Happy numbers: Difference between revisions

From Rosetta Code
Content added Content deleted
(added J)
Line 390: Line 390:


main = mapM_ print $ take 8 happys</lang>
main = mapM_ print $ take 8 happys</lang>

=={{header|J}}==
<pre>
8{. (#~1=+/@(*:@(,.&.":))^:(1&~:*.4&~:)^:_ "0) 1+i.1e2
1 7 10 13 19 23 28 31</pre>

This is a repeat while construction
f ^: cond ^: _ <input>
that produces an array of 1's and 4's, which is converted to 1's and 0's forming a binary array having a 1 for a happy number. Finally the happy numbers are extracted by a binary selector.
(binary array) # 1..100
Conversion to the next number:
+/@(*:@(,.&.":)) 123
14



=={{header|Java}}==
=={{header|Java}}==

Revision as of 16:15, 29 August 2009

Task
Happy numbers
You are encouraged to solve this task according to the task description, using any language you may know.

From Wikipedia, the free encyclopedia:

A happy number is defined by the following process. Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers, while those that do not end in 1 are unhappy numbers.

Task: Find and print the first 8 happy numbers.

Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Containers.Ordered_Sets;

procedure Test_Happy_Digits is

  function Is_Happy (N : Positive) return Boolean is
     package Sets_Of_Positive is new Ada.Containers.Ordered_Sets (Positive);
     use Sets_Of_Positive;
     function Next (N : Positive) return Natural is
        Sum   : Natural := 0;
        Accum : Natural := N;
     begin
        while Accum > 0 loop
           Sum   := Sum + (Accum mod 10) ** 2;
           Accum := Accum / 10;
        end loop;
        return Sum;
     end Next;
     Current : Positive := N;
     Visited : Set;
  begin
     loop
        if Current = 1 then
           return True;
        elsif Visited.Contains (Current) then
           return False;
        else
           Visited.Insert (Current);
           Current := Next (Current);
        end if;
     end loop;
  end Is_Happy;
  Found : Natural := 0;

begin

  for N in Positive'Range loop
     if Is_Happy (N) then
        Put (Integer'Image (N));
        Found := Found + 1;
        exit when Found = 8;
     end if;
  end loop;

end Test_Happy_Digits;</lang> Sample output:

 1 7 10 13 19 23 28 31

ALGOL 68

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386

<lang algol>INT base10 = 10, num happy = 8;

PROC next = (INT in n)INT: (

 INT n := in n;
 INT out := 0;
 WHILE n NE 0 DO
   out +:= ( n MOD base10 ) ** 2;
   n := n OVER base10
 OD;
 out

);

PROC is happy = (INT in n)BOOL: (

 INT n := in n;
 FOR i WHILE n NE 1 AND n NE 4 DO n := next(n) OD;
 n=1

);

INT count := 0; FOR i WHILE count NE num happy DO

 IF is happy(i) THEN
   count +:= 1;
   print((i, new line))
 FI

OD</lang> Output:

         +1
         +7
        +10
        +13
        +19
        +23
        +28
        +31

AutoHotkey

<lang AutoHotkey>Loop {

 If isHappy(A_Index) {
   out .= (out="" ? "" : ",") . A_Index
   i ++
   If (i = 8) {
     MsgBox, The first 8 happy numbers are: %out%
     ExitApp
   }
 }

}

isHappy(num, list="") {

 list .= (list="" ? "" : ",") . num
 Loop, Parse, num
   sum += A_LoopField ** 2
 If (sum = 1)
   Return true
 Else If sum in %list%
   Return false
 Else Return isHappy(sum, list)

}</lang>

AWK

<lang awk>function is_happy(n) {

 if ( n in happy ) return 1;
 if ( n in unhappy ) return 0;
 cycle[""] = 0
 while( (n!=1) && !(n in cycle) ) {
   cycle[n] = n
   new_n = 0
   while(n>0) {
     d = n % 10
     new_n += d*d
     n = int(n/10)
   }
   n = new_n
 }
 if ( n == 1 ) {
   for (i_ in cycle) {
     happy[cycle[i_]] = 1
     delete cycle[i_]
   }
   return 1
 } else {
   for (i_ in cycle) {
     unhappy[cycle[i_]] = 1
     delete cycle[i_]
   }
   return 0
 }

}

BEGIN {

 cnt = 0
 happy[""] = 0
 unhappy[""] = 0
 for(j=1; (cnt < 8); j++) {
   if ( is_happy(j) == 1 ) {
     cnt++
     print j
   }
 }

}</lang>

C

<lang c>#include <stdio.h>

  1. include <stdbool.h>
  2. include <stdlib.h>
  3. include <string.h>
  4. include <assert.h>

typedef struct list {

 int val;
 struct list *next;

