Flipping bits game: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Go}}: Incorrect.)
Line 891: Line 891:


=={{header|Go}}==
=={{header|Go}}==
{{incorrect|Go|No attempt to ensure target is reachable from starting position.}}

The code just works for N=3, but could easily be changed to accomodate higher Ns.
The code just works for N=3, but could easily be changed to accomodate higher Ns.



Revision as of 09:24, 14 November 2014

Task
Flipping bits game
You are encouraged to solve this task according to the task description, using any language you may know.
The game

Given an N by N square array of zeroes or ones in an initial configuration, and a target configuration of zeroes and ones The task is to transform one to the other in as few moves as possible by inverting whole numbered rows or whole lettered columns at once, as one move.

In an inversion any 1 becomes 0, and any 0 becomes 1 for that whole row or column.

The Task

The task is to create a program to score for the Flipping bits game.

  1. The game should create an original random target configuration and a starting configuration.
  2. Ensure that the starting position is never the target position.
  3. The target position must be guaranteed as reachable from the starting position. (One possible way to do this is to generate the start position by legal flips from a random target position. The flips will always be reversible back to the target from the given start position).
  4. The number of moves taken so far should be shown.

Show an example of a short game here, on this page, for a 3 by 3 array of bits.

Ada

This solution determines the size of the playground from the command line.

<lang Ada>with Ada.Text_IO, Ada.Command_Line, Ada.Numerics.Discrete_Random;

procedure Flip_Bits is

  subtype Letter is Character range 'a' .. 'z';
  
  Last_Col: constant letter := Ada.Command_Line.Argument(1)(1);
  Last_Row: constant Positive := Positive'Value(Ada.Command_Line.Argument(2));
  
  package Boolean_Rand is new Ada.Numerics.Discrete_Random(Boolean);
  Gen: Boolean_Rand.Generator;
  
  type Matrix is array
    (Letter range 'a' .. Last_Col, Positive range 1 .. Last_Row) of Boolean;
  
  function Rand_Mat return Matrix is
     M: Matrix;
  begin
     for I in M'Range(1) loop

for J in M'Range(2) loop M(I,J) := Boolean_Rand.Random(Gen); end loop;

     end loop;
     return M;
  end Rand_Mat;
  
  function Rand_Mat(Start: Matrix) return Matrix is
     M: Matrix := Start;
  begin
     for I in M'Range(1) loop

if Boolean_Rand.Random(Gen) then for J in M'Range(2) loop M(I,J) := not M(I, J); end loop; end if;

     end loop;
     for I in M'Range(2) loop

if Boolean_Rand.Random(Gen) then for J in M'Range(1) loop M(J,I) := not M(J, I); end loop; end if;

     end loop;
     return M;
  end Rand_Mat;
  
  procedure Print(Message: String; Mat: Matrix) is
     package NIO is new Ada.Text_IO.Integer_IO(Natural);
  begin
     Ada.Text_IO.New_Line;
     Ada.Text_IO.Put_Line(Message);
     Ada.Text_IO.Put("   ");
     for Ch in Matrix'Range(1) loop

Ada.Text_IO.Put(" " & Ch);

     end loop;
     Ada.Text_IO.New_Line;
     for I in Matrix'Range(2) loop

NIO.Put(I, Width => 3); for Ch in Matrix'Range(1) loop Ada.Text_IO.Put(if Mat(Ch, I) then " 1" else " 0"); end loop;

        Ada.Text_IO.New_Line;
     end loop;
  end Print;
  Current, Target: Matrix;
  Moves: Natural := 0;
      

begin

  -- choose random Target and start ("Current") matrices
  Boolean_Rand.Reset(Gen);
  Target := Rand_Mat;
  loop
     Current := Rand_Mat(Target);
     exit when Current /= Target;
  end loop;
  Print("Target:", Target);
  
  -- print and modify Current matrix, until it is identical to Target
  while Current /= Target loop
    Moves := Moves + 1;
    Print("Current move #" & Natural'Image(Moves), Current);
     Ada.Text_IO.Put_Line("Flip row 1 .." & Positive'Image(Last_Row) &

" or column 'a' .. '" & Last_Col & "'");

     declare

S: String := Ada.Text_IO.Get_Line; function Let(S: String) return Character is (S(S'First)); function Val(Str: String) return Positive is (Positive'Value(Str));

     begin

if Let(S) in 'a' .. Last_Col then for I in Current'Range(2) loop Current(Let(S), I) := not Current(Let(S), I); end loop; else for I in Current'Range(1) loop Current(I, Val(S)) := not Current(I, Val(S)); end loop; end if;

     end;
  end loop;
  
  -- summarize the outcome
  Ada.Text_IO.Put_Line("Done after" & Natural'Image(Moves) & " Moves.");

end Flip_Bits;</lang>

Output:

For a 3*3-Matrix, the command line input is "c 3".

>./flip_bits c 3

Target:
    a b c
  1 1 0 1
  2 1 0 0
  3 1 0 0

Current move # 1
    a b c
  1 1 0 0
  2 1 0 1
  3 0 1 0
Flip row 1 .. 3 or column 'a' .. 'c'
3

Current move # 2
    a b c
  1 1 0 0
  2 1 0 1
  3 1 0 1
Flip row 1 .. 3 or column 'a' .. 'c'
c
Done after 2 Moves.

AutoHotkey

This example is incomplete. Understood comment on why output is missing, but this is to make that fact more prominent. Please ensure that it meets all task requirements and remove this message.

