Function prototype: Difference between revisions

From Rosetta Code
Content added Content deleted
mNo edit summary
mNo edit summary
Line 124: Line 124:


SKIP</lang>
SKIP</lang>

=={{header|Amazing Hopper}}==

Function prototypes are included in a #PROTO declaration in the header, at the beginning of a HOPPER source file, before the functional code (MAIN :). This is enforced by the HOPPER compiler, to declare pseudo functions.

<lang Amazing Hopper>
#proto noargs /* Declare a pseudo-function with no argument */
#proto twoargs(_X_,_Y_) /* Declare a pseudo-function with two arguments */
main:
_no args
_two args (2,2)
print
exit(0)
.locals
twoargs(a,b)
{a}mulby(b)
back

// This function is as useful as an ashtray on a motorcycle:
no args:
{0}minus(0),kill
back
</lang>


=={{header|C}}==
=={{header|C}}==

Revision as of 18:34, 24 November 2021

Task
Function prototype
You are encouraged to solve this task according to the task description, using any language you may know.

Some languages provide the facility to declare functions and subroutines through the use of function prototyping.


Task

Demonstrate the methods available for declaring prototypes within the language. The provided solutions should include:

  • An explanation of any placement restrictions for prototype declarations
  • A prototype declaration for a function that does not require arguments
  • A prototype declaration for a function that requires two arguments
  • A prototype declaration for a function that utilizes varargs
  • A prototype declaration for a function that utilizes optional arguments
  • A prototype declaration for a function that utilizes named parameters
  • Example of prototype declarations for subroutines or procedures (if these differ from functions)
  • An explanation and example of any special forms of prototyping not covered by the above


Languages that do not provide function prototyping facilities should be omitted from this task.

Ada

In Ada, prototypes are called specifications.

  • Specifications must be an exact copy of everything prior to the "is" statement for a function or procedure.
  • All specifications must appear in a declarative section, ie: before a "begin" statement.
  • For a main program, specifications are only necessary if a function call appears in the source before the function definition.
  • For a package, specifications must appear as part of the specification(.ads) file, and do not appear in the body file(.adb) (The file extensions apply to Gnat Ada and may not apply to all compilers).

<lang Ada>function noargs return Integer; function twoargs (a, b : Integer) return Integer; -- varargs do not exist function optionalargs (a, b : Integer := 0) return Integer; -- all parameters are always named, only calling by name differs procedure dostuff (a : Integer);</lang> Other Prototyping: Since pointers are not generic in Ada, a type must be defined before one can have a pointer to that type, thus for making linked-list type semantics another trivial prototyping exists: <lang Ada>type Box; -- tell Ada a box exists (undefined yet) type accBox is access Box; -- define a pointer to a box type Box is record -- later define what a box is

  next : accBox; --  including that a box holds access to other boxes

end record;</lang> Example of a package specification (i.e. prototype): <lang Ada>package Stack is

  procedure Push(Object:Integer);
  function Pull return Integer;

end Stack;</lang>

Example of a package body: <lang Ada>package body Stack is

  procedure Push(Object:Integer) is
  begin
     -- implementation goes here
  end;
  function Pull return Integer;
  begin
     -- implementation goes here
  end;

end Stack;</lang>

To use the package and function: <lang Ada>with Stack; procedure Main is

  N:integer:=5;

begin

  Push(N);
  ...
  N := Pull;

end Main;</lang>

Aime

<lang aime>integer f0(void); # No arguments void f1(integer, real); # Two arguments real f2(...); # Varargs void f3(integer, ...); # Varargs

void f4(integer &, text &); # Two arguments (integer and string), pass by reference integer f5(integer, integer (*)(integer));

                               # Two arguments: integer and function returning integer and taking one integer argument

integer f6(integer a, real b); # Parameters names are allowed record f7(void); # Function returning an associative array</lang>

ALGOL 68

Works with: ALGOL 68 version Revision 1.
Works with: ALGOL 68G version Any - tested with release algol68g-2.8.
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d

File: Function_prototype.a68<lang algol68>#!/usr/bin/a68g --script #

  1. -*- coding: utf-8 -*- #
  1. An explanation of any placement restrictions for prototype declarations #

PROC VOID no args; # Declare a function with no argument that returns an INTeger # PROC (INT #a#,INT #b#)VOID two args; # Declare a function with two arguments that returns an INTeger # MODE VARARGS = UNION(INT,REAL,COMPL); PROC ([]VARARGS)VOID var args; # An empty parameter list can be used to declare a function that accepts varargs # PROC (INT, []VARARGS)VOID at least one args; # One mandatory INTeger argument followed by varargs #

MODE OPTINT = UNION(VOID,INT), OPTSTRING=UNION(VOID,STRING); # a function that utilizes optional arguments # PROC (OPTINT, OPTSTRING)VOID optional arguments;

  1. A prototype declaration for a function that utilizes named parameters #

MODE KWNAME = STRUCT(STRING name),

    KWSPECIES = STRUCT(STRING species),
    KWBREED = STRUCT(STRING breed),
    OWNER=STRUCT(STRING first name, middle name, last name);

  1. due to the "Yoneda ambiguity" simple arguments must have an unique operator defined #

OP NAME = (STRING name)KWNAME: (KWNAME opt; name OF opt := name; opt),

  SPECIES = (STRING species)KWSPECIES: (KWSPECIES opt; species OF opt := species; opt),
  BREED = (STRING breed)KWBREED: (KWBREED opt; breed OF opt := breed; opt);

PROC ([]UNION(KWNAME,KWSPECIES,KWBREED,OWNER) #options#)VOID print pet;

  1. subroutines, and fuctions are procedures, so have the same prototype declarations #
  1. An explanation and example of any special forms of prototyping not covered by the above: #

COMMENT

 If a function has no arguments, eg f, 
 then it is not requied to pass it a "vacuum()" to call it, eg "f()" not correct!
 Rather is can be called without the () vacuum. eg "f"
 A GOTO "label" is equivalent to "PROC VOID label".

END COMMENT

SKIP</lang>

Amazing Hopper

Function prototypes are included in a #PROTO declaration in the header, at the beginning of a HOPPER source file, before the functional code (MAIN :). This is enforced by the HOPPER compiler, to declare pseudo functions.

<lang Amazing Hopper>

  1. proto noargs /* Declare a pseudo-function with no argument */
  2. proto twoargs(_X_,_Y_) /* Declare a pseudo-function with two arguments */

main:

  _no args
  _two args (2,2)
  print

exit(0) .locals twoargs(a,b)

  {a}mulby(b)

back

// This function is as useful as an ashtray on a motorcycle: no args:

  {0}minus(0),kill

back </lang>

C

Function prototypes are typically included in a header file at the beginning of a source file prior to functional code. However, this is not enforced by a compiler.

