Gray code: Difference between revisions

145,045 bytes added ,  1 month ago
Added Modula-2.
(→‎{{header|Groovy}}: new solution)
(Added Modula-2.)
 
(200 intermediate revisions by 90 users not shown)
Line 1:
{{task}}[[wp:Gray code|Gray code]] is a form of binary encoding where transitions between consecutive numbers differ by only one bit. This is a useful encoding for reducing hardware data hazards with values that change rapidly and/or connect to slower hardware as inputs. It is also useful for generating inputs for [[wp:Karnaugh map|Karnaugh maps]] in order from left to right or top to bottom.
 
Create functions to encode a number to and decode a number from Gray code. Display the normal binary representations, Gray code representations, and decoded Gray code values for all 5-bit binary numbers (0-31 inclusive, leading 0's not necessary).
 
Display the normal binary representations, Gray code representations, and decoded Gray code values for all 5-bit binary numbers (0-31 inclusive, leading 0's not necessary).
There are many possible Gray codes. The following encodes what is called "binary reflected Gray code."
 
There are many possible Gray codes. The following encodes what is called "binary reflected Gray code."
 
Encoding (MSB is bit 0, b is binary, g is Gray code):
 
<pre>if b[i-1] = 1
g[i] = not b[i]
else
g[i] = b[i]</pre>
 
Or:
 
<pre>g = b xor (b logically right shifted 1 time)</pre>
 
Decoding (MSB is bit 0, b is binary, g is Gray code):
 
<pre>b[0] = g[0]
 
Line 20 ⟶ 27:
;Reference
* [http://www.wisc-online.com/Objects/ViewObject.aspx?ID=IAU8307 Converting Between Gray and Binary Codes]. It includes step-by-step animations.
 
=={{header|11l}}==
{{trans|Python: on integers}}
 
<syntaxhighlight lang="11l">F gray_encode(n)
R n (+) n >> 1
 
F gray_decode(=n)
V m = n >> 1
L m != 0
n (+)= m
m >>= 1
R n
 
print(‘DEC, BIN => GRAY => DEC’)
L(i) 32
V gray = gray_encode(i)
V dec = gray_decode(gray)
print(‘ #2, #. => #. => #2’.format(i, bin(i).zfill(5), bin(gray).zfill(5), dec))</syntaxhighlight>
 
{{out}}
<pre>
DEC, BIN => GRAY => DEC
0, 00000 => 00000 => 0
1, 00001 => 00001 => 1
2, 00010 => 00011 => 2
3, 00011 => 00010 => 3
4, 00100 => 00110 => 4
5, 00101 => 00111 => 5
6, 00110 => 00101 => 6
7, 00111 => 00100 => 7
8, 01000 => 01100 => 8
9, 01001 => 01101 => 9
10, 01010 => 01111 => 10
11, 01011 => 01110 => 11
12, 01100 => 01010 => 12
13, 01101 => 01011 => 13
14, 01110 => 01001 => 14
15, 01111 => 01000 => 15
16, 10000 => 11000 => 16
17, 10001 => 11001 => 17
18, 10010 => 11011 => 18
19, 10011 => 11010 => 19
20, 10100 => 11110 => 20
21, 10101 => 11111 => 21
22, 10110 => 11101 => 22
23, 10111 => 11100 => 23
24, 11000 => 10100 => 24
25, 11001 => 10101 => 25
26, 11010 => 10111 => 26
27, 11011 => 10110 => 27
28, 11100 => 10010 => 28
29, 11101 => 10011 => 29
30, 11110 => 10001 => 30
31, 11111 => 10000 => 31
</pre>
 
=={{header|8080 Assembly}}==
 
 
<syntaxhighlight lang="8080asm"> org 100h
xra a ; set A=0
loop: push psw ; print number as decimal
call decout
call padding ; print padding
pop psw
push psw
call binout ; print number as binary
call padding
pop psw
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov b,a ; gray encode
ana a ; clear carry
rar ; shift right
xra b ; xor the original
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
push psw
call binout ; print gray number as binary
call padding
pop psw
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov b,a ; gray decode
decode: ana a ; clear carry
jz done ; when no more bits are left, stop
rar ; shift right
mov c,a ; keep that value
xra b ; xor into output value
mov b,a ; that is the output value
mov a,c ; restore intermediate
jmp decode ; do next bit
done: mov a,b ; give output value
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
push psw
call binout ; print decoded number as binary
call padding
pop psw
push psw
call decout ; print decoded number as decimal
lxi d,nl
call strout
pop psw
inr a ; next number
ani 1fh ; are we there yet?
jnz loop ; if not, do next number
ret
;; Print A as two-digit number
decout: mvi c,10
call dgtout
mvi c,1
dgtout: mvi e,'0' - 1
dgtloop: inr e
sub c
jnc dgtloop
add c
push psw
mvi c,2
call 5
pop psw
ret
;; Print A as five-bit binary number
binout: ani 1fh
ral
ral
ral
mvi c,5
binloop: ral
push psw
push b
mvi c,2
mvi a,0
aci '0'
mov e,a
call 5
pop b
pop psw
dcr c
jnz binloop
ret
;; Print padding
padding: lxi d,arrow
strout: mvi c,9
jmp 5
arrow: db ' ==> $'
nl: db 13,10,'$'</syntaxhighlight>
 
{{out}}
 
<pre>
00 ==> 00000 ==> 00000 ==> 00000 ==> 00
01 ==> 00001 ==> 00001 ==> 00001 ==> 01
02 ==> 00010 ==> 00011 ==> 00010 ==> 02
03 ==> 00011 ==> 00010 ==> 00011 ==> 03
04 ==> 00100 ==> 00110 ==> 00100 ==> 04
05 ==> 00101 ==> 00111 ==> 00101 ==> 05
06 ==> 00110 ==> 00101 ==> 00110 ==> 06
07 ==> 00111 ==> 00100 ==> 00111 ==> 07
08 ==> 01000 ==> 01100 ==> 01000 ==> 08
09 ==> 01001 ==> 01101 ==> 01001 ==> 09
10 ==> 01010 ==> 01111 ==> 01010 ==> 10
11 ==> 01011 ==> 01110 ==> 01011 ==> 11
12 ==> 01100 ==> 01010 ==> 01100 ==> 12
13 ==> 01101 ==> 01011 ==> 01101 ==> 13
14 ==> 01110 ==> 01001 ==> 01110 ==> 14
15 ==> 01111 ==> 01000 ==> 01111 ==> 15
16 ==> 10000 ==> 11000 ==> 10000 ==> 16
17 ==> 10001 ==> 11001 ==> 10001 ==> 17
18 ==> 10010 ==> 11011 ==> 10010 ==> 18
19 ==> 10011 ==> 11010 ==> 10011 ==> 19
20 ==> 10100 ==> 11110 ==> 10100 ==> 20
21 ==> 10101 ==> 11111 ==> 10101 ==> 21
22 ==> 10110 ==> 11101 ==> 10110 ==> 22
23 ==> 10111 ==> 11100 ==> 10111 ==> 23
24 ==> 11000 ==> 10100 ==> 11000 ==> 24
25 ==> 11001 ==> 10101 ==> 11001 ==> 25
26 ==> 11010 ==> 10111 ==> 11010 ==> 26
27 ==> 11011 ==> 10110 ==> 11011 ==> 27
28 ==> 11100 ==> 10010 ==> 11100 ==> 28
29 ==> 11101 ==> 10011 ==> 11101 ==> 29
30 ==> 11110 ==> 10001 ==> 11110 ==> 30
31 ==> 11111 ==> 10000 ==> 11111 ==> 31
</pre>
 
=={{header|8051 Assembly}}==
 
<syntaxhighlight lang="8051asm">
.equ cin, 0x0032
.equ cout, 0x0030
.equ phex, 0x0034
.equ phex16, 0x0036
.equ nl, 0x0048
 
.org 0x2000
 
main:
mov r7, #0
next:
mov a, r7
lcall phex
mov a, #' '
lcall cout
mov a, r7
acall genc
lcall phex
mov r6, a
mov a, #' '
lcall cout
mov a, r6
acall gdec
lcall phex
lcall nl
inc r7
cjne r7, #0, next
lcall cin
ljmp 0x0000
;--------
genc:
mov r0, a
clr c
rrc a
xrl a, r0
ret
;--------
 
;--------
gdec:
mov r0, a
gdec_shift_xor:
clr c
rrc a
jz gdec_out
xch a, r0
xrl a, r0
xch a, r0
sjmp gdec_shift_xor
gdec_out:
xch a, r0
ret
;--------
</syntaxhighlight>
 
{{out}}
<pre>
00 00 00
01 01 01
02 03 02
03 02 03
04 06 04
05 07 05
06 05 06
07 04 07
08 0C 08
09 0D 09
0A 0F 0A
0B 0E 0B
0C 0A 0C
0D 0B 0D
0E 09 0E
0F 08 0F
10 18 10
11 19 11
12 1B 12
13 1A 13
14 1E 14
15 1F 15
16 1D 16
17 1C 17
18 14 18
19 15 19
1A 17 1A
1B 16 1B
1C 12 1C
1D 13 1D
1E 11 1E
1F 10 1F
20 30 20
21 31 21
22 33 22
23 32 23
24 36 24
25 37 25
26 35 26
27 34 27
28 3C 28
29 3D 29
2A 3F 2A
2B 3E 2B
2C 3A 2C
2D 3B 2D
2E 39 2E
2F 38 2F
30 28 30
31 29 31
32 2B 32
33 2A 33
34 2E 34
35 2F 35
36 2D 36
37 2C 37
38 24 38
39 25 39
3A 27 3A
3B 26 3B
3C 22 3C
3D 23 3D
3E 21 3E
3F 20 3F
40 60 40
41 61 41
42 63 42
43 62 43
44 66 44
45 67 45
46 65 46
47 64 47
48 6C 48
49 6D 49
4A 6F 4A
4B 6E 4B
4C 6A 4C
4D 6B 4D
4E 69 4E
4F 68 4F
50 78 50
51 79 51
52 7B 52
53 7A 53
54 7E 54
55 7F 55
56 7D 56
57 7C 57
58 74 58
59 75 59
5A 77 5A
5B 76 5B
5C 72 5C
5D 73 5D
5E 71 5E
5F 70 5F
60 50 60
61 51 61
62 53 62
63 52 63
64 56 64
65 57 65
66 55 66
67 54 67
68 5C 68
69 5D 69
6A 5F 6A
6B 5E 6B
6C 5A 6C
6D 5B 6D
6E 59 6E
6F 58 6F
70 48 70
71 49 71
72 4B 72
73 4A 73
74 4E 74
75 4F 75
76 4D 76
77 4C 77
78 44 78
79 45 79
7A 47 7A
7B 46 7B
7C 42 7C
7D 43 7D
7E 41 7E
7F 40 7F
80 C0 80
81 C1 81
82 C3 82
83 C2 83
84 C6 84
85 C7 85
86 C5 86
87 C4 87
88 CC 88
89 CD 89
8A CF 8A
8B CE 8B
8C CA 8C
8D CB 8D
8E C9 8E
8F C8 8F
90 D8 90
91 D9 91
92 DB 92
93 DA 93
94 DE 94
95 DF 95
96 DD 96
97 DC 97
98 D4 98
99 D5 99
9A D7 9A
9B D6 9B
9C D2 9C
9D D3 9D
9E D1 9E
9F D0 9F
A0 F0 A0
A1 F1 A1
A2 F3 A2
A3 F2 A3
A4 F6 A4
A5 F7 A5
A6 F5 A6
A7 F4 A7
A8 FC A8
A9 FD A9
AA FF AA
AB FE AB
AC FA AC
AD FB AD
AE F9 AE
AF F8 AF
B0 E8 B0
B1 E9 B1
B2 EB B2
B3 EA B3
B4 EE B4
B5 EF B5
B6 ED B6
B7 EC B7
B8 E4 B8
B9 E5 B9
BA E7 BA
BB E6 BB
BC E2 BC
BD E3 BD
BE E1 BE
BF E0 BF
C0 A0 C0
C1 A1 C1
C2 A3 C2
C3 A2 C3
C4 A6 C4
C5 A7 C5
C6 A5 C6
C7 A4 C7
C8 AC C8
C9 AD C9
CA AF CA
CB AE CB
CC AA CC
CD AB CD
CE A9 CE
CF A8 CF
D0 B8 D0
D1 B9 D1
D2 BB D2
D3 BA D3
D4 BE D4
D5 BF D5
D6 BD D6
D7 BC D7
D8 B4 D8
D9 B5 D9
DA B7 DA
DB B6 DB
DC B2 DC
DD B3 DD
DE B1 DE
DF B0 DF
E0 90 E0
E1 91 E1
E2 93 E2
E3 92 E3
E4 96 E4
E5 97 E5
E6 95 E6
E7 94 E7
E8 9C E8
E9 9D E9
EA 9F EA
EB 9E EB
EC 9A EC
ED 9B ED
EE 99 EE
EF 98 EF
F0 88 F0
F1 89 F1
F2 8B F2
F3 8A F3
F4 8E F4
F5 8F F5
F6 8D F6
F7 8C F7
F8 84 F8
F9 85 F9
FA 87 FA
FB 86 FB
FC 82 FC
FD 83 FD
FE 81 FE
FF 80 FF
</pre>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC ToBinaryStr(BYTE n CHAR ARRAY s)
BYTE i
 
s(0)=8 i=8
SetBlock(s+1,8,'0)
WHILE n
DO
s(i)=(n&1)+'0
n==RSH 1
i==-1
OD
RETURN
 
PROC PrintB2(BYTE n)
IF n<10 THEN Put(32) FI
PrintB(n)
RETURN
 
PROC PrintBin5(BYTE n)
CHAR ARRAY s(9),sub(6)
 
ToBinaryStr(n,s)
SCopyS(sub,s,4,s(0))
Print(sub)
RETURN
 
BYTE FUNC Encode(BYTE n)
RETURN (n XOR (n RSH 1))
 
BYTE FUNC Decode(BYTE n)
BYTE res
res=n
DO
n==RSH 1
IF n THEN
res==XOR n
ELSE
EXIT
FI
OD
RETURN (res)
 
PROC Main()
BYTE i,g,b
CHAR ARRAY sep=" -> "
 
FOR i=0 TO 31
DO
PrintB2(i) Print(sep)
PrintBin5(i) Print(sep)
g=Encode(i)
PrintBin5(g) Print(sep)
b=Decode(g)
PrintBin5(b) Print(sep)
PrintB2(b) PutE()
OD
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Gray_code.png Screenshot from Atari 8-bit computer]
<pre>
0 -> 00000 -> 00000 -> 00000 -> 0
1 -> 00001 -> 00001 -> 00001 -> 1
2 -> 00010 -> 00011 -> 00010 -> 2
3 -> 00011 -> 00010 -> 00011 -> 3
4 -> 00100 -> 00110 -> 00100 -> 4
5 -> 00101 -> 00111 -> 00101 -> 5
6 -> 00110 -> 00101 -> 00110 -> 6
7 -> 00111 -> 00100 -> 00111 -> 7
8 -> 01000 -> 01100 -> 01000 -> 8
9 -> 01001 -> 01101 -> 01001 -> 9
10 -> 01010 -> 01111 -> 01010 -> 10
11 -> 01011 -> 01110 -> 01011 -> 11
12 -> 01100 -> 01010 -> 01100 -> 12
13 -> 01101 -> 01011 -> 01101 -> 13
14 -> 01110 -> 01001 -> 01110 -> 14
15 -> 01111 -> 01000 -> 01111 -> 15
16 -> 10000 -> 11000 -> 10000 -> 16
17 -> 10001 -> 11001 -> 10001 -> 17
18 -> 10010 -> 11011 -> 10010 -> 18
19 -> 10011 -> 11010 -> 10011 -> 19
20 -> 10100 -> 11110 -> 10100 -> 20
21 -> 10101 -> 11111 -> 10101 -> 21
22 -> 10110 -> 11101 -> 10110 -> 22
23 -> 10111 -> 11100 -> 10111 -> 23
24 -> 11000 -> 10100 -> 11000 -> 24
25 -> 11001 -> 10101 -> 11001 -> 25
26 -> 11010 -> 10111 -> 11010 -> 26
27 -> 11011 -> 10110 -> 11011 -> 27
28 -> 11100 -> 10010 -> 11100 -> 28
29 -> 11101 -> 10011 -> 11101 -> 29
30 -> 11110 -> 10001 -> 11110 -> 30
31 -> 11111 -> 10000 -> 11111 -> 31
</pre>
 
=={{header|Ada}}==
Demonstrates the use of shift operators. Code scalable to 6, 7 or 8 bits. Values are implemented
Values are implemented with 8 bits according to representation clause of Unsigned_8 (check package Interfaces).
<langof Ada>withUnsigned_8 Ada.Text_IO,(check package Interfaces;).
<syntaxhighlight lang="ada">with Ada.Text_IO, Interfaces;
use Ada.Text_IO, Interfaces;
 
Line 70 ⟶ 684:
New_Line;
end loop;
end Gray;</langsyntaxhighlight>
Check compactness of assembly code generated by GNAT :http://pastebin.com/qtNjeQk9<br>
{{out}}
Output :
<pre style="overflow: auto; height: 5em20em;">Num Binary Gray decoded
0: 2#0# => 2#0# => 0
1: 2#1# => 2#1# => 1
Line 107 ⟶ 721:
31: 2#11111# => 2#10000# => 31</pre>
 
=={{header|BBC BASICAime}}==
{{trans|C}}
<syntaxhighlight lang="aime">integer
gray_encode(integer n)
{
n ^ (n >> 1);
}
 
integer
gray_decode(integer n)
{
integer p;
 
p = n;
while (n >>= 1) {
p ^= n;
}
 
p;
}</syntaxhighlight>
Demonstration code:
<syntaxhighlight lang="aime">integer
main(void)
{
integer i, g, b;
 
i = 0;
while (i < 32) {
g = gray_encode(i);
b = gray_decode(g);
o_winteger(2, i);
o_text(": ");
o_fxinteger(5, 2, i);
o_text(" => ");
o_fxinteger(5, 2, g);
o_text(" => ");
o_fxinteger(5, 2, b);
o_text(": ");
o_winteger(2, b);
o_byte('\n');
i += 1;
}
 
return 0;
}</syntaxhighlight>
{{out}}
<pre> 0: 00000 => 00000 => 00000: 0
1: 00001 => 00001 => 00001: 1
2: 00010 => 00011 => 00010: 2
3: 00011 => 00010 => 00011: 3
4: 00100 => 00110 => 00100: 4
5: 00101 => 00111 => 00101: 5
6: 00110 => 00101 => 00110: 6
7: 00111 => 00100 => 00111: 7
8: 01000 => 01100 => 01000: 8
9: 01001 => 01101 => 01001: 9
10: 01010 => 01111 => 01010: 10
11: 01011 => 01110 => 01011: 11
12: 01100 => 01010 => 01100: 12
13: 01101 => 01011 => 01101: 13
14: 01110 => 01001 => 01110: 14
15: 01111 => 01000 => 01111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31</pre>
 
=={{header|ALGOL 68}}==
In Algol 68 the BITS mode is specifically designed for manipulating machine words as a row of bits so it is natural to treat Gray encoded integers as values of MODE BITS. The standard operator BIN (INT) : BITS converts an INT value to a BITS value. The ABS (BITS) : INT operator performs the reverse conversion, though it has not been needed for this task. It is also natural in the language for simple operations on values to be implemented as operators, rather than as functions, as in the program below.
<syntaxhighlight lang="algol68">BEGIN
OP GRAY = (BITS b) BITS : b XOR (b SHR 1); CO Convert to Gray code CO
OP YARG = (BITS g) BITS : CO Convert from Gray code CO
BEGIN
BITS b := g, mask := g SHR 1;
WHILE mask /= 2r0 DO b := b XOR mask; mask := mask SHR 1 OD;
b
END;
FOR i FROM 0 TO 31 DO
printf (($zd, ": ", 2(2r5d, " >= "), 2r5dl$, i, BIN i, GRAY BIN i, YARG GRAY BIN i))
OD
END</syntaxhighlight>
{{out}}
<pre> 0: 00000 >= 00000 >= 00000
1: 00001 >= 00001 >= 00001
2: 00010 >= 00011 >= 00010
3: 00011 >= 00010 >= 00011
4: 00100 >= 00110 >= 00100
5: 00101 >= 00111 >= 00101
6: 00110 >= 00101 >= 00110
7: 00111 >= 00100 >= 00111
8: 01000 >= 01100 >= 01000
9: 01001 >= 01101 >= 01001
10: 01010 >= 01111 >= 01010
11: 01011 >= 01110 >= 01011
12: 01100 >= 01010 >= 01100
13: 01101 >= 01011 >= 01101
14: 01110 >= 01001 >= 01110
15: 01111 >= 01000 >= 01111
16: 10000 >= 11000 >= 10000
17: 10001 >= 11001 >= 10001
18: 10010 >= 11011 >= 10010
19: 10011 >= 11010 >= 10011
20: 10100 >= 11110 >= 10100
21: 10101 >= 11111 >= 10101
22: 10110 >= 11101 >= 10110
23: 10111 >= 11100 >= 10111
24: 11000 >= 10100 >= 11000
25: 11001 >= 10101 >= 11001
26: 11010 >= 10111 >= 11010
27: 11011 >= 10110 >= 11011
28: 11100 >= 10010 >= 11100
29: 11101 >= 10011 >= 11101
30: 11110 >= 10001 >= 11110
31: 11111 >= 10000 >= 11111
</pre>
 
=={{header|Amazing Hopper}}==
{{trans|C}}
Version: Hopper-BASIC.
<syntaxhighlight lang="amazing hopper">
#proto GrayEncode(_X_)
#synon _GrayEncode *getGrayEncode
#proto GrayDecode(_X_)
#synon _GrayDecode *getGrayDecode
 
#include <hbasic.h>
 
Begin
Gray=0
SizeBin(4) // size 5 bits: 0->4
Take (" # BINARY GRAY DECODE\n")
Take ("------------------------------\n"), and Print It
For Up( i := 0, 31, 1)
Print( LPad$(" ",2,Str$(i))," => ", Bin$(i)," => ")
get Gray Encode(i) and Copy to (Gray), get Binary; then Take(" => ")
now get Gray Decode( Gray ), get Binary, and Print It with a Newl
Next
End
 
Subrutines
 
Gray Encode(n)
Return (XorBit( RShift(1,n), n ))
Gray Decode(n)
p = n
While ( n )
n >>= 1
p != n
Wend
Return (p)
</syntaxhighlight>
{{out}}
<pre>
# BINARY GRAY DECODE
------------------------------
0 => 00000 => 00000 => 00000
1 => 00001 => 00001 => 00001
2 => 00010 => 00011 => 00010
3 => 00011 => 00010 => 00011
4 => 00100 => 00110 => 00100
5 => 00101 => 00111 => 00101
6 => 00110 => 00101 => 00110
7 => 00111 => 00100 => 00111
8 => 01000 => 01100 => 01000
9 => 01001 => 01101 => 01001
10 => 01010 => 01111 => 01010
11 => 01011 => 01110 => 01011
12 => 01100 => 01010 => 01100
13 => 01101 => 01011 => 01101
14 => 01110 => 01001 => 01110
15 => 01111 => 01000 => 01111
16 => 10000 => 11000 => 10000
17 => 10001 => 11001 => 10001
18 => 10010 => 11011 => 10010
19 => 10011 => 11010 => 10011
20 => 10100 => 11110 => 10100
21 => 10101 => 11111 => 10101
22 => 10110 => 11101 => 10110
23 => 10111 => 11100 => 10111
24 => 11000 => 10100 => 11000
25 => 11001 => 10101 => 11001
26 => 11010 => 10111 => 11010
27 => 11011 => 10110 => 11011
28 => 11100 => 10010 => 11100
29 => 11101 => 10011 => 11101
30 => 11110 => 10001 => 11110
31 => 11111 => 10000 => 11111
</pre>
=={{header|APL}}==
 
Generate the complete N-bit Gray sequence as a matrix:<sup>[http://ngn.github.io/apl/web/index.html#code=N%u21905%0A%28%7B%280%2C%u2375%29%u236A1%2C%u2296%u2375%7D%u2363N%29%281%200%u2374%u236C%29,run=1 run]</sup>
<syntaxhighlight lang="apl">N←5
({(0,⍵)⍪1,⊖⍵}⍣N)(1 0⍴⍬)</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 0 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 0 1
0 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 1 1 1 1
0 1 1 1 0
0 1 0 1 0
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1
1 1 0 1 1
1 1 0 1 0
1 1 1 1 0
1 1 1 1 1
1 1 1 0 1
1 1 1 0 0
1 0 1 0 0
1 0 1 0 1
1 0 1 1 1
1 0 1 1 0
1 0 0 1 0
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0</pre>
 
