Horner's rule for polynomial evaluation: Difference between revisions

Added various dialects BASIC (Applesoft BASIC, BASIC256, Chipmunk Basic, GW-BASIC, Minimal BASIC, MSX Basic, QBasic, Quite BASIC and Yabasic)
No edit summary
(Added various dialects BASIC (Applesoft BASIC, BASIC256, Chipmunk Basic, GW-BASIC, Minimal BASIC, MSX Basic, QBasic, Quite BASIC and Yabasic))
Line 241:
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">horner: function [coeffs, x][
result: 0
Line 250 ⟶ 249:
 
print horner @[neg 19, 7, neg 4, 6] 3</syntaxhighlight>
 
{{out}}
 
<pre>128</pre>
 
Line 294 ⟶ 291:
128
</pre>
 
=={{header|BASIC}}==
==={{header|Applesoft BASIC}}===
{{works with|Chipmunk Basic}}
{{works with|GW-BASIC}}
<syntaxhighlight lang="qbasic">100 HOME : REM 100 CLS for Chipmunk Basic and GW-BASIC
100 CLS : REM 100 HOME for Applesoft BASIC
110 X = 3
120 DIM COEFFS(3)
130 COEFFS(0) = -19
140 COEFFS(1) = 7
150 COEFFS(2) = -4
160 COEFFS(3) = 6
170 PRINT "Horner's algorithm for the polynomial "
180 PRINT "6*x^3 - 4*x^2 + 7*x - 19 when x = 3 is: ";
190 ACCUM = 0
200 FOR I = 3 TO 0 STEP -1
210 ACCUM = (ACCUM*X)+COEFFS(I)
220 NEXT I
230 PRINT ACCUM
240 END</syntaxhighlight>
 
==={{header|BASIC256}}===
<syntaxhighlight lang="vb">x = 3
dim coeficientes = {-19, 7, -4, 6}
print "Horner's algorithm for the polynomial ";
print "6*x^3 - 4*x^2 + 7*x - 19 when x = 3: ";
print AlgoritmoHorner(coeficientes, x)
end
 
function AlgoritmoHorner(coeffs, x)
acumulador = 0
for i = coeffs[?]-1 to 0 step -1
acumulador = (acumulador * x) + coeffs[i]
next i
return acumulador
end function</syntaxhighlight>
{{out}}
<pre>Same as FreeBASIC entry.</pre>
 
==={{header|Chipmunk Basic}}===
{{works with|Chipmunk Basic|3.6.4}}
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">100 CLS
110 x = 3
120 DIM coeffs(3)
130 coeffs(0) = -19
140 coeffs(1) = 7
150 coeffs(2) = -4
160 coeffs(3) = 6
170 PRINT "Horner's algorithm for the polynomial "
180 PRINT "6*x^3 - 4*x^2 + 7*x - 19 when x = 3 is: ";
190 accum = 0
200 FOR i = UBOUND(coeffs,1) TO 0 STEP -1
210 accum = (accum*x)+coeffs(i)
220 NEXT i
230 PRINT accum
240 END</syntaxhighlight>
{{out}}
<pre>Horner's algorithm for the polynomial
6*x^3 - 4*x^2 + 7*x - 19 when x = 3 is: 128</pre>
 
==={{header|GW-BASIC}}===
{{works with|BASICA}}
{{works with|Chipmunk Basic}}
{{works with|PC-BASIC|any}}
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">100 CLS : REM 100 HOME for Applesoft BASIC
110 X = 3
120 DIM COEFFS(3)
130 COEFFS(0) = -19
140 COEFFS(1) = 7
150 COEFFS(2) = -4
160 COEFFS(3) = 6
170 PRINT "Horner's algorithm for the polynomial "
180 PRINT "6*x^3 - 4*x^2 + 7*x - 19 when x = 3 is: ";
190 ACCUM = 0
200 FOR I = 3 TO 0 STEP -1
210 ACCUM = (ACCUM*X)+COEFFS(I)
220 NEXT I
230 PRINT ACCUM
240 END</syntaxhighlight>
{{out}}
<pre>Same as Chipmunk Basic entry.</pre>
 
==={{header|Minimal BASIC}}===
{{works with|QBasic}}
{{works with|QuickBasic}}
{{works with|Applesoft BASIC}}
{{works with|BASICA}}
{{works with|Chipmunk Basic}}
{{works with|GW-BASIC}}
{{works with|MSX BASIC}}
{{works with|Just BASIC}}
{{works with|Liberty BASIC}}
{{works with|Run BASIC}}
{{works with|Yabasic}}
<syntaxhighlight lang="qbasic">20 LET X = 3
30 DIM C(3)
40 LET C(0) = -19
50 LET C(1) = 7
60 LET C(2) = -4
70 LET C(3) = 6
80 PRINT "HORNER'S ALGORITHM FOR THE POLYNOMIAL"
90 PRINT "6*X^3 - 4*X^2 + 7*X - 19 WHEN X = 3 : ";
100 LET A = 0
110 FOR I = 3 TO 0 STEP -1
120 LET A = (A*X)+C(I)
130 NEXT I
140 PRINT A
150 END</syntaxhighlight>
{{out}}
<pre>Same as Chipmunk Basic entry.</pre>
 
==={{header|MSX Basic}}===
The [[#Minimal_BASIC|Minimal BASIC]] solution works without any changes.
 
==={{header|QBasic}}===
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang="qbasic">FUNCTION Horner (coeffs(), x)
acumulador = 0
FOR i = UBOUND(coeffs) TO LBOUND(coeffs) STEP -1
acumulador = (acumulador * x) + coeffs(i)
NEXT i
Horner = acumulador
END FUNCTION
 
x = 3
DIM coeffs(3)
DATA -19, 7, -4, 6
FOR a = LBOUND(coeffs) TO UBOUND(coeffs)
READ coeffs(a)
NEXT a
 
PRINT "Horner's algorithm for the polynomial 6*x^3 - 4*x^2 + 7*x - 19 when x = 3 is: ";
PRINT Horner(coeffs(), x)
END</syntaxhighlight>
 
==={{header|Quite BASIC}}===
The [[#Minimal_BASIC|Minimal BASIC]] solution works without any changes.
 
==={{header|Yabasic}}===
<syntaxhighlight lang="vb">x = 3
dim coeffs(4)
coeffs(0) = -19
coeffs(1) = 7
coeffs(2) = -4
coeffs(3) = 6
print "Horner's algorithm for the polynomial ";
print "6*x^3 - 4*x^2 + 7*x - 19 when x = 3: ";
print AlgoritmoHorner(coeffs, x)
end
 
sub AlgoritmoHorner(coeffs, x)
local acumulador, i
acumulador = 0
for i = arraysize(coeffs(),1) to 0 step -1
acumulador = (acumulador * x) + coeffs(i)
next i
return acumulador
end sub</syntaxhighlight>
{{out}}
<pre>Same as FreeBASIC entry.</pre>
 
=={{header|Batch File}}==
2,130

edits