Hofstadter Q sequence: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 632: Line 632:


=={{header|ERRE}}==
=={{header|ERRE}}==
{{output|ERRE}}
<lang ERRE>
<lang ERRE>
PROGRAM HOFSTADER_Q
PROGRAM HOFSTADER_Q

Revision as of 17:54, 18 December 2014

Task
Hofstadter Q sequence
You are encouraged to solve this task according to the task description, using any language you may know.

The Hofstadter Q sequence is defined as:

It is defined like the Fibonacci sequence, but whereas the next term in the Fibonacci sequence is the sum of the previous two terms, in the Q sequence the previous two terms tell you how far to go back in the Q sequence to find the two numbers to sum to make the next term of the sequence.

Task
  • Confirm and display that the first ten terms of the sequence are: 1, 1, 2, 3, 3, 4, 5, 5, 6, and 6
  • Confirm and display that the 1000th term is: 502
Optional extra credit
  • Count and display how many times a member of the sequence is less than its preceding term for terms up to and including the 100,000'th term.
  • Ensure that the extra credit solution 'safely' handles being initially asked for an n'th term where n is large.
    (This point is to ensure that caching and/or recursion limits, if it is a concern, is correctly handled).

Ada

<lang Ada>with Ada.Text_IO;

procedure Hofstadter_Q_Sequence is

  type Callback is access procedure(N: Positive);
  procedure Q(First, Last: Positive; Q_Proc: Callback) is
  -- calls Q_Proc(Q(First)); Q_Proc(Q(First+1)); ... Q_Proc(Q(Last));
  -- precondition: Last > 2
     Q_Store: array(1 .. Last) of Natural := (1 => 1, 2 => 1, others => 0);
     -- "global" array to store the Q(I)
     -- if Q_Store(I)=0, we compute Q(I) and update Q_Store(I)
     -- else we already know Q(I) = Q_Store(I)
     function Q(N: Positive) return Positive is
     begin
        if Q_Store(N) = 0 then
           Q_Store(N) := Q(N - Q(N-1)) + Q(N-Q(N-2));
        end if;
        return Q_Store(N);
     end Q;
  begin
     for I in First .. Last loop
        Q_Proc(Q(I));
     end loop;
  end Q;
  procedure Print(P: Positive) is
  begin
     Ada.Text_IO.Put(Positive'Image(P));
  end Print;
  Decrease_Counter: Natural := 0;
  Previous_Value: Positive := 1;
  procedure Decrease_Count(P: Positive) is
  begin
     if P < Previous_Value then
        Decrease_Counter := Decrease_Counter + 1;
     end if;
     Previous_Value := P;
  end Decrease_Count;

begin

  Q(1, 10, Print'Access);
  -- the first ten terms of the sequence are: 1, 1, 2, 3, 3, 4, 5, 5, 6, and 6
  Ada.Text_IO.New_Line;
  Q(1000, 1000,  Print'Access);
  -- the 1000'th term is: 502
  Ada.Text_IO.New_Line;
  Q(2, 100_000, Decrease_Count'Access);
  Ada.Text_IO.Put_Line(Integer'Image(Decrease_Counter));
  -- how many times a member of the sequence is less than its preceding term
  -- for terms up to and including the 100,000'th term

end Hofstadter_Q_Sequence;</lang>

Output:
 1 1 2 3 3 4 5 5 6 6
 502
 49798

ALGOL 68

Translation of: C

Note: This specimen retains the original C coding style.

Works with: ALGOL 68 version Revision 1 - no extension to language used.
Works with: ALGOL 68G version Any - tested with release algol68g-2.3.5.


File: Hofstadter_Q_sequence.a68<lang algol68>#!/usr/local/bin/a68g --script #

INT n = 100000; main: (

       INT flip;
       [n]INT q;
       q[1] := q[2] := 1;
       FOR i FROM 3 TO n DO
               q[i] := q[i - q[i - 1]] + q[i - q[i - 2]] OD;
       FOR i TO 10 DO
               printf(($g(0)$, q[i], $b(l,x)$, i = 10)) OD;
       printf(($g(0)l$, q[1000]));
       flip := 0;
       FOR i TO n-1 DO
               flip +:= ABS (q[i] > q[i + 1]) OD;
       printf(($"flips: "g(0)l$, flip))

)</lang>

Output:
1 1 2 3 3 4 5 5 6 6
502
flips: 49798

AutoHotkey

<lang AutoHotkey>SetBatchLines, -1 Q := HofsQSeq(100000)

Loop, 10 Out .= Q[A_Index] ", "

MsgBox, % "First ten:`t" Out "`n" . "1000th:`t`t" Q[1000] "`n" . "Flips:`t`t" Q.flips

HofsQSeq(n) { Q := {1: 1, 2: 1, "flips": 0} Loop, % n - 2 { i := A_Index + 2 , Q[i] := Q[i - Q[i - 1]] + Q[i - Q[A_Index]] if (Q[i] < Q[i - 1]) Q.flips++ } return Q }</lang>

Output:
First ten:	1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 
1000th:		502
Flips:		49798

AWK

<lang awk>#!/usr/bin/awk -f BEGIN {

 N = 100000
 print "Q-sequence(1..10) : " Qsequence(10)
 Qsequence(N,Q)
 print "1000th number of Q sequence : " Q[1000]
 for (n=2; n<=N; n++) {

if (Q[n]<Q[n-1]) NN++

 }
 print "number of Q(n)<Q(n+1) for n<=100000 : " NN

}

function Qsequence(N,Q) {

 Q[1] = 1
 Q[2] = 1  
 seq = "1 1"
 for (n=3; n<=N; n++) {
   Q[n] = Q[n-Q[n-1]]+Q[n-Q[n-2]]
   seq = seq" "Q[n]
 } 
 return seq

} </lang>

Q-sequence(1..10) : 1 1 2 3 3 4 5 5 6 6
1000th number of Q sequence : 502
number of Q(n)<Q(n+1) for n<=100000 : 49798

BBC BASIC

<lang bbcbasic> PRINT "First 10 terms of Q = " ;

     FOR i% = 1 TO 10 : PRINT ;FNq(i%, c%) " "; : NEXT : PRINT
     PRINT "1000th term = " ; FNq(1000, c%)
     PRINT "100000th term = " ; FNq(100000, c%)
     PRINT "Term is less than preceding term " ; c% " times"
     END
     
     DEF FNq(n%, RETURN c%)
     LOCAL i%,q%()
     IF n% < 3 THEN = 1 ELSE IF n% = 3 THEN = 2
     DIM q%(n%)
     q%(1) = 1 : q%(2) = 1 : q%(3) = 2
     c% = 0
     FOR i% = 3 TO n%
       q%(i%) = q%(i% - q%(i%-1)) + q%(i% - q%(i%-2))
       IF q%(i%) < q%(i%-1) THEN c% += 1
     NEXT
     = q%(n%)</lang>
Output:
First 10 terms of Q = 1 1 2 3 3 4 5 5 6 6
1000th term = 502
100000th term = 48157
Term is less than preceding term 49798 times

Bracmat

<lang bracmat>( 0:?memocells & tbl$(memo,!memocells+1) { allocate array } & ( Q

 =   
   .   !arg:(1|2)&1
     |   !arg:>2
       & (   !arg:>!memocells:?memocells               { Array is too small. }
           & tbl$(memo,!memocells+1)        { Let array grow to needed size. }
         |                                          { Arry is not too small. }
         )
       & ( !(!arg$memo):>0 { Set index to !arg. Return value at index if > 0 }
         |   Q$(!arg+-1*Q$(!arg+-1))+Q$(!arg+-1*Q$(!arg+-2))
           : ?(!arg$?memo)      { Set index to !arg. Store value just found. }
         )
 )

& 0:?i & whl

 ' (1+!i:~>10:?i&put$(str$(Q$!i " ")))