Encode and decode an individual integer:<sup>[http://ngn.github.io/apl/web/index.html#code=N%u21905%0AgrayEncode%u2190%7Ba%u2260N%u2191%280%2Ca%u2190%28N%u23742%29%u22A4%u2375%29%7D%0AgrayDecode%u2190%7B2%u22A5%u2260%u233FN%20N%u2191N%282%D7N%29%u2374%u2375%2C0%2CN%u23740%7D%0A%0AgrayEncode%2019,run=1 run]</sup>
<syntaxhighlight lang="apl">N←5
grayEncode←{a≠N↑(0,a←(N⍴2)⊤⍵)}
grayDecode←{2⊥≠⌿N N↑N(2×N)⍴⍵,0,N⍴0}
 
grayEncode 19</syntaxhighlight>
{{out}}
<pre>1 1 0 1 0</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">toGray: function [n]-> xor n shr n 1
fromGray: function [n][
p: n
while [n > 0][
n: shr n 1
p: xor p n
]
return p
]
 
loop 0..31 'num [
encoded: toGray num
decoded: fromGray encoded
 
print [
pad to :string num 2 ":"
pad as.binary num 5 "=>"
pad as.binary encoded 5 "=>"
pad as.binary decoded 5 ":"
pad to :string decoded 2
]
]</syntaxhighlight>
 
{{out}}
 
<pre> 0 : 0 => 0 => 0 : 0
1 : 1 => 1 => 1 : 1
2 : 10 => 11 => 10 : 2
3 : 11 => 10 => 11 : 3
4 : 100 => 110 => 100 : 4
5 : 101 => 111 => 101 : 5
6 : 110 => 101 => 110 : 6
7 : 111 => 100 => 111 : 7
8 : 1000 => 1100 => 1000 : 8
9 : 1001 => 1101 => 1001 : 9
10 : 1010 => 1111 => 1010 : 10
11 : 1011 => 1110 => 1011 : 11
12 : 1100 => 1010 => 1100 : 12
13 : 1101 => 1011 => 1101 : 13
14 : 1110 => 1001 => 1110 : 14
15 : 1111 => 1000 => 1111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31 </pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="ahk">gray_encode(n){
return n ^ (n >> 1)
}
 
gray_decode(n){
p := n
while (n >>= 1)
p ^= n
return p
}
 
BinString(n){
Loop 5
If ( n & ( 1 << (A_Index-1) ) )
o := "1" . o
else o := "0" . o
return o
}
 
Loop 32
n:=A_Index-1, out .= n " : " BinString(n) " => " BinString(e:=gray_encode(n))
. " => " BinString(gray_decode(e)) " => " BinString(n) "`n"
MsgBox % clipboard := out</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">0 : 00000 => 00000 => 00000 => 00000
1 : 00001 => 00001 => 00001 => 00001
2 : 00010 => 00011 => 00010 => 00010
3 : 00011 => 00010 => 00011 => 00011
4 : 00100 => 00110 => 00100 => 00100
5 : 00101 => 00111 => 00101 => 00101
6 : 00110 => 00101 => 00110 => 00110
7 : 00111 => 00100 => 00111 => 00111
8 : 01000 => 01100 => 01000 => 01000
9 : 01001 => 01101 => 01001 => 01001
10 : 01010 => 01111 => 01010 => 01010
11 : 01011 => 01110 => 01011 => 01011
12 : 01100 => 01010 => 01100 => 01100
13 : 01101 => 01011 => 01101 => 01101
14 : 01110 => 01001 => 01110 => 01110
15 : 01111 => 01000 => 01111 => 01111
16 : 10000 => 11000 => 10000 => 10000
17 : 10001 => 11001 => 10001 => 10001
18 : 10010 => 11011 => 10010 => 10010
19 : 10011 => 11010 => 10011 => 10011
20 : 10100 => 11110 => 10100 => 10100
21 : 10101 => 11111 => 10101 => 10101
22 : 10110 => 11101 => 10110 => 10110
23 : 10111 => 11100 => 10111 => 10111
24 : 11000 => 10100 => 11000 => 11000
25 : 11001 => 10101 => 11001 => 11001
26 : 11010 => 10111 => 11010 => 11010
27 : 11011 => 10110 => 11011 => 11011
28 : 11100 => 10010 => 11100 => 11100
29 : 11101 => 10011 => 11101 => 11101
30 : 11110 => 10001 => 11110 => 11110
31 : 11111 => 10000 => 11111 => 11111</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk"># Tested using GAWK
 
function bits2str(bits, data, mask)
{
# Source: https://www.gnu.org/software/gawk/manual/html_node/Bitwise-Functions.html
if (bits == 0)
return "0"
 
mask = 1
for (; bits != 0; bits = rshift(bits, 1))
data = (and(bits, mask) ? "1" : "0") data
 
while ((length(data) % 8) != 0)
data = "0" data
 
return data
}
 
function gray_encode(n){
# Source: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code
return xor(n,rshift(n,1))
}
 
function gray_decode(n){
# Source: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code
mask = rshift(n,1)
while(mask != 0){
n = xor(n,mask)
mask = rshift(mask,1)
}
return n
}
 
BEGIN{
for (i=0; i < 32; i++)
printf "%-3s => %05d => %05d => %05d\n",i, bits2str(i),bits2str(gray_encode(i)), bits2str(gray_decode(gray_encode(i)))
}</syntaxhighlight>
{{out}}
<pre>0 => 00000 => 00000 => 00000
1 => 00001 => 00001 => 00001
2 => 00010 => 00011 => 00010
3 => 00011 => 00010 => 00011
4 => 00100 => 00110 => 00100
5 => 00101 => 00111 => 00101
6 => 00110 => 00101 => 00110
7 => 00111 => 00100 => 00111
8 => 01000 => 01100 => 01000
9 => 01001 => 01101 => 01001
10 => 01010 => 01111 => 01010
11 => 01011 => 01110 => 01011
12 => 01100 => 01010 => 01100
13 => 01101 => 01011 => 01101
14 => 01110 => 01001 => 01110
15 => 01111 => 01000 => 01111
16 => 10000 => 11000 => 10000
17 => 10001 => 11001 => 10001
18 => 10010 => 11011 => 10010
19 => 10011 => 11010 => 10011
20 => 10100 => 11110 => 10100
21 => 10101 => 11111 => 10101
22 => 10110 => 11101 => 10110
23 => 10111 => 11100 => 10111
24 => 11000 => 10100 => 11000
25 => 11001 => 10101 => 11001
26 => 11010 => 10111 => 11010
27 => 11011 => 10110 => 11011
28 => 11100 => 10010 => 11100
29 => 11101 => 10011 => 11101
30 => 11110 => 10001 => 11110
31 => 11111 => 10000 => 11111</pre>
 
=={{header|BASIC}}==
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> INSTALL @lib$+"STRINGLIB"
PRINT " Decimal Binary Gray Decoded"
Line 123 ⟶ 1,177:
DEF FNgraydecode(G%) : LOCAL B%
REPEAT B% EOR= G% : G% = G% >>> 1 : UNTIL G% = 0
= B%</langsyntaxhighlight>
 
==={{header|FreeBASIC}}===
<syntaxhighlight lang="freebasic">' version 18-01-2017
' compile with: fbc -s console
 
Function gray2bin(g As UInteger) As UInteger
Dim As UInteger b = g
While g
g Shr= 1
b Xor= g
Wend
Return b
End Function
 
Function bin2gray(b As UInteger) As UInteger
Return b Xor (b Shr 1)
End Function
 
' ------=< MAIN >=------
 
Dim As UInteger i
Print " i binary gray gra2bin"
Print String(32,"=")
For i = 0 To 31
Print Using "## --> "; i;
print Bin(i,5); " --> ";
Print Bin(bin2gray(i),5); " --> ";
Print Bin(gray2bin(bin2gray(i)),5)
Next
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre> i binary gray gra2bin
================================
0 --> 00000 --> 00000 --> 00000
1 --> 00001 --> 00001 --> 00001
2 --> 00010 --> 00011 --> 00010
3 --> 00011 --> 00010 --> 00011
4 --> 00100 --> 00110 --> 00100
5 --> 00101 --> 00111 --> 00101
6 --> 00110 --> 00101 --> 00110
7 --> 00111 --> 00100 --> 00111
8 --> 01000 --> 01100 --> 01000
9 --> 01001 --> 01101 --> 01001
10 --> 01010 --> 01111 --> 01010
11 --> 01011 --> 01110 --> 01011
12 --> 01100 --> 01010 --> 01100
13 --> 01101 --> 01011 --> 01101
14 --> 01110 --> 01001 --> 01110
15 --> 01111 --> 01000 --> 01111
16 --> 10000 --> 11000 --> 10000
17 --> 10001 --> 11001 --> 10001
18 --> 10010 --> 11011 --> 10010
19 --> 10011 --> 11010 --> 10011
20 --> 10100 --> 11110 --> 10100
21 --> 10101 --> 11111 --> 10101
22 --> 10110 --> 11101 --> 10110
23 --> 10111 --> 11100 --> 10111
24 --> 11000 --> 10100 --> 11000
25 --> 11001 --> 10101 --> 11001
26 --> 11010 --> 10111 --> 11010
27 --> 11011 --> 10110 --> 11011
28 --> 11100 --> 10010 --> 11100
29 --> 11101 --> 10011 --> 11101
30 --> 11110 --> 10001 --> 11110
31 --> 11111 --> 10000 --> 11111</pre>
 
==={{header|GW-BASIC}}===
{{works with|BASICA}}
<syntaxhighlight lang="basic">10 DEFINT A-Z
20 FOR I=0 TO 31
30 N=I:GOSUB 200:E=R:REM Encode
40 N=E:GOSUB 300:D=R:REM Decode
50 N=I:GOSUB 400:I$=R$:REM Binary format of input
60 N=E:GOSUB 400:E$=R$:REM Binary format of encoded value
70 N=D:GOSUB 400:D$=R$:REM Binary format of decoded value
80 PRINT USING "##: \ \ => \ \ => \ \ => ##";I;I$;E$;D$;D
90 NEXT
100 END
200 REM Gray encode
210 R = N XOR N\2
220 RETURN
300 REM Gray decode
310 R = N
320 N = N\2
330 IF N=0 THEN RETURN
340 R = R XOR N
350 GOTO 320
400 REM Binary format
410 R$ = ""
420 R$ = CHR$(48+(N AND 1))+R$
430 N = N\2
440 IF N=0 THEN RETURN ELSE 420</syntaxhighlight>
{{out}}
<pre> 0: 0 => 0 => 0 => 0
1: 1 => 1 => 1 => 1
2: 10 => 11 => 10 => 2
3: 11 => 10 => 11 => 3
4: 100 => 110 => 100 => 4
5: 101 => 111 => 101 => 5
6: 110 => 101 => 110 => 6
7: 111 => 100 => 111 => 7
8: 1000 => 1100 => 1000 => 8
9: 1001 => 1101 => 1001 => 9
10: 1010 => 1111 => 1010 => 10
11: 1011 => 1110 => 1011 => 11
12: 1100 => 1010 => 1100 => 12
13: 1101 => 1011 => 1101 => 13
14: 1110 => 1001 => 1110 => 14
15: 1111 => 1000 => 1111 => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31</pre>
 
==={{header|Liberty BASIC}}===
{{works with|Just BASIC}}
<syntaxhighlight lang="lb">
for r =0 to 31
print " Decimal "; using( "###", r); " is ";
B$ =dec2Bin$( r)
print " binary "; B$; ". Binary "; B$;
G$ =Bin2Gray$( dec2Bin$( r))
print " is "; G$; " in Gray code, or ";
B$ =Gray2Bin$( G$)
print B$; " in pure binary."
next r
end
 
function Bin2Gray$( bin$) ' Given a binary number as a string, returns Gray code as a string.
g$ =left$( bin$, 1)
for i =2 to len( bin$)
bitA =val( mid$( bin$, i -1, 1))
bitB =val( mid$( bin$, i, 1))
AXorB =bitA xor bitB
g$ =g$ +str$( AXorB)
next i
Bin2Gray$ =g$
end function
 
function Gray2Bin$( g$) ' Given a Gray code as a string, returns equivalent binary num.
' as a string
gl =len( g$)
b$ =left$( g$, 1)
for i =2 to len( g$)
bitA =val( mid$( b$, i -1, 1))
bitB =val( mid$( g$, i, 1))
AXorB =bitA xor bitB
b$ =b$ +str$( AXorB)
next i
Gray2Bin$ =right$( b$, gl)
end function
 
function dec2Bin$( num) ' Given an integer decimal, returns binary equivalent as a string
n =num
dec2Bin$ =""
while ( num >0)
dec2Bin$ =str$( num mod 2) +dec2Bin$
num =int( num /2)
wend
if ( n >255) then nBits =16 else nBits =8
dec2Bin$ =right$( "0000000000000000" +dec2Bin$, nBits) ' Pad to 8 bit or 16 bit
end function
 
function bin2Dec( b$) ' Given a binary number as a string, returns decimal equivalent num.
t =0
d =len( b$)
for k =d to 1 step -1
t =t +val( mid$( b$, k, 1)) *2^( d -k)
next k
bin2Dec =t
end function
</syntaxhighlight>
{{out}}
<pre>
Decimal 0 is binary 00000000. Binary 00000000 is 00000000 in Gray code, or 00000000 in pure binary.
Decimal 1 is binary 00000001. Binary 00000001 is 00000001 in Gray code, or 00000001 in pure binary.
Decimal 2 is binary 00000010. Binary 00000010 is 00000011 in Gray code, or 00000010 in pure binary.
Decimal 3 is binary 00000011. Binary 00000011 is 00000010 in Gray code, or 00000011 in pure binary.
Decimal 4 is binary 00000100. Binary 00000100 is 00000110 in Gray code, or 00000100 in pure binary.
Decimal 5 is binary 00000101. Binary 00000101 is 00000111 in Gray code, or 00000101 in pure binary.
Decimal 6 is binary 00000110. Binary 00000110 is 00000101 in Gray code, or 00000110 in pure binary.
Decimal 7 is binary 00000111. Binary 00000111 is 00000100 in Gray code, or 00000111 in pure binary.
Decimal 8 is binary 00001000. Binary 00001000 is 00001100 in Gray code, or 00001000 in pure binary.
Decimal 9 is binary 00001001. Binary 00001001 is 00001101 in Gray code, or 00001001 in pure binary.
Decimal 10 is binary 00001010. Binary 00001010 is 00001111 in Gray code, or 00001010 in pure binary.
Decimal 11 is binary 00001011. Binary 00001011 is 00001110 in Gray code, or 00001011 in pure binary.
Decimal 12 is binary 00001100. Binary 00001100 is 00001010 in Gray code, or 00001100 in pure binary.
Decimal 13 is binary 00001101. Binary 00001101 is 00001011 in Gray code, or 00001101 in pure binary.
Decimal 14 is binary 00001110. Binary 00001110 is 00001001 in Gray code, or 00001110 in pure binary.
Decimal 15 is binary 00001111. Binary 00001111 is 00001000 in Gray code, or 00001111 in pure binary.
Decimal 16 is binary 00010000. Binary 00010000 is 00011000 in Gray code, or 00010000 in pure binary.
Decimal 17 is binary 00010001. Binary 00010001 is 00011001 in Gray code, or 00010001 in pure binary.
Decimal 18 is binary 00010010. Binary 00010010 is 00011011 in Gray code, or 00010010 in pure binary.
Decimal 19 is binary 00010011. Binary 00010011 is 00011010 in Gray code, or 00010011 in pure binary.
Decimal 20 is binary 00010100. Binary 00010100 is 00011110 in Gray code, or 00010100 in pure binary.
Decimal 21 is binary 00010101. Binary 00010101 is 00011111 in Gray code, or 00010101 in pure binary.
Decimal 22 is binary 00010110. Binary 00010110 is 00011101 in Gray code, or 00010110 in pure binary.
Decimal 23 is binary 00010111. Binary 00010111 is 00011100 in Gray code, or 00010111 in pure binary.
Decimal 24 is binary 00011000. Binary 00011000 is 00010100 in Gray code, or 00011000 in pure binary.
Decimal 25 is binary 00011001. Binary 00011001 is 00010101 in Gray code, or 00011001 in pure binary.
Decimal 26 is binary 00011010. Binary 00011010 is 00010111 in Gray code, or 00011010 in pure binary.
Decimal 27 is binary 00011011. Binary 00011011 is 00010110 in Gray code, or 00011011 in pure binary.
Decimal 28 is binary 00011100. Binary 00011100 is 00010010 in Gray code, or 00011100 in pure binary.
Decimal 29 is binary 00011101. Binary 00011101 is 00010011 in Gray code, or 00011101 in pure binary.
Decimal 30 is binary 00011110. Binary 00011110 is 00010001 in Gray code, or 00011110 in pure binary.
Decimal 31 is binary 00011111. Binary 00011111 is 00010000 in Gray code, or 00011111 in pure binary.
</pre>
 
==={{header|PowerBASIC}}===
<syntaxhighlight lang="powerbasic">function gray%(byval n%)
gray%=n% xor (n%\2)
end function
 
function igray%(byval n%)
r%=0
while n%>0
r%=r% xor n%
shift right n%,1
wend
igray%=r%
end function
 
print " N GRAY INV"
for n%=0 to 31
g%=gray%(n%)
print bin$(n%);" ";bin$(g%);" ";bin$(igray%(g%))
next</syntaxhighlight>
 
==={{header|PureBasic}}===
<syntaxhighlight lang="purebasic">Procedure.i gray_encode(n)
ProcedureReturn n ! (n >> 1)
EndProcedure
 
Procedure.i gray_decode(g)
Protected bit = 1 << (8 * SizeOf(Integer) - 2)
Protected b = g & bit, p = b >> 1
While bit > 1
bit >> 1
b | (p ! (g & bit))
p = (b & bit) >> 1
Wend
ProcedureReturn b
EndProcedure
 
If OpenConsole()
PrintN("Number Gray Binary Decoded")
Define i, n
For i = 0 To 31
g = gray_encode(i)
Print(RSet(Str(i), 2, "0") + Space(5))
Print(RSet(Bin(g, #PB_Byte), 5, "0") + Space(2))
n = gray_decode(g)
Print(RSet(Bin(n, #PB_Byte), 5, "0") + Space(3))
PrintN(RSet(Str(n), 2, "0"))
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf</syntaxhighlight>
{{out}}
<pre>Number Gray Binary Decoded
00 00000 00000 00
01 00001 00001 01
02 00011 00010 02
03 00010 00011 03
04 00110 00100 04
05 00111 00101 05
06 00101 00110 06
07 00100 00111 07
08 01100 01000 08
09 01101 01001 09
10 01111 01010 10
11 01110 01011 11
12 01010 01100 12
13 01011 01101 13
14 01001 01110 14
15 01000 01111 15
16 11000 10000 16
17 11001 10001 17
18 11011 10010 18
19 11010 10011 19
20 11110 10100 20
21 11111 10101 21
22 11101 10110 22
23 11100 10111 23
24 10100 11000 24
25 10101 11001 25
26 10111 11010 26
27 10110 11011 27
28 10010 11100 28
29 10011 11101 29
30 10001 11110 30
31 10000 11111 31</pre>
 
==={{header|VBScript}}===
<syntaxhighlight lang="vb">Function Encoder(ByVal n)
Encoder = n Xor (n \ 2)
End Function
 
Function Decoder(ByVal n)
Dim g : g = 0
Do While n > 0
g = g Xor n
n = n \ 2
Loop
Decoder = g
End Function
 
' Decimal to Binary
Function Dec2bin(ByVal n, ByVal length)
Dim i, strbin : strbin = ""
For i = 1 to 5
strbin = (n Mod 2) & strbin
n = n \ 2
Next
Dec2Bin = strbin
End Function
 
WScript.StdOut.WriteLine("Binary -> Gray Code -> Binary")
For i = 0 to 31
encoded = Encoder(i)
decoded = Decoder(encoded)
WScript.StdOut.WriteLine(Dec2Bin(i, 5) & " -> " & Dec2Bin(encoded, 5) & " -> " & Dec2Bin(decoded, 5))
Next</syntaxhighlight>
{{Out}}
<pre style="overflow: auto; height: 20em;">Binary -> Gray Code -> Binary
00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111</pre>
 
==={{header|XBasic}}===
{{trans|DWScript}}
Intrinsic function <code>BIN$</code> has been used.
{{works with|Windows XBasic}}
<syntaxhighlight lang="xbasic">' Gray code
PROGRAM "graycode"
VERSION "0.0001"
 
DECLARE FUNCTION Entry()
INTERNAL FUNCTION Encode(v&)
INTERNAL FUNCTION Decode(v&)
 
FUNCTION Entry()
PRINT "decimal binary gray decoded"
FOR i& = 0 TO 31
g& = Encode(i&)
d& = Decode(g&)
PRINT FORMAT$(" ##", i&); " "; BIN$(i&, 5); " "; BIN$(g&, 5);
PRINT " "; BIN$(d&, 5); FORMAT$(" ##", d&)
NEXT i&
END FUNCTION
 
FUNCTION Encode(v&)
END FUNCTION v& ^ (v& >> 1)
 
FUNCTION Decode(v&)
result& = 0
DO WHILE v& > 0
result& = result& ^ v&
v& = v& >> 1
LOOP
END FUNCTION result&
 
END PROGRAM
</syntaxhighlight>
{{out}}
<pre>
decimal binary gray decoded
0 00000 00000 00000 0
1 00001 00001 00001 1
2 00010 00011 00010 2
3 00011 00010 00011 3
4 00100 00110 00100 4
5 00101 00111 00101 5
6 00110 00101 00110 6
7 00111 00100 00111 7
8 01000 01100 01000 8
9 01001 01101 01001 9
10 01010 01111 01010 10
11 01011 01110 01011 11
12 01100 01010 01100 12
13 01101 01011 01101 13
14 01110 01001 01110 14
15 01111 01000 01111 15
16 10000 11000 10000 16
17 10001 11001 10001 17
18 10010 11011 10010 18
19 10011 11010 10011 19
20 10100 11110 10100 20
21 10101 11111 10101 21
22 10110 11101 10110 22
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31
</pre>
 
=={{header|Batch File}}==
<syntaxhighlight lang="dos">:: Gray Code Task from Rosetta Code
:: Batch File Implementation
@echo off
rem -------------- define batch file macros with parameters appended
rem more info: https://www.dostips.com/forum/viewtopic.php?f=3&t=2518
setlocal disabledelayedexpansion % == required for macro ==%
(set \n=^^^
%== this creates escaped line feed for macro ==%
)
 
rem convert to binary (unsigned)
rem argument: natnum bitlength outputvar
rem note: if natnum is negative, then !outputvar! is empty
set tobinary=for %%# in (1 2) do if %%#==2 ( %\n%
for /f "tokens=1,2,3" %%a in ("!args!") do ( %\n%
set "natnum=%%a"^&set "bitlength=%%b"^&set "outputvar=%%c") %\n%
set "!outputvar!=" %\n%
if !natnum! geq 0 ( %\n%
set "currnum=!natnum!" %\n%
for /l %%m in (1,1,!bitlength!) do ( %\n%
set /a "bit=!currnum!%%2" %\n%
for %%v in (!outputvar!) do set "!outputvar!=!bit!!%%v!" %\n%
set /a "currnum/=2" %\n%
) %\n%
) %\n%
) else set args=
 
goto :main-thing %== jump to the main thing ==%
rem -------------- usual "call" sections
rem the sad disadvantage of using these is that they are slow (TnT)
 
rem gray code encoder
rem argument: natnum outputvar
:encoder
set /a "%~2=%~1^(%~1>>1)"
goto :eof
 
rem gray code decoder
rem argument: natnum outputvar
:decoder
set "inp=%~1" & set "%~2=0"
:while-loop-1
if %inp% gtr 0 (
set /a "%~2^=%inp%, inp>>=1"
goto while-loop-1
)
goto :eof
 
rem -------------- main thing
:main-thing
setlocal enabledelayedexpansion
echo(# -^> bin -^> enc -^> dec
for /l %%n in (0,1,31) do (
%tobinary% %%n 5 bin
call :encoder "%%n" "enc"
%tobinary% !enc! 5 gray
call :decoder "!enc!" "dec"
%tobinary% !dec! 5 rebin
echo(%%n -^> !bin! -^> !gray! -^> !rebin!
)
exit /b 0</syntaxhighlight>
{{Out}}
<pre style="overflow: auto; height: 20em;"># -> bin -> enc -> dec
0 -> 00000 -> 00000 -> 00000
1 -> 00001 -> 00001 -> 00001
2 -> 00010 -> 00011 -> 00010
3 -> 00011 -> 00010 -> 00011
4 -> 00100 -> 00110 -> 00100
5 -> 00101 -> 00111 -> 00101
6 -> 00110 -> 00101 -> 00110
7 -> 00111 -> 00100 -> 00111
8 -> 01000 -> 01100 -> 01000
9 -> 01001 -> 01101 -> 01001
10 -> 01010 -> 01111 -> 01010
11 -> 01011 -> 01110 -> 01011
12 -> 01100 -> 01010 -> 01100
13 -> 01101 -> 01011 -> 01101
14 -> 01110 -> 01001 -> 01110
15 -> 01111 -> 01000 -> 01111
16 -> 10000 -> 11000 -> 10000
17 -> 10001 -> 11001 -> 10001
18 -> 10010 -> 11011 -> 10010
19 -> 10011 -> 11010 -> 10011
20 -> 10100 -> 11110 -> 10100
21 -> 10101 -> 11111 -> 10101
22 -> 10110 -> 11101 -> 10110
23 -> 10111 -> 11100 -> 10111
24 -> 11000 -> 10100 -> 11000
25 -> 11001 -> 10101 -> 11001
26 -> 11010 -> 10111 -> 11010
27 -> 11011 -> 10110 -> 11011
28 -> 11100 -> 10010 -> 11100
29 -> 11101 -> 10011 -> 11101
30 -> 11110 -> 10001 -> 11110
31 -> 11111 -> 10000 -> 11111</pre>
 
=={{header|bc}}==
This language has no bitwise logic. We must repeat, with each bit, the exclusive-or calculation. This solution uses <tt>h % 2</tt> and <tt>i % 2</tt> to grab the low bits, and repeats <tt>if (h % 2 != i % 2)</tt> to check if the exclusive-or is one. Our encoding and decoding functions are identical except that <tt>h</tt> always comes from the decoded integer.
 