<lang c>int noargs(void); /* Declare a function with no argument that returns an integer */ int twoargs(int a,int b); /* Declare a function with two arguments that returns an integer */ int twoargs(int ,int); /* Parameter names are optional in a prototype definition */ int anyargs(); /* An empty parameter list can be used to declare a function that accepts varargs */ int atleastoneargs(int, ...); /* One mandatory integer argument followed by varargs */</lang>

C#

Abstract methods
Interfaces and abstract classes can define abstract methods that must be implemented by subclasses. <lang csharp>using System; abstract class Printer {

   public abstract void Print();

}

class PrinterImpl : Printer {

   public override void Print() {
       Console.WriteLine("Hello world!");
   }

}</lang> Delegates
A delegate is similar to a function pointer. They are multicast: multiple methods can be attached to them. <lang csharp>using System; public delegate int IntFunction(int a, int b);

public class Program {

   public static int Add(int x, int y) {
       return x + y;
   }
   public static int Multiply(int x, int y) {
       return x * y;
   }
   public static void Main() {
       IntFunction func = Add;
       Console.WriteLine(func(2, 3)); //prints 5
       func = Multiply;
       Console.WriteLine(func(2, 3)); //prints 6
       func += Add;
       Console.WriteLine(func(2, 3)); //prints 5. Both functions are called, but only the last result is kept.
   }

}</lang> Partial methods
A partial type is a type that is defined in multiple files.
A partial method has its signature defined in one part of a partial type, and its implementation defined in another part of the type. If it is not implemented, the compiler removes the signature at compile time.
The following conditions apply to partial methods:
- Signatures in both parts of the partial type must match.
- The method must return void.
- No access modifiers are allowed. Partial methods are implicitly private. <lang csharp>//file1.cs public partial class Program {

   partial void Print();

}

//file2.cs using System;

public partial class Program {

   partial void Print() {
       Console.WriteLine("Hello world!");
   }
   static void Main() {
       Program p = new Program();
       p.Print(); //If the implementation above is not written, the compiler will remove this line.
   }

}</lang>

C++

Function declaration in C++ differs from that in C in some aspect.

<lang cpp>int noargs(); // Declare a function with no arguments that returns an integer int twoargs(int a,int b); // Declare a function with two arguments that returns an integer int twoargs(int ,int); // Parameter names are optional in a prototype definition int anyargs(...); // An ellipsis is used to declare a function that accepts varargs int atleastoneargs(int, ...); // One mandatory integer argument followed by varargs template<typename T> T declval(T); //A function template template<typename ...T> tuple<T...> make_tuple(T...); //Function template using parameter pack (since c++11) </lang>

Clojure

If you want to make forward declarations, you can use declare. <lang clojure>(declare foo)</lang>

COBOL

Prototypes were introduced in COBOL 2002. In the following examples, PROGRAM-ID and PROGRAM can be replaced with the equivalents for functions and methods. However, in method prototypes the PROTOTYPE clause is not used.

<lang cobol> *> A subprogram taking no arguments and returning nothing.

      PROGRAM-ID. no-args PROTOTYPE.
      END PROGRAM no-args.
      *> A subprogram taking two 8-digit numbers as arguments, and returning
      *> an 8-digit number.
      PROGRAM-ID. two-args PROTOTYPE.
      DATA DIVISION.
      LINKAGE SECTION.
      01  arg-1 PIC 9(8).
      01  arg-2 PIC 9(8).
      01  ret   PIC 9(8).
      PROCEDURE DIVISION USING arg-1, arg-2 RETURNING ret.
      END PROGRAM two-args.
      *> A subprogram taking two optional arguments which are 8-digit
      *> numbers (passed by reference (the default and compulsory for
      *> optional arguments)).
      PROGRAM-ID. optional-args PROTOTYPE.
      DATA DIVISION.
      LINKAGE SECTION.
      01  arg-1 PIC 9(8).
      01  arg-2 PIC 9(8).
      PROCEDURE DIVISION USING OPTIONAL arg-1, OPTIONAL arg-2.
      END PROGRAM optional-args.
      *> Standard COBOL does not support varargs or named parameters.
      *> A function from another language, taking a 32-bit integer by
      *> value and returning a 32-bit integer (in Visual COBOL).
      PROGRAM-ID. foreign-func PROTOTYPE.
      OPTIONS.
          ENTRY-CONVENTION some-langauge.
      DATA DIVISION.
      WORKING-STORAGE SECTION.
      01  arg PIC S9(9) USAGE COMP-5.
      01  ret PIC S9(9) USAGE COMP-5.
      PROCEDURE DIVISION USING arg RETURNING ret.
      END PROGRAM foreign-func.</lang>

Common Lisp

In Common Lisp, function prototypes can be used with (declaim (inline func-name)) function arguments are taken when the function is defined. In addition, the argument types aren't needed.

Caveat -- This works with specific implementations of CL. This was tested in SBCL.

<lang lisp> (declaim (inline no-args)) (declaim (inline one-arg)) (declaim (inline two-args)) (declaim (inline optional-args))

(defun no-args ()

 (format nil "no arguments!"))

(defun one-arg (x)

 ; inserts the value of x into a string
 (format nil "~a" x))

(defun two-args (x y)

 ; same as function `one-arg', but with two arguments
 (format nil "~a ~a" x y))

(defun optional-args (x &optional y) ; optional args are denoted with &optional beforehand

 ; same as function `two-args', but if y is not given it just prints NIL
 (format nil "~a ~a~%" x y))


(no-args) ;=> "no arguments!"

(one-arg 1) ;=> "1"

(two-args 1 "example") ;=> "1 example"

(optional-args 1.0) ;=> "1.0 NIL"

(optional-args 1.0 "example") ;=> "1.0 example" </lang>

More about declaim here

D

Beside function prototypes similar to the ones available in C (plus templates, D-style varargs), you can define class method prototypes in abstract classes and interfaces. The exact rules for this are best explained by the documentation <lang d>/// Declare a function with no arguments that returns an integer. int noArgs();

/// Declare a function with no arguments that returns an integer. int twoArgs(int a, int b);

/// Parameter names are optional in a prototype definition. int twoArgs2(int, int);

/// An ellipsis can be used to declare a function that accepts /// C-style varargs. int anyArgs(...);

/// One mandatory integer argument followed by C-style varargs. int atLeastOneArg(int, ...);

/// Declare a function that accepts any number of integers. void anyInts(int[] a...);

/// Declare a function that accepts D-style varargs. void anyArgs2(TArgs...)(TArgs args);

/// Declare a function that accepts two or more D-style varargs. void anyArgs3(TArgs...)(TArgs args) if (TArgs.length > 2);

/// Currently D doesn't support named arguments.