& put$\n & whl'(1+!i:~>1000:?i&Q$!i) & out$(Q$1000) & 0:?previous:?lessThan:?i & whl

 ' ( 1+!i:~>100000:?i
   &   Q$!i
     : ( <!previous&1+!lessThan:?lessThan
       | ?
       )
     : ?previous
   )

& out$!lessThan );</lang> Output:

1 1 2 3 3 4 5 5 6 6
502
49798

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  1. define N 100000

int main() { int i, flip, *q = (int*)malloc(sizeof(int) * N) - 1;

q[1] = q[2] = 1;

for (i = 3; i <= N; i++) q[i] = q[i - q[i - 1]] + q[i - q[i - 2]];

for (i = 1; i <= 10; i++) printf("%d%c", q[i], i == 10 ? '\n' : ' ');

printf("%d\n", q[1000]);

for (flip = 0, i = 1; i < N; i++) flip += q[i] > q[i + 1];

printf("flips: %d\n", flip); return 0; }</lang>

Output:
1 1 2 3 3 4 5 5 6 6
502
flips: 49798

C++

solution modeled after Perl solution

<lang Cpp>#include <iostream>

int main( ) {

  int hofstadters[100000] ;
  hofstadters[ 0 ] = 1 ;
  hofstadters[ 1 ] = 1 ;
  for ( int i = 3 ; i < 100000 ; i++ ) 
     hofstadters[ i - 1 ] = hofstadters[ i - 1 - hofstadters[ i - 1 - 1 ]] + 

hofstadters[ i - 1 - hofstadters[ i - 2 - 1 ]] ;

  std::cout << "The first 10 numbers are:\n" ;
  for ( int i = 0 ; i < 10 ; i++ ) 
     std::cout << hofstadters[ i ] << std::endl ;
  std::cout << "The 1000'th term is " << hofstadters[ 999 ] << " !" << std::endl ;
  int less_than_preceding = 0 ;
  for ( int i = 0 ; i < 99999 ; i++ ) {
     if ( hofstadters[ i + 1 ] < hofstadters[ i ] ) 

less_than_preceding++ ;

  }
  std::cout << less_than_preceding << " times a number was preceded by a greater number!\n" ;
  return 0 ;

}</lang>

Output:
The first 10 numbers are:
1
1
2
3
3
4
5
5
6
6
The 1000'th term is 502 !
49798 times a number was preceded by a greater number!

C#

<lang C sharp>using System; using System.Collections.Generic;

namespace HofstadterQSequence {

   class Program
   {
       // Initialize the dictionary with the first two indices filled.
       private static readonly Dictionary<int, int> QList = new Dictionary<int, int>
                                                                {
                                                                    {1, 1},
                                                                    {2, 1}
                                                                };
       private static void Main()
       {
           int lessThanLast = 0;
               /* Initialize our variable that holds the number of times
                                  * a member of the sequence was less than its preceding term. */
           for (int n = 1; n <= 100000; n++)
           {
               int q = Q(n); // Get Q(n).
               if (n > 1 && QList[n - 1] > q) // If Q(n) is less than Q(n - 1),
                   lessThanLast++;            // then add to the counter.
               if (n > 10 && n != 1000) continue; /* If n is greater than 10 and not 1000,
                                                   * the rest of the code in the loop does not apply,
                                                   * and it will be skipped. */
               if (!Confirm(n, q)) // Confirm Q(n) is correct.
                   throw new Exception(string.Format("Invalid result: Q({0}) != {1}", n, q));
               Console.WriteLine("Q({0}) = {1}", n, q); // Write Q(n) to the console.
           }
           Console.WriteLine("Number of times a member of the sequence was less than its preceding term: {0}.",
                             lessThanLast);
       }
       private static bool Confirm(int n, int value)
       {
           if (n <= 10)
               return new[] {1, 1, 2, 3, 3, 4, 5, 5, 6, 6}[n - 1] == value;
           if (n == 1000)
               return 502 == value;
           throw new ArgumentException("Invalid index.", "n");
       }
       private static int Q(int n)
       {
           int q;
           if (!QList.TryGetValue(n, out q)) // Try to get Q(n) from the dictionary.
           {
               q = Q(n - Q(n - 1)) + Q(n - Q(n - 2)); // If it's not available, then calculate it.
               QList.Add(n, q); // Add it to the dictionary.
           }
           return q;
       }
   }

}</lang>

Output:
Q(1) = 1
Q(2) = 1
Q(3) = 2
Q(4) = 3
Q(5) = 3
Q(6) = 4
Q(7) = 5
Q(8) = 5
Q(9) = 6
Q(10) = 6
Q(1000) = 502
Number of times a member of the sequence was less than its preceding term: 49798.

Clojure

The qs function, given the initial subsequence of Q of length n, produces the initial subsequence of length n+1. The subsequences are vectors for efficient indexing. qfirst iterates qs so the nth iteration is Q{1..n]. <lang clojure>(defn qs [q]

 (let [n (count q)]
   (condp = n
     0 [1]
     1 [1 1]
     (conj q (+ (q (- n (q (- n 1))))
                (q (- n (q (- n 2)))))))))

(defn qfirst [n] (-> (iterate qs []) (nth n)))

(println "first 10:" (qfirst 10)) (println "1000th:" (last (qfirst 1000))) (println "extra credit:" (->> (qfirst 100000) (partition 2 1) (filter #(apply > %)) count))</lang>

Output:

<lang>first 10: [1 1 2 3 3 4 5 5 6 6] 1000th: 502 extra credit: 49798</lang>

Common Lisp

<lang lisp>(defparameter *mm* (make-hash-table :test #'equal))

generic memoization macro

(defmacro defun-memoize (f (&rest args) &body body)

 (defmacro hash () `(gethash (cons ',f (list ,@args)) *mm*))
 (let ((h (gensym)))
   `(defun ,f (,@args)
      (let ((,h (hash)))

(if ,h ,h (setf (hash) (progn ,@body)))))))

def q

(defun-memoize q (n)

 (if (<= n 2) 1
   (+ (q (- n (q (- n 1))))
      (q (- n (q (- n 2)))))))
test

(format t "First of Q: ~a~%Q(1000): ~a~%Bumps up to 100000: ~a~%" (loop for i from 1 to 10 collect (q i)) (q 1000) (loop with c = 0 with last-q = (q 1) for i from 2 to 100000 do (let ((next-q (q i))) (if (< next-q last-q) (incf c)) (setf last-q next-q)) finally (return c)))</lang>

Output:
First of Q: (1 1 2 3 3 4 5 5 6 6)
Q(1000): 502
Bumps up to 100000: 49798

Although the above definition of q is more general, for this specific problem the following is faster:<lang lisp>(let ((cc (make-array 3 :element-type 'integer :initial-element 1 :adjustable t :fill-pointer 3)))

     (defun q (n)

(when (>= n (length cc)) (loop for i from (length cc) below n do (q i)) (vector-push-extend (+ (aref cc (- n (aref cc (- n 1)))) (aref cc (- n (aref cc (- n 2))))) cc)) (aref cc n)))</lang>

D

<lang d>import std.stdio, std.algorithm, std.functional, std.range;

int Q(in int n) nothrow in {

   assert(n > 0);

} body {

   alias mQ = memoize!Q;
   if (n == 1 || n == 2)
       return 1;
   else
       return mQ(n - mQ(n - 1)) + mQ(n - mQ(n - 2));

}

void main() {

   writeln("Q(n) for n = [1..10] is: ", iota(1, 11).map!Q);
   writeln("Q(1000) = ", Q(1000));
   writefln("Q(i) is less than Q(i-1) for i [2..100_000] %d times.",
            iota(2, 100_001).count!(i => Q(i) < Q(i - 1)));

}</lang>

Output:
Q(n) for n = [1..10] is: [1, 1, 2, 3, 3, 4, 5, 5, 6, 6]
Q(1000) = 502
Q(i) is less than Q(i-1) for i [2..100_000] 49798 times.