<langsyntaxhighlight lang="bc">scale = 0 /* to use integer division */
 
/* encode Gray code */
Line 173 ⟶ 1,773:
"
}
quit</langsyntaxhighlight>
 
{{out}}
Output: <pre style="overflow: auto; height: 5em;">00000 => 00000 => 00000
<pre style="overflow: auto; height: 20em;">00000 => 00000 => 00000
00001 => 00001 => 00001
00010 => 00011 => 00010
Line 207 ⟶ 1,808:
11110 => 10001 => 11110
11111 => 10000 => 11111</pre>
 
=={{header|BCPL}}==
<syntaxhighlight lang="bcpl">get "libhdr"
 
let grayEncode(n) = n neqv (n >> 1)
 
let grayDecode(n) = grayDecodeStep(0, n)
and grayDecodeStep(r, n) =
n = 0 -> r,
grayDecodeStep(r neqv n, n >> 1)
 
let binfmt(n) =
n = 0 -> 0,
(n & 1) + 10 * binfmt(n >> 1)
 
let printRow(n) be
$( let enc = grayEncode(n)
let dec = grayDecode(enc)
writef("%I2: %I5 => %I5 => %I5 => %I2*N",
n, binfmt(n), binfmt(enc), binfmt(dec), dec)
$)
 
let start() be
for i = 0 to 31 do printRow(i)</syntaxhighlight>
{{out}}
<pre> 0: 0 => 0 => 0 => 0
1: 1 => 1 => 1 => 1
2: 10 => 11 => 10 => 2
3: 11 => 10 => 11 => 3
4: 100 => 110 => 100 => 4
5: 101 => 111 => 101 => 5
6: 110 => 101 => 110 => 6
7: 111 => 100 => 111 => 7
8: 1000 => 1100 => 1000 => 8
9: 1001 => 1101 => 1001 => 9
10: 1010 => 1111 => 1010 => 10
11: 1011 => 1110 => 1011 => 11
12: 1100 => 1010 => 1100 => 12
13: 1101 => 1011 => 1101 => 13
14: 1110 => 1001 => 1110 => 14
15: 1111 => 1000 => 1111 => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31</pre>
 
=={{header|C}}==
{{trans|Tcl}}
<langsyntaxhighlight lang="c">int gray_encode(int n) {
return n ^ (n >> 1);
}
 
int gray_decode(int n) {
int ip = 1 << 8 * sizeof(int) - 2n;
intwhile p, b(n >>= 1) p ^= n & i;
return p;
 
}</syntaxhighlight>
while (i >>= 1)
b |= p = n & i ^ p >> 1;
return b;
}</lang>
Demonstration code:
<langsyntaxhighlight lang="c">#include <stdio.h>
 
/* Simple bool formatter, only good on range 0..31 */
Line 246 ⟶ 1,901:
}
return 0;
}</langsyntaxhighlight>
{{out}}
Output:
<pre>
0 : 00000 => 00000 => 00000 : 0
Line 283 ⟶ 1,938:
</pre>
 
=={{header|C++ sharp}}==
<syntaxhighlight lang="c sharp">using System;
<lang cpp>#include <bitset>
#include <iostream>
#include <string>
 
uint32_t gray_encode(uint32_t b)
{
return b ^ (b >> 1);
}
 
uint32_t gray_decode(uint32_t g)
{
for (uint32_t bit = 1U << 31; bit > 1; bit >>= 1)
{
if (g & bit) g ^= bit >> 1;
}
return g;
}
 
std::string to_binary(int value) // utility function
{
const std::bitset<32> bs(value);
const std::string str(bs.to_string());
const size_t pos(str.find('1'));
return pos == std::string::npos ? "0" : str.substr(pos);
}
 
int main()
{
std::cout << "Number\tBinary\tGray\tDecoded\n";
for (uint32_t n = 0; n < 32; ++n)
{
uint32_t g = gray_encode(n);
uint32_t b = gray_decode(g);
 
std::cout << n << "\t" << to_binary(n) << "\t" << to_binary(g) << "\t" << b << "\n";
}
}</lang>
Output:
<pre>
Number Binary Gray Decoded
0 0 0 0
1 1 1 1
2 10 11 2
3 11 10 3
4 100 110 4
5 101 111 5
6 110 101 6
7 111 100 7
8 1000 1100 8
9 1001 1101 9
10 1010 1111 10
11 1011 1110 11
12 1100 1010 12
13 1101 1011 13
14 1110 1001 14
15 1111 1000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31
</pre>
 
=={{header|C#}}==
<lang csharp>using System;
 
public class Gray {
Line 381 ⟶ 1,961:
}
}
}</langsyntaxhighlight>
{{out}}
Output:
<pre>
Number Binary Gray Decoded
Line 419 ⟶ 1,999:
</pre>
 
=={{header|DC++}}==
<syntaxhighlight lang="cpp">
<lang d>import std.stdio;
#include <bitset>
#include <iostream>
#include <string>
#include <assert.h>
 
uint32_t gray_encode(uint32_t b)
nothrow pure T enGray(T)(const T n) {
{
return n ^ (n >>> 1);
return b ^ (b >> 1);
}
 
uint32_t gray_decode(uint32_t g)
nothrow pure T deGray(T)(const T n) {
{
enum T MSB = (cast(T)1) << (T.sizeof * 8 - 1);
for (uint32_t bit = 1U << 31; bit > 1; bit >>= 1)
{
if (g & bit) g ^= bit >> 1;
}
return g;
}
 
std::string to_binary(int value) // utility function
auto res = (n & MSB) ;
{
foreach (bit; 1 .. T.sizeof * 8)
const std::bitset<32> bs(value);
res += ( n ^ (res >>> 1) ) & (MSB >>> bit) ;
const std::string str(bs.to_string());
return res;
const size_t pos(str.find('1'));
return pos == std::string::npos ? "0" : str.substr(pos);
}
 
int main()
{
std::cout << "Number\tBinary\tGray\tDecoded\n";
for (uint32_t n = 0; n < 32; ++n)
{
uint32_t g = gray_encode(n);
assert(gray_decode(g) == n);
 
std::cout << n << "\t" << to_binary(n) << "\t" << to_binary(g) << "\t" << g << "\n";
}
}</syntaxhighlight>
{{out}}
<pre>
Number Binary Gray Decoded
0 0 0 0
1 1 1 1
2 10 11 3
3 11 10 2
4 100 110 6
5 101 111 7
6 110 101 5
7 111 100 4
8 1000 1100 12
9 1001 1101 13
10 1010 1111 15
11 1011 1110 14
12 1100 1010 10
13 1101 1011 11
14 1110 1001 9
15 1111 1000 8
16 10000 11000 24
17 10001 11001 25
18 10010 11011 27
19 10011 11010 26
20 10100 11110 30
21 10101 11111 31
22 10110 11101 29
23 10111 11100 28
24 11000 10100 20
25 11001 10101 21
26 11010 10111 23
27 11011 10110 22
28 11100 10010 18
29 11101 10011 19
30 11110 10001 17
31 11111 10000 16
</pre>
 
=={{header|CoffeeScript}}==
<syntaxhighlight lang="coffeescript">
gray_encode = (n) ->
n ^ (n >> 1)
gray_decode = (g) ->
n = g
n ^= g while g >>= 1
n
for i in [0..32]
console.log gray_decode gray_encode(i)
</syntaxhighlight>
 
=={{header|Common Lisp}}==
<syntaxhighlight lang="lisp">(defun gray-encode (n)
(logxor n (ash n -1)))
 
(defun gray-decode (n)
(do ((p n (logxor p n)))
((zerop n) p)
(setf n (ash n -1))))
 
(loop for i to 31 do
(let* ((g (gray-encode i)) (b (gray-decode g)))
(format t "~2d:~6b =>~6b =>~6b :~2d~%" i i g b b)))</syntaxhighlight>
 
{{out}}
<pre>
0: 0 => 0 => 0 : 0
1: 1 => 1 => 1 : 1
2: 10 => 11 => 10 : 2
3: 11 => 10 => 11 : 3
4: 100 => 110 => 100 : 4
5: 101 => 111 => 101 : 5
6: 110 => 101 => 110 : 6
7: 111 => 100 => 111 : 7
8: 1000 => 1100 => 1000 : 8
9: 1001 => 1101 => 1001 : 9
10: 1010 => 1111 => 1010 :10
11: 1011 => 1110 => 1011 :11
12: 1100 => 1010 => 1100 :12
13: 1101 => 1011 => 1101 :13
14: 1110 => 1001 => 1110 :14
15: 1111 => 1000 => 1111 :15
16: 10000 => 11000 => 10000 :16
17: 10001 => 11001 => 10001 :17
18: 10010 => 11011 => 10010 :18
19: 10011 => 11010 => 10011 :19
20: 10100 => 11110 => 10100 :20
21: 10101 => 11111 => 10101 :21
22: 10110 => 11101 => 10110 :22
23: 10111 => 11100 => 10111 :23
24: 11000 => 10100 => 11000 :24
25: 11001 => 10101 => 11001 :25
26: 11010 => 10111 => 11010 :26
27: 11011 => 10110 => 11011 :27
28: 11100 => 10010 => 11100 :28
29: 11101 => 10011 => 11101 :29
30: 11110 => 10001 => 11110 :30
31: 11111 => 10000 => 11111 :31
</pre>
 
=={{header|Component Pascal}}==
BlackBox Component Builder
<syntaxhighlight lang="oberon2">
MODULE GrayCodes;
IMPORT StdLog,SYSTEM;
 
PROCEDURE Encode*(i: INTEGER; OUT x: INTEGER);
VAR
j: INTEGER;
s,r: SET;
BEGIN
s := BITS(i);j := MAX(SET);
WHILE (j >= 0) & ~(j IN s) DO DEC(j) END;
r := {};IF j >= 0 THEN INCL(r,j) END;
WHILE j > 0 DO
IF ((j IN s) & ~(j - 1 IN s)) OR (~(j IN s) & (j - 1 IN s)) THEN INCL(r,j-1) END;
DEC(j)
END;
x := SYSTEM.VAL(INTEGER,r)
END Encode;
 
PROCEDURE Decode*(x: INTEGER; OUT i: INTEGER);
VAR
j: INTEGER;
s,r: SET;
BEGIN
s := BITS(x);r:={};j := MAX(SET);
WHILE (j >= 0) & ~(j IN s) DO DEC(j) END;
IF j >= 0 THEN INCL(r,j) END;
WHILE j > 0 DO
IF ((j IN r) & ~(j - 1 IN s)) OR (~(j IN r) & (j - 1 IN s)) THEN INCL(r,j-1) END;
DEC(j)
END;
i := SYSTEM.VAL(INTEGER,r);
END Decode;
 
 
PROCEDURE Do*;
VAR
grayCode,binCode: INTEGER;
i: INTEGER;
BEGIN
StdLog.String(" i ");StdLog.String(" bin code ");StdLog.String(" gray code ");StdLog.Ln;
StdLog.String("---");StdLog.String(" ----------------");StdLog.String(" ---------------");StdLog.Ln;
FOR i := 0 TO 32 DO;
Encode(i,grayCode);Decode(grayCode,binCode);
StdLog.IntForm(i,10,3,' ',FALSE);
StdLog.IntForm(binCode,2,16,' ',TRUE);
StdLog.IntForm(grayCode,2,16,' ',TRUE);
StdLog.Ln;
END
END Do;
 
END GrayCodes.
</syntaxhighlight>
Execute: ^QGrayCodes.Do<br/>
{{out}}
<pre>
i bin code gray code
--- ---------------- ---------------
0 0%2 0%2
1 1%2 1%2
2 10%2 11%2
3 11%2 10%2
4 100%2 110%2
5 101%2 111%2
6 110%2 101%2
7 111%2 100%2
8 1000%2 1100%2
9 1001%2 1101%2
10 1010%2 1111%2
11 1011%2 1110%2
12 1100%2 1010%2
13 1101%2 1011%2
14 1110%2 1001%2
15 1111%2 1000%2
16 10000%2 11000%2
17 10001%2 11001%2
18 10010%2 11011%2
19 10011%2 11010%2
20 10100%2 11110%2
21 10101%2 11111%2
22 10110%2 11101%2
23 10111%2 11100%2
24 11000%2 10100%2
25 11001%2 10101%2
26 11010%2 10111%2
27 11011%2 10110%2
28 11100%2 10010%2
29 11101%2 10011%2
30 11110%2 10001%2
31 11111%2 10000%2
32 100000%2 110000%2
</pre>
 
=={{header|Cowgol}}==
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
sub gray_encode(n: uint8): (r: uint8) is
r := n ^ n >> 1;
end sub;
 
sub gray_decode(n: uint8): (r: uint8) is
r := n;
while n > 0 loop
n := n >> 1;
r := r ^ n;
end loop;
end sub;
 
sub print_binary(n: uint8) is
var buf: uint8[9];
var ptr := &buf[8];
[ptr] := 0;
loop
ptr := @prev ptr;
[ptr] := (n & 1) + '0';
n := n >> 1;
if n == 0 then break; end if;
end loop;
print(ptr);
end sub;
 
sub print_row(n: uint8) is
print_i8(n);
print(":\t");
print_binary(n);
print("\t=>\t");
var gray_code := gray_encode(n);
print_binary(gray_code);
print("\t=>\t");
var decoded := gray_decode(gray_code);
print_i8(decoded);
print_nl();
end sub;
 
var i: uint8 := 0;
while i <= 31 loop
print_row(i);
i := i + 1;
end loop;</syntaxhighlight>
{{out}}
<pre>0: 0 => 0 => 0
1: 1 => 1 => 1
2: 10 => 11 => 2
3: 11 => 10 => 3
4: 100 => 110 => 4
5: 101 => 111 => 5
6: 110 => 101 => 6
7: 111 => 100 => 7
8: 1000 => 1100 => 8
9: 1001 => 1101 => 9
10: 1010 => 1111 => 10
11: 1011 => 1110 => 11
12: 1100 => 1010 => 12
13: 1101 => 1011 => 13
14: 1110 => 1001 => 14
15: 1111 => 1000 => 15
16: 10000 => 11000 => 16
17: 10001 => 11001 => 17
18: 10010 => 11011 => 18
19: 10011 => 11010 => 19
20: 10100 => 11110 => 20
21: 10101 => 11111 => 21
22: 10110 => 11101 => 22
23: 10111 => 11100 => 23
24: 11000 => 10100 => 24
25: 11001 => 10101 => 25
26: 11010 => 10111 => 26
27: 11011 => 10110 => 27
28: 11100 => 10010 => 28
29: 11101 => 10011 => 29
30: 11110 => 10001 => 30
31: 11111 => 10000 => 31</pre>
 
=={{header|Crystal}}==
{{trans|C}}
<syntaxhighlight lang="ruby">
def gray_encode(bin)
bin ^ (bin >> 1)
end
 
def gray_decode(gray)
bin = gray
while gray > 0
gray >>= 1
bin ^= gray
end
bin
end
</syntaxhighlight>
Demonstration code:
<syntaxhighlight lang="ruby">
(0..31).each do |n|
gr = gray_encode n
bin = gray_decode gr
printf "%2d : %05b => %05b => %05b : %2d\n", n, n, gr, bin, bin
end
</syntaxhighlight>
{{out}}
<pre>
0 : 00000 => 00000 => 00000 : 0
1 : 00001 => 00001 => 00001 : 1
2 : 00010 => 00011 => 00010 : 2
3 : 00011 => 00010 => 00011 : 3
4 : 00100 => 00110 => 00100 : 4
5 : 00101 => 00111 => 00101 : 5
6 : 00110 => 00101 => 00110 : 6
7 : 00111 => 00100 => 00111 : 7
8 : 01000 => 01100 => 01000 : 8
9 : 01001 => 01101 => 01001 : 9
10 : 01010 => 01111 => 01010 : 10
11 : 01011 => 01110 => 01011 : 11
12 : 01100 => 01010 => 01100 : 12
13 : 01101 => 01011 => 01101 : 13
14 : 01110 => 01001 => 01110 : 14
15 : 01111 => 01000 => 01111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
</pre>
 
=={{header|D}}==
<syntaxhighlight lang="d">uint grayEncode(in uint n) pure nothrow @nogc {
return n ^ (n >> 1);
}
 
uint grayDecode(uint n) pure nothrow @nogc {
auto p = n;
while (n >>= 1)
p ^= n;
return p;
}
 
void main() {
import std.stdio;
writeln("num bits encoded decoded");
 
foreach (i; 0 .. 32) {
" N auto encoded =N2 enGray(i) enc dec2 dec".writeln;
foreach (immutable n; 0 .. 32) {
writefln("%2d: %5b ==> %5b : %2d", i, i, encoded, deGray(encoded));
immutable g = n.grayEncode;
immutable d = g.grayDecode;
writefln("%2d: %5b => %5b => %5b: %2d", n, n, g, d, d);
assert(d == n);
}
}</langsyntaxhighlight>
{{out}}
Output:
<pre>num N bits encodedN2 decoded enc dec2 dec
0: 0 ==> 0 => 0: 0
1: 1 ==> 1 => 1: 1
2: 10 ==> 11 => 10: 2
3: 11 ==> 10 => 11: 3
4: 100 ==> 110 => 100: 4
5: 101 ==> 111 => 101: 5
6: 110 ==> 101 => 110: 6
7: 111 ==> 100 => 111: 7
8: 1000 ==> 1100 => 1000: 8
9: 1001 ==> 1101 => 1001: 9
10: 1010 ==> 1111 => 1010: 10
11: 1011 ==> 1110 => 1011: 11
12: 1100 ==> 1010 => 1100: 12
13: 1101 ==> 1011 => 1101: 13
14: 1110 ==> 1001 => 1110: 14
15: 1111 ==> 1000 => 1111: 15
16: 10000 ==> 11000 => 10000: 16
17: 10001 ==> 11001 => 10001: 17
18: 10010 ==> 11011 => 10010: 18
19: 10011 ==> 11010 => 10011: 19
20: 10100 ==> 11110 => 10100: 20
21: 10101 ==> 11111 => 10101: 21
22: 10110 ==> 11101 => 10110: 22
23: 10111 ==> 11100 => 10111: 23
24: 11000 ==> 10100 => 11000: 24
25: 11001 ==> 10101 => 11001: 25
26: 11010 ==> 10111 => 11010: 26
27: 11011 ==> 10110 => 11011: 27
28: 11100 ==> 10010 => 11100: 28
29: 11101 ==> 10011 => 11101: 29
30: 11110 ==> 10001 => 11110: 30
31: 11111 ==> 10000 => 11111: 31</pre>
 
===Compile-Time version===
This version uses a compile time generated translation table, if maximum bit width of the numbers is a constant. The encoding table is generated recursively, then the decode table is calculated and appended.
This version uses a compile time generated translation table,
<lang d>import std.stdio, std.conv, std.algorithm ;
if maximum bit width of the numbers is a constant.
The encoding table is generated recursively,
then the decode table is calculated and appended.
Same output.
<syntaxhighlight lang="d">import std.stdio, std.algorithm;
 
T[] Graygray(int N : 1, T)() {pure returnnothrow [to!T(0), 1] ; }{
return [T(0), 1];
}
 
T[] Gray(int N, T)() { /// recursivelyRecursively generate gray encoding mapping table.
T[] gray(int N, T)() pure nothrow if assert(N <= T.sizeof *8, "N exceed number of bit of T"8) ;{
enum T M = to!T(2) ^^ (N - 1) ;
T[] g = Graygray!(N - 1, T)();
foreach (immutable i; 0 .. M)
g ~= M + g[M - i - 1] ;
return g ;
}
 
T[][] GrayDictgrayDict(int N, T)() pure nothrow {
T[][] dict = [Graygray!(N, T)(), [0]] ;
foreach(i ; 1..dict[0].length) // appendAppend inversed gray encoding mapping.
foreach (immutable i; dict[1] ~=.. countUntil(dict[0], i.length) ;
dict[1] ~= cast(T)countUntil(dict[0], i);
return dict ;
return dict;
}
 
enum M { Encode = 0 , Decode = 1 } ;
 
T gray(int N, T)(in T n, in int Mode mode= M.Encode) pure nothrow {
enum Dict = GrayDict!(N, T) ; // generatedGenerated at compile time.
enum dict = grayDict!(N, T)();
return Dict[Mode][n] ;
return dict[mode][n];
}
 
void main() {
foreach (immutable i; 0 .. 32) {
autoimmutable encoded = gray!(5)(i, M.Encode) ;
autoimmutable decoded = gray!(5)(encoded, M.Decode) ;
writefln("%2d: %5b => %5b : %2d", i, i, encoded, decoded) ;
}
} // checked correct ouput
}</langsyntaxhighlight>
 
A succinct functional-style generator:
===Short Functional-Style Generator===
<lang d>import std.stdio, std.algorithm, std.range;
<syntaxhighlight lang="d">import std.stdio, std.algorithm, std.range;
 
string[] g(in uint n) pure nothrow {
return n ? arrayg(n - 1).map!q{'0' ~ a}(g(n - 1))).array ~
arrayg(n - 1).retro.map!q{'1' ~ a}(retro(g(n - 1)))).array
: [""];
}
 
void main() {
writeln(g(4)).g.writeln;
}</langsyntaxhighlight>
{{out}}
<pre>["0000", "0001", "0011", "0010", "0110", "0111", "0101", "0100", "1100", "1101", "1111", "1110", "1010", "1011", "1001", "1000"]</pre>
 
=={{header|Delphi}}==
{{trans|DWScript}}
<langsyntaxhighlight lang="delphi">program GrayCode;
 
{$APPTYPE CONSOLE}
Line 571 ⟶ 2,538:
Writeln(Format(' %2d %s %s %s %2d', [i, IntToBin(i, 5), IntToBin(g, 5), IntToBin(d, 5), d]));
end;
end.</langsyntaxhighlight>
{{out}}
<pre>
decimal binary gray decoded
0 00000 00000 00000 0
1 00001 00001 00001 1
2 00010 00011 00010 2
3 00011 00010 00011 3
4 00100 00110 00100 4
5 00101 00111 00101 5
6 00110 00101 00110 6
7 00111 00100 00111 7
8 01000 01100 01000 8
9 01001 01101 01001 9
10 01010 01111 01010 10
11 01011 01110 01011 11
12 01100 01010 01100 12
13 01101 01011 01101 13
14 01110 01001 01110 14
15 01111 01000 01111 15
16 10000 11000 10000 16
17 10001 11001 10001 17
18 10010 11011 10010 18
19 10011 11010 10011 19
20 10100 11110 10100 20
21 10101 11111 10101 21
22 10110 11101 10110 22
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31
</pre>
 
=={{header|Draco}}==
<syntaxhighlight lang="draco">proc gray_encode(word n) word:
n >< (n >> 1)
corp
 
proc gray_decode(word n) word:
word r;
r := n;
while
n := n >> 1;
n > 0
do
r := r >< n
od;
r
corp
 
proc main() void:
word i, enc, dec;
for i from 0 upto 31 do
enc := gray_encode(i);
dec := gray_decode(enc);
writeln(i:2, ": ",
i:b:5, " => ",
enc:b:5, " => ",
dec:b:5, " => ",
dec:2)
od
corp</syntaxhighlight>
{{out}}
<pre> 0: 0 => 0 => 0 => 0
1: 1 => 1 => 1 => 1
2: 10 => 11 => 10 => 2
3: 11 => 10 => 11 => 3
4: 100 => 110 => 100 => 4
5: 101 => 111 => 101 => 5
6: 110 => 101 => 110 => 6
7: 111 => 100 => 111 => 7
8: 1000 => 1100 => 1000 => 8
9: 1001 => 1101 => 1001 => 9
10: 1010 => 1111 => 1010 => 10
11: 1011 => 1110 => 1011 => 11
12: 1100 => 1010 => 1100 => 12
13: 1101 => 1011 => 1101 => 13
14: 1110 => 1001 => 1110 => 14
15: 1111 => 1000 => 1111 => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31</pre>
=={{header|DWScript}}==
 
<langsyntaxhighlight lang="delphi">function Encode(v : Integer) : Integer;
begin
Result := v xor (v shr 1);
Line 597 ⟶ 2,662:
PrintLn(Format(' %2d %s %s %s %2d',
[i, IntToBin(i, 5), IntToBin(g, 5), IntToBin(d, 5), d]));
end;</langsyntaxhighlight>
 
=={{header|EasyLang}}==
<syntaxhighlight>
func$ bin n .
for i to 5
r$ = n mod 2 & r$
n = n div 2
.
return r$
.
func gray_encode b .
return bitxor b bitshift b -1
.
func gray_decode g .
b = g
while g > 0
g = bitshift g -1
b = bitxor b g
.
return b
.
for n = 0 to 31
g = gray_encode n
b = gray_decode g
print bin n & " -> " & bin g & " -> " & bin b
.
</syntaxhighlight>
{{out}}
<pre>
00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111
</pre>
 
=={{header|EDSAC order code}}==
The only logical operation on EDSAC was AND, or "collate" as it was called, but it's possible to calculate XOR from AND together with arithmetical operations. For converting Gray code to binary on EDSAC, I couldn't think up any shorter method than the one below.
<syntaxhighlight lang="edsac">
[Gray code task for Rosetta Code.
EDSAC program, Initial Orders 2.]
 