} list_t;

bool in_cycle(list_t *c, int n) {

 for( ; c != NULL; c = c->next )
   if ( n == c->val ) return true;
 return false;

}

void add_cycle(list_t **c, int n) {

 list_t *p = malloc(sizeof(list_t)); assert(p!=NULL);
 p->val = n; p->next = NULL;
 if ( *c == NULL ) {
   *c = p;
 } else {
   p->next = *c;
   *c = p;
 }

}

void kill_cycle(list_t *c) {

 list_t *t;
 for(;c!=NULL; c=t) {
   t = c->next;
   free(c);
 }

}

bool is_happy(int n) {

 list_t *cycle = NULL;
 int new_n;
 while( (n != 1) && !in_cycle(cycle, n) ) {
   add_cycle(&cycle, n);
   new_n = 0;
   while( n > 0 ) {
     int d = n % 10;
     new_n += d*d;
     n /= 10;
   }
   n = new_n;
 }
 kill_cycle(cycle);
 return (n == 1);

}

int main() {

 int i; int cnt = 0;
 for(i=1; cnt < 8; i++) {
   if (is_happy(i)) { printf("%d\n", i); cnt++; }
 }
 return EXIT_SUCCESS;

}</lang>

C++

Translation of: Python

<lang cpp>#include <map>

  1. include <set>

bool happy(int number) {

 static std::map<int, bool> cache;
 std::set<int> cycle;
 while (number != 1 && !cycle.count(number)) {
   if (cache.count(number)) {
     number = cache[number] ? 1 : 0;
     break;
   }
   cycle.insert(number);
   int newnumber = 0;
   while (number > 0) {
     int digit = number % 10;
     newnumber += digit * digit;
     number /= 10;
   }
   number = newnumber;
 }
 bool happiness = number == 1;
 for (std::set<int>::const_iterator it = cycle.begin();
      it != cycle.end(); it++)
   cache[*it] = happiness;
 return happiness;

}

  1. include <iostream>

int main() {

 for (int i = 1; i < 50; i++)
   if (happy(i))
     std::cout << i << std::endl;
 return 0;

}</lang>

Alternative version without caching:

<lang cpp>unsigned int happy_iteration(unsigned int n) {

 unsigned int result = 0;
 while (n > 0)
 {
   unsigned int lastdig = n % 10;
   result += lastdig*lastdig;
   n /= 10;
 }
 return result;

}

bool is_happy(unsigned int n) {

 unsigned int n2 = happy_iteration(n);
 while (n != n2)
 {
   n = happy_iteration(n);
   n2 = happy_iteration(happy_iteration(n2));
 }
 return n == 1;

}

  1. include <iostream>

int main() {

 unsigned int current_number = 1;
 unsigned int happy_count = 0;
 while (happy_count != 8)
 {
   if (is_happy(current_number))
   {
     std::cout << current_number << " ";
     ++happy_count;
   }
   ++current_number;
 }
 std::cout << std::endl;

}</lang>

Cycle detection in is_happy() above is done using Floyd's cycle-finding algorithm.

Common Lisp

<lang lisp>(defun happyp (n &aux (seen ()))

 (loop
   (when (= n 1) (return t))
   (when (find n seen) (return nil))
   (push n seen)
   (setf n (reduce #'+ (map 'list
     (lambda (c &aux (x (position c "0123456789"))) (* x x))
     (format nil "~d" n))))))

(loop

 with happy = 0
 for n from 0
 until (= 8 happy)
 when (happyp n)
   do (incf happy) and
   do (format t "~d~%" n))</lang>

E

<lang e>def isHappyNumber(var x :int) {

 var seen := [].asSet()
 while (!seen.contains(x)) {
   seen with= x
   var sum := 0
   while (x > 0) {
     sum += (x % 10) ** 2
     x //= 10
   }
   x := sum
   if (x == 1) { return true }
 }
 return false

}

var count := 0 for x ? (isHappyNumber(x)) in (int >= 1) {

 println(x)
 if ((count += 1) >= 8) { break }

}</lang>

Forth

<lang forth>

next ( n -- n )
 0 swap begin 10 /mod >r  dup * +  r> ?dup 0= until ;
cycle? ( n -- ? )
 here dup @ cells +
 begin dup here >
 while 2dup @ = if 2drop true exit then
       1 cells -
 repeat
 1 over +!  dup @ cells + !  false ;
happy? ( n -- ? )
 0 here !  begin next dup cycle? until  1 = ;
happy-numbers ( n -- )
 0 swap 0 do
   begin 1+ dup happy? until dup .
 loop drop ;

8 happy-numbers \ 1 7 10 13 19 23 28 31 </lang>

Haskell

<lang haskell>import Data.Char (digitToInt)

happys :: [Int] happys = filter (p []) [1..]

 where p _ 1 = True
       p l n | n `elem` l = False
             | otherwise  = p (n : l) (f n)
       f = sum . map ((^2) . digitToInt) . show     

main = mapM_ print $ take 8 happys</lang>

J

   8{. (#~1=+/@(*:@(,.&.":))^:(1&~:*.4&~:)^:_ "0) 1+i.1e2
1 7 10 13 19 23 28 31

This is a repeat while construction

f ^: cond ^: _ <input>

that produces an array of 1's and 4's, which is converted to 1's and 0's forming a binary array having a 1 for a happy number. Finally the happy numbers are extracted by a binary selector.