Faster Version

Translation of: Python

Same output. <lang d>import std.stdio, std.algorithm, std.range, std.array;

uint Q(in int n) nothrow in {

   assert(n > 0);

} body {

   __gshared static Appender!(int[]) s = [0, 1, 1];
   foreach (immutable i; s.data.length .. n + 1)
       s ~= s.data[i - s.data[i - 1]] + s.data[i - s.data[i - 2]];
   return s.data[n];

}

void main() {

   writeln("Q(n) for n = [1..10] is: ", iota(1, 11).map!Q);
   writeln("Q(1000) = ", Q(1000));
   writefln("Q(i) is less than Q(i-1) for i [2..100_000] %d times.",
            iota(2, 100_001).count!(i => Q(i) < Q(i - 1)));

}</lang>

Dart

Naive version using only recursion (Q(1000) fails due to browser script runtime restrictions) <lang dart>int Q(int n) => n>2 ? Q(n-Q(n-1))+Q(n-Q(n-2)) : 1;

main() {

 for(int i=1;i<=10;i++) {
   print("Q($i)=${Q(i)}");
 }
 print("Q(1000)=${Q(1000)}");

}</lang>

Version featuring caching. <lang dart>class Q {

 Map<int,int> _table;
 Q() {
   _table=new Map<int,int>();
   _table[1]=1;
   _table[2]=1;
 }
 int q(int n) {
   // if the cache is not filled until n-1, fill it starting with the lowest entries first
   // this avoids doing a recursion from n to 2 (e.g. if you call q(1000000) first)
   // this doesn't happen in the  tasks calls since the cache is filled ascending
   if(_table[n-1]==null) {
     for(int i=_table.length;i<n;i++) {

q(i); }

   }
   if(_table[n]==null) {
     _table[n]=q(n-q(n-1))+q(n-q(n-2));
   }
   return _table[n];
 }

}

main() {

 Q q=new Q();
 for(int i=1;i<=10;i++) {
   print("Q($i)=${q.q(i)}");
 }
 print("Q(1000)=${q.q(1000)}");
 int count=0;
 for(int i=2;i<=100000;i++) {
   if(q.q(i)<q.q(i-1)) {
     count++;
   }
 }
 print("value is smaller than previous $count times");

}</lang>

Output:
Q(1)=1
Q(2)=1
Q(3)=2
Q(4)=3
Q(5)=3
Q(6)=4
Q(7)=5
Q(8)=5
Q(9)=6
Q(10)=6
Q(1000)=502
value is smaller than previous 49798 times

If the maximum number is known, filling an array is probably the fastest solution. <lang dart>main() {

 List<int> q=new List<int>(100001);
 q[1]=q[2]=1;

 int count=0;
 for(int i=3;i<q.length;i++) {
   q[i]=q[i-q[i-1]]+q[i-q[i-2]];
   if(q[i]<q[i-1]) {
     count++;
   }
 }
 for(int i=1;i<=10;i++) {
   print("Q($i)=${q[i]}");
 }
 print("Q(1000)=${q[1000]}");
 print("value is smaller than previous $count times");

}</lang>


Erlang

<lang erlang>%% @author Jan Willem Luiten <jwl@secondmove.com> %% Hofstadter Q Sequence for Rosetta Code

-module(hofstadter). -export([main/0]). -define(MAX, 100000).

flip(V2, V1) when V1 > V2 -> 1; flip(_V2, _V1) -> 0.

list_terms(N, N, Acc) -> io:format("~w~n", [array:get(N, Acc)]); list_terms(Max, N, Acc) -> io:format("~w, ", [array:get(N, Acc)]), list_terms(Max, N+1, Acc).

hofstadter(N, N, Acc, Flips) -> io:format("The first ten terms are: "), list_terms(9, 0, Acc), io:format("The 1000'th term is ~w~n", [array:get(999, Acc)]), io:format("Number of flips: ~w~n", [Flips]); hofstadter(Max, N, Acc, Flips) -> Qn1 = array:get(N-1, Acc), Qn = array:get(N - Qn1, Acc) + array:get(N - array:get(N-2, Acc), Acc), hofstadter(Max, N+1, array:set(N, Qn, Acc), Flips + flip(Qn, Qn1)).

main() -> Tmp = array:set(0, 1, array:new(?MAX)), Acc = array:set(1, 1, Tmp), hofstadter(?MAX, 2, Acc, 0). </lang>

Output:
The first ten terms are: 1, 1, 2, 3, 3, 4, 5, 5, 6, 6
The 1000'th term is 502
Number of flips: 49798

ERRE

ERRE:

<lang ERRE> PROGRAM HOFSTADER_Q

! ! for rosettacode.org !

DIM Q%[10000]

PROCEDURE QSEQUENCE(Q,FLAG%->SEQ$) ! if FLAG% is true accumulate sequence in SEQ$ ! (attention to string var lenght=255) ! otherwise calculate values in Q%[] only

 LOCAL N
 Q%[1]=1
 Q%[2]=1
 SEQ$="1 1"
 IF NOT FLAG% THEN Q=NUM END IF
 FOR N=3 TO Q DO
   Q%[N]=Q%[N-Q%[N-1]]+Q%[N-Q%[N-2]]
   IF FLAG% THEN SEQ$=SEQ$+STR$(Q%[N]) END IF
 END FOR

END PROCEDURE

BEGIN

 NUM=10000
 QSEQUENCE(10,TRUE->SEQ$)
 PRINT("Q-sequence(1..10) : ";SEQ$)
 QSEQUENCE(1000,FALSE->SEQ$)
 PRINT("1000th number of Q sequence : ";Q%[1000])
 FOR N=2 TO NUM DO
   IF Q%[N]<Q%[N-1] THEN NN+=1 END IF
 END FOR
 PRINT("Number of Q(n)<Q(n+1) for n<=10000 : ";NN)

END PROGRAM </lang> Note: The extra credit was limited to 10000 because memory addressable range is limited to 64K. If you want to implement extra credit for 100,000 you must use external file for array Q%[].

F#

<lang fsharp>let memoize f =

   let cache = System.Collections.Generic.Dictionary<_,_>()
   fun x ->
       match cache.TryGetValue(x) with
       | (true, v) -> v
       | (_, _) ->
           let v = f x
           cache.[x] <- v
           v

let rec q = memoize (fun i ->

   if i < 3I then 1I
   else q (i - q (i - 1I)) + q (i - q(i - 2I)))

printf "q(1 .. 10) ="; List.iter (q >> (printf " %A")) [1I .. 10I] printfn "" printfn "q(1000) = %A" (q 1000I) printfn "descents(100000) = %A" (Seq.sum (Seq.init 100000 (fun i -> if q(bigint(i)) > q(bigint(i+1)) then 1 else 0)))</lang>

Output:
q(1 .. 10) = 1 1 2 3 3 4 5 5 6 6
q(1000) = 502
descents(100000) = 49798

Factor

We define a method next that takes a sequence of the first n Q values and appends the next one to it. Then we perform it 1000 times on { 1 1 } and show the first 10 and 999th (because the list is zero-indexed) elements. <lang factor>( scratchpad ) : next ( seq -- newseq ) dup 2 tail* over length [ swap - ] curry map [ dupd swap nth ] map 0 [ + ] reduce suffix ;

( scratchpad ) { 1 1 } 1000 [ next ] times dup 10 head . 999 swap nth . { 1 1 2 3 3 4 5 5 6 6 } 502</lang>

Go

Sure there are ways that run faster or handle larger numbers; for the task though, maps and recursion work just fine. <lang go>package main

import "fmt"

var m map[int]int

func initMap() {

   m = make(map[int]int)
   m[1] = 1
   m[2] = 1

}

func q(n int) (r int) {

   if r = m[n]; r == 0 {
       r = q(n-q(n-1)) + q(n-q(n-2))
       m[n] = r
   }
   return