[Library subroutine M3. Prints header at load time,
then M3 and header are overwritten.]
PFGKIFAFRDLFUFOFE@A6FG@E8FEZPF
*BINARY!!GRAY!!!!ROUND!TRIP@&
..PK [after header, blank tape and PK (WWG, 1951, p. 91)]
 
T64K [load at location 64 (arbitrary choice)]
GK [set @ (theta) parameter]
[Subroutine to print 5-bit number in binary.
Input: 1F = number (preserved) in low 5 bits.
Workspace: 0F, 4F.]
[0] A3F T17@ [plant return link as usual]
H19@ [mult reg := mask to remove top 4 bits]
A1F [acc := code in low 5 bits]
L32F [shift 7 left]
TF [store in workspace]
S18@ [initialize negative count of digits]
[7] T4F [update negative count]
AF LD TF [shift workspace 1 left]
CF [remove top 4 bits]
TF [store result]
OF [print character '0' or '1' in top 5 bits]
A4F A2F G7@ [inc count, loop if not yet 0]
[17] ZF [{planted} jump back to caller]
[18] P5F [addres field = number of bits]
[19] Q2047D [00001111111111111 binary]
 
[Subroutine to convert binary code to Gray code.
Input: 1F = binary code (preserved).
Output: 0F = Gray code.]
[20] A3F T33@ [plant return link as usual]
A1F RD TF [0F := binary shifted 1 right]
[One way to get p XOR q on EDSAC: Let r = p AND q.
Then p XOR q = (p - r) + (q - r) = -(2r - p - q).]
HF [mult reg := 0F]
C1F [acc := 0F AND 1F]
LD [times 2]
SF S1F [subtract 0F and 1F]
TF SF TF [return result negated]
[33] ZF [{planted} jump back to caller]
 
[Subroutine to convert 5-digit Gray code to binary.
Uses a chain of XORs.
If bits in Gray code are ghijk then bits in binary are
g, g.h, g.h.i, g.h.i.j, g.h.i.j.k where dot means XOR.
Input: 1F = Gray code (preserved).
Output: 0F = binary code.
Workspace: 4F, 5F.]
[34] A3F T55@ [plant return link as usual]
A1F UF [initialize result to Gray code]
T5F [5F = shifted Gray code, shift = 0 initialiy]
S56@ [initialize negative count]
[40] T4F [update negative count]
HF [mult reg := partial result]
A5F RD T5F [shift Gray code 1 right]
[Form 5F XOR 0F as in the previous subroutine]
C5F LD SF S5F TF SF
TF [update partial result]
A4F A2F G40@ [inc count, loop back if not yet 0]
[55] ZF [{planted} jump back to caller]
[56] P4F [address field = 1 less than number of bits]
 
[Main routine]
[Variable]
[57] PF [binary code is in low 5 bits]
[Constants]
[58] P16F [exclusive maximum code, 100000 binary]
[59] PD [17-bit 1]
[60] #F [teleprinter figures mode]
[61] !F [space]
[62] @F [carriage return]
[63] &F [line feed]
[Enter with acc = 0]
[64] O60@ [set teleprinter to figures]
S58@ [to make acc = 0 after next instruction]
[66] A58@ [loop: restore acc after test below]
U57@ T1F [save binary code, and pass it to print soubroutine]
[69] A69@ G@ [print binary code]
O61@ O61@ O61@ [print 3 spaces]
[74] A74@ G20@ [convert binary (still in 1F) to Gray]
AF T1F [pass Gray code to print subroutine]
[78] A78@ G@ [print Gray code]
O61@ O61@ O61@ [print 3 spaces]
[83] A83@ G34@ [convert Gray (still in 1F) back to binary]
AF T1F [pass binary code to print subroutine]
[87] A87@ G@ [print binary]
O62@ O63@ [print CR, LF]
A57@ A59@ [inc binary]
S58@ [test for all done]
G66@ [loop back if not]
O60@ [dummy character to flush teleprinter buffer]
ZF [stop]
E64Z [define entry point]
PF [acc = 0 on entry]
[end]
</syntaxhighlight>
{{out}}
<pre>
BINARY GRAY ROUND TRIP
00000 00000 00000
00001 00001 00001
00010 00011 00010
00011 00010 00011
00100 00110 00100
00101 00111 00101
00110 00101 00110
00111 00100 00111
01000 01100 01000
01001 01101 01001
01010 01111 01010
01011 01110 01011
01100 01010 01100
01101 01011 01101
01110 01001 01110
01111 01000 01111
10000 11000 10000
10001 11001 10001
10010 11011 10010
10011 11010 10011
10100 11110 10100
10101 11111 10101
10110 11101 10110
10111 11100 10111
11000 10100 11000
11001 10101 11001
11010 10111 11010
11011 10110 11011
11100 10010 11100
11101 10011 11101
11110 10001 11110
11111 10000 11111
</pre>
 
=={{header|Elixir}}==
{{trans|Erlang}}
<syntaxhighlight lang="elixir">defmodule Gray_code do
use Bitwise
def encode(n), do: bxor(n, bsr(n,1))
def decode(g), do: decode(g,0)
def decode(0,n), do: n
def decode(g,n), do: decode(bsr(g,1), bxor(g,n))
end
 
Enum.each(0..31, fn(n) ->
g = Gray_code.encode(n)
d = Gray_code.decode(g)
:io.fwrite("~2B : ~5.2.0B : ~5.2.0B : ~5.2.0B : ~2B~n", [n, n, g, d, d])
end)</syntaxhighlight>
output is the same as "Erlang".
 
=={{header|Erlang}}==
{{trans|Euphoria}}
<langsyntaxhighlight lang="erlang">-module(gray).
-export([encode/1, decode/1]).
 
Line 610 ⟶ 2,895:
decode(0,N) -> N;
decode(G,N) -> decode(G bsr 1, G bxor N).
</syntaxhighlight>
</lang>
 
Demonstration code:
<langsyntaxhighlight lang="erlang">-module(testgray).
 
test_encode(N) ->
Line 623 ⟶ 2,908:
test_encode(I, N) when I < N -> test_encode(I), test_encode(I+1, N).
 
main(_) -> test_encode(0,32).</langsyntaxhighlight>
 
{{out}}
Output:
<pre>
0 : 00000 : 00000 : 00000 : 0
Line 662 ⟶ 2,947:
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function gray_encode(integer n)
return xor_bits(n,floor(n/2))
end function
Line 695 ⟶ 2,980:
j = gray_decode(j)
printf(1,"%05d\n",dcb(j))
end for</langsyntaxhighlight>
 
{{out}}
Output:
<pre>00000 => 00000 => 00000
00001 => 00001 => 00001
Line 730 ⟶ 3,015:
11110 => 10001 => 11110
11111 => 10000 => 11111</pre>
 
=={{header|F_Sharp|F#}}==
===The Function===
<syntaxhighlight lang="fsharp">
// Functıons to translate bınary to grey code and vv. Nigel Galloway: December 7th., 2018
let grayCode,invGrayCode=let fN g (n:uint8)=n^^^(n>>>g) in ((fN 1),(fN 1>>fN 2>>fN 4))
</syntaxhighlight>
===The Task===
<syntaxhighlight lang="fsharp">
[0uy..31uy]|>List.iter(fun n->let g=grayCode n in printfn "%2d -> %5s (%2d) -> %2d" n (System.Convert.ToString(g,2)) g (invGrayCode g))</syntaxhighlight>
{{out}}
<pre>
0 -> 0 ( 0) -> 0
1 -> 1 ( 1) -> 1
2 -> 11 ( 3) -> 2
3 -> 10 ( 2) -> 3
4 -> 110 ( 6) -> 4
5 -> 111 ( 7) -> 5
6 -> 101 ( 5) -> 6
7 -> 100 ( 4) -> 7
8 -> 1100 (12) -> 8
9 -> 1101 (13) -> 9
10 -> 1111 (15) -> 10
11 -> 1110 (14) -> 11
12 -> 1010 (10) -> 12
13 -> 1011 (11) -> 13
14 -> 1001 ( 9) -> 14
15 -> 1000 ( 8) -> 15
16 -> 11000 (24) -> 16
17 -> 11001 (25) -> 17
18 -> 11011 (27) -> 18
19 -> 11010 (26) -> 19
20 -> 11110 (30) -> 20
21 -> 11111 (31) -> 21
22 -> 11101 (29) -> 22
23 -> 11100 (28) -> 23
24 -> 10100 (20) -> 24
25 -> 10101 (21) -> 25
26 -> 10111 (23) -> 26
27 -> 10110 (22) -> 27
28 -> 10010 (18) -> 28
29 -> 10011 (19) -> 29
30 -> 10001 (17) -> 30
31 -> 10000 (16) -> 31
</pre>
 
=={{header|Factor}}==
Translation of C.
<syntaxhighlight lang="factor">USING: math.ranges locals ;
IN: rosetta-gray
 
: gray-encode ( n -- n' ) dup -1 shift bitxor ;
 
:: gray-decode ( n! -- n' )
n :> p!
[ n -1 shift dup n! 0 = not ] [
p n bitxor p!
] while
p ;
 
: main ( -- )
-1 32 [a,b] [ dup [ >bin ] [ gray-encode ] bi [ >bin ] [ gray-decode ] bi 4array . ] each ;
 
MAIN: main
</syntaxhighlight>
Running above code prints:
<syntaxhighlight lang="factor">{ -1 "-1" "0" 0 }
{ 0 "0" "0" 0 }
{ 1 "1" "1" 1 }
{ 2 "10" "11" 2 }
{ 3 "11" "10" 3 }
{ 4 "100" "110" 4 }
{ 5 "101" "111" 5 }
{ 6 "110" "101" 6 }
{ 7 "111" "100" 7 }
{ 8 "1000" "1100" 8 }
{ 9 "1001" "1101" 9 }
{ 10 "1010" "1111" 10 }
{ 11 "1011" "1110" 11 }
{ 12 "1100" "1010" 12 }
{ 13 "1101" "1011" 13 }
{ 14 "1110" "1001" 14 }
{ 15 "1111" "1000" 15 }
{ 16 "10000" "11000" 16 }
{ 17 "10001" "11001" 17 }
{ 18 "10010" "11011" 18 }
{ 19 "10011" "11010" 19 }
{ 20 "10100" "11110" 20 }
{ 21 "10101" "11111" 21 }
{ 22 "10110" "11101" 22 }
{ 23 "10111" "11100" 23 }
{ 24 "11000" "10100" 24 }
{ 25 "11001" "10101" 25 }
{ 26 "11010" "10111" 26 }
{ 27 "11011" "10110" 27 }
{ 28 "11100" "10010" 28 }
{ 29 "11101" "10011" 29 }
{ 30 "11110" "10001" 30 }
{ 31 "11111" "10000" 31 }
{ 32 "100000" "110000" 32 }</syntaxhighlight>
 
=={{header|Forth}}==
As a low level language Forth provides efficient bit manipulation operators.
<lang forth>: >gray ( n -- n ) dup 2/ xor ;
These functions take input parameters from the stack and return the result on the stack.
 
<syntaxhighlight lang="forth">: >gray ( n -- n' ) dup 2/ xor ; \ n' = n xor (n logically right shifted 1 time)
\ 2/ is Forth divide by 2, ie: shift right 1
: gray> ( n -- n )
0 1 31 lshift ( -- g b mask )
begin
>r \ save a copy of mask on return stack
>r
2dup 2/ xor
r@ and or
r> 1 rshift
dup 0=
until
drop nip ; \ clean the parameter stack leaving result only
drop nip ;
: test
2 base ! \ set system number base to 2. ie: Binary
2 base !
32 0 do
cr iI dup 5 .r ." ==> " \ print numbers (binary) right justified 5 places
>gray dup 5 .r ." ==> "
gray> 5 .r
loop
decimal ; \ revert to BASE 10
decimal ;</lang>
</syntaxhighlight>
{{out}}
<pre>
FORTH> test
0 ==> 0 ==> 0
1 ==> 1 ==> 1
10 ==> 11 ==> 10
11 ==> 10 ==> 11
100 ==> 110 ==> 100
101 ==> 111 ==> 101
110 ==> 101 ==> 110
111 ==> 100 ==> 111
1000 ==> 1100 ==> 1000
1001 ==> 1101 ==> 1001
1010 ==> 1111 ==> 1010
1011 ==> 1110 ==> 1011
1100 ==> 1010 ==> 1100
1101 ==> 1011 ==> 1101
1110 ==> 1001 ==> 1110
1111 ==> 1000 ==> 1111
10000 ==> 11000 ==> 10000
10001 ==> 11001 ==> 10001
10010 ==> 11011 ==> 10010
10011 ==> 11010 ==> 10011
10100 ==> 11110 ==> 10100
10101 ==> 11111 ==> 10101
10110 ==> 11101 ==> 10110
10111 ==> 11100 ==> 10111
11000 ==> 10100 ==> 11000
11001 ==> 10101 ==> 11001
11010 ==> 10111 ==> 11010
11011 ==> 10110 ==> 11011
11100 ==> 10010 ==> 11100
11101 ==> 10011 ==> 11101
11110 ==> 10001 ==> 11110
11111 ==> 10000 ==> 11111 ok</pre>
 
=={{header|Fortran}}==
Using [http://www.everyspec.com/MIL-STD/MIL-STD+(1700+-+1799)/download.php?spec=MIL-STD-1753.011044.PDF MIL-STD-1753] extensions in '''Fortran 77''', and formulas found at OEIS for [http://[oeis.org/:A003188 |direct]] and [http://[oeis.org/:A006068 |inverse]] Gray code :
<langsyntaxhighlight lang="fortran"> PROGRAM GRAY
IMPLICIT NONE
INTEGER IGRAY,I,J,K
Line 801 ⟶ 3,225:
10 CONTINUE
S(1:L-K)=''
END</langsyntaxhighlight>
 
<pre> 0 : 00000 => 00000 => 00000 : 0
Line 835 ⟶ 3,259:
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31</pre>
 
=={{header|Frink}}==
Frink has built-in functions to convert to and from binary reflected Gray code.
<syntaxhighlight lang="frink">
for i=0 to 31
{
gray = binaryToGray[i]
back = grayToBinary[gray]
println[(i->binary) + "\t" + (gray->binary) + "\t" + (back->binary)]
}
</syntaxhighlight>
 
=={{header|Go}}==
{{trans|Euphoria}}
Binary reflected, as described in the task. Reading down through the solutions, the Euphoria decode algorithm caught my eye as being concise and easy to read.
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 860 ⟶ 3,296:
fmt.Printf(" %2d %05b %05b %05b %2d\n", b, b, g, d, d)
}
}</langsyntaxhighlight>
{{out}}
Output:
<pre>
decimal binary gray decoded
Line 900 ⟶ 3,336:
=={{header|Groovy}}==
Solution:
<langsyntaxhighlight lang="groovy">def grayEncode = { i ->
i ^ (i >>> 1)
}
Line 909 ⟶ 3,345:
def h = grayDecode(code >>> 1)
return (h << 1) + ((code ^ h) & 1)
}</langsyntaxhighlight>
 
Test:
<langsyntaxhighlight lang="groovy">def binary = { i, minBits = 1 ->
def remainder = i
def bin = []
Line 932 ⟶ 3,368:
it, iB[4],iB[3],iB[2],iB[1],iB[0], cB[4],cB[3],cB[2],cB[1],cB[0], decode)
println()
}</langsyntaxhighlight>
 
Results:
<pre style="overflow: auto; height: 5em20em;">number binary gray code decode
====== ====== ========= ======
0 00000 00000 0
Line 971 ⟶ 3,407:
 
=={{header|Haskell}}==
For zero padding, replace the %5s specifiers in the format string with %05s.
 
<syntaxhighlight lang="haskell">import Data.Bits
This being Haskell, the conversion to binary and the printout take more effort than the conversion to and from gray code. The binary conversion function <code>num2bin</code> has an additional width argument to force zero padding, which looks nicer.
import Data.Char
import Numeric
import Control.Monad
import Text.Printf
grayToBin :: (Integral t, Bits t) => t -> t
grayToBin 0 = 0
grayToBin g = g `xor` (grayToBin $ g `shiftR` 1)
binToGray :: (Integral t, Bits t) => t -> t
binToGray b = b `xor` (b `shiftR` 1)
 
showBinary :: (Integral t, Show t) => t -> String
<lang Haskell>module Main where
showBinary n = showIntAtBase 2 intToDigit n ""
showGrayCode :: (Integral t, Bits t, PrintfArg t, Show t) => t -> IO ()
showGrayCode num = do
let bin = showBinary num
let gray = showBinary (binToGray num)
printf "int: %2d -> bin: %5s -> gray: %5s\n" num bin gray
 
main = forM_ [0..31::Int] showGrayCode</syntaxhighlight>
main = do
putStr $ joinlines $ map (flip grayconvstr 5) [0..31]
 
=={{header|Icon}} and {{header|Unicon}}==
-- Convert number to bit list, MSB first. Second argument is minimum width.
num2bin :: (Integral t) => t -> t -> [t]
num2bin 0 w | w <= 0 = []
| otherwise = 0 : num2bin 0 (w-1)
num2bin n w = (num2bin m (w-1)) ++ [b]
where (m, b) = divMod n 2
 
The following works in both languages:
xor2 :: (Integral t) => t -> t -> t
<syntaxhighlight lang="unicon">link bitint
xor2 x y = (x + y) `mod` 2
 
procedure main()
bin2gray :: (Integral t) => [t] -> [t]
every write(right(i := 0 to 10,4),":",right(int2bit(i),10)," -> ",
bin2gray [] = []
right(g := gEncode(i),10)," -> ",
bin2gray (x:xs) = x : zipWith xor2 xs (x:xs)
right(b := gDecode(g),10)," -> ",
right(bit2int(b),10))
end
 
procedure gEncode(b)
gray2bin :: (Integral t) => [t] -> [t]
return int2bit(ixor(b, ishift(b,-1)))
gray2bin [] = []
end
gray2bin (x:xs) = bin
where bin = x : zipWith xor2 xs bin -- note the recursive definition
 
procedure gDecode(g)
joinlines = foldr (\x y -> x ++ "\n" ++ y) ""
b := g[1]
every i := 2 to *g do b ||:= if g[i] == b[i-1] then "0" else "1"
return b
end</syntaxhighlight>
 
Sample run:
-- Prettyprinting, since it is in the task description...
<pre>
grayconvstr :: (Integral t, Show t) => t -> t -> String
->gc
grayconvstr n w = (show n) ++ ": " ++ (show b) ++ " => " ++ (show g) ++ " => " ++ (show u)
0: 0 -> 0 -> 0 -> 0
where
1: 1 -> 1 -> 1 -> 1
b = num2bin n w
2: 10 -> 11 -> 10 -> 2
g = bin2gray b
3: 11 -> 10 -> 11 -> 3
u = gray2bin g</lang>
4: 100 -> 110 -> 100 -> 4
5: 101 -> 111 -> 101 -> 5
6: 110 -> 101 -> 110 -> 6
7: 111 -> 100 -> 111 -> 7
8: 1000 -> 1100 -> 1000 -> 8
9: 1001 -> 1101 -> 1001 -> 9
10: 1010 -> 1111 -> 1010 -> 10
->
</pre>
 
=={{header|J}}==
Line 1,012 ⟶ 3,476:
<code>G2B</code> is an invertible function which will translate Gray code to Binary:
 
<langsyntaxhighlight lang="j">G2B=: ~:/\&.|:</langsyntaxhighlight>
 
Thus <code>G2B inv</code> will translate binary to Gray code.
Line 1,018 ⟶ 3,482:
Required example:
 
<langsyntaxhighlight lang="j"> n=:i.32
G2B=: ~:/\&.|:
(,: ,.@".&.>) 'n';'#:n';'G2B inv#:n';'#.G2B G2B inv#:n'
Line 1,056 ⟶ 3,520:
|30|1 1 1 1 0|1 0 0 0 1 |30 |
|31|1 1 1 1 1|1 0 0 0 0 |31 |
+--+---------+----------+----------------+</langsyntaxhighlight>
 
=={{header|Java}}==
{{trans|C}}
<syntaxhighlight lang ="java">public class Gray {
 
import java.math.BigInteger;
 
public class GrayCode {
public static long grayEncode(long n){
return n ^ ( n >>> 1 );
}
 
public static long grayDecode(long n) {
long ip = 1 << 8 * 64 - 2n; //long is 64-bit
longwhile p,( b( n >>>= p1 ) != n0 &) i;{
p ^= n;
 
}
while ((i >>= 1) > 0)
return p;
b |= p = n & i ^ p >> 1;
}
return b;
public static BigInteger grayEncode(BigInteger n) {
return n.xor(n.shiftRight(1));
}
public static BigInteger grayDecode(BigInteger n) {
BigInteger p = n;
while ( ( n = n.shiftRight(1) ).signum() != 0 ) {
p = p.xor(n);
}
return p;
}
/**
* An alternative version of grayDecode,
* less efficient, but demonstrates the principal of gray decoding.
*/
public static BigInteger grayDecode2(BigInteger n) {
String nBits = n.toString(2);
String result = nBits.substring(0, 1);
for ( int i = 1; i < nBits.length(); i++ ) {
// bin[i] = gray[i] ^ bin[i-1]
// XOR using characters
result += nBits.charAt(i) != result.charAt(i - 1) ? "1" : "0";
}
return new BigInteger(result, 2);
}
/**
* An alternative version of grayEncode,
* less efficient, but demonstrates the principal of gray encoding.
*/
public static long grayEncode2(long n) {
long result = 0;
for ( int exp = 0; n > 0; n >>= 1, exp++ ) {
long nextHighestBit = ( n >> 1 ) & 1;
if ( nextHighestBit == 1 ) {
result += ( ( n & 1 ) == 0 ) ? ( 1 << exp ) : 0; // flip this bit
} else {
result += ( n & 1 ) * ( 1 << exp ); // don't flip this bit
}
}
return result;
}
public static void main(String[] args){
System.out.println("i\tBinary\tGray\tGray2\tDecoded");
System.out.println("=======================================");
for(int i = 0; i < 32;i++){
for ( int i = 0; i < 32; i++ ) {
System.out.print(i +"\t");
System.out.print(i + "\t");
System.out.print(Integer.toBinaryString(i) + "\t");
System.out.print(Long.toBinaryString(grayEncode(i)) + "\t");
System.out.print(Long.toBinaryString(grayEncode2(i)) + "\t");
System.out.println(grayDecode(grayEncode(i)));
}
System.out.println();
}
}</lang>
final BigInteger base = BigInteger.TEN.pow(25).add( new BigInteger("12345678901234567890") );
Output:
for ( int i = 0; i < 5; i++ ) {
<pre>i Binary Gray Decoded
BigInteger test = base.add(BigInteger.valueOf(i));
0 0 0 0
System.out.println("test decimal = " + test);
1 1 1 1
System.out.println("gray code decimal = " + grayEncode(test));
2 10 11 2
System.out.println("gray code binary = " + grayEncode(test).toString(2));
3 11 10 3
System.out.println("decoded decimal = " + grayDecode(grayEncode(test)));
4 100 110 4
System.out.println("decoded2 decimal = " + grayDecode2(grayEncode(test)));
5 101 111 5
System.out.println();
6 110 101 6
7 111 100 7
8 1000 1100 8
9 1001 1101 9
10 1010 1111 10
11 1011 1110 11
12 1100 1010 12
13 1101 1011 13
14 1110 1001 14
15 1111 1000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31</pre>
Here is an example encoding function that does it in a bit-by-bit, more human way:
<lang java>public static long grayEncode(long n){
long result = 0;
for(int exp = 0; n > 0; n /= 2, exp++){
long nextHighestBit = (n >> 1) & 1;
if(nextHighestBit == 1){
result += ((n & 1) == 0) ? (1 << exp) : 0; //flip the bit
}else{
result += (n & 1) * (1 << exp); //"n & 1" is "this bit", don't flip it
}
}
return result;
}
}</lang>
</syntaxhighlight>
This decoding function should work for gray codes of any size:
{{untested out }}
<pre>
<lang java>public static BigInteger grayDecode(BigInteger n){
i Binary Gray Gray2 Decoded
String nBits = n.toString(2);
=======================================
String result = nBits.substring(0, 1);
0 0 0 0 0
for(int i = 1; i < nBits.length(); i++){
1 1 1 1 1
//bin[i] = gray[i] ^ bin[i-1]
2 10 11 11 2
3 11 10 10 3
4 100 110 110 4
5 101 111 111 5
6 110 101 101 6
7 111 100 100 7
8 1000 1100 1100 8
9 1001 1101 1101 9
10 1010 1111 1111 10
11 1011 1110 1110 11
12 1100 1010 1010 12
13 1101 1011 1011 13
14 1110 1001 1001 14
15 1111 1000 1000 15
16 10000 11000 11000 16
17 10001 11001 11001 17
18 10010 11011 11011 18
19 10011 11010 11010 19
20 10100 11110 11110 20
21 10101 11111 11111 21
22 10110 11101 11101 22
23 10111 11100 11100 23
24 11000 10100 10100 24
25 11001 10101 10101 25
26 11010 10111 10111 26
27 11011 10110 10110 27
28 11100 10010 10010 28
29 11101 10011 10011 29
30 11110 10001 10001 30
31 11111 10000 10000 31
 
test decimal = 10000012345678901234567890
//XOR with characters
gray code decimal = 14995268463904422838177723
result += nBits.charAt(i) != result.charAt(i - 1) ? "1" : "0";
gray code binary = 110001100111010111110010000111011100111111111011111110101111100100001000111110111011
}
decoded decimal = 10000012345678901234567890
return new BigInteger(result, 2);
decoded2 decimal = 10000012345678901234567890
}</lang>
 
test decimal = 10000012345678901234567891
=={{header|Liberty BASIC}}==
gray code decimal = 14995268463904422838177722
<lang lb>
gray code binary = 110001100111010111110010000111011100111111111011111110101111100100001000111110111010
for r =0 to 31
decoded decimal = 10000012345678901234567891
print " Decimal "; using( "###", r); " is ";
decoded2 decimal = 10000012345678901234567891
B$ =dec2Bin$( r)
print " binary "; B$; ". Binary "; B$;
G$ =Bin2Gray$( dec2Bin$( r))
print " is "; G$; " in Gray code, or ";
B$ =Gray2Bin$( G$)
print B$; " in pure binary."
next r
 
test decimal = 10000012345678901234567892
gray code decimal = 14995268463904422838177726
gray code binary = 110001100111010111110010000111011100111111111011111110101111100100001000111110111110
decoded decimal = 10000012345678901234567892
decoded2 decimal = 10000012345678901234567892
 
test decimal = 10000012345678901234567893
gray code decimal = 14995268463904422838177727
gray code binary = 110001100111010111110010000111011100111111111011111110101111100100001000111110111111
decoded decimal = 10000012345678901234567893
decoded2 decimal = 10000012345678901234567893
 
test decimal = 10000012345678901234567894
gray code decimal = 14995268463904422838177725
gray code binary = 110001100111010111110010000111011100111111111011111110101111100100001000111110111101
decoded decimal = 10000012345678901234567894
decoded2 decimal = 10000012345678901234567894
</pre>
 
=={{header|Javascript}}==
The following code is '''ES2015.'''
 
