhighlight>
{{out}}
<pre>size of int (in bytes): 4
size of pointer (in bytes): 8
little endian</pre>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Module CheckIt {
\\ Always run in Little-endian, 32 bits (in Wow64 in 64 bit os)
Line 564 ⟶ 713:
}
Checkit
</syntaxhighlight>
</lang>
 
=={{header|MACRO-10}}==
<syntaxhighlight lang="macro-10">
title Host Introspection
subttl PDP-10 assembly (MACRO-10 on TOPS-20). KJX 2022.
search monsym,macsym
 
comment \
The wordsize is detected by putting 1 into a re-
gister, counting the leading zeros (resulting in
wordsize-1) and adding 1 to the result.
 
Endianness doesn't really apply, as the PDP-10 is
a 36bit word-adressable computer, and the handling
of characters is peculiar enough that it would get
out of hand if I'd dive into the details here.
\
 
a=:1 ;Define three accumulators.
b=:2
c=:3
 
start:: reset% ;Initialize process.
 
movei a,1 ;Set A to 1.
jffo a,.+1 ;B = leading zeros of A.
aos b ;Add 1 to B. -> wordsize.
 
movei a,.priou ;Print B on standard output
movei c,^d10 ;in base 10.
nout%
jfcl
 
haltf% ;Halt program.
jrst start ;Allow continue-command.
 
end start
</syntaxhighlight>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">If[$ByteOrdering > 0, Print["Big endian"], Print["Little endian" ]]
$SystemWordLength "bits"</langsyntaxhighlight>
 
{{out}} x86
Line 580 ⟶ 767:
The concept of "word size" is not meaningful in Matlab and Octave, uint64 is also available on 32bit-platforms, and there are no pointers. Endianity can be tested with the function below:
 
<langsyntaxhighlight MATLABlang="matlab"> function [endian]=endian()
fid=tmpfile();
fwrite(fid,1:8,'uint8');
Line 597 ⟶ 784:
else endian='little';
end;
</syntaxhighlight>
</lang>
 
{{out}}
Line 604 ⟶ 791:
octave:129> endian
endian = little</pre>
 
=={{header|MIPS Assembly}}==
This uses Keith S.'s tutorial at [https://www.chibialiens.com/mips/ Chibialiens.com] to print memory and show register contents.
As I've come to find out, MIPS is a bi-endian architecture (meaning its endianness is implementation-defined rather than a constant trait of the CPU.) In particular, the PlayStation 1 is little-endian, and the Nintendo 64 is big-endian. This can be proven with the test below. (Hardware-specific routines <code>MonitorA0A1RAPC</code> and <code>MemDump</code> are omitted just to keep things brief.)
 
<syntaxhighlight lang="mips"> jal Cls ;Zero Graphics cursor position
nop ;on the PlayStation, the instruction AFTER a branch gets executed BEFORE the branch actually occurs.
;The Nintendo 64 didn't have this "feature" but for compatibility's sake
; it's staying in regardless of which version of the code I'm using.
 
la a2,TestData ;Load address of TestData
lw a0,(a2) ;Load Word into A0 from address in A2
addiu a2,4 ;pointer arithmetic to load the next word.
lw a1,(a2)
move t6,ra
jal MonitorA0A1RAPC
nop
li t6,2 ;Line Count - 2 lines = 16 bytes
jal MemDump ;Dump Ram to screen
nop
halt:
j halt ;loop forever
nop
 
 
 
 
TestData:
.byte 0xF3,0xF2,0xF1,0xF0 ;this will load as F0F1F2F3 on little-endian machines, and as-is on big-endian
.word 0xF0F1F2F3 ;this will load as F0F1F2F3 regardless of endianness.
</syntaxhighlight>
{{out}}
Register Dump of PlayStation 1:
<pre>a0:F0F1F2F3 a1:F0F1F2F3</pre>
 
Register Dump of Nintendo 64:
<pre>a0:F3F2F1F0 a1:F0F1F2F3</pre>
 
It also seems the registers are 32-bit even on the N64. I wouldn't have expected that to be honest...
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">MODULE Host EXPORTS Main;
 
IMPORT IO, Fmt, Word, Swap;
Line 617 ⟶ 848:
IO.Put("Endianness: Little\n");
END;
END Host.</langsyntaxhighlight>
 
{{out}} (on an x86):
Line 630 ⟶ 861:
C support file, host-introspection.c
 
<langsyntaxhighlight Clang="c">/* Return wordsize to Neko */
/* From Rosetta Code, C entry, with Neko marshalling */
 