}

func main() {

   initMap()
   // task
   for n := 1; n <= 10; n++ {
       showQ(n)
   }
   // task
   showQ(1000)
   // extra credit
   count, p := 0, 1
   for n := 2; n <= 1e5; n++ {
       qn := q(n)
       if qn < p {
           count++
       }
       p = qn
   }
   fmt.Println("count:", count)
   // extra credit
   initMap()
   showQ(1e6)

}

func showQ(n int) {

   fmt.Printf("Q(%d) = %d\n", n, q(n))

}</lang>

Output:
Q(1) = 1
Q(2) = 1
Q(3) = 2
Q(4) = 3
Q(5) = 3
Q(6) = 4
Q(7) = 5
Q(8) = 5
Q(9) = 6
Q(10) = 6
Q(1000) = 502
count: 49798
Q(1000000) = 512066

Haskell

The basic task:

<lang Haskell>qSequence = tail qq where

 qq = 0 : 1 : 1 : map g [3..] 
 g n = qq !! (n - qq !! (n-1)) + qq !! (n - qq !! (n-2))

-- Output:

  • Main> (take 10 qSequence, qSequence !! (1000-1))

([1,1,2,3,3,4,5,5,6,6],502) (0.00 secs, 525044 bytes)</lang>

Extra credit task:

<lang Haskell>import Data.Array

qSequence n = arr

 where
    arr = listArray (1,n) $ 1:1: map g [3..n]
    g i = arr!(i - arr!(i-1)) + 
          arr!(i - arr!(i-2))

gradualth m k arr -- gradually precalculate m-th item

       | m <= v = pre `seq` arr!m        --   in steps of k
 where                                   --     to prevent STACK OVERFLOW 
   pre = foldl1 (\a b-> a `seq` arr!b) [u,u+k..m]
   (u,v) = bounds arr 

qSeqTest m n = let arr = qSequence $ max m n in

 ( take 10 . elems  $ arr                       -- 10 first items
 , gradualth m 10000 $ arr                      -- m-th item
 , length . filter (> 0)                       -- reversals in n items
    . _S (zipWith (-)) tail . take n . elems $ arr )

_S f g x = f x (g x)</lang>

Output:

<lang Haskell>Prelude Main> qSeqTest 1000 100000 -- reversals in 100,000 ([1,1,2,3,3,4,5,5,6,6],502,49798) (0.09 secs, 18879708 bytes)

Prelude Main> qSeqTest 1000000 100000 -- 1,000,000-th item ([1,1,2,3,3,4,5,5,6,6],512066,49798) (2.80 secs, 87559640 bytes)</lang>

Using a list (more or less) seemlessly backed up by a double resizing array: <lang haskell>import Data.Array

q = qq (listArray (1,2) [1,1]) 1 where qq ar n = (arr!n) : qq arr (n+1) where l = snd (bounds ar) step n =arr!(n - (fromIntegral (arr!(n - 1)))) + arr!(n - (fromIntegral (arr!(n - 2)))) arr :: Array Int Integer arr | n <= l = ar | otherwise = listArray (1, l*2)$ ([ar!i | i <- [1..l]] ++ [step i | i <- [l+1..l*2]])

main = do putStr("first 10: "); print (take 10 q) putStr("1000-th: "); print (q !! 999) putStr("flips: ")

	print $ length $ filter id $ take 100000 (zipWith (>) q (tail q))</lang>
Output:
first 10: [1,1,2,3,3,4,5,5,6,6]
1000-th:  502
flips: 49798

List backed up by a list of arrays, with nominal constant lookup time. Somehow faster than the previous method. <lang haskell>import Data.Array import Data.Int (Int64)

q = qq [listArray (1,2) [1,1]] 1 where qq a n = seek aa n : qq aa (1 + n) where aa | n <= l = a | otherwise = listArray (l+1,l*2) (take l $ drop 2 lst):a where l = snd (bounds $ head a) lst = seek a (l-1):seek a l:(ext lst (l+1)) ext (q1:q2:qs) i = (g (i-q2) + g (i-q1)):ext (q2:qs) (1+i) g = seek aa seek (ar:ars) n | n >= fst (bounds ar) = ar ! n | otherwise = seek ars n

-- Only a perf test. Task can be done exactly the same as above main = print $ sum qqq where qqq :: [Int64] qqq = map fromIntegral $ take 3000000 q</lang>

Icon and Unicon

<lang Icon>link printf

procedure main()

V := [1, 1, 2, 3, 3, 4, 5, 5, 6, 6] every i := 1 to *V do

  if Q(i) ~= V[i] then stop("Assertion failure for position ",i)

printf("Q(1 to %d) - verified.\n",*V)

q := Q(n := 1000) v := 502 printf("Q[%d]=%d - %s.\n",n,v,if q = v then "verified" else "failed")

invcount := 0 every i := 2 to (n := 100000) do

  if Q(i) < Q(i-1) then {
     printf("Q(%d)=%d < Q(%d)=%d\n",i,Q(i),i-1,Q(i-1))
     invcount +:= 1
     }

printf("There were %d inversions in Q up to %d\n",invcount,n) end


procedure Q(n) #: Hofstader Q sequence static S initial S := [1,1]

if q := S[n] then return q else {

  q := Q(n - Q(n - 1)) + Q(n - Q(n - 2))
  if *S = n - 1 then {
     put(S,q)
     return q
     }
  else 
     runerr(500,n)
  }

end</lang>

printf.icn provides formatting

Output:
Q(1 to 10) - verified.
Q[1000]=502 - verified.
Q(16)=9 < Q(15)=10
Q(25)=14 < Q(24)=16
Q(32)=17 < Q(31)=20
Q(36)=19 < Q(35)=21
...
Q(99996)=48252 < Q(99995)=50276
Q(99999)=48456 < Q(99998)=50901
Q(100000)=48157 < Q(99999)=48456
There were 49798 inversions in Q up to 100000


J

Solution (bottom-up):<lang j> Qs=:0 1 1

  Q=: verb define
    n=. >./,y
    while. n>:#Qs do.
      Qs=: Qs,+/(-_2{.Qs){Qs 
    end.
    y{Qs

)</lang>

Solution (top-down):<lang j> Q=: 1:`(+&$:/@:- $:@-& 1 2)@.(>&2)"0 M.</lang>

Example:<lang j> Q 1+i.10 1 1 2 3 3 4 5 5 6 6

  Q 1000

502

  +/2>/\ Q 1+i.100000

49798</lang>

Note: The bottom-up solution uses iteration and doesn't risk failure due to recursion limits or cache overflows. The top-down solution uses recursion, and likely hews closer to the spirit of the task. While this latter uses memoization/caching, at some point it will still hit a recursion limit (depends on the environment; in mine, it barfs at N=4402).

It happens to be that the bottom-up version is written in the "explicit" style of code and the top-down version is written in the "tacit" (aka "point-free") style. This is incidental and it's possible to write bottom-up tacitly and/or top-down explicitly.

The top-down version may be interesting as an example of algebraic factorization of code: taking advantage of some unique function composition operations in J, it manages to only mention $: (aka recursion aka "Q") twice.