'''Module''' <code>gray-code.js</code>
<syntaxhighlight lang="javascript">export function encode (number) {
return number ^ (number >> 1)
}
 
export function decode (encodedNumber) {
let number = encodedNumber
 
while (encodedNumber >>= 1) {
number ^= encodedNumber
}
 
return number
}</syntaxhighlight>
'''Test'''
<syntaxhighlight lang="javascript">import printf from 'printf' // Module must be installed with npm first
import * as gray from './gray-code.js'
 
console.log(
'Number\t' +
'Binary\t' +
'Gray Code\t' +
'Decoded Gray Code'
)
 
for (let number = 0; number < 32; number++) {
const grayCode = gray.encode(number)
const decodedGrayCode = gray.decode(grayCode)
 
console.log(printf(
'%2d\t%05d\t%05d\t\t%2d',
number,
number.toString(2),
grayCode.toString(2),
decodedGrayCode
))
}</syntaxhighlight>
{{out}}
<pre>
Number Binary Gray Code Decoded Gray Code
0 00000 00000 0
1 00001 00001 1
2 00010 00011 2
3 00011 00010 3
4 00100 00110 4
5 00101 00111 5
6 00110 00101 6
7 00111 00100 7
8 01000 01100 8
9 01001 01101 9
10 01010 01111 10
11 01011 01110 11
12 01100 01010 12
13 01101 01011 13
14 01110 01001 14
15 01111 01000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31
</pre>
 
=={{header|jq}}==
{{works with|jq}}
 
'''Works with gojq, the Go implementation of jq'''
 
'''Works with jaq, the Rust implementation of jq'''
 
The following is slightly more verbose than it need be but for the
sake of jaq.
<syntaxhighlight lang="jq">
def encode:
def flip: if . == 1 then 0 else 1 end;
. as $b
| reduce range(1; length) as $i ($b;
if $b[$i-1] == 1 then .[$i] |= flip
else .
end ) ;
 
def decode:
def xor($a;$b): ($a + $b) % 2;
. as $g
| reduce range(1; length) as $i (.[:1];
.[$i] = xor($g[$i]; .[$i-1]) ) ;
 
 
# input: a non-negative integer
# output: a binary array, least-significant bit first
def to_binary:
if . == 0 then [0]
else [recurse( if . == 0 then empty else ./2 | floor end ) % 2]
| .[:-1] # remove the uninteresting 0
end ;
 
def lpad($len; $fill):
tostring
| ($len - length) as $l
| if $l <= 0 then .
else ($fill * $l)[:$l] + .
end;
 
def pp: map(tostring) | join("") | lpad(5; "0");
 
### The task
"decimal binary gray roundtrip",
(range(0; 32) as $i
| ($i | to_binary | reverse) as $b
| ($b|encode) as $g
| " \($i|lpad(2;" ")) \($b|pp) \($g|pp) \($g|decode == $b)" )
</syntaxhighlight>
{{output}}
<pre>
decimal binary gray roundtrip
0 00000 00000 true
1 00001 00001 true
2 00010 00011 true
3 00011 00010 true
4 00100 00110 true
5 00101 00111 true
6 00110 00101 true
7 00111 00100 true
8 01000 01100 true
9 01001 01101 true
10 01010 01111 true
11 01011 01110 true
12 01100 01010 true
13 01101 01011 true
14 01110 01001 true
15 01111 01000 true
16 10000 11000 true
17 10001 11001 true
18 10010 11011 true
19 10011 11010 true
20 10100 11110 true
21 10101 11111 true
22 10110 11101 true
23 10111 11100 true
24 11000 10100 true
25 11001 10101 true
26 11010 10111 true
27 11011 10110 true
28 11100 10010 true
29 11101 10011 true
30 11110 10001 true
31 11111 10000 true
</pre>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
{{trans|C}}
<syntaxhighlight lang="julia">grayencode(n::Integer) = n ⊻ (n >> 1)
function graydecode(n::Integer)
r = n
while (n >>= 1) != 0
r ⊻= n
end
return r
end</syntaxhighlight>
 
Note that these functions work for any integer type, including arbitrary-precision integers (the built-in <code>BigInt</code> type).
function Bin2Gray$( bin$) ' Given a binary number as a string, returns Gray code as a string.
g$ =left$( bin$, 1)
for i =2 to len( bin$)
bitA =val( mid$( bin$, i -1, 1))
bitB =val( mid$( bin$, i, 1))
AXorB =bitA xor bitB
g$ =g$ +str$( AXorB)
next i
Bin2Gray$ =g$
end function
 
=={{header|K}}==
function Gray2Bin$( g$) ' Given a Gray code as a string, returns equivalent binary num.
' as a string
gl =len( g$)
b$ =left$( g$, 1)
for i =2 to len( g$)
bitA =val( mid$( b$, i -1, 1))
bitB =val( mid$( g$, i, 1))
AXorB =bitA xor bitB
b$ =b$ +str$( AXorB)
next i
Gray2Bin$ =right$( b$, gl)
end function
 
Binary to Gray code
function dec2Bin$( num) ' Given an integer decimal, returns binary equivalent as a string
n =num
dec2Bin$ =""
while ( num >0)
dec2Bin$ =str$( num mod 2) +dec2Bin$
num =int( num /2)
wend
if ( n >255) then nBits =16 else nBits =8
dec2Bin$ =right$( "0000000000000000" +dec2Bin$, nBits) ' Pad to 8 bit or 16 bit
end function
 
<syntaxhighlight lang="k"> xor: {~x=y}
function bin2Dec( b$) ' Given a binary number as a string, returns decimal equivalent num.
gray:{x[0],xor':x}
t =0
 
d =len( b$)
/ variant: using shift
for k =d to 1 step -1
gray1:{(x[0],xor[1_ x;-1_ x])}
t =t +val( mid$( b$, k, 1)) *2^( d -k)
next k
/ variant: iterative
bin2Dec =t
gray2:{x[0],{:[x[y-1]=1;~x[y];x[y]]}[x]'1+!(#x)-1}</syntaxhighlight>
end function
 
</lang>
 
Gray code to binary
 
"Accumulated xor"
<syntaxhighlight lang="k"> g2b:xor\</syntaxhighlight>
 
An alternative is to find the inverse of the gray code by tracing until fixpoint.
Here we find that 1 1 1 1 1 is the inverse of 1 0 0 0 0
<syntaxhighlight lang="k"> gray\1 0 0 0 0
(1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0
1 0 0 0 1
1 1 0 0 1
1 0 1 0 1
1 1 1 1 1)
</syntaxhighlight>
 
As a function (*| takes the last result)
<syntaxhighlight lang="k"> g2b1:*|{gray x}\</syntaxhighlight>
 
Iterative version with "do"
<syntaxhighlight lang="k"> g2b2:{c:#x;b:c#0;b[0]:x[0];i:1;do[#x;b[i]:xor[x[i];b[i-1]];i+:1];b}</syntaxhighlight>
 
 
Presentation
 
<syntaxhighlight lang="k"> gray:{x[0],xor':x}
g2b:xor\
/ using allcomb instead of 2_vs'!32 for nicer presentation
allcomb:{+(x#y)_vs!_ y^x}
a:(+allcomb . 5 2)
`0:,/{n:2_sv x;gg:gray x;gb:g2b gg;n2:2_sv gb;
,/$((2$n)," : ",$x," -> ",$gg," -> ",$gb," : ",(2$n2),"\n") }'a</syntaxhighlight>
 
{{out}}
<pre> 0 : 00000 -> 00000 -> 00000 : 0
1 : 00001 -> 00001 -> 00001 : 1
2 : 00010 -> 00011 -> 00010 : 2
3 : 00011 -> 00010 -> 00011 : 3
4 : 00100 -> 00110 -> 00100 : 4
5 : 00101 -> 00111 -> 00101 : 5
6 : 00110 -> 00101 -> 00110 : 6
7 : 00111 -> 00100 -> 00111 : 7
8 : 01000 -> 01100 -> 01000 : 8
9 : 01001 -> 01101 -> 01001 : 9
10 : 01010 -> 01111 -> 01010 : 10
11 : 01011 -> 01110 -> 01011 : 11
12 : 01100 -> 01010 -> 01100 : 12
13 : 01101 -> 01011 -> 01101 : 13
14 : 01110 -> 01001 -> 01110 : 14
15 : 01111 -> 01000 -> 01111 : 15
16 : 10000 -> 11000 -> 10000 : 16
17 : 10001 -> 11001 -> 10001 : 17
18 : 10010 -> 11011 -> 10010 : 18
19 : 10011 -> 11010 -> 10011 : 19
20 : 10100 -> 11110 -> 10100 : 20
21 : 10101 -> 11111 -> 10101 : 21
22 : 10110 -> 11101 -> 10110 : 22
23 : 10111 -> 11100 -> 10111 : 23
24 : 11000 -> 10100 -> 11000 : 24
25 : 11001 -> 10101 -> 11001 : 25
26 : 11010 -> 10111 -> 11010 : 26
27 : 11011 -> 10110 -> 11011 : 27
28 : 11100 -> 10010 -> 11100 : 28
29 : 11101 -> 10011 -> 11101 : 29
30 : 11110 -> 10001 -> 11110 : 30
31 : 11111 -> 10000 -> 11111 : 31</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.0.6
 
object Gray {
fun encode(n: Int) = n xor (n shr 1)
 
fun decode(n: Int): Int {
var p = n
var nn = n
while (nn != 0) {
nn = nn shr 1
p = p xor nn
}
return p
}
}
 
fun main(args: Array<String>) {
println("Number\tBinary\tGray\tDecoded")
for (i in 0..31) {
print("$i\t${Integer.toBinaryString(i)}\t")
val g = Gray.encode(i)
println("${Integer.toBinaryString(g)}\t${Gray.decode(g)}")
}
}</syntaxhighlight>
 
{{out}}
<pre>
Number Binary Gray Decoded
0 0 0 0
1 1 1 1
2 10 11 2
3 11 10 3
4 100 110 4
5 101 111 5
6 110 101 6
7 111 100 7
8 1000 1100 8
9 1001 1101 9
10 1010 1111 10
11 1011 1110 11
12 1100 1010 12
13 1101 1011 13
14 1110 1001 14
15 1111 1000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31
</pre>
 
=={{header|Limbo}}==
{{trans|Go}}
<syntaxhighlight lang="limbo">implement Gray;
 
include "sys.m"; sys: Sys;
print: import sys;
include "draw.m";
 
Gray: module {
init: fn(nil: ref Draw->Context, args: list of string);
# Export gray and grayinv so that this module can be used as either a
# standalone program or as a library:
gray: fn(n: int): int;
grayinv: fn(n: int): int;
};
 
init(nil: ref Draw->Context, args: list of string)
{
sys = load Sys Sys->PATH;
for(i := 0; i < 32; i++) {
g := gray(i);
f := grayinv(g);
print("%2d %5s %2d %5s %5s %2d\n", i, binstr(i), g, binstr(g), binstr(f), f);
}
}
 
gray(n: int): int
{
return n ^ (n >> 1);
}
 
grayinv(n: int): int
{
r := 0;
while(n) {
r ^= n;
n >>= 1;
}
return r;
}
 
binstr(n: int): string
{
if(!n)
return "0";
s := "";
while(n) {
s = (string (n&1)) + s;
n >>= 1;
}
return s;
}</syntaxhighlight>
 
{{out}}
<code>
0 0 0 0 0 0
1 1 1 1 1 1
2 10 3 11 10 2
3 11 2 10 11 3
4 100 6 110 100 4
5 101 7 111 101 5
6 110 5 101 110 6
7 111 4 100 111 7
8 1000 12 1100 1000 8
9 1001 13 1101 1001 9
10 1010 15 1111 1010 10
11 1011 14 1110 1011 11
12 1100 10 1010 1100 12
13 1101 11 1011 1101 13
14 1110 9 1001 1110 14
15 1111 8 1000 1111 15
16 10000 24 11000 10000 16
17 10001 25 11001 10001 17
18 10010 27 11011 10010 18
19 10011 26 11010 10011 19
20 10100 30 11110 10100 20
21 10101 31 11111 10101 21
22 10110 29 11101 10110 22
23 10111 28 11100 10111 23
24 11000 20 10100 11000 24
25 11001 21 10101 11001 25
26 11010 23 10111 11010 26
27 11011 22 10110 11011 27
28 11100 18 10010 11100 28
29 11101 19 10011 11101 29
30 11110 17 10001 11110 30
31 11111 16 10000 11111 31
</code>
 
=={{header|Lobster}}==
{{trans|C}}
<syntaxhighlight lang="lobster">def grey_encode(n) -> int:
return n ^ (n >> 1)
 
def grey_decode(n) -> int:
var p = n
n = n >> 1
while n != 0:
p = p ^ n
n = n >> 1
return p
 
for(32) i:
let g = grey_encode(i)
let b = grey_decode(g)
print(number_to_string(i, 10, 2) + " : " +
number_to_string(i, 2, 5) + " ⇾ " +
number_to_string(g, 2, 5) + " ⇾ " +
number_to_string(b, 2, 5) + " : " +
number_to_string(b, 10, 2))</syntaxhighlight>
{{out}}
<pre>
00 : 00000 ⇾ 00000 ⇾ 00000 : 00
01 : 00001 ⇾ 00001 ⇾ 00001 : 01
02 : 00010 ⇾ 00011 ⇾ 00010 : 02
03 : 00011 ⇾ 00010 ⇾ 00011 : 03
04 : 00100 ⇾ 00110 ⇾ 00100 : 04
05 : 00101 ⇾ 00111 ⇾ 00101 : 05
06 : 00110 ⇾ 00101 ⇾ 00110 : 06
07 : 00111 ⇾ 00100 ⇾ 00111 : 07
08 : 01000 ⇾ 01100 ⇾ 01000 : 08
09 : 01001 ⇾ 01101 ⇾ 01001 : 09
10 : 01010 ⇾ 01111 ⇾ 01010 : 10
11 : 01011 ⇾ 01110 ⇾ 01011 : 11
12 : 01100 ⇾ 01010 ⇾ 01100 : 12
13 : 01101 ⇾ 01011 ⇾ 01101 : 13
14 : 01110 ⇾ 01001 ⇾ 01110 : 14
15 : 01111 ⇾ 01000 ⇾ 01111 : 15
16 : 10000 ⇾ 11000 ⇾ 10000 : 16
17 : 10001 ⇾ 11001 ⇾ 10001 : 17
18 : 10010 ⇾ 11011 ⇾ 10010 : 18
19 : 10011 ⇾ 11010 ⇾ 10011 : 19
20 : 10100 ⇾ 11110 ⇾ 10100 : 20
21 : 10101 ⇾ 11111 ⇾ 10101 : 21
22 : 10110 ⇾ 11101 ⇾ 10110 : 22
23 : 10111 ⇾ 11100 ⇾ 10111 : 23
24 : 11000 ⇾ 10100 ⇾ 11000 : 24
25 : 11001 ⇾ 10101 ⇾ 11001 : 25
26 : 11010 ⇾ 10111 ⇾ 11010 : 26
27 : 11011 ⇾ 10110 ⇾ 11011 : 27
28 : 11100 ⇾ 10010 ⇾ 11100 : 28
29 : 11101 ⇾ 10011 ⇾ 11101 : 29
30 : 11110 ⇾ 10001 ⇾ 11110 : 30
31 : 11111 ⇾ 10000 ⇾ 11111 : 31
</pre>
 
=={{header|Logo}}==
{{trans|Euphoria}}
<langsyntaxhighlight lang="logo">to gray_encode :number
output bitxor :number lshift :number -1
end
Line 1,218 ⟶ 4,163:
]
output :value
end</langsyntaxhighlight>
 
Demonstration code, including formatters:
<langsyntaxhighlight lang="logo">to format :str :width [pad (char 32)]
while [(count :str) < :width] [
make "str word :pad :str
Line 1,249 ⟶ 4,194:
print (sentence (format :num 2) ": (binary :num 5) ": (binary :gray 5) ":
(binary :decoded 5) ": (format :decoded 2)) ]
bye</langsyntaxhighlight>
 
{{out}}
Output:
<pre> 0 : 00000 : 00000 : 00000 : 0
1 : 00001 : 00001 : 00001 : 1
Line 1,285 ⟶ 4,230:
31 : 11111 : 10000 : 11111 : 31
</pre>
 
 
=={{header|Lua}}==
{{trans|Euphoria}}
This code uses the [http://bitop.luajit.org/index.html Lua BitOp] module. Designed to be a module named <tt>gray.lua</tt>.
<langsyntaxhighlight lang="lua">local _M = {}
 
local bit = require('bit')
Line 1,307 ⟶ 4,251:
end
 
return _M</langsyntaxhighlight>
 
Demonstration code:
<langsyntaxhighlight lang="lua">local bit = require 'bit'
local gray = require 'gray'
 
Line 1,333 ⟶ 4,277:
to_bit_string(i,5), to_bit_string(g, 5),
to_bit_string(gd,5), gd))
end</langsyntaxhighlight>
 
{{out}}
Output:
<pre>
 
Line 1,371 ⟶ 4,315:
31 : 11111 => 10000 => 11111 : 31
</pre>
 
=={{header|M2000 Interpreter}}==
{{trans|C}}
 
Additions to showing the modules/functions replacement mechanism of M2000
 
<syntaxhighlight lang="m2000 interpreter">
Module Code32 (&code(), &decode()){
Const d$="{0::-2} {1:-6} {2:-6} {3:-6} {4::-2}"
For i=0 to 32
g=code(i)
b=decode(g)
Print format$(d$, i, @bin$(i), @bin$(g), @bin$(b), b)
Next
// static function
Function bin$(a)
a$=""
Do n= a mod 2 : a$=if$(n=1->"1", "0")+a$ : a|div 2 : Until a==0
=a$
End Function
}
Module GrayCode {
Module doit (&a(), &b()) { }
Function GrayEncode(a) {
=binary.xor(a, binary.shift(a,-1))
}
Function GrayDecode(a) {
b=0
Do b=binary.xor(a, b) : a=binary.shift(a,-1) : Until a==0
=b
}
// pass 2 functions to Code32
doit &GrayEncode(), &GrayDecode()
}
// pass Code32 to GrayCode in place of doit
GrayCode ; doit as Code32
</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">
0 0 0 0 0
1 1 1 1 1
2 10 11 10 2
3 11 10 11 3
4 100 110 100 4
5 101 111 101 5
6 110 101 110 6
7 111 100 111 7
8 1000 1100 1000 8
9 1001 1101 1001 9
10 1010 1111 1010 10
11 1011 1110 1011 11
12 1100 1010 1100 12
13 1101 1011 1101 13
14 1110 1001 1110 14
15 1111 1000 1111 15
16 10000 11000 10000 16
17 10001 11001 10001 17
18 10010 11011 10010 18
19 10011 11010 10011 19
20 10100 11110 10100 20
21 10101 11111 10101 21
22 10110 11101 10110 22
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31
32 100000 110000 100000 32
</pre >
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">graycode[n_]:=BitXor[n,BitShiftRight[n]]
graydecode[n_]:=Fold[BitXor,0,FixedPointList[BitShiftRight,n]]</syntaxhighlight>
{{out}}
<pre>Required example:
Grid[{# ,IntegerDigits[#,2],IntegerDigits[graycode@#,2], IntegerDigits[graydecode@graycode@#,2]}&/@Range[32]]
1 {1} {1} {1}
2 {1,0} {1,1} {1,0}
3 {1,1} {1,0} {1,1}
...
15 {1,1,1,1} {1,0,0,0} {1,1,1,1}
...
30 {1,1,1,1,0} {1,0,0,0,1} {1,1,1,1,0}
31 {1,1,1,1,1} {1,0,0,0,0} {1,1,1,1,1}
32 {1,0,0,0,0,0} {1,1,0,0,0,0} {1,0,0,0,0,0}</pre>
 
=={{header|MATLAB}}==
 
<syntaxhighlight lang="matlab">
%% Gray Code Generator
% this script generates gray codes of n bits
% total 2^n -1 continuous gray codes will be generated.
% this code follows a recursive approach. therefore,
% it can be slow for large n
 
 
 
clear all;
clc;
 
bits = input('Enter the number of bits: ');
if (bits<1)
disp('Sorry, number of bits should be positive');
elseif (mod(bits,1)~=0)
disp('Sorry, number of bits can only be positive integers');
else
initial_container = [0;1];
if bits == 1
result = initial_container;
else
previous_container = initial_container;
for i=2:bits
new_gray_container = zeros(2^i,i);
new_gray_container(1:(2^i)/2,1) = 0;
new_gray_container(((2^i)/2)+1:end,1) = 1;
for j = 1:(2^i)/2
new_gray_container(j,2:end) = previous_container(j,:);
end
for j = ((2^i)/2)+1:2^i
new_gray_container(j,2:end) = previous_container((2^i)+1-j,:);
end
previous_container = new_gray_container;
end
result = previous_container;
end
fprintf('Gray code of %d bits',bits);
disp(' ');
disp(result);
end
</syntaxhighlight>
 
{{out}}
<pre style="overflow: auto; height: 20em;">
Enter the number of bits: 5
Gray code of 5 bits
0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 0 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 0 1
0 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 1 1 1 1
0 1 1 1 0
0 1 0 1 0
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1
1 1 0 1 1
1 1 0 1 0
1 1 1 1 0
1 1 1 1 1
1 1 1 0 1
1 1 1 0 0
1 0 1 0 0
1 0 1 0 1
1 0 1 1 1
1 0 1 1 0
1 0 0 1 0
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0
</pre>
 
=={{header|Mercury}}==
 
The following is a full implementation of Gray encoding and decoding.
It publicly exposes the <tt>gray</tt> type along with the following
value conversion functions:
 
* <tt>gray.from_int/1</tt>
* <tt>gray.to_int/1</tt>
 
The <tt>from_int/1</tt> and <tt>to_int/1</tt> functions are ''value'' conversion functions. <tt>from_int/1</tt> converts an <tt>int</tt> value into the enclosing <tt>gray</tt> type. <tt>to_int/1</tt> converts a <tt>gray</tt> value back into a regular <tt>int</tt> type.
 
The additional <tt>gray.coerce/2</tt> predicate converts the ''representation'' underlying a <tt>gray</tt> value into an <tt>int</tt> value or vice versa (it is moded in both directions). For type safety reasons we do not wish to generally expose the underlying representation, but for some purposes, most notably I/O or storage or their ilk we have to break the type safety. The <tt>coerce/2</tt> predicate is used for this purpose.
 
<syntaxhighlight lang="mercury">:- module gray.
 
:- interface.
:- import_module int.
 
:- type gray.
 
% VALUE conversion functions
:- func gray.from_int(int) = gray.
:- func gray.to_int(gray) = int.
 
% REPRESENTATION conversion predicate
:- pred gray.coerce(gray, int).
:- mode gray.coerce(in, out) is det.
:- mode gray.coerce(out, in) is det.
 