/// One implementation. int twoArgs(int a, int b) {

   return a + b;

}

interface SomeInterface {

   void foo();
   void foo(int, int);
   // Varargs
   void foo(...); // C-style.
   void foo(int[] a...);
   void bar(T...)(T args); // D-style.
   // Optional arguments are only supported if a default is provided,
   // the default arg(s) has/have to be at the end of the args list.
   void foo(int a, int b = 10);

}

void main() {}</lang>

Delphi

In Delphi, prototype function is named Class/Record Helper. For now, is not possible has more then one helper active in a same object, if two or more was declareted, just the present in the last Unit declareted will be active, the others will be ignored. In case two or more helpers was declareted in same Unit, just the last helper declareted will be active. Can not inherit record helpers, but class helper can be.
Patten: " identifierName = record helper for TypeIdentifierName"
See Documentation for more details.

<lang Delphi> program Function_prototype;

{$APPTYPE CONSOLE}

uses

 System.SysUtils;

type

 TIntArray = TArray<Integer>;
 TIntArrayHelper = record helper for TIntArray
   const
     DEFAULT_VALUE = -1;
   // A prototype declaration for a function that does not require arguments
   function ToString(): string;
   // A prototype declaration for a function that requires two arguments
   procedure Insert(Index: Integer; value: Integer);
   // A prototype declaration for a function that utilizes varargs
   // varargs is not available, but a equivalent is array of const
   procedure From(Args: array of const);
   //A prototype declaration for a function that utilizes optional arguments
   procedure Delete(Index: Integer; Count: Integer = 1);
   //A prototype declaration for a function that utilizes named parameters
   // Named parameters is not supported in Delphi
   //Example of prototype declarations for subroutines or procedures
   //(if these differ from functions)
   procedure Sqr;    //Procedure return nothing
   function Averange: double; //Function return a value
 end;

{ TIntHelper }

function TIntArrayHelper.Averange: double; begin

 Result := 0;
 for var e in self do
   Result := Result + e;
 Result := Result / Length(self);

end;

procedure TIntArrayHelper.Delete(Index, Count: Integer); begin

 System.Delete(self, Index, Count);

end;

procedure TIntArrayHelper.From(Args: array of const); var

 I, Count: Integer;

begin

 Count := Length(Args);
 SetLength(self, Count);
 if Count = 0 then
   exit;
 for I := 0 to High(Args) do
   with Args[I] do
     case VType of
       vtInteger:
         self[I] := VInteger;
       vtBoolean:
         self[I] := ord(VBoolean);
       vtChar, vtWideChar:
         self[I] := StrToIntDef(string(VChar), DEFAULT_VALUE);
       vtExtended:
         self[I] := Round(VExtended^);
       vtString:
         self[I] := StrToIntDef(VString^, DEFAULT_VALUE);
       vtPChar:
         self[I] := StrToIntDef(VPChar, DEFAULT_VALUE);
       vtObject:
         self[I] := cardinal(VObject);
       vtClass:
         self[I] := cardinal(VClass);
       vtAnsiString:
         self[I] := StrToIntDef(string(VAnsiString), DEFAULT_VALUE);
       vtCurrency:
         self[I] := Round(VCurrency^);
       vtVariant:
         self[I] := Integer(VVariant^);
       vtInt64:
         self[I] := Integer(VInt64^);
       vtUnicodeString:
         self[I] := StrToIntDef(string(VUnicodeString), DEFAULT_VALUE);
     end;

end;

procedure TIntArrayHelper.Insert(Index, value: Integer); begin

 system.Insert([value], self, Index);

end;

procedure TIntArrayHelper.Sqr; begin

 for var I := 0 to High(self) do
   Self[I] := Self[I] * Self[I];

end;

function TIntArrayHelper.ToString: string; begin

 Result := '[';
 for var e in self do
   Result := Result + e.ToString + ', ';
 Result := Result + ']';

end;

begin

 var val: TArray<Integer>;
 val.From([1, '2', PI]);
 val.Insert(0, -1); // insert -1 at position 0
 writeln('  Array:    ', val.ToString, ' ');
 writeln('  Averange: ', val.Averange: 3: 2);
 val.Sqr;
 writeln('  Sqr:      ', val.ToString);
 Readln;

end.</lang>

Output:
  Array:    [-1, 1, 2, 3, ]
  Averange: 1.25
  Sqr:      [1, 1, 4, 9, ]

Class helper example, with inherited helpers:
Patten: " identifierName = class helper (ancestor list*) for TypeIdentifierName"
Ancertor list is optional, and only will be used if this helper will inhret a parent helper.

<lang Delphi> program Function_prototype_class;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,
 System.Classes;

type

 TStringListHelper1 = class helper for TStringList
   constructor Create(FileName: TFileName); overload;
 end;
 TStringListHelper2 = class helper (TStringListHelper1) for TStringList
   procedure SaveAndFree(FileName: TFileName);
 end;
   TStringListHelper3 = class helper (TStringListHelper2) for TStringList
   procedure AddDateTime;
 end;

{ TStringListHelper1 }

constructor TStringListHelper1.Create(FileName: TFileName); begin

 inherited Create;
 if FileExists(FileName) then
   LoadFromFile(FileName);

end;

{ TStringListHelper2 }

procedure TStringListHelper2.SaveAndFree(FileName: TFileName); begin

 SaveToFile(FileName);
 Free;

end;

{ TStringListHelper3 }

procedure TStringListHelper3.AddDateTime; begin

 self.Add(DateToStr(now));

end;

begin

 with TStringList.Create('d:\Text.txt') do
 begin
   AddDateTime;
   SaveAndFree('d:\Text_done.txt');
 end;
 readln;

end.</lang>

F#

In F#, prototypes are called signatures. Signature files are used to bulk annotate the accessibility of the things within them. If something is in an implementation file but not in the signature file, it is assumed to be private to that file. If it is in the signature file without the internal accessibility modifier, then it is assumed to public, otherwise it is internal to the assembly. For more details, see the documentation. Below is an example of the signatures produced for the functions specified in the task (without any accessibility modifiers): <lang fsharp>// A function taking and returning nothing (unit). val noArgs : unit -> unit // A function taking two integers, and returning an integer. val twoArgs : int -> int -> int // A function taking a ParamPack array of ints, and returning an int. The ParamPack // attribute is not included in the signature. val varArgs : int [] -> int // A function taking an int and a ParamPack array of ints, and returning an // object of the same type. val atLeastOnArg : int -> int [] -> int // A function taking an int Option, and returning an int. val optionalArg : Option<int> -> int

// Named arguments and the other form of optional arguments are only available on // methods. type methodClass =

 class
   // A method taking an int named x, and returning an int.
   member NamedArg : x:int -> int
   // A method taking two optional ints in a tuple, and returning an int. The
   //optional arguments must be tupled.
   member OptionalArgs : ?x:int * ?y:int -> int
 end</lang>

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

' The position regarding prototypes is broadly similar to that of the C language in that functions, ' sub-routines or operators (unless they have already been fully defined) must be declared before they can be used. ' This is usually done near the top of a file or in a separate header file which is then 'included'.