Java

Works with: Java version 1.5+

This example also counts the number of times each n is used as an argument up to 100000 and reports the one that was used the most. <lang java5>import java.util.HashMap; import java.util.Map;

public class HofQ { private static Map<Integer, Integer> q = new HashMap<Integer, Integer>(){{ put(1, 1); put(2, 1); }};

private static int[] nUses = new int[100001];//not part of the task

public static int Q(int n){ nUses[n]++;//not part of the task if(q.containsKey(n)){ return q.get(n); } int ans = Q(n - Q(n - 1)) + Q(n - Q(n - 2)); q.put(n, ans); return ans; }

public static void main(String[] args){ for(int i = 1; i <= 10; i++){ System.out.println("Q(" + i + ") = " + Q(i)); } int last = 6;//value for Q(10) int count = 0; for(int i = 11; i <= 100000; i++){ int curr = Q(i); if(curr < last) count++; last = curr; if(i == 1000) System.out.println("Q(1000) = " + curr); } System.out.println("Q(i) is less than Q(i-1) for i <= 100000 " + count + " times");

//Optional stuff below here int maxUses = 0, maxN = 0; for(int i = 1; i<nUses.length;i++){ if(nUses[i] > maxUses){ maxUses = nUses[i]; maxN = i; } } System.out.println("Q(" + maxN + ") was called the most with " + maxUses + " calls"); } }</lang>

Output:
Q(1) = 1
Q(2) = 1
Q(3) = 2
Q(4) = 3
Q(5) = 3
Q(6) = 4
Q(7) = 5
Q(8) = 5
Q(9) = 6
Q(10) = 6
Q(1000) = 502
Q(i) is less than Q(i-1) for i <= 100000 49798 times
Q(44710) was called the most with 19 calls

JavaScript

Based on memoization example from 'JavaScript: The Good Parts'. <lang JavaScript>var hofstadterQ = function() {

  var memo = [1,1,1];
  var Q    = function (n) {
     var result = memo[n];
     if (typeof result !== 'number') {
        result  = Q(n - Q(n-1)) + Q(n - Q(n-2));
        memo[n] = result;
     }
     return result;
  };
  return Q;

}();

for (var i = 1; i <=10; i += 1) {

  console.log('Q('+ i +') = ' + hofstadterQ(i));

}

console.log('Q(1000) = ' + hofstadterQ(1000)); </lang>

Output:
Q(1) = 1
Q(2) = 1
Q(3) = 2
Q(4) = 3
Q(5) = 3
Q(6) = 4
Q(7) = 5
Q(8) = 5
Q(9) = 6
Q(10) = 6
Q(1000) = 502

jq

For the tasks related to evaluating Q(n) directy, a recursive implementation is used, firstly because the task requirements refer to "recursion limits", and secondly to demonstrate one way to handle a cache in a functional language. To count the number of inversions, a non-recursive approach is used as it is faster and scales linearly.

For simplicity, we also define Q(0) = 1, so that the defining formula also holds for n == 2, and so that we can cache Q(n) at the n-th position of an array with index origin 0. <lang jq>

  1. For n>=2, Q(n) = Q(n - Q(n-1)) + Q(n - Q(n-2))

def Q:

 def Q(n):
   n as $n
   | (if . == null then [1,1,1] else . end) as $q
   | if $q[$n] != null then $q
     else 
       $q | Q($n-1) as $q1
       | $q1 | Q($n-2) as $q2
       | $q2 | Q($n - $q2[$n - 1]) as $q3   # Q(n - Q(n-1))
       | $q3 | Q($n - $q3[$n - 2]) as $q4   # Q(n - Q(n-2))
       | ($q4[$n - $q4[$n-1]] + $q4[$n - $q4[$n -2]]) as $ans
       | $q4 | setpath( [$n]; $ans)
     end ;
 
 . as $n | null | Q($n) | .[$n];
 
  1. count the number of times Q(i) > Q(i+1) for 0 < i < n

def flips(n):

 (reduce range(3; n) as $n 
   ([1,1,1]; . + [ .[$n - .[$n-1]] + .[$n - .[$n - 2 ]] ] )) as $q
 | reduce range(0; n) as $i
     (0; . + (if $q[$i] > $q[$i + 1] then 1 else 0 end)) ;
  1. The three tasks:

((range(0;11), 1000) | "Q(\(.)) = \( . | Q)"),

(100000 | "flips(\(.)) = \(flips(.))")</lang>

Transcript

<lang bash> $ uname -a Darwin Mac-mini 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun 3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64 $ time jq -r -n -f hofstadter.jq Q(0) = 1 Q(1) = 1 Q(2) = 1 Q(3) = 2 Q(4) = 3 Q(5) = 3 Q(6) = 4 Q(7) = 5 Q(8) = 5 Q(9) = 6 Q(10) = 6 Q(1000) = 502 flips(100000) = 49798

real 0m0.562s user 0m0.541s sys 0m0.011s</lang>

Julia

The following implementation accepts an argument that is a single integer, an array of integers, or a range: <lang julia>function Q(n)

 N = maximum(n)
 q = Array(Int, N)
 q[1], q[2] = 1, 1
 for i = 3:N
   q[i] = q[i - q[i-1]] + q[i - q[i-2]]
 end
 return q[n]

end</lang>

Output:

<lang julia>julia> Q(1:10) 10-element Array{Int64,1}:

1
1
2
3
3
4
5
5
6
6

julia> Q(1000) 502</lang> And we can also count the number of times a value is less than its predecessor by, for example: <lang julia>julia> sum(diff(Q(1:10^5)) .< 0) 49798</lang> Since the implementation is non-recursive, there is no issue with recursion limits.

Maple

We use automatic memoisation ("option remember") in the following. The use of "option system" assures that memoised values can be garbage collected. <lang Maple>Q := proc( n )

       option remember, system;
       if n = 1 or n = 2 then
               1
       else
               thisproc( n - thisproc( n - 1 ) ) + thisproc( n - thisproc( n - 2 ) )
       end if

end proc:</lang> From this we get: <lang Maple>> seq( Q( i ), i = 1 .. 10 );

                     1, 1, 2, 3, 3, 4, 5, 5, 6, 6

> Q( 1000 );

                                 502</lang>

To determine the number of "flips", we proceed as follows. <lang Maple>> flips := 0: > for i from 2 to 100000 do > if L[ i ] < L[ i - 1 ] then > flips := 1 + flips > end if > end do: > flips;

                                49798</lang>

Alternatively, we can build the sequence in an array. <lang Maple>Qflips := proc( n )

       local a := Array( 1 .. n );
       a[ 1 ] := 1;
       a[ 2 ] := 1;
       for local i from 3 to n do
               a[ i ] := a[ i - a[ i - 1 ] ] + a[ i - a[ i - 2 ] ]
       end do;
       local flips := 0;
       for i from 2 to n do
               if a[ i ] < a[ i - 1 ] then
                       flips := 1 + flips
               end if
       end do;
       flips

end proc:</lang> This gives the same result. <lang Maple>> Qflips( 10^5 );

                                49798</lang>

Mathematica

<lang Mathematica>Hofstadter[1] = Hofstadter[2] = 1; Hofstadter[n_Integer?Positive] := Hofstadter[n] = Block[{$RecursionLimit = Infinity},

  Hofstadter[n - Hofstadter[n - 1]] + Hofstadter[n - Hofstadter[n - 2]]

]</lang>

Output:

<lang Mathematica>Hofstadter /@ Range[10] {1,1,2,3,3,4,5,5,6,6} Hofstadter[1000] 502 Count[Differences[Hofstadter /@ Range[100000]], _?Negative] 49798</lang>

MATLAB / Octave

This solution pre-allocates memory and is an iterative solution, so caching or recursion limits do not apply. <lang MATLAB>function Q = Qsequence(N)

 %% zeros are used to pre-allocate memory, this is not strictly necessary but can significantly improve performance for large N
 Q = [1,1,zeros(1,N-2)];  
 for n=3:N
   Q(n) = Q(n-Q(n-1))+Q(n-Q(n-2));
 end; 

end; </lang> Confirm and display that the first ten terms of the sequence are: 1, 1, 2, 3, 3, 4, 5, 5, 6, and 6

>> Qsequence(10)
ans =
   1   1   2   3   3   4   5   5   6   6

Confirm and display that the 1000'th term is: 502

>> Q=Qsequence(1000); Q(end)
ans =  502

Count and display how many times a member of the sequence is less than its preceding term for terms up to and including the 100,000'th term.