(binary array) # 1..100

Conversion to the next number:

   +/@(*:@(,.&.":)) 123
14


Java

Works with: Java version 1.5+
Translation of: JavaScript

<lang java5>import java.util.LinkedList; public class Happy{

  public static boolean happy(long number){
      long m = 0;
      int digit = 0;
      LinkedList<Long> cycle = new LinkedList<Long>();
      while(number != 1 && !cycle.contains(number)){
          cycle.add(number);
          m = 0;
          while(number > 0){
              digit = (int)(number % 10);
              m += digit*digit;
              number /= 10;
          }
          number = m;
      }
      return number == 1;
  }
  public static void main(String[] args){
      for(long num = 1,count = 0;count<8;num++){
          if(happy(num)){
              System.out.println(num);
              count++;
          }
      }
  }

}</lang>

JavaScript

<lang javascript>function happy(number) {

   var m, digit ;
   var cycle = new Array() ;
   while(number != 1 && cycle[number] != true) {
       cycle[number] = true ;
       m = 0 ;
       while (number > 0) {
           digit = number % 10 ;
           m += digit * digit ;
           number = (number  - digit) / 10 ;
       }
       number = m ;
   }
   return (number == 1) ;

} ;

var cnt = 8 ; var number = 1 ;

while(cnt-- > 0) {

   while(!happy(number))
       number++ ;
   document.write(number + " ") ;
   number++ ;

}</lang>

Mathematica

Custom function HappyQ: <lang Mathematica>

AddSumSquare[input_]:=Append[input,Total[IntegerDigits[Last[input]]^2]]
NestUntilRepeat[a_,f_]:=NestWhile[f,{a},!MemberQ[Most[Last[{##}]],Last[Last[{##}]]]&,All]
HappyQ[a_]:=Last[NestUntilRepeat[a,AddSumSquare]]==1

</lang> Examples for a specific number: <lang Mathematica>

HappyQ[1337]
HappyQ[137]

</lang> gives back: <lang Mathematica> True False </lang> Example finding the first 8: <lang Mathematica> m = 8; n = 1; i = 0; happynumbers = {}; While[n <= m,

i++;
If[HappyQ[i],
 n++;
 AppendTo[happynumbers, i]
 ]
]

happynumbers </lang> gives back: <lang Mathematica> {1, 7, 10, 13, 19, 23, 28, 31} </lang>

Perl

<lang perl>use List::Util qw(first sum);

sub is_happy ($)

{for (my ($n, @seen) = shift ;; $n = sum map {$_**2} split //, $n)
    {$n == 1 and return 1;
     defined first {$_ == $n} @seen and return 0;
     push @seen, $n;}}

for (my ($n, $happy) = (1, 0) ; $happy < 8 ; ++$n)

  {is_happy $n or next;
   print "$n\n";
   ++$happy;}</lang>

Python

<lang python>>>> def happy(n):

 past = []			
 while True:
   total = sum([int(i)**2 for i in str(n)])
   if total == 1 or total in past: return not total in past
   n = total;past.append(total)

>>> [x for x in range(1,500) if happy(x)][:8] </lang>

R

<lang R> is.happy <- function(n) {

  stopifnot(is.numeric(n) && length(n)==1)
  getdigits <- function(n)
  {
     as.integer(unlist(strsplit(as.character(n), "")))
  }
  digits <- getdigits(n)
  previous <- c()
  repeat
  {
     sumsq <- sum(digits^2, na.rm=TRUE)
     if(sumsq==1L)
     {
        happy <- TRUE
        break      
     } else if(sumsq %in% previous)
     {
        happy <- FALSE
        attr(happy, "cycle") <- previous
        break
     } else
     {
        previous <- c(previous, sumsq)
        digits <- getdigits(sumsq)
     }
  }
  happy