' Parameter names are optional in declarations. When calling functions, using parameter names ' (as opposed to identifying arguments by position) is not supported.

Type MyType ' needed for operator declaration

 i As Integer

End Type

Declare Function noArgs() As Integer ' function with no argument that returns an integer Declare Function twoArgs(As Integer, As Integer) As Integer ' function with two arguments that returns an integer Declare Function atLeastOneArg CDecl(As Integer, ...) As Integer ' one mandatory integer argument followed by varargs Declare Function optionalArg(As Integer = 0) As Integer ' function with a (single) optional argument with default value Declare Sub noArgs2() ' sub-routine with no argument Declare Operator + (As MyType, As MyType) As MyType ' operator declaration (no hidden 'This' parameter for MyType)


' FreeBASIC also supports object-oriented programming and here all constructors, destructors, ' methods (function or sub), properties and operators (having a hidden 'This' parameter) must be ' declared within a user defined type and then defined afterwards.


Type MyType2

 Public:
   Declare Constructor(As Integer)
   Declare Destructor()
   Declare Sub MySub()   
   Declare Function MyFunction(As Integer) As Integer 
   Declare Property MyProperty As Integer
   Declare Operator Cast() As String
 Private:
   i As Integer

End Type</lang>

Go

While the language specification does not use the word prototype it states, "A function declaration may omit the body. Such a declaration provides the signature for a function implemented outside Go, such as an assembly routine." This is the closest analogy to a C (e.g.) prototype.

Function declarations whether with a body or without must be "top level" declarations, that is, after the package clause and outside of any other function. Examples of function delarations without bodies are, <lang go>func a() // function with no arguments func b(x, y int) // function with two arguments func c(...int) // varargs are called "variadic parameters" in Go.</lang> Go does not directly support optional or named parameters and does not have any concept of procedures or subroutines as distinct from functions.

Otherwise, Go does have the concept of a function signature which includes parameters and return values. Go is strongly typed and functions are first class objects so function signatures are used in a variety of ways. These might be considered distinct from the concept of function prototype.

Haskell

A function can be declared without giving it's prototype in Haskell. The haskell compiler has got type inference whereby it can infer the return type and type of variable given to function. You can still hardcode the prototype which specifies the datatype of variables and return type. For ex. Consider a function add which takes two integers and returns their sum. It can be prototyped and declared as : <lang haskell> add :: Int -> Int -> Int add x y = x+y </lang>

Actually all functions in haskell are functions with just one arguments. Haskell will treat above function as a function which takes an int and returns a function with type (:: (Int->Int)) . Then this function which is returned is such that it takes an int and returns an int. Similarly for any function add which takes 3 integers and adds them the actual prototype will be as follows: <lang haskell> add :: Int->(Int ->(Int->Int)) </lang> The one that does not require arguements could just be: <lang haskell> printThis = putStrLn("This is being printed.") </lang> But haskell would rather consider the function to be of return type IO() in this case.

Two arguments: <lang haskell> add :: Int -> Int -> Int add x y = x+y </lang>

The same thing can be done using the lambda function as : <lang haskell> add :: Int -> Int -> Int add = \x->\y -> x+y </lang>

Two arguments with unnamed parameters: <lang haskell> doThis :: Int-> Int-> String doThis _ _ = "Function with unnamed parameters" </lang>

Function with var args requires creation of type class as per the requirement.

J

J assumes an unknown name is a verb of infinite rank. Rank determines the frames on which the verb executes. As the demonstration shows, changing the rank, assigning the rank before the verb is used in other definitions affects the result. We could, of course, play other games by changing the unknown name from verb to another part of speech. <lang J> NB. j assumes an unknown name f is a verb of infinite rank

  NB. f has infinite ranks
  f b. 0

_ _ _

  NB. The verb g makes a table.
  g=: f/~
  NB. * has rank 0
  f=: *


  NB. indeed, make a multiplication table
  f/~ i.5

0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 4 8 12 16

  NB. g was defined as if f had infinite rank.
  g i.5

0 1 4 9 16

  NB. f is known to have rank 0.
  g=: f/~
  NB. Now we reproduce the table
  g i.5

0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 4 8 12 16


  NB. change f to another rank 0 verb
  f=: +   
  NB. and construct an addition table
  g i.5

0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8


  NB. f is multiplication at infinite rank
  f=: *"_
  
  NB. g, however, has rank 0
  g i.5

0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 4 8 12 16</lang>

JavaScript

ES5

JavaScript functions may also be used to define prototype objects <lang JavaScript> // A prototype declaration for a function that does not require arguments function List() {}

List.prototype.push = function() {

 return [].push.apply(this, arguments);

};

List.prototype.pop = function() {

 return [].pop.call(this);

};

var l = new List(); l.push(5); l.length; // 1 l[0]; 5 l.pop(); // 5 l.length; // 0

// A prototype declaration for a function that utilizes varargs function List() {

 this.push.apply(this, arguments);

}

List.prototype.push = function() {

 return [].push.apply(this, arguments);

};

List.prototype.pop = function() {

 return [].pop.call(this);

};

var l = new List(5, 10, 15); l.length; // 3 l[0]; 5 l.pop(); // 15 l.length; // 2

</lang>

ES6

Class Declarations are used to define prototype objects <lang JavaScript> // A prototype declaration for a function that does not require arguments class List {

 push() {
   return [].push.apply(this, arguments);
 }
 pop() {
   return [].pop.call(this);  
 }

}

var l = new List(); l.push(5); l.length; // 1 l[0]; 5 l.pop(); // 5 l.length; // 0


// A prototype declaration for a function that utilizes varargs class List {

 constructor(...args) {
   this.push(...args);
 }
 push() {
   return [].push.apply(this, arguments);
 }
 pop() {
   return [].pop.call(this);  
 }

}

var l = new List(5, 10, 15); l.length; // 3 l[0]; 5 l.pop(); // 15 l.length; // 2 </lang>

Julia

Julia does not need or use function prototypes in general. Generic functions are further specialized as to argument type and return type during just-in-time compilation if required. However, when interacting with other languages such a C which use function prototypes, Julia can prototype its functions for passing its functions to external languages with the @cfunction macro:

<lang julia>julia > function mycompare(a, b)::Cint

     (a < b) ? -1 : ((a > b) ? +1 : 0)
 end

mycompare (generic function with 1 method) </lang>

Using @cfunction to create a prototype for passing this to C's quicksort:

<lang julia>julia> mycompare_c = @cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble})) </lang>

Kotlin

The order of declarations in Kotlin is unimportant and so forward declaration of 'top level' functions is neither needed nor supported.