:- implementation.
 
:- import_module list.
 
:- type gray
---> gray(int).
 
gray.from_int(X) = gray(X `xor` (X >> 1)).
 
gray.to_int(gray(G)) = (G > 0 -> G `xor` gray.to_int(gray(G >> 1))
; G).
gray.coerce(gray(I), I).
 
:- end_module gray.</syntaxhighlight>
 
The following program tests the above code:
 
<syntaxhighlight lang="mercury">:- module gray_test.
 
:- interface.
 
:- import_module io.
 
:- pred main(io::di, io::uo) is det.
 
:- implementation.
 
:- import_module gray.
:- import_module int, list, string.
 
:- pred check_conversion(list(int)::in, list(gray)::out) is semidet.
:- pred display_lists(list(int)::in, list(gray)::in, io::di, io::uo) is det.
:- pred display_record(int::in, gray::in, io::di, io::uo) is det.
 
main(!IO) :-
Numbers = 0..31,
( check_conversion(Numbers, Grays) ->
io.format("%8s %8s %8s\n", [s("Number"), s("Binary"), s("Gray")], !IO),
io.format("%8s %8s %8s\n", [s("------"), s("------"), s("----")], !IO),
display_lists(Numbers, Grays, !IO)
 
; io.write("Either conversion or back-conversion failed.\n", !IO)).
 
check_conversion(Numbers, Grays) :-
Grays = list.map(gray.from_int, Numbers),
Numbers = list.map(gray.to_int, Grays).
 
display_lists(Numbers, Grays, !IO) :-
list.foldl_corresponding(display_record, Numbers, Grays, !IO).
 
display_record(Number, Gray, !IO) :-
gray.coerce(Gray, GrayRep),
NumBin = string.int_to_base_string(Number, 2),
GrayBin = string.int_to_base_string(GrayRep, 2),
io.format("%8d %8s %8s\n", [i(Number), s(NumBin), s(GrayBin)], !IO).
 
:- end_module gray_test.</syntaxhighlight>
 
The <tt>main/2</tt> predicate generates a list of numbers from 0 to 31 inclusive and then checks that conversion is working properly.
It does so by calling the <tt>check_conversion/2</tt> predicate with the
list of numbers as an input and the list of Gray-encoded numbers as an output.
Note the absence of the usual kinds of testing you'd see in most programming languages.
<tt>gray.from_int/1</tt> is mapped over the <tt>Numbers</tt> (input) list and placed into the <tt>Grays</tt> (output) list.
Then <tt>gray.to_int</tt> is mapped over the <tt>Grays</tt> list and placed into the <tt>Numbers</tt> (input) list.
Or so it would seem to those used to imperative or functional languages.
 
In reality what's happening is [https://en.wikipedia.org/wiki/Unification_%28computer_science%29 unification].
Since the <tt>Grays</tt> list is not yet populated, unification is very similar notionally to assignment in other languages.
<tt>Numbers</tt>, however, '''is''' instantiated and thus unification is more like testing for equality.
 
If the conversions check out, <tt>main/2</tt> prints off some headers and then displays the lists. Here we're cluttering up the namespace of the <tt>gray_test</tt> module a little by providing a one-line predicate. While it is true that we ''could'' just take the contents of that predicate and place it inline, we've chosen not to do that because the name <tt>display_lists</tt> communicates more effectively what we intend.
The compiler is smart enough to automatically inline that predicate call so there's no efficiency reason not to do it.
 
However we choose to do that, the result is the same: repeated calls to <tt>display_record/4</tt>. In that predicate the aforementioned <tt>coerce/2</tt> predicate extracts, in this case, the Gray value's representation.
This value and the corresponding <tt>int</tt> value are then converted into a string showing the base-2 representation of their values.
<tt>io.format/4</tt> then prints them off in a nice format.
 
The output of the program looks like this:
 
<tt>Number Binary Gray
------ ------ ----
0 0 0
1 1 1
2 10 11
3 11 10
4 100 110
5 101 111
6 110 101
7 111 100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000
16 10000 11000
17 10001 11001
18 10010 11011
19 10011 11010
20 10100 11110
21 10101 11111
22 10110 11101
23 10111 11100
24 11000 10100
25 11001 10101
26 11010 10111
27 11011 10110
28 11100 10010
29 11101 10011
30 11110 10001
31 11111 10000</tt>
 
=={{header|Modula-2}}==
{{trans|DWScript|<code>CARDINAL</code> (unsigned integer) used instead of integer.}}
{{works with|ADW Modula-2|any (Compile with the linker option ''Console Application'').}}
<syntaxhighlight lang="modula2">
MODULE GrayCode;
 
FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;
FROM Conversions IMPORT
LongBaseToStr;
FROM FormatString IMPORT
FormatString; (* for justifying *)
 
VAR
I, G, D: CARDINAL;
Ok: BOOLEAN;
BinS, OutBinS: ARRAY[0 .. 5] OF CHAR;
 
PROCEDURE Encode(V: CARDINAL): CARDINAL;
BEGIN
RETURN V BXOR (V SHR 1)
END Encode;
 
PROCEDURE Decode(V: CARDINAL): CARDINAL;
VAR
Result: CARDINAL;
BEGIN
Result := 0;
WHILE V > 0 DO
Result := Result BXOR V;
V := V SHR 1
END;
RETURN Result
END Decode;
 
BEGIN
WriteString("decimal binary gray decoded");
WriteLn;
FOR I := 0 TO 31 DO
G := Encode(I);
D := Decode(G);
WriteInt(I, 4);
WriteString(" ");
Ok := LongBaseToStr(I, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
(* Padded with 0; width: 5; type: string *)
WriteString(OutBinS);
WriteString(" ");
Ok := LongBaseToStr(G, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
WriteString(OutBinS);
WriteString(" ");
Ok := LongBaseToStr(D, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
WriteString(OutBinS);
WriteInt(D, 4);
WriteLn;
END
END GrayCode.
</syntaxhighlight>
{{out}}
<pre>
decimal binary gray decoded
0 00000 00000 00000 0
1 00001 00001 00001 1
2 00010 00011 00010 2
3 00011 00010 00011 3
4 00100 00110 00100 4
5 00101 00111 00101 5
6 00110 00101 00110 6
7 00111 00100 00111 7
8 01000 01100 01000 8
9 01001 01101 01001 9
10 01010 01111 01010 10
11 01011 01110 01011 11
12 01100 01010 01100 12
13 01101 01011 01101 13
14 01110 01001 01110 14
15 01111 01000 01111 15
16 10000 11000 10000 16
17 10001 11001 10001 17
18 10010 11011 10010 18
19 10011 11010 10011 19
20 10100 11110 10100 20
21 10101 11111 10101 21
22 10110 11101 10110 22
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31
</pre>
 
=={{header|Nim}}==
{{trans|C}}
<syntaxhighlight lang="nim">proc grayEncode(n: int): int =
n xor (n shr 1)
proc grayDecode(n: int): int =
result = n
var t = n
while t > 0:
t = t shr 1
result = result xor t</syntaxhighlight>
Demonstration code:
<syntaxhighlight lang="nim">import strutils, strformat
for i in 0 .. 32:
echo &"{i:>2} => {toBin(grayEncode(i), 6)} => {grayDecode(grayEncode(i)):>2}"</syntaxhighlight>
{{out}}
<pre> 0 => 000000 => 0
1 => 000001 => 1
2 => 000011 => 2
3 => 000010 => 3
4 => 000110 => 4
5 => 000111 => 5
6 => 000101 => 6
7 => 000100 => 7
8 => 001100 => 8
9 => 001101 => 9
10 => 001111 => 10
11 => 001110 => 11
12 => 001010 => 12
13 => 001011 => 13
14 => 001001 => 14
15 => 001000 => 15
16 => 011000 => 16
17 => 011001 => 17
18 => 011011 => 18
19 => 011010 => 19
20 => 011110 => 20
21 => 011111 => 21
22 => 011101 => 22
23 => 011100 => 23
24 => 010100 => 24
25 => 010101 => 25
26 => 010111 => 26
27 => 010110 => 27
28 => 010010 => 28
29 => 010011 => 29
30 => 010001 => 30
31 => 010000 => 31
32 => 110000 => 32</pre>
 
=={{header|NOWUT}}==
adapted from C
<syntaxhighlight lang="nowut">; link with PIOxxx.OBJ
 
sectiondata
 
output: db " : "
inbinary: db "00000 => "
graybinary: db "00000 => "
outbinary: db "00000"
db 13,10,0 ; carriage return and null terminator
 
sectioncode
 
start!
gosub initplatform
 
beginfunc
localvar i.d,g.d,b.d
 
i=0
whileless i,32
callex g,gray_encode,i
callex b,gray_decode,g
 
callex ,bin2string,i,inbinary,5 ; 5 = number of binary digits
callex ,bin2string,g,graybinary,5
callex ,bin2string,b,outbinary,5
 
callex ,printhex8,i ; display hex value
; because there is no PIO routine for decimals...
callex ,printnt,output.a
 
i=_+1
wend
 
endfunc
end
 
gray_encode:
beginfunc n.d
n=_ xor (n shr 1)
endfunc n
returnex 4 ; clean off 1 parameter from the stack
 
gray_decode:
beginfunc n.d
localvar p.d
p=n
whilegreater n,1
n=_ shr 1 > p=_ xor n
wend
endfunc p
returnex 4 ; clean off 1 parameter from the stack
 
bin2string:
beginfunc digits.d,straddr.d,value.d
 
whilegreater digits,0
digits=_-1
[straddr].b=value shr digits and 1+$30 ; write an ASCII '0' or '1'
straddr=_+1 ; increment the pointer
wend
 
endfunc
returnex $0C ; clean off 3 parameters from the stack
</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">00 : 00000 => 00000 => 00000
01 : 00001 => 00001 => 00001
02 : 00010 => 00011 => 00010
03 : 00011 => 00010 => 00011
04 : 00100 => 00110 => 00100
05 : 00101 => 00111 => 00101
06 : 00110 => 00101 => 00110
07 : 00111 => 00100 => 00111
08 : 01000 => 01100 => 01000
09 : 01001 => 01101 => 01001
0A : 01010 => 01111 => 01010
0B : 01011 => 01110 => 01011
0C : 01100 => 01010 => 01100
0D : 01101 => 01011 => 01101
0E : 01110 => 01001 => 01110
0F : 01111 => 01000 => 01111
10 : 10000 => 11000 => 10000
11 : 10001 => 11001 => 10001
12 : 10010 => 11011 => 10010
13 : 10011 => 11010 => 10011
14 : 10100 => 11110 => 10100
15 : 10101 => 11111 => 10101
16 : 10110 => 11101 => 10110
17 : 10111 => 11100 => 10111
18 : 11000 => 10100 => 11000
19 : 11001 => 10101 => 11001
1A : 11010 => 10111 => 11010
1B : 11011 => 10110 => 11011
1C : 11100 => 10010 => 11100
1D : 11101 => 10011 => 11101
1E : 11110 => 10001 => 11110
1F : 11111 => 10000 => 11111</pre>
 
=={{header|OCaml}}==
 
<syntaxhighlight lang="ocaml">let gray_encode b =
b lxor (b lsr 1)
 
let gray_decode n =
let rec aux p n =
if n = 0 then p
else aux (p lxor n) (n lsr 1)
in
aux n (n lsr 1)
 
let bool_string len n =
let s = Bytes.make len '0' in
let rec aux i n =
if n land 1 = 1 then Bytes.set s i '1';
if i <= 0 then (Bytes.to_string s)
else aux (pred i) (n lsr 1)
in
aux (pred len) n
 
let () =
let s = bool_string 5 in
for i = 0 to pred 32 do
let g = gray_encode i in
let b = gray_decode g in
Printf.printf "%2d : %s => %s => %s : %2d\n" i (s i) (s g) (s b) b
done</syntaxhighlight>
 
=={{header|PARI/GP}}==
This code may have exposed a bug in PARI 2.4.4: <code>apply(Str, 1)</code> fails. As a workaround I used a closure: <code>apply(k->Str(k), 1)</code>.
As a workaround I used a closure: <code>apply(k->Str(k), 1)</code>.
<lang parigp>toGray(n)=bitxor(n,n>>1);
<syntaxhighlight lang="parigp">toGray(n)=bitxor(n,n>>1);
fromGray(n)=my(k=1,m=n);while(m>>k,n=bitxor(n,n>>k);k+=k);n;
bin(n)=concat(apply(k->Str(k),binary(n)))
 
for(n=0,31,print(n"\t"bin(n)"\t"bin(g=toGray(n))"\t"fromGray(g)))</langsyntaxhighlight>
{{out}}
Output:
<pre>0 0 0 0
1 1 1 1
Line 1,412 ⟶ 4,955:
30 11110 10001 30
31 11111 10000 31</pre>
 
=={{header|Pascal}}==
See [[Gray_code#Delphi | Delphi]]
 
=={{header|Perl}}==
 
<syntaxhighlight lang="perl">sub bin2gray
{
return $_[0] ^ ($_[0] >> 1);
}
 
sub gray2bin
{
my ($num)= @_;
my $bin= $num;
while( $num >>= 1 ) {
# a bit ends up flipped iff an odd number of bits to its left is set.
$bin ^= $num; # different from the suggested algorithm;
} # avoids using bit mask and explicit bittery
return $bin;
}
 
for (0..31) {
my $gr= bin2gray($_);
printf "%d\t%b\t%b\t%b\n", $_, $_, $gr, gray2bin($gr);
}</syntaxhighlight>
 
=={{header|Phix}}==
{{Trans|Delphi}} (turned out to be almost the same as Euphoria)
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">gray_encode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">xor_bits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">gray_decode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">></span><span style="color: #000000;">0</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">xor_bits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">r</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">e</span><span style="color: #0000FF;">,</span><span style="color: #000000;">d</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" N Binary Gray Decoded\n"</span><span style="color: #0000FF;">&</span>
<span style="color: #008000;">"== ===== ===== =======\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">31</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">gray_encode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">d</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">gray_decode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">e</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%2d %05b %05b %2d\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">,</span><span style="color: #000000;">d</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
N Binary Gray Decoded
== ===== ===== =======
0 00000 00000 0
1 00001 00001 1
2 00010 00011 2
3 00011 00010 3
4 00100 00110 4
5 00101 00111 5
6 00110 00101 6
7 00111 00100 7
8 01000 01100 8
9 01001 01101 9
10 01010 01111 10
11 01011 01110 11
12 01100 01010 12
13 01101 01011 13
14 01110 01001 14
15 01111 01000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31
</pre>
 
=={{header|PHP}}==
<syntaxhighlight lang="php">
<?php
 
/**
* @author Elad Yosifon
*/
 
/**
* @param int $binary
* @return int
*/
function gray_encode($binary){
return $binary ^ ($binary >> 1);
}
 
/**
* @param int $gray
* @return int
*/
function gray_decode($gray){
$binary = $gray;
while($gray >>= 1) $binary ^= $gray;
return $binary;
}
 
for($i=0;$i<32;$i++){
$gray_encoded = gray_encode($i);
printf("%2d : %05b => %05b => %05b : %2d \n",$i, $i, $gray_encoded, $gray_encoded, gray_decode($gray_encoded));
}
</syntaxhighlight>
{{out}}
<pre>
0 : 00000 => 00000 => 00000 : 0
1 : 00001 => 00001 => 00001 : 1
2 : 00010 => 00011 => 00011 : 2
3 : 00011 => 00010 => 00010 : 3
4 : 00100 => 00110 => 00110 : 4
5 : 00101 => 00111 => 00111 : 5
6 : 00110 => 00101 => 00101 : 6
7 : 00111 => 00100 => 00100 : 7
8 : 01000 => 01100 => 01100 : 8
9 : 01001 => 01101 => 01101 : 9
10 : 01010 => 01111 => 01111 : 10
11 : 01011 => 01110 => 01110 : 11
12 : 01100 => 01010 => 01010 : 12
13 : 01101 => 01011 => 01011 : 13
14 : 01110 => 01001 => 01001 : 14
15 : 01111 => 01000 => 01000 : 15
16 : 10000 => 11000 => 11000 : 16
17 : 10001 => 11001 => 11001 : 17
18 : 10010 => 11011 => 11011 : 18
19 : 10011 => 11010 => 11010 : 19
20 : 10100 => 11110 => 11110 : 20
21 : 10101 => 11111 => 11111 : 21
22 : 10110 => 11101 => 11101 : 22
23 : 10111 => 11100 => 11100 : 23
24 : 11000 => 10100 => 10100 : 24
25 : 11001 => 10101 => 10101 : 25
26 : 11010 => 10111 => 10111 : 26
27 : 11011 => 10110 => 10110 : 27
28 : 11100 => 10010 => 10010 : 28
29 : 11101 => 10011 => 10011 : 29
30 : 11110 => 10001 => 10001 : 30
31 : 11111 => 10000 => 10000 : 31
</pre>
 
=={{header|Picat}}==
<syntaxhighlight lang="picat">go =>
foreach(I in 0..2**5-1)
G = gray_encode1(I),
E = gray_decode1(G),
printf("%2d %6w %2d %6w %6w %2d\n",I,I.to_binary_string,
G, G.to_binary_string,
E.to_binary_string, E)
end,
nl,
println("Checking 2**1300:"),
N2=2**1300,
G2=gray_encode1(N2),
E2=gray_decode1(G2),
% println(g2=G2),
% println(e2=E2),
println(check=cond(N2==E2,same,not_same)),
nl.
 
gray_encode1(N) = N ^ (N >> 1).
gray_decode1(N) = P =>
P = N,
N := N >> 1,
while (N != 0)
P := P ^ N,
N := N >> 1
end. </syntaxhighlight>
 
{{out}}
<pre> 0 0 0 0 0 0
1 1 1 1 1 1
2 10 3 11 10 2
3 11 2 10 11 3
4 100 6 110 100 4
5 101 7 111 101 5
6 110 5 101 110 6
7 111 4 100 111 7
8 1000 12 1100 1000 8
9 1001 13 1101 1001 9
10 1010 15 1111 1010 10
11 1011 14 1110 1011 11
12 1100 10 1010 1100 12
13 1101 11 1011 1101 13
14 1110 9 1001 1110 14
15 1111 8 1000 1111 15
16 10000 24 11000 10000 16
17 10001 25 11001 10001 17
18 10010 27 11011 10010 18
19 10011 26 11010 10011 19
20 10100 30 11110 10100 20
21 10101 31 11111 10101 21
22 10110 29 11101 10110 22
23 10111 28 11100 10111 23
24 11000 20 10100 11000 24
25 11001 21 10101 11001 25
26 11010 23 10111 11010 26
27 11011 22 10110 11011 27
28 11100 18 10010 11100 28
29 11101 19 10011 11101 29
30 11110 17 10001 11110 30
31 11111 16 10000 11111 31
 
Checking 2**1300
check = same</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(de grayEncode (N)
(bin (x| N (>> 1 N))) )
 
Line 1,423 ⟶ 5,188:
(mapcar
'((C) (setq X (x| X (format C))))
(chop G) ) ) ) ) )</langsyntaxhighlight>
Test:
<langsyntaxhighlight PicoLisplang="picolisp">(prinl " Binary Gray Decoded")
(for I (range 0 31)
(let G (grayEncode I)
(tab (4 9 9 9) I (bin I) G (grayDecode G)) ) )</langsyntaxhighlight>
{{out}}
Output:
<pre> Binary Gray Decoded
0 0 0 0
Line 1,464 ⟶ 5,229:
31 11111 10000 31</pre>
 
=={{header|PerlPL/I}}==
<syntaxhighlight lang="pl/i">(stringrange, stringsize):
Gray_code: procedure options (main); /* 15 November 2013 */
declare (bin(0:31), g(0:31), b2(0:31)) bit (5);
declare (c, carry) bit (1);
declare (i, j) fixed binary (7);
 
bin(0) = '00000'b;
<lang perl>sub bin2gray
do i = 0 to 31;
{
return $_[0] ^if ($_[0]i >> 1);0 then
do;
}
carry = '1'b;
bin(i) = bin(i-1);
do j = 5 to 1 by -1;
c = substr(bin(i), j, 1) & carry;
substr(bin(i), j, 1) = substr(bin(i), j, 1) ^ carry;
carry = c;
end;
end;
g(i) = bin(i) ^ '0'b || substr(bin(i), 1, 4);
end;
do i = 0 to 31;
substr(b2(i), 1, 1) = substr(g(i), 1, 1);
do j = 2 to 5;
substr(b2(i), j, 1) = substr(g(i), j, 1) ^ substr(bin(i), j-1, 1);
end;
end;
 
do i = 0 to 31;
sub gray2bin
put skip edit (i, bin(i), g(i), b2(i)) (f(2), 3(x(1), b));
{
my ($num)= @_end;
end Gray_code;</syntaxhighlight>
my $bin= $num;
<pre>
while( $num >>= 1 ) {
0 00000 00000 00000
# a bit ends up flipped iff an odd number of bits to its left is set.
1 00001 00001 00001
$bin ^= $num; # different from the suggested algorithm;
2 00010 00011 00010
} # avoids using bit mask and explicit bittery
3 00011 00010 00011
return $bin;
4 00100 00110 00100
}
5 00101 00111 00101
6 00110 00101 00110
7 00111 00100 00111
8 01000 01100 01000
9 01001 01101 01001
10 01010 01111 01010
11 01011 01110 01011
12 01100 01010 01100
13 01101 01011 01101
14 01110 01001 01110
15 01111 01000 01111
16 10000 11000 10000
17 10001 11001 10001
18 10010 11011 10010
19 10011 11010 10011
20 10100 11110 10100
21 10101 11111 10101
22 10110 11101 10110
23 10111 11100 10111
24 11000 10100 11000
25 11001 10101 11001
26 11010 10111 11010
27 11011 10110 11011
28 11100 10010 11100
29 11101 10011 11101
30 11110 10001 11110
31 11111 10000 11111
</pre>
 
=={{header|PL/M}}==
for (0..31) {
<syntaxhighlight lang="plm">100H:
my $gr= bin2gray($_);
printf "%d\t%b\t%b\t%b\n", $_, $_, $gr, gray2bin($gr);
}</lang>
 
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; GO TO 0; END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;
 
PRINT$NUM: PROCEDURE (N, BASE);
=={{header|Perl 6}}==
DECLARE S (17) BYTE INITIAL ('................$');
<lang perl6>sub gray_encode ( Int $n --> Int ) {
returnDECLARE $n(N, +^P) ADDRESS, (DGT $nBASED +> 1P, BASE) BYTE;
P = .S(16);
}
DIGIT:
P = P - 1;
DGT = N MOD BASE + '0';
N = N / BASE;
IF N > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT$NUM;
 
GRAY$ENCODE: PROCEDURE (N) BYTE;
sub gray_decode ( Int $n is copy --> Int ) {
myDECLARE $maskN = 1 +< (32-2)BYTE;
RETURN N XOR SHR(N, 1);
$n +^= $mask +> 1 if $n +& $mask while $mask +>= 1;
END GRAY$ENCODE;
return $n;
}
 
GRAY$DECODE: PROCEDURE (N) BYTE;
for ^32 -> $n {
myDECLARE $g(N, =R, gray_encode($nI) BYTE;
my $dR = gray_decode($g)N;
DO WHILE (N := SHR(N,1)) > 0;
printf "%2d: %5b => %5b => %5b: %2d\n", $n, $n, $g, $d, $d;
die if $d ! R = $nR XOR N;
END;
}</lang>
RETURN R;
END GRAY$DECODE;
 
DECLARE (I, G) BYTE;
This version is a translation of the Haskell solution, and produces the same output as the first Perl 6 solution.
DO I = 0 TO 31;
{{trans|Haskell}}
CALL PRINT$NUM(I, 10);
<lang perl6>multi bin_to_gray ( [] ) { [] }
CALL PRINT(.(':',9,'$'));
multi bin_to_gray ( [$head, *@tail] ) {
CALL PRINT$NUM(I, 2);
return [ $head, ( @tail Z+^ ($head, @tail) ) ];
CALL PRINT(.(9,'=>',9,'$'));
}
CALL PRINT$NUM(G := GRAY$ENCODE(I), 2);
CALL PRINT(.(9,'=>',9,'$'));
CALL PRINT$NUM(GRAY$DECODE(G), 10);
CALL PRINT(.(10,13,'$'));
END;
CALL EXIT;
EOF</syntaxhighlight>
{{out}}
<pre>0: 0 => 0 => 0
1: 1 => 1 => 1
2: 10 => 11 => 2
3: 11 => 10 => 3
4: 100 => 110 => 4
5: 101 => 111 => 5
6: 110 => 101 => 6
7: 111 => 100 => 7
8: 1000 => 1100 => 8
9: 1001 => 1101 => 9
10: 1010 => 1111 => 10
11: 1011 => 1110 => 11
12: 1100 => 1010 => 12
13: 1101 => 1011 => 13
14: 1110 => 1001 => 14
15: 1111 => 1000 => 15
16: 10000 => 11000 => 16
17: 10001 => 11001 => 17
18: 10010 => 11011 => 18
19: 10011 => 11010 => 19
20: 10100 => 11110 => 20
21: 10101 => 11111 => 21
22: 10110 => 11101 => 22
23: 10111 => 11100 => 23
24: 11000 => 10100 => 24
25: 11001 => 10101 => 25
26: 11010 => 10111 => 26
27: 11011 => 10110 => 27
28: 11100 => 10010 => 28
29: 11101 => 10011 => 29
30: 11110 => 10001 => 30
31: 11111 => 10000 => 31</pre>
 
=={{header|Prolog}}==
multi gray_to_bin ( [] ) { [] }
=== Codecs ===
multi gray_to_bin ( [$head, *@tail] ) {
The encoding and decoding predicates are simple and will work
my @bin := $head, (@tail Z+^ @bin);
with any Prolog that supports bitwise integer operations.
return @bin.flat;
}
 
{{works with|SWI Prolog}}
for ^32 -> $n {
{{works with|YAP}}
my @b = $n.fmt('%b').comb;
<syntaxhighlight lang="prolog">to_gray(N, G) :-
my $g = bin_to_gray(@b);
N0 is N >> 1,
my $d = gray_to_bin($g);
G is N xor N0.
printf "%2d: %5s => %5s => %5s: %2d\n",
$n, @b.join, $g.join, $d.join, :2($d.join);
die if :2($d.join) != $n;
}</lang>
 
from_gray(G, N) :-
Output:<pre> 0: 0 => 0 => 0: 0
( G > 0
1: 1 => 1 => 1: 1
2: 10 =-> S is 11G =>> 10: 21,
from_gray(S, N0),
3: 11 => 10 => 11: 3
4: 100 => N 110is =>G xor 100: 4N0
; N is G ).</syntaxhighlight>
5: 101 => 111 => 101: 5
6: 110 => 101 => 110: 6
7: 111 => 100 => 111: 7
8: 1000 => 1100 => 1000: 8
9: 1001 => 1101 => 1001: 9
10: 1010 => 1111 => 1010: 10
11: 1011 => 1110 => 1011: 11
12: 1100 => 1010 => 1100: 12
13: 1101 => 1011 => 1101: 13
14: 1110 => 1001 => 1110: 14
15: 1111 => 1000 => 1111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31</pre>
Perl 6 distinguishes numeric bitwise operators with a leading <tt>+</tt> sign, so <tt>+&lt;</tt> and <tt>+&gt;</tt> are left and right shift, while <tt>+&</tt> is a bitwise AND, while <tt>+^</tt> is bitwise XOR (here used as part of an assignment metaoperator).
 