Line 645 ⟶ 876:
}
/* Expose symbol to Neko loader */
DEFINE_PRIM(wordsize, 0);</langsyntaxhighlight>
 
Neko caller, host-introspection.neko
 
<syntaxhighlight lang="actionscript">/**
<lang ActionScript>/**
Host introspection, in Neko
*/
Line 664 ⟶ 895:
 
var wordsize = $loader.loadprim("native@wordsize", 0)
$print("wordsize: ", wordsize(), " bits\n")</langsyntaxhighlight>
 
{{out}}
Line 677 ⟶ 908:
{{trans|Java}}
NetRexx can access this information from the [[Java]] virtual machine in the same way as the [[#Java|Java]] sample above.
<langsyntaxhighlight NetRexxlang="netrexx">/* NetRexx */
options replace format comments java crossref savelog symbols nobinary
 
Line 685 ⟶ 916:
say ' word size:' wordSize
say 'endianness:' endian
</syntaxhighlight>
</lang>
 
=={{header|Nim}}==
In Nim, "int" type has the size of the word. So, to find the word size in bits, just multiply the "int" size in bytes by eight.
<langsyntaxhighlight lang="nim">echo cpuEndian
echo sizeof(int) * 8</langsyntaxhighlight>
 
=={{header|Objective-C}}==
Endianness:
<langsyntaxhighlight lang="objc">switch (NSHostByteOrder()) {
case NS_BigEndian:
NSLog(@"%@", @"Big Endian");
Line 704 ⟶ 935:
NSLog(@"%@", @"endianness unknown");
break;
} </langsyntaxhighlight>
 
Architecture:
(works on Mac OS X 10.6+)
<langsyntaxhighlight lang="objc">switch ([NSRunningApplication currentApplication].executableArchitecture) {
case NSBundleExecutableArchitectureI386:
NSLog(@"%@", @"i386 32-bit");
Line 728 ⟶ 959:
NSLog(@"%@", @"Unknown");
break;
}</langsyntaxhighlight>
 
=={{header|OCaml}}==
 
<langsyntaxhighlight lang="ocaml">Printf.printf "%d\n" Sys.word_size; (* Print word size *)
Printf.printf "%s\n" Sys.os_type; (* Print operating system *)</langsyntaxhighlight>
 
{{works with|OCaml|4.00+}}
<langsyntaxhighlight lang="ocaml">(* Print endianness *)
Printf.printf "%s\n" (if Sys.big_endian then "big endian" else "little endian");</langsyntaxhighlight>
 
On OCaml 3 and below, there are tricks to get endianness. For example in Linux or Unix variants,
one may use the [http://unixhelp.ed.ac.uk/CGI/man-cgi?uname uname] shell command :
 
<langsyntaxhighlight lang="ocaml">let uname arg =
let arg = if arg = "" then "-" else arg in
let ic = Unix.open_process_in ("uname -" ^ arg) in
Line 749 ⟶ 980:
 
# uname "sm";;
- : string = "Linux i686"</langsyntaxhighlight>
 
In most cases, endianness can be infered from informations given by uname.
Line 755 ⟶ 986:
One may also read files in the /proc directory in order to get informations about the host, only under linux :
 
<langsyntaxhighlight lang="ocaml">(* Reading all the lines from a file.
If the loop is implemented by a recursive auxiliary function, the try...with breaks
tail recursion if not written carefully *)
Line 788 ⟶ 1,019:
"VmallocChunk: 109320 kB"; "HugePages_Total: 0";
"HugePages_Free: 0"; "HugePages_Rsvd: 0";
"HugePages_Surp: 0"; "Hugepagesize: 4096 kB"]</langsyntaxhighlight>
 
Same methods can be used to get the results of commands lshw, dmidecode...
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">program HostIntrospection(output);
begin
writeln('Pointer size: ', SizeOf(Pointer), ' byte, i.e. ', SizeOf(Pointer)*8, ' bit.');
Line 801 ⟶ 1,032:
else
writeln('This host is little endian.');
end.</langsyntaxhighlight>
{{out}}
<pre>
Line 811 ⟶ 1,042:
=={{header|Perl}}==
Most basic example:
<langsyntaxhighlight lang="perl">use Config;
print "UV size: $Config{uvsize}, byte order: $Config{byteorder}\n";</langsyntaxhighlight>
{{out}}
<pre>
Line 819 ⟶ 1,050:
 