>> sum(diff(Qsequence(100000))<0)
ans =  49798

Nimrod

<lang nimrod>var q = @[1, 1] for n in 2 .. <100_000: q.add q[n-q[n-1]] + q[n-q[n-2]]

echo q[0..9] assert q[0..9] == @[1, 1, 2, 3, 3, 4, 5, 5, 6, 6]

echo q[999] assert q[999] == 502

var lessCount = 0 for n in 1 .. <100_000:

 if q[n] < q[n-1]:
   inc lessCount

echo lessCount</lang>

Output:
@[1, 1, 2, 3, 3, 4, 5, 5, 6, 6]
502
49798

PARI/GP

Straightforward, unoptimized version; about 1 ms. <lang parigp>Q=vector(1000);Q[1]=Q[2]=1;for(n=3,#Q,Q[n]=Q[n-Q[n-1]]+Q[n-Q[n-2]]); Q1=vecextract(Q,"1..10"); print("First 10 terms: "Q1,if(Q1==[1, 1, 2, 3, 3, 4, 5, 5, 6, 6]," (as expected)"," (in error)")); print("1000-th term: "Q[1000],if(Q[1000]==502," (as expected)"," (in error)"));</lang>

Output:
First 10 terms: [1, 1, 2, 3, 3, 4, 5, 5, 6, 6] (as expected)
1000-th term: 502 (as expected)

Pascal

<lang pascal>Program HofstadterQSequence (output);

const

 limit = 100000;

var

 q: array [1..limit] of longint;
 i, flips: longint;

begin

 q[1] := 1;
 q[2] := 1;
 for i := 3 to limit do
   q[i] := q[i - q[i - 1]] + q[i - q[i - 2]];
 for i := 1 to 10 do
   write(q[i], ' ');
 writeln;
 writeln(q[1000]);
 flips := 0;
 for i := 1 to limit - 1 do
   if q[i] > q[i+1] then
     inc(flips);
 writeln('Flips: ', flips);

end.</lang>

Output:
:> ./HofstadterQSequence 
1 1 2 3 3 4 5 5 6 6 
502
Flips: 49798

Perl

<lang Perl>#!/usr/bin/perl use warnings; use strict;

my @hofstadters = ( 1 , 1 ); while ( @hofstadters < 100000 ) {

  my $nextn = @hofstadters + 1;
  1. array index counting starts at 0 , so we have to subtract 1 from the numbers!
  push @hofstadters ,  $hofstadters [ $nextn - 1 - $hofstadters[ $nextn - 1 - 1 ] ]  
     + $hofstadters[ $nextn - 1 - $hofstadters[ $nextn - 2 - 1 ]];

} for my $i ( 0..9 ) {

  print "$hofstadters[ $i ]\n";

} print "The 1000'th term is $hofstadters[ 999 ]!\n"; my $less_than_preceding = 0; for my $i ( 0..99998 ) {

  $less_than_preceding++ if $hofstadters[ $i + 1 ] < $hofstadters[ $i ];

} print "Up to and including the 100000'th term, $less_than_preceding terms are less " .

  "than their preceding terms!\n";

</lang>

Output:
1
1
2
3
3
4
5
5
6
6
The 1000'th term is 502!
Up to and including the 100000'th term, 49798 terms are less than their preceding terms!

Here's a second solution. This solution uses tie to make the Q sequence look like a regular array, and only fills the cache on demand. Some pre-allocation is done which provides a minor speed increase for the extra credit. I could have chosen to do recursion instead of iteration, as perl has no limit on how deeply one may recurse, but did not see the benefit of doing so.

<lang Perl>#!perl use strict; use warnings; package Hofstadter; sub TIEARRAY {

  bless [undef, 1, 1], shift;

} sub FETCH {

  my ($self, $n) = @_;
  die if $n < 1;
  if( $n > $#$self ) {
     my $start = $#$self + 1;
     $#$self = $n; # pre-allocate for efficiency
     for my $nn ( $start .. $n ) {
        my ($a, $b) = (1, 2);
        $_ = $self->[ $nn - $_ ] for $a, $b;
        $_ = $self->[ $nn - $_ ] for $a, $b;
        $self->[$nn] = $a + $b;
     }
  }
  $self->[$n];

}

package main;

tie my (@q), "Hofstadter";

print "@q[1..10]\n"; print $q[1000], "\n";

my $count = 0; for my $n ( 2 .. 100_000 ) {

  $count++ if $q[$n] < $q[$n - 1];

} print "Extra credit: $count\n"; </lang>

Output:
1 1 2 3 3 4 5 5 6 6
502
Extra credit: 49798

Perl 6

OO solution

Works with: Rakudo/JVM version 2013-10-19

Similar concept as the perl5 solution, except that the cache is only filled on demand.

<lang perl6>class Hofstadter {

 has @!c = 1,1;
 method at_pos ($me: Int $i) {
   @!c.push($me[@!c.elems-$me[@!c.elems-1]] +

$me[@!c.elems-$me[@!c.elems-2]]) until @!c[$i]:exists;

   return @!c[$i];
 }

}</lang> Testing: <lang perl6>my Hofstadter $Q .= new();

say "first ten: $Q[^10]"; say "1000th: $Q[999]";

my $count = 0; $count++ if $Q[$_ +1 ] < $Q[$_] for ^99_999; say "In the first 100_000 terms, $count terms are less than their preceding terms";</lang>

Output:
first ten: 1 1 2 3 3 4 5 5 6 6
1000th: 502
In the first 100_000 terms, 49798 terms are less than their preceding terms

Idiomatic solution

Works with: niecza version 2012-09-08

By defining a lazily generated constant array, we automatically get caching. <lang perl6>constant @Q = 1, 1, -> $a, $b {

   (state $n = 1)++;
   @Q[$n - $a] + @Q[$n - $b]

} ... *;</lang> Testing: <lang perl6>say "first ten: ", @Q[^10]; say "1000th: ", @Q[999]; say "In the first 100_000 terms, ",

  [+](@Q[1..100000] Z< @Q[0..99999]),
  " terms are less than their preceding terms";</lang>

(Same output.)

PicoLisp

<lang PicoLisp>(de q (N)

  (cache '(NIL) N
     (if (>= 2 N)
        1
        (+
           (q (- N (q (dec N))))
           (q (- N (q (- N 2)))) ) ) ) )</lang>

Test: <lang PicoLisp>: (mapcar q (range 1 10)) -> (1 1 2 3 3 4 5 5 6 6)

(q 1000)

-> 502

(let L (mapcar q (range 1 100000))
  (cnt < (cdr L) L) )

-> 49798</lang>

PL/I

<lang PL/I> /* Hofstrader Q sequence for any "n". */

H: procedure options (main); /* 28 January 2012 */

  declare n fixed binary(31);
  put ('How many values do you want? :');
  get (n);

begin;

  declare Q(n) fixed binary (31);
  declare i fixed binary (31);
  Q(1), Q(2) = 1;
  do i = 1 upthru n;
     if i >= 3 then Q(i) = ( Q(i - Q(i-1)) + Q(i - Q(i-2)) );
     if i <= 20 then put skip list ('n=' || trim(i), Q(i));
  end;
  put skip list ('n=' || trim(i), Q(i));

end; end H; </lang>

Output:
How many values do you want? : 

n=1                                  1 
n=2                                  1 
n=3                                  2 
n=4                                  3 
n=5                                  3 
n=6                                  4 
n=7                                  5 
n=8                                  5 
n=9                                  6 
n=10                                 6 
n=11                                 6 
n=12                                 8 
n=13                                 8 
n=14                                 8 
n=15                                10 
n=16                                 9 
n=17                                10 
n=18                                11 
n=19                                11 
n=20                                12 
n=1000                             502 
Output:

for n=100,000

n=100000                         48157 

Bonus to produce the count of unordered values: <lang>

  declare tally fixed binary (31) initial (0);
  do i = 1 to n-1;
     if Q(i) > Q(i+1) then tally = tally + 1;
  end;
  put skip data (tally);

</lang>

Output:
n=100000                         48157 
TALLY=         49798;

Python

<lang python>def q(n):

   if n < 1 or type(n) != int: raise ValueError("n must be an int >= 1")
   try:
       return q.seq[n]
   except IndexError:
       ans = q(n - q(n - 1)) + q(n - q(n - 2))
       q.seq.append(ans)
       return ans

q.seq = [None, 1, 1]

if __name__ == '__main__':

   first10 = [q(i) for i in range(1,11)]
   assert first10 == [1, 1, 2, 3, 3, 4, 5, 5, 6, 6], "Q() value error(s)"
   print("Q(n) for n = [1..10] is:", ', '.join(str(i) for i in first10))
   assert q(1000) == 502, "Q(1000) value error"
   print("Q(1000) =", q(1000))</lang>
Extra credit

If you try and initially compute larger values of n then you tend to hit the Python recursion limit.