The only place where function (or property) prototypes are needed is for abstract members of classes or interfaces whose implementation will be provided by overriding those members in a derived or implementing class or object.

Here's an example of this. Note that since Kotlin allows arguments to be passed either by name or position for all functions, there is no separate prototype for this situation. Moreover, since arguments may be passed by name, it is strongly recommended (but not obligatory) that the parameter names for overriding members should be the same as for the functions they override. The compiler will issue a warning if this recommendation is not followed. <lang scala>// version 1.0.6

interface MyInterface {

   fun foo()                     // no arguments, no return type
   fun goo(i: Int, j: Int)       // two arguments, no return type
   fun voo(vararg v: Int)        // variable number of arguments, no return type
   fun ooo(o: Int = 1): Int      // optional argument with default value and return type Int
   fun roo(): Int                // no arguments with return type Int
   val poo: Int                // read only property of type Int

}

abstract class MyAbstractClass {

   abstract fun afoo()           // abstract member function, no arguments or return type
   abstract var apoo: Int        // abstract read/write member property of type Int

}

class Derived : MyAbstractClass(), MyInterface {

   override fun afoo() {}
   override var apoo: Int = 0
   override fun foo() {}
   override fun goo(i: Int, j: Int) {}
   override fun voo(vararg v: Int) {}
   override fun ooo(o: Int): Int = o  // can't specify default argument again here but same as in interface
   override fun roo(): Int = 2
   override val poo: Int = 3

}

fun main(args: Array<String>) {

   val d = Derived()
   println(d.apoo)
   println(d.ooo())  // default argument of 1 inferred
   println(d.roo())
   println(d.poo)

}</lang>

Output:
0
1
2
3

Lua

<lang Lua>function Func() -- Does not require arguments return 1 end

function Func(a,b) -- Requires arguments return a + b end

function Func(a,b) -- Arguments are optional return a or 4 + b or 2 end

function Func(a,...) -- One argument followed by varargs return a,{...} -- Returns both arguments, varargs as table end</lang>

Luck

<lang Luck>function noargs(): int = ? ;; function twoargs(x:int, y:int): int = ? ;;

/* underscore means ignore and is not bound to lexical scope */ function twoargs(_:bool, _:bool): int = ? ;;

function anyargs(xs: ...): int = ? ;; function plusargs(x:int, xs: ...): int = ? ;;</lang>

M2000 Interpreter

Functions/modules are declared before used. So the flow matter, position in code not matter (perhaps we can put functions in a simple routine, using a label, execute a gosub to label, then make the functions, and then return. Functions amd modules added to a specific list of functions/modules, so every time interpreter check that list (a hash table). They can change definition including signature. Any module/function before executed has no declared local modules/functions. Declarations performed as they executed. For modules, we can prepare a non changed module before begin execute module's code, and when declaration for same name module comes to execute, it just skipped.

Subroutines are parts of functions/modules and first searched from bottom, added to a list of subs positions,therefore they can't changed. Example of change an inner module using another module with same signature. Module MyBeta {Read x : ... } or Module MyBeta (x) { ... } or Module MyBeta(x) { } is the same.

<lang M2000 Interpreter> Module Check {

     Module MyBeta (a) {
           Print "MyBeta", a/2
     }
     Module TestMe {
           Module Beta (x) {
                 Print "TestMeBeta", x
           }
           Beta 100
     }
     TestMe ; Beta as MyBeta

} Check </lang>

Signatures needed for Event object. An event object get a list of functions, called as modules, and call every function with same signature. We can provide arguments by reference too. We can define simple functions (without visibility except local and global), or group functions (static groups) with visibility local, global and group level, or we can define local scope functions. <lang M2000 Interpreter> Module Check {,

     \\ make an event object
     \\ with a prototype signature
     \\ first parameter  is numeric/object by value, and second is by reference
     Event Alfa {
           Read x, &z
     }
     
     \\ make a function with same signature
     Function ServiceAlfa {
           read a, &b
           b+=a
     }
     
     \\ add function to event
     Event Alfa new &ServiceAlfa()
     
     \\ call event in this module
     var=30
     Call Event Alfa,  10, &var
     Print var=40
     \\ make a local module, and pass event by value
     Module checkinside (ev) {
           \\ ev is a copy of Alfa
           m=10
           call event ev, 4, &m
           Print m=14
           \\ clear functions from ev
           Event ev Clear
           \\ we can call it again, but nothing happen
           call event ev, 4, &m
           Print m=14
     }
     checkinside Alfa
     \\ so now we call Alfa 
     Call Event Alfa,  10, &var
     Print var=50
     Event Alfa Hold
     \\ calling do nothing, because of Hold state
     Call Event Alfa,  10, &var
     Event Alfa Release
     Call Event Alfa,  10, &var
     Print var=60

} Check </lang>

Using a function for local call (module visibility)

<lang M2000 Interpreter> Module Check {,

     \\ make an event object
     \\ with a prototype signature
     \\ first parameter  is numeric/object by value, and second is by reference
     Event Alfa {
           Read x, &z
     }
     
     \\ make a function with same signature
     \\ but here prepared to used with current module visibility
     m=0
     Function ServiceAlfa {
           \ this code "see" m variable
           \\ we have to use new, to make new a, b for sure
           read new a, &b
           b+=a
           m++
     }
     
     \\ add function to event, making reference as local to module
     Event Alfa new Lazy$(&ServiceAlfa())
     
     \\ call event in this module
     var=30
     Call Event Alfa,  10, &var
     Print var=40
     \\ make a local module, and pass event by value
     Module checkinside (ev) {
           \\ ev is a copy of Alfa
           m=10
           call event ev, 4, &m
           Print m=14
           \\ clear functions from ev
           Event ev Clear
           \\ we can call it again, but nothing happen
           call event ev, 4, &m
           Print m=14
     }
     checkinside Alfa
     \\ so now we call Alfa 
     Call Event Alfa,  10, &var
     Print var=50
     Event Alfa Hold
     \\ calling do nothing, because of Hold state
     Call Event Alfa,  10, &var
     Event Alfa Release
     Call Event Alfa,  10, &var
     Print var=60
     Print m=4  ' 4 times called ServiceAlfa

} Check </lang>

Using a Function in a Group (Groups are the User objects in M2000)

<lang M2000 Interpreter> Module Check {,

     \\ make an event object
     \\ with a prototype signature
     \\ first parameter  is numeric/object by value, and second is by reference
     Event Alfa {
           Read x, &z
     }
     