More verbose example:
<langsyntaxhighlight lang="perl">use 5.010;
use Config;
my ($size, $order, $end) = @Config{qw(uvsize byteorder)};
Line 827 ⟶ 1,058:
default { $end = 'mixed' }
}
say "UV size: $size, byte order: $order ($end-endian)";</langsyntaxhighlight>
{{out}}
<pre>
Line 841 ⟶ 1,072:
=={{header|Phix}}==
Note that machine_word() and machine_bits() test the interpreter or compiled executable, rather than the OS or hardware.<br>
Also, all known implementations of Phix are currently little-endian. See also platform(), which yields WINDOWS or /LINUX/JS.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>function endianness()
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
atom m4 = allocate(4)
<span style="color: #008080;">function</span> <span style="color: #000000;">endianness</span><span style="color: #0000FF;">()</span>
poke4(m4,#01020304)
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
integer b1 = peek1s(m4)
<span style="color: #008080;">return</span> <span style="color: #008000;">"n/a (web browser)"</span>
free(m4)
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
if b1=#01 then
<span style="color: #004080;">atom</span> <span style="color: #000000;">m4</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">allocate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">4</span><span style="color: #0000FF;">)</span>
return "big-endian"
<span style="color: #7060A8;">poke4</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m4</span><span style="color: #0000FF;">,</span><span style="color: #000000;">#01020304</span><span style="color: #0000FF;">)</span>
elsif b1=#04 then
<span style="color: #004080;">integer</span> <span style="color: #000000;">b1</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">peek1s</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m4</span><span style="color: #0000FF;">)</span>
return "little-endian"
<span style="color: #7060A8;">free</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m4</span><span style="color: #0000FF;">)</span>
else
<span style="color: #008080;">if</span> <span style="color: #000000;">b1</span><span style="color: #0000FF;">=</span><span style="color: #000000;">#01</span> <span style="color: #008080;">then</span>
return "???"
<span style="color: #008080;">return</span> <span style="color: #008000;">"big-endian"</span>
end if
<span style="color: #008080;">elsif</span> <span style="color: #000000;">b1</span><span style="color: #0000FF;">=</span><span style="color: #000000;">#04</span> <span style="color: #008080;">then</span>
end function
<span style="color: #008080;">return</span> <span style="color: #008000;">"little-endian"</span>
 
<span style="color: #008080;">else</span>
printf(1,"Endianness: %s\n",{endianness()})
<span style="color: #008080;">return</span> <span style="color: #008000;">"???"</span>
printf(1,"Word size: %d bytes/%d bits\n",{machine_word(),machine_bits()})</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Endianness: %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">endianness</span><span style="color: #0000FF;">()})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Word size: %d bytes/%d bits\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">machine_word</span><span style="color: #0000FF;">(),</span><span style="color: #7060A8;">machine_bits</span><span style="color: #0000FF;">()})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 867 ⟶ 1,104:
Endianness: little-endian
Word size: 8 bytes/64 bits
</pre>
or
<pre>
Endianness: n/a (web browser)
Word size: 4 bytes/32 bits
</pre>
 
Line 874 ⟶ 1,116:
other contributions to this task) only tells how the binary was
compiled/assembled/linked, not necessarily the nature of the underlying system.
<langsyntaxhighlight PicoLisplang="picolisp">(in (cmd) # Inspect ELF header
(rd 4) # Skip "7F" and 'E', 'L' and 'F'
(prinl
Line 885 ⟶ 1,127:
(1 "Little endian")
(2 "Big endian")
(T "Bad EI_DATA") ) ) )</langsyntaxhighlight>
{{out}}
<pre>64 bits
Line 891 ⟶ 1,133:
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
details: procedure options (main); /* 6 July 2012 */
declare x float, i fixed binary initial (1);
Line 903 ⟶ 1,145:
end details;
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 911 ⟶ 1,153:
 
=={{header|PowerShell}}==
<langsyntaxhighlight lang="powershell">Write-Host Word Size: ((Get-WMIObject Win32_Processor).DataWidth)
Write-Host -NoNewLine "Endianness: "
if ([BitConverter]::IsLittleEndian) {
Line 917 ⟶ 1,159:
} else {
Write-Host Big-Endian
}</langsyntaxhighlight>
Note that endianness is essentially a moot point with PowerShell,
as there is only a Windows implementation currently
Line 924 ⟶ 1,166:
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">Enumeration
#LittleEndian
#BigEndian
Line 947 ⟶ 1,189:
PrintN("and you use Big Endian.")
EndSelect
EndIf</langsyntaxhighlight>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">>>> import platform, sys, socket
>>> platform.architecture()
('64bit', 'ELF')
Line 963 ⟶ 1,205:
>>> socket.gethostname()
'yourhostname'
>>></langsyntaxhighlight>
 