} </lang> Example usage <lang R> is.happy(2) </lang>

[1] FALSE
attr(,"cycle")
[1]   4  16  37  58  89 145  42  20

<lang R>

  1. Find happy numbers between 1 and 50

which(apply(rbind(1:50), 2, is.happy)) </lang>

1  7 10 13 19 23 28 31 32 44 49

<lang R>

  1. Find the first 8 happy numbers

happies <- c() i <- 1L while(length(happies) < 8L) {

  if(is.happy(i)) happies <- c(happies, i)
  i <- i + 1L

} happies </lang>

1  7 10 13 19 23 28 31

Ruby

Use of cache from Python <lang ruby>def happy?(n)

 seen = []
 state = while n>1 and not seen.include?(n)
   if    $happy_cache[:happy].include?(n): break :happy
   elsif $happy_cache[:sad].include?(n):   break :sad
   end 
   seen << n
   n = sum_of_squares_of_digits(n)
 end
 state.nil? and state = n == 1 ? :happy : :sad
 $happy_cache[state] += seen
 state == :happy 

end

def sum_of_squares_of_digits(n)

 sum = 0
 while n != 0
   n, d = n.divmod(10)
   sum += d**2
 end
 # or
 # sum = n.to_s.each_char.inject(0) {|sum,c| sum += (c.to_i)**2} 
 sum

end

$happy_cache = Hash.new([]) happy_numbers = [] i = 1 while happy_numbers.length < 8

 happy_numbers << i if happy? i
 i += 1

end p happy_numbers p $happy_cache</lang>

[1, 7, 10, 13, 19, 23, 28, 31]
{:happy=>[7, 49, 97, 130, 10, 13, 19, 82, 68, 100, 23, 28, 31],
 :sad=>[2, 4, 16, 37, 58, 89, 145, 42, 20, 3, 9, 81, 65, 61, 5, 25, 29, 85, 6, 36, 45, 41, 17, 50, 8, 64, 52, 11, 12, 14, 15, 26, 40, 18, 21, 22, 24, 27, 53, 34, 30]}

Smalltalk

Works with: GNU Smalltalk
Translation of: Python

In addition to the "Python's cache mechanism", the use of a Bag assures that found e.g. the happy 190, we already have in cache also the happy 910 and 109, and so on. <lang smalltalk>Object subclass: HappyNumber [

 |cache negativeCache|
 HappyNumber class >> new [ |me|
   me := super new.
   ^ me init
 ]
 init [ cache := Set new. negativeCache := Set new. ]
 hasSad: aNum [
   ^ (negativeCache includes: (self recycle: aNum))
 ]
 hasHappy: aNum [
   ^ (cache includes: (self recycle: aNum))
 ]
 addHappy: aNum [
   cache add: (self recycle: aNum)
 ]
 addSad: aNum [
   negativeCache add: (self recycle: aNum)
 ]
 recycle: aNum [ |r n| r := Bag new.
   n := aNum.
   [ n > 0 ]
   whileTrue: [ |d|
     d := n rem: 10.
     r add: d.
     n := n // 10.
   ].
   ^r
 ]
 isHappy: aNumber [ |cycle number newnumber|
   number := aNumber.
   cycle := Set new.
   [ (number ~= 1) & ( (cycle includes: number) not ) ]
   whileTrue: [
     (self hasHappy: number)
     ifTrue: [ ^true ]
     ifFalse: [
       (self hasSad: number) ifTrue: [ ^false ].
       cycle add: number.
       newnumber := 0.
       [ number > 0 ]
       whileTrue: [ |digit|
         digit := number rem: 10.
         newnumber := newnumber + (digit * digit).
	  number := (number - digit) // 10.
       ].
       number := newnumber.
     ]
   ].
   (number = 1)
   ifTrue: [
     cycle do: [ :e | self addHappy: e ].
     ^true
   ]
   ifFalse: [ 
     cycle do: [ :e | self addSad: e ].
     ^false 
   ]
 ]

].</lang>

<lang smalltalk>|happy| happy := HappyNumber new.

1 to: 30 do: [ :i |

 (happy isHappy: i)
 ifTrue: [ i displayNl ]

].</lang>

Tcl

using code from Sum of squares#Tcl <lang tcl>proc is_happy n {

   set seen [list]
   while {$n > 1 && [lsearch -exact $seen $n] == -1} {
       lappend seen $n
       set n [sum_of_squares [split $n ""]]
   }
   return [expr {$n == 1}]

}

set happy [list] set n -1 while {[llength $happy] < 8} {

   if {[is_happy $n]} {lappend happy $n}
   incr n

} puts "the first 8 happy numbers are: [list $happy]"</lang>

the first 8 happy numbers are: {1 7 10 13 19 23 28 31}

Ursala

The happy function is a predicate testing whether a given number is happy, and first(p) defines a function mapping a number n to the first n positive naturals having property p. <lang Ursala>#import std

  1. import nat

happy = ==1+ ^== sum:-0+ product*iip+ %np*hiNCNCS+ %nP

first "p" = ~&i&& iota; ~&lrtPX/&; leql@lrPrX->lrx ^|\~& ^/successor@l ^|T\~& "p"&& ~&iNC

  1. cast %nL

main = (first happy) 8</lang> output:

<1,7,10,13,19,23,28,31>