     \\ make a group function with same signature
    
    Group IamStatic {
           m=0
           Function ServiceAlfa(a, &b) {
                 b+=a
                 .m++
           }

}

     \\ add function to event, making reference as local to module
     Event Alfa new &IamStatic.ServiceAlfa()
     
     \\ call event in this module
     var=30
     Call Event Alfa,  10, &var
     Print var=40
     \\ make a local module, and pass event by value
     Module checkinside (ev) {
           \\ ev is a copy of Alfa
           m=10
           call event ev, 4, &m
           Print m=14
           \\ clear functions from ev
           Event ev Clear
           \\ we can call it again, but nothing happen
           call event ev, 4, &m
           Print m=14
     }
     checkinside Alfa
     \\ so now we call Alfa 
     Call Event Alfa,  10, &var
     Print var=50
     Event Alfa Hold
     \\ calling do nothing, because of Hold state
     Call Event Alfa,  10, &var
     Event Alfa Release
     Call Event Alfa,  10, &var
     Print var=60
     Print IamStatic.m=4  ' 4 times called IamStatic.ServiceAlfa

} Check </lang>

Nim

Procedure declarations can be used if a proc is to be used before its definition. <lang nim># Procedure declarations. All are named proc noargs(): int proc twoargs(a, b: int): int proc anyargs(x: varargs[int]): int proc optargs(a, b: int = 10): int

  1. Usage

discard noargs() discard twoargs(1,2) discard anyargs(1,2,3,4,5,6,7,8) discard optargs(5)

  1. Procedure definitions

proc noargs(): int = echo "noargs" proc twoargs(a, b: int): int = echo "twoargs" proc anyargs(x: varargs[int]): int = echo "anyargs" proc optargs(a: int, b = 10): int = echo "optargs"</lang>

OCaml

<lang ocaml>(* Usually prototype declarations are put in an interface file,

  a file with .mli filename extension *)

(* A prototype declaration for a function that does not require arguments *) val no_arg : unit -> unit

(* A prototype declaration for a function that requires two arguments *) val two_args : int -> int -> unit

(* A prototype declaration for a function that utilizes optional arguments *) val opt_arg : ?param:int -> unit -> unit (* in this case we add a unit parameter in order to omit the argument,

  because ocaml supports partial application *)

(* A prototype declaration for a function that utilizes named parameters *) val named_arg : param1:int -> param2:int -> unit

(* An explanation and example of any special forms of prototyping not covered by the above *)

(* A prototype declaration for a function that requires a function argument *) val fun_arg : (int -> int) -> unit

(* A prototype declaration for a function with polymorphic argument *) val poly_arg : 'a -> unit</lang>

Oforth

Oforth can only forward declare methods (see Mutual Recursion task). A method can be declared without any class implementation : <lang Oforth>Method new: myMethod</lang>

This creates a new method object with name myMethod (or does nothing if this object already exists). It says nothing about method implementations (number of parameters, return value, ...).

A method object is not directly related to classes :

- A method object is created.

- Classes are created.

- Into classes, you can create implementations for particular methods. If, at this point, the method object does not exist yet, it is created.

Ol

Ol have no function prototypes.

Ol functions is a first-class functions with dynamic arguments translation so no function prototypes is required.

PARI/GP

GP does not use function prototypes.

PARI uses C prototypes. Additionally, gp2c parser codes are essentially function prototypes. They must be placed in the file called by gp2c, not in a file included by it, and they must appear as a GP; comment. For a function

<lang c>long foo(GEN a, GEN b)</lang> which takes two (required) t_INT arguments, returns a small integer (a C long) and appears as bar to the gp interpreter, the following command would be used: <lang c>/* GP;install("foo","LGG","bar","./filename.gp.so");

  • /</lang>

If its arguments were optional it could be coded as <lang c>/* GP;install("foo","LDGDG","bar","./filename.gp.so");

  • /</lang>

although other parser codes are possible; this one sends NULL if the arguments are omitted.

A code like <lang c>/* GP;install("foo","s*","bar","./filename.gp.so");

  • /</lang>

can be used to take a variable (0 or more) number of arguments. Note that the return type in this case is implicitly GEN

Other special forms are described in the User's Guide to the PARI library, section 5.7.3.

Perl

The perl scripting language allows prototypes to be checked during JIT compilation. Prototypes should be placed before subroutine definitions, declarations, or anonymous subroutines. The sigil special symbols act as argument type placeholders.

<lang perl>sub noargs(); # Declare a function with no arguments sub twoargs($$); # Declare a function with two scalar arguments. The two sigils act as argument type placeholders sub noargs :prototype(); # Using the :attribute syntax instead sub twoargs :prototype($$);</lang>

Phix

Library: Phix/basics

Use explicit forward definitions. Optional, unless (for instance) you want to use named parameters in a forward call.
Should be identical to the actual definition, but preceded by "forward" and with no body.

forward function noargs() -- Declare a function with no arguments
forward procedure twoargs(integer a, integer b) -- Declare a procedure with two arguments
forward procedure twoargs(integer, integer /*b*/) -- Parameter names are optional in forward (and actual) definitions
forward function anyargs(sequence s) -- varargs are [best/often] handled as a (single) sequence in Phix
forward function atleastonearg(integer a, integer b=1, ...); -- Default makes args optional (== actual defn)

No special syntax is needed on actual or forward function definitions for named parameters, and calls are identical whether still forward or now fully defined.
Defaults on optional parameters in forward definitions can also be dummy (but type compatible) values should the actual not yet be defined.

PL/I

<lang pli> declare s1 entry; declare s2 entry (fixed); declare s3 entry (fixed, float);

declare f1 entry returns (fixed); declare f2 entry (float) returns (float); declare f3 entry (character(*), character(*)) returns (character (20)); </lang>

PureBasic

PureBasic defines both functions and procedures by using the keyword Procedure. For the purposes of this task I will describe both 'procedures' and 'functions' using only the term 'procedure'. PureBasic uses a one-pass compiler. All procedures need to be defined before use. The prototypes referred to in the task description are performed with forward declarations in PureBasic.

PureBasic allows two types of prototyping. The first uses the keyword Declare and describes the name, return value, and parameters of a procedure. It is identical in form with the first line of a procedure definition with the exception that the keyword Declare is used instead of the keyword 'Procedure. It must be placed before the first use of the procedure and must occur before the procedure's definition. The procedure declaration's parameteres need to match the order, type, and number of those in the procedure's definition, though their names may be different.

The keyword ProtoType may be used for pointers to procedures so that a definition of the parameters and return type for the function being pointed to are defined and that the pointer may be used to execute the function with type checking. The parameter names do not have to match in the 'ProtoType' definition but the order, type and optional parameters do. 'ProtoTypes' must be defined before their first use.