=== Test Code ===
=={{header|PureBasic}}==
A quick driver around this to test it will prove the point.
<lang PureBasic>Procedure.i gray_encode(n)
(This test script uses features not available in every Prolog implementation.)
ProcedureReturn n ! (n >> 1)
EndProcedure
 
{{works with|SWI Prolog}}
Procedure.i gray_decode(g)
{{works with|YAP}}
Protected bit = 1 << (8 * SizeOf(Integer) - 2)
<syntaxhighlight lang="prolog">:- use_module(library(apply)).
Protected b = g & bit, p = b >> 1
 
to_gray(N, G) :-
While bit > 1
N0 is bitN >> 1,
G is bN |xor (p ! (g & bit))N0.
 
p = (b & bit) >> 1
from_gray(G, N) :-
Wend
( G > 0
ProcedureReturn b
-> S is G >> 1,
EndProcedure
from_gray(S, N0),
N is G xor N0
; N is G ).
 
make_num(In, Out) :-
If OpenConsole()
atom_to_term(In, Out, _),
PrintN("Number Binary Gray Decoded")
integer(Out).
Define i, n
 
For i = 0 To 31
write_record(Number, Gray, Decoded) :-
g = gray_encode(i)
format('~w~10|~2r~10+~2r~10+~2r~10+~w~n',
Print(RSet(Str(i), 2, "0") + Space(5))
[Number, Number, Gray, Decoded, Decoded]).
Print(RSet(Bin(g, #PB_Byte), 5, "0") + Space(2))
 
n = gray_decode(g)
go :-
Print(RSet(Bin(n, #PB_Byte), 5, "0") + Space(3))
setof(N, between(0, 31, N), Numbers),
PrintN(RSet(Str(n), 2, "0"))
maplist(to_gray, Numbers, Grays),
Next
maplist(from_gray, Grays, Decodeds),
format('~w~10|~w~10+~w~10+~w~10+~w~n',
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
['Number', 'Binary', 'Gray', 'Decoded', 'Number']),
CloseConsole()
format('~w~10|~w~10+~w~10+~w~10+~w~n',
EndIf</lang>
['------', '------', '----', '-------', '------']),
Output:
maplist(write_record, Numbers, Grays, Decodeds).
<pre>Number Binary Gray Decoded
go :- halt(1).
00 00000 00000 00
</syntaxhighlight>
01 00001 00001 01
 
02 00011 00010 02
{{out}}
03 00010 00011 03
Putting all of this in a file, we execute it, getting the following results:
04 00110 00100 04
 
05 00111 00101 05
<pre>% swipl -q -t go -f gray.pl # OR: yap -q -z go,halt -f gray.pl
06 00101 00110 06
Number Binary Gray Decoded Number
07 00100 00111 07
------ ------ ---- ------- ------
08 01100 01000 08
0 0 0 0 0
09 01101 01001 09
1 1 1 1 1
10 01111 01010 10
112 01110 01011 10 11 10 2
3 11 10 11 3
12 01010 01100 12
4 100 110 100 4
13 01011 01101 13
5 101 111 101 5
14 01001 01110 14
6 110 101 110 6
15 01000 01111 15
7 111 100 111 7
16 11000 10000 16
8 1000 1100 1000 8
17 11001 10001 17
9 1001 1101 1001 9
18 11011 10010 18
10 1010 1111 1010 10
19 11010 10011 19
11 1011 1110 1011 11
20 11110 10100 20
12 1100 1010 1100 12
21 11111 10101 21
13 1101 1011 1101 13
22 11101 10110 22
14 1110 1001 1110 14
23 11100 10111 23
15 1111 1000 1111 15
24 10100 11000 24
16 10000 11000 10000 16
25 10101 11001 25
17 10001 11001 10001 17
26 10111 11010 26
2718 10110 10010 11011 27 10010 18
19 10011 11010 10011 19
28 10010 11100 28
20 10100 11110 10100 20
29 10011 11101 29
21 10101 11111 10101 21
30 10001 11110 30
22 10110 11101 10110 22
31 10000 11111 31</pre>
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31</pre>
 
=={{header|Python}}==
===Python: on integers===
Works with python integers
<syntaxhighlight lang="text">def gray_encode(n):
return n ^ n >> 1
 
def gray_decode(n):
m = n >> 1
while m:
n ^= m
m >>= 1
return n
 
 
if __name__ == '__main__':
print("DEC, BIN => GRAY => DEC")
for i in range(32):
gray = gray_encode(i)
dec = gray_decode(gray)
print(f" {i:>2d}, {i:>05b} => {gray:>05b} => {dec:>2d}")</syntaxhighlight>
 
{{out}}
<pre>DEC, BIN => GRAY => DEC
0, 00000 => 00000 => 0
1, 00001 => 00001 => 1
2, 00010 => 00011 => 2
3, 00011 => 00010 => 3
4, 00100 => 00110 => 4
5, 00101 => 00111 => 5
6, 00110 => 00101 => 6
7, 00111 => 00100 => 7
8, 01000 => 01100 => 8
9, 01001 => 01101 => 9
10, 01010 => 01111 => 10
11, 01011 => 01110 => 11
12, 01100 => 01010 => 12
13, 01101 => 01011 => 13
14, 01110 => 01001 => 14
15, 01111 => 01000 => 15
16, 10000 => 11000 => 16
17, 10001 => 11001 => 17
18, 10010 => 11011 => 18
19, 10011 => 11010 => 19
20, 10100 => 11110 => 20
21, 10101 => 11111 => 21
22, 10110 => 11101 => 22
23, 10111 => 11100 => 23
24, 11000 => 10100 => 24
25, 11001 => 10101 => 25
26, 11010 => 10111 => 26
27, 11011 => 10110 => 27
28, 11100 => 10010 => 28
29, 11101 => 10011 => 29
30, 11110 => 10001 => 30
31, 11111 => 10000 => 31</pre>
 
 
===Python: on lists of bits===
This example works with lists of discrete binary digits.
 
;First some int<>bin conversion routines:
<langsyntaxhighlight lang="python">>>> def int2bin(n):
'From positive integer to list of binary bits, msb at index 0'
if n:
Line 1,649 ⟶ 5,549:
for bit in bits:
i = i * 2 + bit
return i</langsyntaxhighlight>
 
;Now the bin<>gray converters.
These follow closely the methods in the animation seen here: [http://www.wisc-online.com/Objects/ViewObject.aspx?ID=IAU8307 Converting Between Gray and Binary Codes].
<langsyntaxhighlight lang="python">>>> def bin2gray(bits):
return bits[:1] + [i ^ ishift for i, ishift in zip(bits[:-1], bits[1:])]
 
Line 1,659 ⟶ 5,559:
b = [bits[0]]
for nextb in bits[1:]: b.append(b[-1] ^ nextb)
return b</langsyntaxhighlight>
 
;Sample output
<langsyntaxhighlight lang="python">>>> for i in range(16):
print('int:%2i -> bin:%12r -> gray:%12r -> bin:%12r -> int:%2i' %
( i,
Line 1,688 ⟶ 5,588:
int:14 -> bin:[1, 1, 1, 0] -> gray:[1, 0, 0, 1] -> bin:[1, 1, 1, 0] -> int:14
int:15 -> bin:[1, 1, 1, 1] -> gray:[1, 0, 0, 0] -> bin:[1, 1, 1, 1] -> int:15
>>> </langsyntaxhighlight>
 
=={{header|Quackery}}==
 
<syntaxhighlight lang="quackery"> [ dup 1 >> ^ ] is encodegray ( n --> n )
[ dup
[ dip [ 1 >> ]
over ^
over 0 = until ]
nip ] is decodegray ( n --> n )
[ [] unrot times
[ 2 /mod char 0 +
rot join swap ]
drop echo$ ] is echobin ( n n --> )
 
say "number encoded decoded" cr
say "------ ------- -------" cr
32 times
[ sp i^ 5 echobin
say " -> "
i^ encodegray dup 5 echobin
say " -> "
decodegray 5 echobin cr ]</syntaxhighlight>
 
{{out}}
 
<pre>number encoded decoded
------ ------- -------
00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111</pre>
 
=={{header|R}}==
<syntaxhighlight lang="r">
GrayEncode <- function(binary) {
gray <- substr(binary,1,1)
repeat {
if (substr(binary,1,1) != substr(binary,2,2)) gray <- paste(gray,"1",sep="")
else gray <- paste(gray,"0",sep="")
binary <- substr(binary,2,nchar(binary))
if (nchar(binary) <=1) {
break
}
}
return (gray)
}
GrayDecode <- function(gray) {
binary <- substr(gray,1,1)
repeat {
if (substr(binary,nchar(binary),nchar(binary)) != substr(gray,2,2)) binary <- paste(binary ,"1",sep="")
else binary <- paste(binary ,"0",sep="")
gray <- substr(gray,2,nchar(gray))
 
if (nchar(gray) <=1) {
break
}
}
return (binary)
}
</syntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">
#lang racket
 
(define (gray-encode n) (bitwise-xor n (arithmetic-shift n -1)))
 
(define (gray-decode n)
(letrec ([loop (lambda(g bits)
(if (> bits 0)
(loop (bitwise-xor g bits) (arithmetic-shift bits -1))
g))])
(loop 0 n)))
 
(define (to-bin n) (format "~b" n))
(define (show-table)
(for ([i (in-range 1 32)])
(printf "~a | ~a | ~a ~n"
(~r i #:min-width 2 #:pad-string "0")
(~a (to-bin(gray-encode i)) #:width 5 #:align 'right #:pad-string "0")
(~a (to-bin (gray-decode(gray-encode i))) #:width 5 #:align 'right #:pad-string "0"))))
</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">> (show-table)
01 | 00001 | 00001
02 | 00011 | 00010
03 | 00010 | 00011
04 | 00110 | 00100
05 | 00111 | 00101
06 | 00101 | 00110
07 | 00100 | 00111
08 | 01100 | 01000
09 | 01101 | 01001
10 | 01111 | 01010
11 | 01110 | 01011
12 | 01010 | 01100
13 | 01011 | 01101
14 | 01001 | 01110
15 | 01000 | 01111
16 | 11000 | 10000
17 | 11001 | 10001
18 | 11011 | 10010
19 | 11010 | 10011
20 | 11110 | 10100
21 | 11111 | 10101
22 | 11101 | 10110
23 | 11100 | 10111
24 | 10100 | 11000
25 | 10101 | 11001
26 | 10111 | 11010
27 | 10110 | 11011
28 | 10010 | 11100
29 | 10011 | 11101
30 | 10001 | 11110
31 | 10000 | 11111
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>sub gray_encode ( Int $n --> Int ) {
return $n +^ ( $n +> 1 );
}
 
sub gray_decode ( Int $n is copy --> Int ) {
my $mask = 1 +< (32-2);
$n +^= $mask +> 1 if $n +& $mask while $mask +>= 1;
return $n;
}
 
for ^32 -> $n {
my $g = gray_encode($n);
my $d = gray_decode($g);
printf "%2d: %5b => %5b => %5b: %2d\n", $n, $n, $g, $d, $d;
die if $d != $n;
}</syntaxhighlight>
 
{{out}}
<pre> 0: 0 => 0 => 0: 0
1: 1 => 1 => 1: 1
2: 10 => 11 => 10: 2
3: 11 => 10 => 11: 3
4: 100 => 110 => 100: 4
5: 101 => 111 => 101: 5
6: 110 => 101 => 110: 6
7: 111 => 100 => 111: 7
8: 1000 => 1100 => 1000: 8
9: 1001 => 1101 => 1001: 9
10: 1010 => 1111 => 1010: 10
11: 1011 => 1110 => 1011: 11
12: 1100 => 1010 => 1100: 12
13: 1101 => 1011 => 1101: 13
14: 1110 => 1001 => 1110: 14
15: 1111 => 1000 => 1111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31
</pre>
Raku distinguishes numeric bitwise operators with a leading <tt>+</tt> sign,
so <tt>+&lt;</tt> and <tt>+&gt;</tt> are left and right shift,
while <tt>+&</tt> is a bitwise AND, while <tt>+^</tt> is bitwise XOR
(here used as part of an assignment metaoperator).
 
=={{header|REXX}}==
The leading zeroes for the binary numbers and the gray code could've easily been elided.
<syntaxhighlight lang="rexx">/*REXX program converts decimal number ───► binary ───► gray code ───► binary.*/
parse arg N . /*get the optional argument from the CL*/
if N=='' | N=="," then N=31 /*Not specified? Then use the default.*/
L=max(1,length(strip(x2b(d2x(N)),'L',0))) /*find the max binary length of N.*/
w=14 /*used for the formatting of cell width*/
_=center('binary',w,'─') /*the 2nd and 4th part of the header.*/
say center('decimal', w, "─")'►' _"►" center('gray code', w, '─')"►" _
/* [+] the output header*/
do j=0 to N; b=right(x2b(d2x(j)),L,0) /*process 0 ──► N. */
g=b2gray(b) /*convert binary number to gray code. */
a=gray2b(g) /*convert the gray code to binary. */
say center(j,w+1) center(b,w+1) center(g,w+1) center(a,w+1)
end /*j*/
exit /*stick a fork in it, we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
b2gray: procedure; parse arg x 1 $ 2; do b=2 to length(x)
$=$||(substr(x,b-1,1) && substr(x,b,1))
end /*b*/
return $
/*────────────────────────────────────────────────────────────────────────────*/
gray2b: procedure; parse arg x 1 $ 2; do g=2 to length(x)
$=$ || (right($,1) && substr(x,g,1))
end /*g*/ /* ↑ */
/* │ */
return $ /*this is an eXclusive OR ►─────────┘ */</syntaxhighlight>
'''output''' &nbsp; when using the default input:
<pre>
───decimal────► ────binary────► ──gray code───► ────binary────
0 00000 00000 00000
1 00001 00001 00001
2 00010 00011 00010
3 00011 00010 00011
4 00100 00110 00100
5 00101 00111 00101
6 00110 00101 00110
7 00111 00100 00111
8 01000 01100 01000
9 01001 01101 01001
10 01010 01111 01010
11 01011 01110 01011
12 01100 01010 01100
13 01101 01011 01101
14 01110 01001 01110
15 01111 01000 01111
16 10000 11000 10000
17 10001 11001 10001
18 10010 11011 10010
19 10011 11010 10011
20 10100 11110 10100
21 10101 11111 10101
22 10110 11101 10110
23 10111 11100 10111
24 11000 10100 11000
25 11001 10101 11001
26 11010 10111 11010
27 11011 10110 11011
28 11100 10010 11100
29 11101 10011 11101
30 11110 10001 11110
31 11111 10000 11111
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Gray code
 
pos = 5
see "0 : 00000 => 00000 => 00000" + nl
for n = 1 to 31
res1 = tobase(n, 2, pos)
res2 = tobase(grayencode(n), 2, pos)
res3 = tobase(graydecode(n), 2, pos)
see "" + n + " : " + res1 + " => " + res2 + " => " + res3 + nl
next
 
func grayencode(n)
return n ^ (n >> 1)
func graydecode(n)
p = n
while (n = n >> 1)
p = p ^ n
end
return p
 
func tobase(nr, base, pos)
binary = 0
i = 1
while(nr != 0)
remainder = nr % base
nr = floor(nr/base)
binary= binary + (remainder*i)
i = i*10
end
result = ""
for nr = 1 to pos - len(string(binary))
result = result + "0"
next
result = result + string(binary)
return result
</syntaxhighlight>
Output:
<pre>
0 : 00000 => 00000 => 00000
1 : 00001 => 00001 => 00001
2 : 00010 => 00011 => 00010
3 : 00011 => 00010 => 00011
4 : 00100 => 00110 => 00100
5 : 00101 => 00111 => 00101
6 : 00110 => 00101 => 00110
7 : 00111 => 00100 => 00111
8 : 01000 => 01100 => 01000
9 : 01001 => 01101 => 01001
10 : 01010 => 01111 => 01010
11 : 01011 => 01110 => 01011
12 : 01100 => 01010 => 01100
13 : 01101 => 01011 => 01101
14 : 01110 => 01001 => 01110
15 : 01111 => 01000 => 01111
16 : 10000 => 11000 => 10000
17 : 10001 => 11001 => 10001
18 : 10010 => 11011 => 10010
19 : 10011 => 11010 => 10011
20 : 10100 => 11110 => 10100
21 : 10101 => 11111 => 10101
22 : 10110 => 11101 => 10110
23 : 10111 => 11100 => 10111
24 : 11000 => 10100 => 11000
25 : 11001 => 10101 => 11001
26 : 11010 => 10111 => 11010
27 : 11011 => 10110 => 11011
28 : 11100 => 10010 => 11100
29 : 11101 => 10011 => 11101
30 : 11110 => 10001 => 11110
31 : 11111 => 10000 => 11111
</pre>
 
=={{header|RPL}}==
{{works with|Halcyon Calc|4.2.7}}
{| class="wikitable"
! RPL code
! Comment
|-
|
≪ #1 RR 0 ROT START RL NEXT AND #0 ≠
≫ ´'''BIT?'''´ STO
≪ # 1b 0 ROT START RR NEXT OR
≫ ‘'''STBIT'''’ STO
≪ DUP SR XOR
≫ ‘'''→GRAY'''’ STO
≪ → gray
≪ #0 IF gray 0 '''BIT?''' THEN 0 '''STBIT''' END
1 RCWS 1 - FOR b
IF gray b '''BIT?''' OVER b 1 - '''BIT?''' XOR THEN b '''STBIT''' END
NEXT
≫ ≫ ‘'''GRAY→'''’ STO
≪ { } 0 31 FOR n n R→B '''→GRAY''' + NEXT
{ } 1 3 PICK SIZE FOR g OVER g GET '''GRAY→''' + NEXT
≫ ''''SHOWG'''’ STO
|
''( #b n -- boolean )''
''( #b n -- #b )''
''( #b -- #g )''
''( #g -- #b )''
b(0) = g(0)
Loop on all other bits
b[i] = g[i] xor b[i-1]
|}
{{in}}
<pre>
SHOWG
</pre>
{{out}}
<pre>
2: { # 0b # 1b # 11b # 10b # 110b # 111b # 101b # 100b # 1100b # 1101b # 1111b # 1110b # 1010b # 1011b # 1001b # 1000b # 11000b # 11001b # 11011b # 11010b # 11110b # 11111b # 11101b # 11100b # 10100b # 10101b # 10111b # 10110b # 10010b # 10011b # 10001b # 10000b }
1: { # 0b # 1b # 10b # 11b # 100b # 101b # 110b # 111b # 1000b # 1001b # 1010b # 1011b # 1100b # 1101b # 1110b # 1111b # 10000b # 10001b # 10010b # 10011b # 10100b # 10101b # 10110b # 10111b # 11000b # 11001b # 11010b # 11011b # 11100b # 11101b # 11110b # 11111b }
</pre>
=={{header|Ruby}}==
<tt>Integer#from_gray</tt> has recursion so it can use each bit of the answer to compute the next bit.
 
<langsyntaxhighlight lang="ruby">class Integer
# Converts a normal integer to a Gray code.
def to_gray
Line 1,699 ⟶ 5,999:
self ^ (self >> 1)
end
 
# Converts a Gray code to a normal integer.
def from_gray
Line 1,711 ⟶ 6,011:
end
end
 
 
(0..31).each do |number|
encoded = number.to_gray
decoded = encoded.from_gray
printf( "%2d : %5b => %5b => %5b : %2d\n",
number, number, encoded, decoded, decoded)
end</langsyntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">
0 : 0 => 0 => 0 : 0
1 : 1 => 1 => 1 : 1
2 : 10 => 11 => 10 : 2
3 : 11 => 10 => 11 : 3
4 : 100 => 110 => 100 : 4
5 : 101 => 111 => 101 : 5
6 : 110 => 101 => 110 : 6
7 : 111 => 100 => 111 : 7
8 : 1000 => 1100 => 1000 : 8
9 : 1001 => 1101 => 1001 : 9
10 : 1010 => 1111 => 1010 : 10
11 : 1011 => 1110 => 1011 : 11
12 : 1100 => 1010 => 1100 : 12
13 : 1101 => 1011 => 1101 : 13
14 : 1110 => 1001 => 1110 : 14
15 : 1111 => 1000 => 1111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
</pre>
 
=={{header|Rust}}==
{{works with|Rust|1.1}}
<syntaxhighlight lang="rust">fn gray_encode(integer: u64) -> u64 {
(integer >> 1) ^ integer
}
 
fn gray_decode(integer: u64) -> u64 {
match integer {
0 => 0,
_ => integer ^ gray_decode(integer >> 1)
}
}
 
fn main() {
for i in 0..32 {
println!("{:2} {:0>5b} {:0>5b} {:2}", i, i, gray_encode(i),
gray_decode(i));
}
 
}</syntaxhighlight>
 
=={{header|Scala}}==
Functional style: the Gray code is encoded to, and decoded from a String.
Functional style: the Gray code is encoded to, and decoded from a String. The <code>scanLeft</code> function takes a sequence (here, of characters) and produces a collection containing cumulative results of applying an operator going left to right. Here the operator is exclusive-or, "^", and we can use "_" placeholders to represent the arguments to the left and right. <code>tail</code> removes the "0" we added as the initial accumulator value, and <code>mkString</code> turns the collection back into a String, that we can parse into an integer (Integer.parseInt is directly from the java.lang package).
The <code>scanLeft</code> function takes a sequence (here, of characters) and produces a collection containing cumulative results of applying an operator going left to right.
<lang scala>def encode(n: Int) = (n ^ (n >>> 1)).toBinaryString
Here the operator is exclusive-or, "^", and we can use "_" placeholders to represent the arguments to the left and right. <code>tail</code> removes the "0" we added as the initial accumulator value, and <code>mkString</code> turns the collection back into a String, that we can parse into an integer (Integer.parseInt is directly from the java.lang package).
<syntaxhighlight lang="scala">def encode(n: Int) = (n ^ (n >>> 1)).toBinaryString
def decode(s: String) = Integer.parseInt( s.scanLeft(0)(_ ^ _.asDigit).tail.mkString , 2)
 
Line 1,728 ⟶ 6,085:
for (i <- 0 to 31; g = encode(i))
println("%7d %6s %5s %7s".format(i, i.toBinaryString, g, decode(g)))
</syntaxhighlight>
</lang>
{{out}}
Output:<pre style="overflow: auto; height: 7em;">decimal binary gray decoded
<pre style="overflow: auto; height: 20em;">decimal binary gray decoded
0 0 0 0
1 1 1 1
Line 1,761 ⟶ 6,119:
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31</pre>
</pre>
Alternatively, more imperative style:
<langsyntaxhighlight lang="scala">def encode(n: Long) = n ^ (n >>> 1)
 
def decode(n: Long) = {
Line 1,781 ⟶ 6,140:
val g = encode(i)
println("%7d %6s %5s %7s".format(i, toBin(i), toBin(g), decode(g)))
}</langsyntaxhighlight>
Improved version of decode using functional style (recursion+local method).
Output:
No vars and mutations.
<pre style="overflow: auto; height: 7em;">decimal binary gray decoded
<syntaxhighlight lang="scala">def decode(n:Long)={
def calc(g:Long,bits:Long):Long=if (bits>0) calc(g^bits, bits>>1) else g
calc(0, n)
}</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">decimal binary gray decoded
0 00000 00000 0
1 00001 00001 1
Line 1,817 ⟶ 6,182:
31 11111 10000 31
</pre>
 