=={{header|R}}==
Word size
<langsyntaxhighlight Rlang="r">8 * .Machine$sizeof.long # e.g. 32</langsyntaxhighlight>
Endianness
<langsyntaxhighlight Rlang="r">.Platform$endian # e.g. "little"</langsyntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">
<lang Racket>
#lang racket/base
 
(printf "Word size: ~a\n" (system-type 'word))
(printf "Endianness: ~a\n" (if (system-big-endian?) 'big 'little))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
Endian detection translated from C. {{works with|Rakudo|2018.03}}
<syntaxhighlight lang="raku" perl6line>use NativeCall;
say $*VM.config<ptr_size>;
my $bytes = nativecast(CArray[uint8], CArray[uint16].new(1));
say $bytes[0] ?? "little-endian" !! "big-endian";</langsyntaxhighlight>
{{out}}
<pre>8
Line 991 ⟶ 1,233:
Note: Rakudo 2018.12 is introducing the endian-sensitive<code>read-int16</code> method,
which makes endian detection a little easier:
<syntaxhighlight lang="raku" perl6line>say blob8.new(1,0).read-int16(0) == 1 ?? "little-endian" !! "big-endian"</langsyntaxhighlight>
 
In Rakudo 2019.01 the dynamic KERNEL variable was fleshed out with a bunch of accessors, among them:
<syntaxhighlight lang="raku" perl6line>say join ', ', $*KERNEL, $*KERNEL.bits, $*KERNEL.arch, $*KERNEL.endian</langsyntaxhighlight>
{{out}}
<pre>linux, 64, x86_64, LittleEndian</pre>
Line 1,003 ⟶ 1,245:
Word Size
 
<langsyntaxhighlight Retrolang="retro">needs variations'
^variations'size</langsyntaxhighlight>
 
Returns the number of bits per cell. This is normally 32, though may be smaller or larger on embedded systems and under special cases.
Line 1,010 ⟶ 1,252:
Endianness
 
<langsyntaxhighlight Retrolang="retro">needs variations'
^variations'endian</langsyntaxhighlight>
 
Returns 0 for little endian, and 1 for big endian.
Line 1,021 ⟶ 1,263:
<br>However, there is a STORAGE built-in function that allows a program to look at (local) storage, and if there is an
<br>indicator stored anywhere in the virtual address space, it can be examined.
<langsyntaxhighlight lang="rexx">/*REXX program to examine which operating system that REXX is running under. */
 
parse source opSys howInvoked pathName
 
/*where opSys will indicate which operating system REXX is running under, and */
/*from that, one could make assumptions what the wordsize is, etc. */</langsyntaxhighlight>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby"># We assume that a Fixnum occupies one machine word.
# Fixnum#size returns bytes (1 byte = 8 bits).
word_size = 42.size * 8
Line 1,038 ⟶ 1,280:
bytes = [1].pack('S').unpack('C*')
byte_order = (bytes[0] == 0 ? 'big' : 'little') + ' endian'
puts "Byte order: #{byte_order}"</langsyntaxhighlight>
 
With [[MRI]], <code>ri Fixnum</code> states, "A Fixnum holds Integer values that can be represented in a native machine word (minus 1 bit)." This bases our claim that a Fixnum occupies one machine word.
Line 1,045 ⟶ 1,287:
 
=={{header|Rust}}==
<langsyntaxhighlight Rustlang="rust">#[derive(Copy, Clone, Debug)]
enum Endianness {
Big, Little,
Line 1,066 ⟶ 1,308:
println!("Word size: {} bytes", std::mem::size_of::<usize>());
println!("Endianness: {:?}", Endianness::target());
}</langsyntaxhighlight>
 
{{out}}
Line 1,073 ⟶ 1,315:
 
=={{header|Scala}}==
{{libheader|Scala}}<langsyntaxhighlight Scalalang="scala">import java.nio.ByteOrder
 
object ShowByteOrder extends App {
Line 1,079 ⟶ 1,321:
println(s"Word size: ${System.getProperty("sun.arch.data.model")}")
println(s"Endianness: ${System.getProperty("sun.cpu.endian")}")
}</langsyntaxhighlight>
 