PureBasic does not allow either variable arguments or named parameters. <lang purebasic>;Forward procedure declare defined with no arguments and that returns a string Declare.s booTwo()

Forward procedure declare defined with two arguments and that returns a float

Declare.f moo(x.f, y.f)

Forward procedure declare with two arguments and an optional argument and that returns a float

Declare.f cmoo(x.f, y.f, m.f = 0)

      • The following three procedures are defined before their first use.
Procedure defined with no arguments and that returns a string

Procedure.s boo(): ProcedureReturn "boo": EndProcedure

Procedure defined with two arguments and that returns an float

Procedure.f aoo(x.f, y.f): ProcedureReturn x + y: EndProcedure

Procedure defined with two arguments and an optional argument and that returns a float

Procedure.f caoo(x.f, y.f, m.f = 1): ProcedureReturn (x + y) * m: EndProcedure

ProtoType defined for any function with no arguments and that returns a string

Prototype.s showString()

Prototype defined for any function with two float arguments and that returns a float

Prototype.f doMath(x.f, y.f)

ProtoType defined for any function with two float arguments and an optional float argument and that returns a float

Prototype.f doMathWithOpt(x.f, y.f, m.f = 0)

Define a.f = 12, b.f = 5, c.f = 9 Define proc_1.showString, proc_2.doMath, proc_3.doMathWithOpt ;using defined ProtoTypes If OpenConsole("ProtoTypes and Forward Declarations")

 PrintN("Forward Declared procedures:")
 PrintN(boo())
 PrintN(StrF(a, 2) + " * " + StrF(b, 2) + " = " + StrF(moo(a, b), 2))
 PrintN(StrF(a, 2) + " * " + StrF(b, 2) + " + " + StrF(c, 2) + " = " + StrF(cmoo(a, b, c), 2))
 PrintN(StrF(a, 2) + " * " + StrF(b, 2) + " = " + StrF(cmoo(a, b), 2))
 
 ;set pointers to second set of functions
 proc_1 = @boo()
 proc_2 = @aoo()
 proc_3 = @caoo()
 
 PrintN("ProtoTyped procedures (set 1):")
 PrintN(proc_1())
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " = " + StrF(proc_2(a, b), 2))
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " ? " + StrF(c, 2) + " = " + StrF(proc_3(a, b, c), 2))
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " = " + StrF(proc_3(a, b), 2))
 
 ;set pointers to second set of functions
 proc_1 = @booTwo()
 proc_2 = @moo()
 proc_3 = @cmoo()
 
 PrintN("ProtoTyped procedures (set 2):")
 PrintN(proc_1())
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " = " + StrF(proc_2(a, b), 2))
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " ? " + StrF(c, 2) + " = " + StrF(proc_3(a, b, c), 2))
 PrintN(StrF(a, 2) + " ? " + StrF(b, 2) + " = " + StrF(proc_3(a, b), 2))
 
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf


      • If the forward Declaration above are not used then the following Procedure
definitions each have to be placed before the call to the respective procedure.
Procedure defined with no arguments and that returns a string

Procedure.s booTwo()

 ProcedureReturn "booTwo"

EndProcedure

Procedure defined with two arguments and that returns an float

Procedure.f moo(x.f, y.f)

 ProcedureReturn x * y

EndProcedure

Procedure defined with two arguments and an optional argument and that returns an float

Procedure.f cmoo(x.f, y.f, m.f = 0)

 ProcedureReturn (x * y) + m

EndProcedure </lang> Sample output:

Forward Declared procedures:
boo
12.00 * 5.00 = 60.00
12.00 * 5.00 + 9.00 = 69.00
12.00 * 5.00 = 60.00
ProtoTyped procedures (set 1):
boo
12.00 ? 5.00 = 17.00
12.00 ? 5.00 ? 9.00 = 153.00
12.00 ? 5.00 = 0.00
ProtoTyped procedures (set 2):
booTwo
12.00 ? 5.00 = 60.00
12.00 ? 5.00 ? 9.00 = 69.00
12.00 ? 5.00 = 60.00

Quackery

In Quackery a "word" corresponds to a function or subroutine. If you want to make a forward declaration (typically but not exclusively for recursive or mutually recursive words) you would use forward is, and resolve the forward declaration with resolves.

For example, the naive recursive Fibonacci function. (Note that the texts in parentheses are stack comments and can be omitted. Their inclusion is good practice. No declaration of parameters or arguments is required in Quackery.)

<lang> forward is fibonacci ( n --> n )

 [ dup  2 < if done
   dup  1 - fibonacci
   swap 2 - fibonacci + ] resolves fibonacci ( n --> n )</lang>

Racket

Most of the points are covered in this program <lang racket>

  1. lang racket

(define (no-arg) (void))

(define (two-args a b) (void)) ;arguments are always named

(define (varargs . args) (void)) ;the extra arguments are stored in a list

(define (varargs2 a . args) (void)) ;one obligatory argument and the rest are contained in the list

(define (optional-arg (a 5)) (void)) ;a defaults to 5</lang>

(void) is a function that returns "nothing", so this are prototypes that do nothing. Although standard Racket doesn't allow type declarations, it allows contracts, so we can add this to the previous declarations <lang racket> (provide (contract-out

         [two-args (integer? integer? . -> . any)]))</lang>

then any module that imports the function can only pass integers to two-args.

Another way is using the typed/racket language, like this <lang racket>

  1. lang typed/racket

(: two-args (Integer Integer -> Any)) (define (two-args a b) (void))</lang>

Raku

(formerly Perl 6) There is no restriction on placement of prototype declarations. (Actually, we call them "stub declarations".) In fact, stub declarations are rarely needed in Raku because post-declaration of functions is allowed, and normal function declarations do not bend the syntax the way they sometimes do in Perl 5.

Note that the ... in all of these stub bodies is literally part of the declaration syntax.