The function q1 gets around this by calling function q to extend the Q series in increments below the recursion limit.

The following code is to be concatenated to the code above: <lang python>from sys import getrecursionlimit

def q1(n):

   if n < 1 or type(n) != int: raise ValueError("n must be an int >= 1")
   try:
       return q.seq[n]
   except IndexError:
       len_q, rlimit = len(q.seq), getrecursionlimit()
       if (n - len_q) > (rlimit // 5):
           for i in range(len_q, n, rlimit // 5):
               q(i)
       ans = q(n - q(n - 1)) + q(n - q(n - 2))
       q.seq.append(ans)
       return ans

if __name__ == '__main__':

   tmp = q1(100000)
   print("Q(i+1) < Q(i) for i [1..100000] is true %i times." %
         sum(k1 < k0 for k0, k1 in zip(q.seq[1:], q.seq[2:])))</lang>
Combined output:
Q(n) for n = [1..10] is: 1, 1, 2, 3, 3, 4, 5, 5, 6, 6
Q(1000) = 502
Q(i+1) < Q(i) for i [1..10000] is true 49798 times.

Alternative

<lang python>def q(n):

   l = len(q.seq)
   while l <= n:
       q.seq.append(q.seq[l - q.seq[l - 1]] + q.seq[l - q.seq[l - 2]])

l += 1

   return q.seq[n]

q.seq = [None, 1, 1]

print("Q(n) for n = [1..10] is:", [q(i) for i in range(1, 11)]) print("Q(1000) =", q(1000)) q(100000) print("Q(i+1) < Q(i) for i [1..100000] is true %i times." %

     sum([q.seq[i] > q.seq[i + 1] for i in range(1, 100000)]))</lang>

Racket

<lang racket>

  1. lang racket

(define t (make-hash)) (hash-set! t 0 0) (hash-set! t 1 1) (hash-set! t 2 1)

(define (Q n)

 (hash-ref! t n (λ() (+ (Q (- n (Q (- n 1))))
                        (Q (- n (Q (- n 2))))))))

(for/list ([i (in-range 1 11)]) (Q i)) (Q 1000)

extra credit

(for/sum ([i 100000]) (if (< (Q (add1 i)) (Q i)) 1 0)) </lang>

Output:
'(1 1 2 3 3 4 5 5 6 6)
502
49798

REXX

non-recursive

The REXX language doesn't allow expressions for stemmed array indices, so a temporary variable must be used. <lang rexx>/*REXX program to generate Hofstadter Q sequence for any N. */ q.=1 /*negative #s won't have values displayed.*/ call HofstadterQ 10 call HofstadterQ -1000; say; say '1000th value='result; say call HofstadterQ -100000 downs=0; do j=2 to 100000; jm=j-1

                              downs=downs + (q.j<q.jm)
                              end   /*j*/

say downs 'terms are less than the previous term.' exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────HofstadterQ subroutine──────────────*/ HofstadterQ: procedure expose q.; arg x 1 ox /*get the # to gen through*/

                                      /*(above)  OX  is the same as  X.*/

x=abs(x) /*use the absolute value for X. */ L=length(x) /*use for right justified output.*/

            do j=1  for x
            if j>2   then  if q.j==1  then  do;    jm1=j-1;    jm2=j-2
                                            _1=j-q.jm1; _2=j-q.jm2
                                            q.j=q._1+q._2
                                            end
            if ox>0  then  say right(j,L) right(q.j,L)   /*if X>0, tell*/
            end    /*j*/

return q.x /*return the Xth term to caller.*/</lang>

Output:
 1  1
 2  1
 3  2
 4  3
 5  3
 6  4
 7  5
 8  5
 9  6
10  6

1000th value=502

49798 terms are less than the previous term.

non-recursive, simpler

This REXX example is identical to the first version except that it uses a function to retrieve array elements with index expressions. <lang rexx>/*REXX program to generate Hofstadter Q sequence for any N. */ q.=1 /*negative #s won't have values displayed.*/ call HofstadterQ 10 call HofstadterQ -1000; say; say '1000th value='result; say call HofstadterQ -100000 downs=0; do j=2 to 100000; jm=j-1

                              downs=downs + (q.j<q.jm)
                              end   /*j*/

say downs 'terms are less than the previous term.' exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────HofstadterQ subroutine──────────────*/ HofstadterQ: procedure expose q.; arg x 1 ox /*get the # to gen through*/

                                      /*(above)  OX  is the same as  X.*/

x=abs(x) /*use the absolute value for X. */ L=length(x) /*use for right justified output.*/

            do j=1  for x
            if j>2   then  if q.j==1  then  q.j=q(j-q(j-1)) + q(j-q(j-2))
            if ox>0  then  say right(j,L) right(q.j,L)   /*if X>0, tell*/
            end    /*j*/

return q.x /*return the Xth term to caller.*/ /*──────────────────────────────────Q subroutine────────────────────────*/ q: parse arg ?; return q.? /*return value of Q.? to invoker.*/</lang> output is identical to the first version.

recursive

<lang rexx>/*REXX program to generate Hofstadter Q sequence for any N. */ q.=0; q.1=1; q.2=1 /*negative #s won't have values displayed.*/ call HofstadterQ 10 call HofstadterQ -1000; say; say '1000th value='result; say call HofstadterQ -100000 downs=0; do j=2 to 100000; jm=j-1

                              downs=downs + (q.j<q.jm)
                              end

say downs 'terms are less than the previous term.' exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────HofstadterQ subroutine──────────────*/ HofstadterQ: procedure expose q.; arg x 1 ox /*get the # to gen through*/

                                      /*(above)  OX  is the same as  X.*/

x=abs(x) /*use the absolute value for X. */ L=length(x) /*use for right justified output.*/

            do j=1  for x
            if q.j==0  then q.j=QR(j) /*Not defined?    Then define it.*/
            if ox>0    then say right(j,L) right(q.j,L)  /*if X>0, tell*/
            end    /*j*/

return q.x /*return the Xth term to caller.*/ /*──────────────────────────────────QR subroutine───────────────────────*/ QR: procedure expose q.; parse arg n /*function is recursive. */ if q.n==0 then q.n=QR(n-QR(n-1)) + QR(n-QR(n-2)) /*¬defined? Define it*/ return q.n /*return with the value. */</lang> output is identical to the first version.

The recursive version took over five times longer than the non-recursive version.