=={{header|Scheme}}==
{{works with|Chicken Scheme}}<langsyntaxhighlight lang="scheme">(define host-info
(begin
(display "Endianness: ")
Line 1,089 ⟶ 1,331:
(display "Word Size: ")
(display (if (fixnum? (expt 2 33)) 64 32))
(newline)))</langsyntaxhighlight>
{{out}}
Endianness: little-endian
Line 1,098 ⟶ 1,340:
The example below assumes that the word size is the size of a pointer.
 
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "cc_conf.s7i";
 
Line 1,110 ⟶ 1,352:
writeln("Big endian");
end if;
end func;</langsyntaxhighlight>
 
{{out}}
Line 1,119 ⟶ 1,361:
 
=={{header|Slate}}==
<langsyntaxhighlight lang="slate">inform: 'Endianness: ' ; Platform current endianness.
inform: 'Word Size: ' ; (Platform current bytesPerWord * 8) printString.</langsyntaxhighlight>
{{out}}
<pre>
Line 1,129 ⟶ 1,371:
=={{header|Tcl}}==
This is very straightforward in Tcl. The global array <code>tcl_platform</code> contains these values. In an interactive <code>tclsh</code>:
<langsyntaxhighlight lang="tcl">% parray tcl_platform
tcl_platform(byteOrder) = littleEndian
tcl_platform(machine) = intel
Line 1,138 ⟶ 1,380:
tcl_platform(threaded) = 1
tcl_platform(user) = glennj
tcl_platform(wordSize) = 4</langsyntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
<langsyntaxhighlight lang="ti89b">Disp "32-bit big-endian"</langsyntaxhighlight>
 
=={{header|TXR}}==
Line 1,172 ⟶ 1,414:
 
No match, so big endian.
 
=={{header|UNIX Shell}}==
The getconf command gets the word size, the piped command list gets the endianness , 1 means Little and 0 means Big :
<syntaxhighlight lang="bash">
Aamrun$ getconf WORD_BIT
32
Aamrun$ echo -n I | od -to2 | awk 'FNR==1{ print substr($2,6,1)}'
1
Aamrun$
</syntaxhighlight>
 
=={{header|Wren}}==
{{trans|C}}
As this information cannot be reliably obtained via Wren CLI, we instead embed a Wren script in a C application and ask the host program to get it for us.
<langsyntaxhighlight ecmascriptlang="wren">/* host_introspectionHost_introspection.wren */
 
class C {
Line 1,184 ⟶ 1,436:
 
System.print("word size = %(C.wordSize) bits")
System.print("endianness = %(C.endianness)")</langsyntaxhighlight>
<br>
We now embed this Wren script in the following C program, compile and run it.
<langsyntaxhighlight lang="c">#include <stdlib.h>
#include <stdio.h>
#include <string.h>
Line 1,266 ⟶ 1,518:
WrenVM* vm = wrenNewVM(&config);
const char* module = "main";
const char* fileName = "host_introspectionHost_introspection.wren";
char *script = readFile(fileName);
WrenInterpretResult result = wrenInterpret(vm, module, script);
Line 1,282 ⟶ 1,534:
free(script);
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 1,297 ⟶ 1,549:
endian.
 
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
int A, B;
char C;
Line 1,306 ⟶ 1,558:
Text(0, " endian
");
]</langsyntaxhighlight>
 
{{out}}
Line 1,313 ⟶ 1,565:
Little endian
</pre>
 
=={{header|Z80 Assembly}}==
The Z80's word size is 16-bit, and you'd know this ahead of time simply because there aren't any commands that work with values any larger than that. It's also little-endian, but this can be proven without knowing it in advance using a simple store and load test.
<syntaxhighlight lang="z80">EndianTest:
ld hl,&8000
ld (&C000),hl ;store &8000 into memory.
ld a,(&C000) ;loads the byte at &C000 into A. If the Z80 were big-endian, A would equal &80. But it equals zero.
or a ;still, we need to pretend we don't already know the result and compare A to zero.
jr z,LittleEndian ;handle the case where Z80 is little-endian (which it is, so this branch is always taken.)
 
;else, do whatever you would do to show that the Z80 is big-endian (it isn't, so execution never reaches here.)</syntaxhighlight>
9,476

edits