A prototype declaration for a function that does not require arguments (and returns an Int): <lang perl6>sub foo ( --> Int) {...}</lang>

A prototype declaration for a function that requires two arguments. Note that we can omit the variable name and just use the sigil in the stub, since we don't need to reference the argument until the actual definition of the routine. Also, unlike in Perl 5, a sigil like @ defaults to binding a single positional argument. <lang perl6>sub foo (@, $ --> Int) {...}</lang>

A prototype declaration for a function that utilizes varargs after one required argument. Note the "slurpy" star turns the @ sigil into a parameter that accepts all the rest of the positional arguments. <lang perl6>sub foo ($, *@ --> Int) {...}</lang>

A prototype declaration for a function that utilizes optional arguments after one required argument. Optionality is conferred by either a question mark or a default: <lang perl6>sub foo ($, $?, $ = 42 --> Int) {...}</lang>

A prototype declaration for a function that utilizes named parameters: <lang perl6>sub foo ($, :$faster, :$cheaper --> Int) {...}</lang>

Example of prototype declarations for subroutines or procedures, which in Raku is done simply by noting that nothing is returned: <lang perl6>sub foo ($, $ --> Nil) {...}</lang>

A routine may also slurp up all the named arguments that were not bound earlier in the signature: <lang perl6>sub foo ($, :$option, *% --> Int) {...}</lang>

A routine may make a named parameter mandatory using exclamation mark. (This is more useful in multi subs than in stubs though.) <lang perl6>sub foo ($, :$option! --> Int) {...}</lang>

A routine may unpack an Array automaticly. Here the first element is stored in a scalar and the rest in an Array. Other buildin types can be unpacked as well. <lang perl6>sub foo ([$, @]) {...}</lang>

A routine may ask for a closure parameter to implement higher order functions. Typed or untyped signatures can be supplied. <lang perl6>sub foo (@, &:(Str --> Int)) {...}</lang>

REXX

In the REXX language, there is no difference between functions and subroutines,   except that   functions   must   return a value,   even if that value is a "null"   (empty string).

In REXX, if a function doesn't return a value, a   syntax   condition is raised.

REXX has no need of pre─allocating a prototype   (such as required arguments and the like)   for functions or subroutines,   but there are facilities (in the form of BIFs) to assist the REXX programmer to easily determine the number of arguments passed (if any),   and perform (and/or enforce) any necessary argument passing (including the   type   of values or variables passed),   and also including checking for omitted arguments.   In effect, the relaxation of requirements/rules for function or subroutine invocations has been moved from the compile stage (for REXX, the parsing/interpretive) stage) to the execution stage.


Note:   REXX is an interpretive language.

SNOBOL4

In SNOBOL4, functions are actually a hack and are defined in an idiosyncratic way that is simultaneously like a prototype or not like one as the case may be.

Basics

To begin with, we look at the definition provided at the relevant task page:

<lang snobol4> define('multiply(a,b)') :(mul_end) multiply multiply = a * b  :(return) mul_end

  • Test
         output = multiply(10.1,12.2)
         output = multiply(10,12)

end</lang>

The key to this is the define() BIF which declares the actual function and the multiply label which is the entry point to the code that is executed. The key is that SNOBOL4 is an almost militantly unstructured language. There is absolutely nothing special about the multiply entry point that distinguishes it from the target of any other branch target. What happens instead is that the define() BIF associates a certain string pattern--the prototype, in effect--with an entry point. The :(mul_end) piece at the end, in fact, exists because were it not present the body of the multiply "function" would be executed: it is a branch to the label mul_end.

On execution, the SNOBOL4 runtime will execute line by line of the script. When it reaches the define BIF call it will do the stuff it needs to do behind the scenes to set up function-like access to the multiply branch target. It would then proceed to execute the next line were it not for the branch.

Separation of prototype and body

Of course this implies that you can separate the two pieces. Which you can, like this:

<lang snobol4> define('multiply(a,b)')

  • Assume lots more code goes here.
                                 :(test)
  • MORE CODE!

multiply multiply = a * b  :(return)

  • MORE CODE!

test

         output = multiply(10.1,12.2)
         output = multiply(10,12)

end</lang>

With this structure the "function" is declared at the program, the implementation is somewhere down in the middle, and the mainline (test here) is at the end.

Full prototyping

The define() BIF is used for more than merely providing function-like access to a label with the same name. It is used to prototype all of these (with some default behaviour):

  • the function name (multiply in the examples);
  • the formal arguments to the function (a, b in the examples);
  • the entry point label for the function's code (defaults to the function name, mult_impl in the following example);
  • any local variables which should be protected in the function (defaults to none, acc1,acc2 in the following example).

Thus a highly-contrived example function that illustrates all of these would look like this:

<lang snobol4> define('multiply(a,b)acc1,acc2','mult_impl') :(mult_end) mult_impl acc1 = a

         acc2 = b
         multiply = acc1 * acc2                       :(return)

mult_end

  • Test
         output = multiply(10.1,12.2)
         output = multiply(10,12)

end</lang>

Wren

Firstly, Wren makes a distinction between functions and methods. The latter are always members of a class and never need to be prototyped regardless of the order in which they are declared or called.

On the other hand functions are standalone objects and cannot be called before they have been declared. Consequently, prototypes are required if a function calls itself recursively, if two (or more) functions are mutually recursive or if a function is simply called out of order for some reason.

A prototype is just a forward declaration of the function's name. Details of any parameters are not needed and cannot even be optionally specified as parameters are considered to be part of the function's body.

In the following example, the 'factorial' function is recursive and so needs a forward declaration. However, even though the function takes a single argument, no prior information about that is needed or possible. There is an example of mutual recursion protoyping in the Mutual_recursion#Wren task. <lang ecmascript>var factorial // forward declaration

factorial = Fn.new { |n| (n <= 1) ? 1 : factorial.call(n-1) * n }

System.print(factorial.call(5))</lang>

Output:
120

zkl

In zkl, all functions are var args. Prototypes provide some documentation and an overlay on the incoming args. Named parameters are not supported. <lang zkl>fcn{"Hello World"} // no expected args fcn(){"Hello World"} // ditto

fcn{vm.arglist}(1,2) // ask the VM for the passed in args -->L(1,2) fcn f(a,b){a+b} // fcn(1,2,3) works just fine fcn f(args){}(1,2,3) //args = 1 fcn(args){vm.arglist.sum()}(1,2,3) //-->6

fcn(a=1,b=2){vm.arglist}() //-->L(1,2) fcn(a=1,b=2){vm.arglist}(5) //-->L(5,2) fcn(a=1,b){vm.arglist}() //-->L(1), error if you try to use b fcn(a,b=2){vm.arglist}(5) //-->L(5,2) fcn(a,b=2,c){vm.arglist}(1) //-->L(1,2)

fcn(){vm.nthArg(1)}(5,6) //-->6 fcn{vm.numArgs}(1,2,3,4,5,6,7,8,9) //-->9 fcn{vm.argsMatch(...)} // a somewhat feeble attempt arg pattern matching based on type (vs value)

  // you can do list assignment in the prototype:

fcn(a,[(b,c)],d){vm.arglist}(1,L(2,3,4),5) //-->L(1,L(2,3,4),5) fcn(a,[(b,c)],d){"%s,%s,%s,%s".fmt(a,b,c,d)}(1,L(2,3,4),5) //-->1,2,3,5

  // no type enforcement but you can give a hint to the compiler

fcn([Int]n){n.sin()} //--> syntax error as Ints don't do sin</lang>