Ruby

<lang ruby>@cache = [] def Q(n)

 if @cache[n].nil?
   case n
   when 1, 2 then @cache[n] = 1
   else @cache[n] = Q(n - Q(n-1)) + Q(n - Q(n-2))
   end
 end
 @cache[n]

end

puts "first 10 numbers in the sequence: #{(1..10).map {|n| Q(n)}}" puts "1000'th term: #{Q(1000)}"

prev = Q(1) count = 0 2.upto(100_000) do |n|

 q = Q(n)
 count += 1 if q < prev 
 prev = q

end puts "number of times in the first 100,000 terms where Q(i)<Q(i-1): #{count}"</lang>

Output:
first 10 numbers in the sequence: [1, 1, 2, 3, 3, 4, 5, 5, 6, 6]
1000'th term: 502
number of times in the first 100,000 terms where Q(i)<Q(i-1): 49798

Run BASIC

<lang Runbasic>input "How many values do you want? :";n dim Q(n) Q(1) = 1 Q(2) = 1 for i = 1 to n

 if i >= 3 then Q(i) = ( Q(i - Q(i-1)) + Q(i - Q(i-2)) )
 if i <= 20 then print "n=";using("####",i);" ";using("###",Q(i))

next i if i > 20 then print "n=";using("####",i);using("####",Q(i)) end </lang>

Output:
How many values do you want? :?1000
n=   1   1
n=   2   1
n=   3   2
n=   4   3
n=   5   3
n=   6   4
n=   7   5
n=   8   5
n=   9   6
n=  10   6
n=  11   6
n=  12   8
n=  13   8
n=  14   8
n=  15  10
n=  16   9
n=  17  10
n=  18  11
n=  19  11
n=  20  12
n=1000 502

Scala

Works with: Scala version 2.9.1

Naive but elegant version using only recursion doesn't work because runtime is excessive increasing ... <lang scala>object HofstadterQseq extends App {

 val Q: Int => Int = n => {
   if (n <= 2) 1
   else Q(n-Q(n-1))+Q(n-Q(n-2))
 }
 (1 to 10).map(i=>(i,Q(i))).foreach(t=>println("Q("+t._1+") = "+t._2))
 println("Q("+1000+") = "+Q(1000))

}</lang>


Unfortunately the function Q isn't tail recursiv, therefore the compiler can't optimize it. Thus we are forced to use a caching featured version.

<lang scala>object HofstadterQseq extends App {

 val HofQ = scala.collection.mutable.Map((1->1),(2->1))
 val Q: Int => Int = n => {
   if (n < 1) 0
   else {
     val res = HofQ.keys.filter(_==n).toList match {
       case Nil => {val v = Q(n-Q(n-1))+Q(n-Q(n-2)); HofQ += (n->v); v}
       case xs => HofQ(n)
     }
     res
   } 
 }
 
 (1 to 10).map(i=>(i,Q(i))).foreach(t=>println("Q("+t._1+") = "+t._2))
 println("Q("+1000+") = "+Q(1000))
 println((3 to 100000).filter(i=>Q(i)<Q(i-1)).size)

}</lang>

Output:
Q(1) = 1
Q(2) = 1
Q(3) = 2
Q(4) = 3
Q(5) = 3
Q(6) = 4
Q(7) = 5
Q(8) = 5
Q(9) = 6
Q(10) = 6
Q(1000) = 502
49798

Scheme

I wish there were a portable way to define-syntax, or to resize arrays, or to do formated output--anything to make the code less silly looking while still run under more than one interpreter. <lang lisp>(define qc '#(0 1 1)) (define filled 3) (define len 3)

chicken scheme
vector-resize!
gambit
vector-append

(define (extend-qc)

 (let* ((new-len (* 2 len))

(new-qc (make-vector new-len)))

   (let copy ((n 0))
     (if (< n len)

(begin (vector-set! new-qc n (vector-ref qc n)) (copy (+ 1 n)))))

   (set! len new-len)
   (set! qc new-qc)))

(define (q n)

 (let loop ()
   (if (>= filled len) (extend-qc))
   (if (>= n filled)
     (begin

(vector-set! qc filled (+ (q (- filled (q (- filled 1)))) (q (- filled (q (- filled 2)))))) (set! filled (+ 1 filled)) (loop))

     (vector-ref qc n))))

(display "Q(1 .. 10): ") (let loop ((i 1))

 ;; (print) behave differently regarding newline across compilers
 (display (q i))
 (display " ")
 (if (< i 10)
   (loop (+ 1 i))
   (newline)))

(display "Q(1000): ") (display (q 1000)) (newline)

(display "bumps up to 100000: ") (display

 (let loop ((s 0) (i 1))
   (if (>= i 100000) s
     (loop (+ s (if (> (q i) (q (+ 1 i))) 1 0)) (+ 1 i)))))

(newline)</lang>

Output:
Q(1 .. 10): 1 1 2 3 3 4 5 5 6 6 
Q(1000): 502
bumps up to 100000: 49798

Seed7

<lang seed7>$ include "seed7_05.s7i";

const type: intHash is hash [integer] integer;

var intHash: qHash is intHash.value;

const func integer: q (in integer: n) is func

 result
   var integer: q is 1;
 begin
   if n in qHash then
     q := qHash[n];
   else
     if n > 2 then
       q := q(n - q(pred(n))) + q(n - q(n - 2));
     end if;
     qHash @:= [n] q;
   end if;
 end func;

const proc: main is func

 local
   var integer: n is 0;
   var integer: less_than_preceding is 0;
 begin
   writeln("q(n) for n = 1 .. 10:");
   for n range 1 to 10 do
     write(q(n) <& " ");
   end for;
   writeln;
   writeln("q(1000)=" <& q(1000));
   for n range 2 to 100000 do
     if q(n) < q(pred(n)) then
       incr(less_than_preceding);
     end if;
   end for;
   writeln("q(n) < q(n-1) for n = 2 .. 100000: " <& less_than_preceding);
 end func;</lang>
Output:
q(n) for n = 1 .. 10:
1 1 2 3 3 4 5 5 6 6 
q(1000)=502
q(n) < q(n-1) for n = 2 .. 100000: 49798

Tcl

<lang tcl>package require Tcl 8.5

  1. Index 0 is not used, but putting it in makes the code a bit shorter

set tcl::mathfunc::Qcache {Q:-> 1 1} proc tcl::mathfunc::Q {n} {

   variable Qcache
   if {$n >= [llength $Qcache]} {

lappend Qcache [expr {Q($n - Q($n-1)) + Q($n - Q($n-2))}]

   }
   return [lindex $Qcache $n]

}

  1. Demonstration code

for {set i 1} {$i <= 10} {incr i} {

   puts "Q($i) == [expr {Q($i)}]"

}

  1. This runs very close to recursion limit...

puts "Q(1000) == [expr Q(1000)]"

  1. This code is OK, because the calculations are done step by step

set q [expr Q(1)] for {set i 2} {$i <= 100000} {incr i} {

   incr count [expr {$q > [set q [expr {Q($i)}]]}]

} puts "Q(i)<Q(i-1) for i \[2..100000\] is true $count times"</lang>

Output:
Q(1) == 1
Q(2) == 1
Q(3) == 2
Q(4) == 3
Q(5) == 3
Q(6) == 4
Q(7) == 5
Q(8) == 5
Q(9) == 6
Q(10) == 6
Q(1000) == 502
Q(i)<Q(i-1) for i [2..100000] is true 49798 times

XPL0

<lang XPL0>code ChOut=8, CrLf=9, IntOut=11; int N, C, Q(100_001); [Q(1):= 1; Q(2):= 1; C:= 0; for N:= 3 to 100_000 do

       [Q(N):= Q(N-Q(N-1)) + Q(N-Q(N-2));
       if Q(N) < Q(N-1) then C:= C+1;
       ];

for N:= 1 to 10 do

       [IntOut(0, Q(N));  ChOut(0, ^ )];

CrLf(0); IntOut(0, Q(1000)); CrLf(0); IntOut(0, C); CrLf(0); ]</lang>

Output:
1 1 2 3 3 4 5 5 6 6 
502
49798

zkl

Translation of: ALGOL 68

<lang zkl>const n = 0d100_000; q:=(n+1).pump(List.createLong(n+1).write); // (0,1,2,...,n) base 1 q[1] = q[2] = 1;

foreach i in ([3..n]) { q[i] = q[i - q[i - 1]] + q[i - q[i - 2]] }

q[1,10].concat(" ").println(); println(q[1000]);

flip := 0; foreach i in (n){ flip += (q[i] > q[i + 1]) } println("flips: ",flip);</lang>

Output:
1 1 2 3 3 4 5 5 6 6
502
flips: 49798