=={{header|Scratch}}==
<div style="overflow: auto;">
[http://i.imgur.com/0sw5D4T.png]
</div>
 
=={{header|Seed7}}==
The type [http://seed7.sourceforge.net/libraries/bin32.htm bin32] is intended for bit operations that are not defined for [http://seed7.sourceforge.net/libraries/integer.htm integer] values.
Bin32 is used for the [http://seed7.sourceforge.net/libraries/bin32.htm#%28in_bin32%29%3E%3C%28in_bin32%29 exclusive or] ('''><''') operation.
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "bin32.s7i";
 
const func integer: grayEncode (in integer: n) is
return ord(bin32(n) >< bin32(n >> 1));
const func integer: grayDecode (in var integer: n) is func
result
var integer: decoded is 0;
begin
decoded := n;
while n > 1 do
n >>:= 1;
decoded := ord(bin32(decoded) >< bin32(n));
end while;
end func;
 
const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 32 do
writeln(i <& " => " <& grayEncode(i) radix 2 lpad0 6 <& " => " <& grayDecode(grayEncode(i)));
end for;
end func;</syntaxhighlight>
 
{{out}}
<pre>
0 => 000000 => 0
1 => 000001 => 1
2 => 000011 => 2
3 => 000010 => 3
4 => 000110 => 4
5 => 000111 => 5
6 => 000101 => 6
7 => 000100 => 7
8 => 001100 => 8
9 => 001101 => 9
10 => 001111 => 10
11 => 001110 => 11
12 => 001010 => 12
13 => 001011 => 13
14 => 001001 => 14
15 => 001000 => 15
16 => 011000 => 16
17 => 011001 => 17
18 => 011011 => 18
19 => 011010 => 19
20 => 011110 => 20
21 => 011111 => 21
22 => 011101 => 22
23 => 011100 => 23
24 => 010100 => 24
25 => 010101 => 25
26 => 010111 => 26
27 => 010110 => 27
28 => 010010 => 28
29 => 010011 => 29
30 => 010001 => 30
31 => 010000 => 31
32 => 110000 => 32
</pre>
 
=={{header|SenseTalk}}==
Note: Inputs and outputs as strings
<syntaxhighlight lang="sensetalk">
function BinaryToGray param1
set theResult to ""
repeat for each character in param1
if the counter is equal to 1
put it after theResult
else
if it is equal to previousCharacter
put "0" after theResult
else
put "1" after theResult
end if
end if
set previousCharacter to it
end repeat
return theResult
end BinaryToGray
 
function GrayToBinary param1
set theResult to param1
repeat for each character in param1
if the counter is equal to 1
next repeat
end if
set currentChar to it
set lastCharInd to the counter - 1
repeat for lastCharInd down to 1
if currentChar is equal to character it of param1
set currentChar to "0"
else
set currentChar to "1"
end if
end repeat
set character the counter of theResult to currentChar
end repeat
return theResult
end GrayToBinary
</syntaxhighlight>
 
{{out}}
<pre style="overflow: auto; height: 20em;">binary => gray => decoded
00000 => 00000 => 00000
00001 => 00001 => 00001
00010 => 00011 => 00010
00011 => 00010 => 00011
00100 => 00110 => 00100
00101 => 00111 => 00101
00110 => 00101 => 00110
00111 => 00100 => 00111
01000 => 01100 => 01000
01001 => 01101 => 01001
01010 => 01111 => 01010
01011 => 01110 => 01011
01100 => 01010 => 01100
01101 => 01011 => 01101
01110 => 01001 => 01110
01111 => 01000 => 01111
10000 => 11000 => 10000
10001 => 11001 => 10001
10010 => 11011 => 10010
10011 => 11010 => 10011
10100 => 11110 => 10100
10101 => 11111 => 10101
10110 => 11101 => 10110
10111 => 11100 => 10111
11000 => 10100 => 11000
11001 => 10101 => 11001
11010 => 10111 => 11010
11011 => 10110 => 11011
11100 => 10010 => 11100
11101 => 10011 => 11101
11110 => 10001 => 11110
11111 => 10000 => 11111
101001110101111 => 111101001111000 => 101001110101111
101001110110000 => 111101001101000 => 101001110110000
101001110110001 => 111101001101001 => 101001110110001
101001110110010 => 111101001101011 => 101001110110010
</pre>
 
=={{header|Sidef}}==
{{trans|Perl}}
<syntaxhighlight lang="ruby">func bin2gray(n) {
n ^ (n >> 1)
}
 
func gray2bin(num) {
var bin = num
while (num >>= 1) { bin ^= num }
return bin
}
 
{ |i|
var gr = bin2gray(i)
printf("%d\t%b\t%b\t%b\n", i, i, gr, gray2bin(gr))
} << ^32</syntaxhighlight>
{{out}}
<pre>
0 0 0 0
1 1 1 1
2 10 11 10
3 11 10 11
4 100 110 100
5 101 111 101
6 110 101 110
7 111 100 111
8 1000 1100 1000
9 1001 1101 1001
10 1010 1111 1010
11 1011 1110 1011
12 1100 1010 1100
13 1101 1011 1101
14 1110 1001 1110
15 1111 1000 1111
16 10000 11000 10000
17 10001 11001 10001
18 10010 11011 10010
19 10011 11010 10011
20 10100 11110 10100
21 10101 11111 10101
22 10110 11101 10110
23 10111 11100 10111
24 11000 10100 11000
25 11001 10101 11001
26 11010 10111 11010
27 11011 10110 11011
28 11100 10010 11100
29 11101 10011 11101
30 11110 10001 11110
31 11111 10000 11111
</pre>
 
=={{header|SparForte}}==
As a structured script.
<syntaxhighlight lang="ada">#!/usr/local/bin/spar
pragma annotate( summary, "gray" );
pragma annotate( description, "Gray code is a form of binary encoding where " );
pragma annotate( description, "transitions between consecutive numbers differ by" );
pragma annotate( description, "only one bit. Create functions to encode a number" );
pragma annotate( description, "to and decode a number from Gray code. Display the" );
pragma annotate( description, "normal binary representations, Gray code" );
pragma annotate( description, "representations, and decoded Gray code values for all" );
pragma annotate( description, "5-bit binary numbers (0-31 inclusive, leading 0's not" );
pragma annotate( description, "necessary). There are many possible Gray codes. The" );
pragma annotate( description, "following encodes what is called 'binary reflected" );
pragma annotate( description, "Gray code.'" );
pragma annotate( see_also, "http://rosettacode.org/wiki/Gray_code" );
pragma annotate( author, "Ken O. Burtch" );
pragma license( unrestricted );
 
pragma restriction( no_external_commands );
 
procedure gray is
 
bits : constant natural := 5;
subtype nat_values is natural;
 
function encode (binary : nat_values) return nat_values is
begin
return binary xor numerics.shift_right (binary, 1);
end encode;
 
-- SparForte 1.3 cannot print to numbers to different bases but we
-- we can write a function
 
function intToBin( nat_value : nat_values ) return string is
result : string;
v : nat_values := nat_value;
begin
if v = 0 then
result := '0';
else
while v > 0 loop
if (v and 1) = 1 then
result := '1' & @;
else
result := '0' & @;
end if;
v := numerics.shift_right( @, 1 );
end loop;
end if;
return "2#" & result & "#";
end intToBin;
 
function decode (gray : nat_values) return nat_values is
binary : nat_values;
bit : nat_values;
mask : nat_values := 2 ** (bits - 1);
begin
bit := gray and mask;
binary := bit;
for i in 2 .. bits loop
bit := numerics.shift_right (@, 1);
mask := numerics.shift_right (mask, 1);
bit := (gray and mask) xor @;
binary := @ + bit;
end loop;
return binary;
end decode;
 
j : nat_values;
ibinstr : string;
jbinstr : string;
 
begin
put_line ("Number Binary Gray Decoded");
for i in 0..31 loop
j := encode (i);
-- convert i and j to base 2 representation
ibinstr := intToBin(i);
jbinstr := intToBin(j);
-- for binary strings, right-justify
put (i, "ZZZZZ9" ) @
(' ' & strings.insert( ibinstr, 1, (8-strings.length(ibinstr)) * ' ' ) ) @
(' ' & strings.insert( jbinstr, 1, (8-strings.length(jbinstr)) * ' ' ) ) @
( " " ) @ (decode (j), "ZZZZZ9" );
new_line;
end loop;
end gray;</syntaxhighlight>
 
=={{header|SQL}}==
<syntaxhighlight lang="sql">
DECLARE @binary AS NVARCHAR(MAX) = '001010111'
DECLARE @gray AS NVARCHAR(MAX) = ''
 
--Encoder
SET @gray = LEFT(@binary, 1)
 
WHILE LEN(@binary) > 1
BEGIN
IF LEFT(@binary, 1) != SUBSTRING(@binary, 2, 1)
SET @gray = @gray + '1'
ELSE
SET @gray = @gray + '0'
 
SET @binary = RIGHT(@binary, LEN(@binary) - 1)
END
 
SELECT @gray
 
--Decoder
SET @binary = LEFT(@gray, 1)
 
WHILE LEN(@gray) > 1
BEGIN
IF RIGHT(@binary, 1) != SUBSTRING(@gray, 2, 1)
SET @binary = @binary + '1'
ELSE
SET @binary = @binary + '0'
 
SET @gray = RIGHT(@gray, LEN(@gray) - 1)
END
 
SELECT @binary
</syntaxhighlight>
 
=={{header|Standard ML}}==
 
<syntaxhighlight lang="sml">fun gray_encode b =
Word.xorb (b, Word.>> (b, 0w1))
 
fun gray_decode n =
let
fun aux (p, n) =
if n = 0w0 then p
else aux (Word.xorb (p, n), Word.>> (n, 0w1))
in
aux (n, Word.>> (n, 0w1))
end;
 
val s = Word.fmt StringCvt.BIN;
fun aux i =
if i = 0w32 then
()
else
let
val g = gray_encode i
val b = gray_decode g
in
print (Word.toString i ^ " :\t" ^ s i ^ " => " ^ s g ^ " => " ^ s b ^ "\t: " ^ Word.toString b ^ "\n");
aux (i + 0w1)
end;
aux 0w0</syntaxhighlight>
 
=={{header|Swift}}==
 
<syntaxhighlight lang="swift">func grayEncode(_ i: Int) -> Int {
return (i >> 1) ^ i
}
 
func grayDecode(_ i: Int) -> Int {
switch i {
case 0:
return 0
case _:
return i ^ grayDecode(i >> 1)
}
}
 
for i in 0..<32 {
let iStr = String(i, radix: 2)
let encode = grayEncode(i)
let encodeStr = String(encode, radix: 2)
let decode = grayDecode(encode)
let decodeStr = String(decode, radix: 2)
 
print("\(i) (\(iStr)) => \(encode) (\(encodeStr)) => \(decode) (\(decodeStr))")
}</syntaxhighlight>
 
{{out}}
 
<pre style="overflow: auto; height: 20em;">0 (0) => 0 (0) => 0 (0)
1 (1) => 1 (1) => 1 (1)
2 (10) => 3 (11) => 2 (10)
3 (11) => 2 (10) => 3 (11)
4 (100) => 6 (110) => 4 (100)
5 (101) => 7 (111) => 5 (101)
6 (110) => 5 (101) => 6 (110)
7 (111) => 4 (100) => 7 (111)
8 (1000) => 12 (1100) => 8 (1000)
9 (1001) => 13 (1101) => 9 (1001)
10 (1010) => 15 (1111) => 10 (1010)
11 (1011) => 14 (1110) => 11 (1011)
12 (1100) => 10 (1010) => 12 (1100)
13 (1101) => 11 (1011) => 13 (1101)
14 (1110) => 9 (1001) => 14 (1110)
15 (1111) => 8 (1000) => 15 (1111)
16 (10000) => 24 (11000) => 16 (10000)
17 (10001) => 25 (11001) => 17 (10001)
18 (10010) => 27 (11011) => 18 (10010)
19 (10011) => 26 (11010) => 19 (10011)
20 (10100) => 30 (11110) => 20 (10100)
21 (10101) => 31 (11111) => 21 (10101)
22 (10110) => 29 (11101) => 22 (10110)
23 (10111) => 28 (11100) => 23 (10111)
24 (11000) => 20 (10100) => 24 (11000)
25 (11001) => 21 (10101) => 25 (11001)
26 (11010) => 23 (10111) => 26 (11010)
27 (11011) => 22 (10110) => 27 (11011)
28 (11100) => 18 (10010) => 28 (11100)
29 (11101) => 19 (10011) => 29 (11101)
30 (11110) => 17 (10001) => 30 (11110)
31 (11111) => 16 (10000) => 31 (11111)</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">namespace eval gray {
proc encode n {
expr {$n ^ $n >> 1}
Line 1,832 ⟶ 6,614:
return $b
}
}</langsyntaxhighlight>
Demonstrating:
<langsyntaxhighlight lang="tcl">package require Tcl 8.6; # Just for %b format specifier
for {set i 0} {$i < 32} {incr i} {
set g [gray::encode $i]
set b [gray::decode $g]
puts [format "%2d: %05b => %05b => %05b : %2d" $i $i $g $b $b]
}</langsyntaxhighlight>
{{out}}
Output:
<pre>
0: 00000 => 00000 => 00000 : 0
Line 1,874 ⟶ 6,656:
30: 11110 => 10001 => 11110 : 30
31: 11111 => 10000 => 11111 : 31
</pre>
 
== {{header|TypeScript}} ==
{{trans|DWScript}}
<syntaxhighlight lang="javascript">// Gray code
 
function encode(v: number): number {
return v ^ (v >> 1);
}
function decode(v: number): number {
var result = 0;
while (v > 0) {
result ^= v;
v >>= 1;
}
return result;
}
 
console.log("decimal binary gray decoded");
for (var i = 0; i <= 31; i++) {
var g = encode(i);
var d = decode(g);
process.stdout.write(
" " + i.toString().padStart(2, " ") +
" " + i.toString(2).padStart(5, "0") +
" " + g.toString(2).padStart(5, "0") +
" " + d.toString(2).padStart(5, "0") +
" " + d.toString().padStart(2, " "));
console.log();
}
</syntaxhighlight>
{{out}}
<pre>
decimal binary gray decoded
0 00000 00000 00000 0
1 00001 00001 00001 1
2 00010 00011 00010 2
3 00011 00010 00011 3
4 00100 00110 00100 4
5 00101 00111 00101 5
6 00110 00101 00110 6
7 00111 00100 00111 7
8 01000 01100 01000 8
9 01001 01101 01001 9
10 01010 01111 01010 10
11 01011 01110 01011 11
12 01100 01010 01100 12
13 01101 01011 01101 13
14 01110 01001 01110 14
15 01111 01000 01111 15
16 10000 11000 10000 16
17 10001 11001 10001 17
18 10010 11011 10010 18
19 10011 11010 10011 19
20 10100 11110 10100 20
21 10101 11111 10101 21
22 10110 11101 10110 22
23 10111 11100 10111 23
24 11000 10100 11000 24
25 11001 10101 11001 25
26 11010 10111 11010 26
27 11011 10110 11011 27
28 11100 10010 11100 28
29 11101 10011 11101 29
30 11110 10001 11110 30
31 11111 10000 11111 31
</pre>
 
=={{header|Ursala}}==
 
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
 
Line 1,889 ⟶ 6,738:
#show+
 
test = mat` * 2-$'01'***K7xSS pad0*K7 <.~&,btog,gtob+ btog>* iota32</langsyntaxhighlight>
{{out}}
output:
<pre>
00000 00000 00000
Line 1,924 ⟶ 6,773:
11110 10001 11110
11111 10000 11111
</pre>
 
 
=={{header|Verilog}}==
'''Function Based Approach:'''
 
<syntaxhighlight lang="verilog">
`timescale 1ns/10ps
`default_nettype wire
 
module graytestbench;
 
localparam aw = 8;
 
function [aw:0] binn_to_gray;
input [aw:0] binn;
begin :b2g
binn_to_gray = binn ^ (binn >> 1);
end
endfunction
 
function [aw:0] gray_to_binn;
input [aw:0] gray;
begin :g2b
reg [aw:0] binn;
integer i;
for(i=0; i <= aw; i = i+1) begin
binn[i] = ^(gray >> i);
end
gray_to_binn = binn;
end
endfunction
 
initial begin :test_graycode
integer ii;
reg[aw:0] gray;
reg[aw:0] binn;
for(ii=0; ii < 10; ii=ii+1) begin
gray = binn_to_gray(ii[aw:0]);
binn = gray_to_binn(gray);
$display("test_graycode: i:%x gray:%x:%b binn:%x", ii[aw:0], gray, gray, binn);
end
 
$stop;
end
 
endmodule
 
`default_nettype none
 
</syntaxhighlight>
 
 
'''Module Based Approach:'''
 
<syntaxhighlight lang="verilog">
`timescale 1ns/10ps
`default_nettype none
 
module gray_counter #(
parameter SIZE=4
) (
input wire i_clk,
input wire i_rst_n,
input wire i_inc,
output wire [SIZE-1:0] o_count_gray,
output wire [SIZE-1:0] o_count_binn
);
 
reg [SIZE-1:0] state_gray;
reg [SIZE-1:0] state_binn;
reg [SIZE-1:0] logic_gray;
reg [SIZE-1:0] logic_binn;
 
always @(posedge i_clk or negedge i_rst_n) begin
if (!i_rst_n) begin
state_gray <= 0;
state_binn <= 0;
end
else begin
state_gray <= logic_gray;
state_binn <= logic_binn;
end
end
 
always @* begin
logic_binn = state_binn + i_inc;
logic_gray = (logic_binn>>1) ^ logic_binn;
end
 
assign o_count_gray = state_gray;
assign o_count_binn = state_binn;
 
endmodule
 
`default_nettype none
 
</syntaxhighlight>
 
=={{header|VHDL}}==
Combinatorial encoder:
<syntaxhighlight lang="vhdl">LIBRARY ieee;
USE ieee.std_logic_1164.all;
 
entity b2g is
port( bin : in std_logic_vector (4 downto 0);
gray : out std_logic_vector (4 downto 0)
);
end b2g ;
 
architecture rtl of b2g is
constant N : integer := bin'high;
begin
gray <= bin(n) & ( bin(N-1 downto 0) xor bin(N downto 1));
end architecture rtl;</syntaxhighlight>
 
Combinatorial decoder:
<syntaxhighlight lang="vhdl">LIBRARY ieee;
USE ieee.std_logic_1164.all;
 
entity g2b is
port( gray : in std_logic_vector (4 downto 0);
bin : buffer std_logic_vector (4 downto 0)
);
end g2b ;
 
architecture rtl of g2b is
constant N : integer := bin'high;
begin
bin(N) <= gray(N);
gen_xor: for i in N-1 downto 0 generate
bin(i) <= gray(i) xor bin(i+1);
end generate;
end architecture rtl;</syntaxhighlight>
 
=={{header|V (Vlang)}}==
{{trans|Go}}
Binary reflected, as described in the task. Reading down through the solutions, the Euphoria decode algorithm caught my eye as being concise and easy to read.
<syntaxhighlight lang="go">fn enc(b int) int {
return b ^ b>>1
}
fn dec(gg int) int {
mut b := 0
mut g := gg
for ; g != 0; g >>= 1 {
b ^= g
}
return b
}
fn main() {
println("decimal binary gray decoded")
for b := 0; b < 32; b++ {
g := enc(b)
d := dec(g)
println(" ${b:2} ${b:05b} ${g:05b} ${d:05b} ${d:2}")
}
}</syntaxhighlight>
{{out}}
<pre>Same as Go.</pre>
 
=={{header|Wren}}==
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
 
var toGray = Fn.new { |n| n ^ (n>>1) }
 
var fromGray = Fn.new { |g|
var b = 0
while (g != 0) {
b = b ^ g
g = g >> 1
}
return b
}
 
System.print("decimal binary gray decoded")
for (b in 0..31) {
System.write(" %(Fmt.d(2, b)) %(Fmt.bz(5, b))")
var g = toGray.call(b)
System.write(" %(Fmt.bz(5, g))")
System.print(" %(Fmt.bz(5, fromGray.call(g)))")
}</syntaxhighlight>
 
{{out}}
<pre>
decimal binary gray decoded
0 00000 00000 00000
1 00001 00001 00001
2 00010 00011 00010
3 00011 00010 00011
4 00100 00110 00100
5 00101 00111 00101
6 00110 00101 00110
7 00111 00100 00111
8 01000 01100 01000
9 01001 01101 01001
10 01010 01111 01010
11 01011 01110 01011
12 01100 01010 01100
13 01101 01011 01101
14 01110 01001 01110
15 01111 01000 01111
16 10000 11000 10000
17 10001 11001 10001
18 10010 11011 10010
19 10011 11010 10011
20 10100 11110 10100
21 10101 11111 10101
22 10110 11101 10110
23 10111 11100 10111
24 11000 10100 11000
25 11001 10101 11001
26 11010 10111 11010
27 11011 10110 11011
28 11100 10010 11100
29 11101 10011 11101
30 11110 10001 11110
31 11111 10000 11111
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
 
func Gray2Bin(N); \Convert N from Gray code to binary
int N;
int S;
[S:= 1;
repeat N:= N>>S | N;
S:= S<<1;
until S=32;
return N;
]; \Gray2Bin
 
 
func Bin2Gray(N); \Convert N from binary to Gray code
int N;
return N>>1 | N;
 
 
proc BinOut(N); \Output N in binary
int N;
int R;
[R:= N&1;
N:= N>>1;
if N then BinOut(N);
ChOut(0, R+^0);
]; \BinOut
 
 
int N, G;
[for N:= 0 to 31 do
[BinOut(N); ChOut(0, 9\tab\);
G:= Bin2Gray(N);
BinOut(G); ChOut(0, 9\tab\);
BinOut(Gray2Bin(G)); CrLf(0);
];
]</syntaxhighlight>
 
{{out}}
<pre>
0 0 0
1 1 1
10 11 10
11 10 11
100 110 100
101 111 101
110 101 110
111 100 111
1000 1100 1000
1001 1101 1001
1010 1111 1010
1011 1110 1011
1100 1010 1100
1101 1011 1101
1110 1001 1110
1111 1000 1111
10000 11000 10000
10001 11001 10001
10010 11011 10010
10011 11010 10011
10100 11110 10100
10101 11111 10101
10110 11101 10110
10111 11100 10111
11000 10100 11000
11001 10101 11001
11010 10111 11010
11011 10110 11011
11100 10010 11100
11101 10011 11101
11110 10001 11110
11111 10000 11111
</pre>
 
=={{header|zkl}}==
<syntaxhighlight lang="zkl">fcn grayEncode(n){ n.bitXor(n.shiftRight(1)) }
fcn grayDecode(g){ b:=g; while(g/=2){ b=b.bitXor(g) } b }</syntaxhighlight>
<syntaxhighlight lang="zkl">foreach n in ([0..31]){
g:=grayEncode(n); b:=grayDecode(g);
println("%2d(%05.2B) --> %2d(%05.2B) --> %2d(%05.2B)".fmt(n,n,g,g,b,b));
}</syntaxhighlight>
{{out}}
<pre style="overflow: auto; height: 20em;">
0(00000) --> 0(00000) --> 0(00000)
1(00001) --> 1(00001) --> 1(00001)
2(00010) --> 3(00011) --> 2(00010)
3(00011) --> 2(00010) --> 3(00011)
4(00100) --> 6(00110) --> 4(00100)
5(00101) --> 7(00111) --> 5(00101)
6(00110) --> 5(00101) --> 6(00110)
7(00111) --> 4(00100) --> 7(00111)
8(01000) --> 12(01100) --> 8(01000)
9(01001) --> 13(01101) --> 9(01001)
10(01010) --> 15(01111) --> 10(01010)
11(01011) --> 14(01110) --> 11(01011)
12(01100) --> 10(01010) --> 12(01100)
13(01101) --> 11(01011) --> 13(01101)
14(01110) --> 9(01001) --> 14(01110)
15(01111) --> 8(01000) --> 15(01111)
16(10000) --> 24(11000) --> 16(10000)
17(10001) --> 25(11001) --> 17(10001)
18(10010) --> 27(11011) --> 18(10010)
19(10011) --> 26(11010) --> 19(10011)
20(10100) --> 30(11110) --> 20(10100)
21(10101) --> 31(11111) --> 21(10101)
22(10110) --> 29(11101) --> 22(10110)
23(10111) --> 28(11100) --> 23(10111)
24(11000) --> 20(10100) --> 24(11000)
25(11001) --> 21(10101) --> 25(11001)
26(11010) --> 23(10111) --> 26(11010)
27(11011) --> 22(10110) --> 27(11011)
28(11100) --> 18(10010) --> 28(11100)
29(11101) --> 19(10011) --> 29(11101)
30(11110) --> 17(10001) --> 30(11110)
31(11111) --> 16(10000) --> 31(11111)
</pre>
512

edits