Uploads are currently disabled, so since a GUI is used, I can't show an example. <lang ahk>size := 3 ; max 26 Gui, Add, Button, , O Loop, %size% { x := chr(A_Index+64) If x = A Loop, %size% Gui, Add, Button, y+4 gFlip, % A_Index Gui, Add, Button, ym gFlip, % x Loop, %size% { y := A_Index Random, %x%%y%, 0, 1 Gui, Add, Edit, v%x%%y% ReadOnly, % %x%%y% } } Gui, Add, Text, ym, Moves:`nTarget: Loop, %size% { x := chr(A_Index+64) Loop, %size% { y := A_Index Gui, Add, Edit, % y=1 ? x="A" ? "xp+0 ym+30" : "x+14 ym+30" : "" . "ReadOnly vt" x y, % t%x%%y% := %x%%y% } }Gui, Add, Text, xp-18 ym w30 Right vMoves, % Moves:=1

randomize

While (i < size) { Random, z, 1, %size% Random, x, 0, 1 z := x ? chr(z+64) : z Solution .= z ; to cheat If Flip(z, size) i := 0 ; ensure we are not at the solution Else i++ ; count } Gui, Show, NA Return

Flip(z, size) { Loop, %size% { If z is alpha GuiControl, , %z%%A_Index%, % %z%%A_Index% := !%z%%A_Index% Else { AIndex := chr(A_Index+64) GuiControl, , %AIndex%%z%, % %AIndex%%z% := !%AIndex%%z% } } Loop, %size% { x := chr(A_Index+64) Loop, %size% { y := A_Index If (%x%%y% != t%x%%y%) Return 0 } } Return 1 }

Flip: GuiControl, , Moves, % Moves++ If Flip(A_GuiControl, size) { Msgbox Success in %Moves% moves! Reload } Return

ButtonO: Reload Return

GuiEscape: GuiClose: ExitApp Return</lang>

C

<lang c>

  1. include <stdio.h>
  2. include <stdlib.h>

int i, j;

void fliprow(int **b, int sz, int n) { for(i = 0; i < sz; i++) b[n+1][i] = !b[n+1][i]; }

void flipcol(int **b, int sz, int n) { for(i = 1; i <= sz; i++) b[i][n] = !b[i][n]; }

void initt(int **t, int sz) { for(i = 1; i <= sz; i++) for(j = 0; j < sz; j++) t[i][j] = rand()%2; }

void initb(int **t, int **b, int sz) { for(i = 1; i <= sz; i++) for(j = 0; j < sz; j++) b[i][j] = t[i][j];

for(i = 1; i <= sz; i++) fliprow(b, sz, rand()%sz+1); for(i = 0; i < sz; i++) flipcol(b, sz, rand()%sz); }

void printb(int **b, int sz) { printf(" "); for(i = 0; i < sz; i++) printf(" %d", i); printf("\n");

for(i = 1; i <= sz; i++) { printf("%d", i-1); for(j = 0; j < sz; j++) printf(" %d", b[i][j]); printf("\n"); }

printf("\n"); }

int eq(int **t, int **b, int sz) { for(i = 1; i <= sz; i++) for(j = 0; j < sz; j++) if(b[i][j] != t[i][j]) return 0; return 1; }

void main() { int sz = 3; int eql = 0; int mov = 0; int **t = malloc(sz*(sizeof(int)+1)); for(i = 1; i <= sz; i++) t[i] = malloc(sz*sizeof(int));

int **b = malloc(sz*(sizeof(int)+1)); for(i = 1; i <= sz; i++) b[i] = malloc(sz*sizeof(int)); char roc; int n; initt(t, sz); initb(t, b, sz);

while(eq(t, b, sz)) initb(t, b, sz);

while(!eql) { printf("Target: \n"); printb(t, sz); printf("Board: \n"); printb(b, sz); printf("What to flip: "); scanf(" %c", &roc); scanf(" %d", &n);

switch(roc) { case 'r': fliprow(b, sz, n); break; case 'c': flipcol(b, sz, n); break; default: perror("Please specify r or c and an number"); break; }

printf("Moves Taken: %d\n", ++mov);

if(eq(t, b, sz)) { printf("You win!\n"); eql = 1; } } } </lang>

Output:
Target: 
  0 1 2
0 1 0 1
1 1 1 1
2 0 0 1

Board: 
  0 1 2
0 1 0 0
1 1 1 0
2 1 1 1

What to flip: r2
Moves Taken: 1
Target: 
  0 1 2
0 1 0 1
1 1 1 1
2 0 0 1

Board: 
  0 1 2
0 1 0 0
1 1 1 0
2 0 0 0

What to flip: c2
Moves Taken: 2
You win!

C++

<lang cpp>

  1. include <time.h>
  2. include <iostream>
  3. include <string>

typedef unsigned char byte; using namespace std;

class flip { public:

   flip() { field = 0; target = 0; }
   void play( int w, int h ) { wid = w; hei = h; createField(); gameLoop(); }

private:

   void gameLoop()
   {

int moves = 0; while( !solved() ) { display(); string r; cout << "Enter rows letters and/or column numbers: "; cin >> r; for( string::iterator i = r.begin(); i != r.end(); i++ ) { byte ii = ( *i ); if( ii - 1 >= '0' && ii - 1 <= '9' ) { flipCol( ii - '1' ); moves++; } else if( ii >= 'a' && ii <= 'z' ) { flipRow( ii - 'a' ); moves++; } } } cout << endl << endl << "** Well done! **" << endl << "Used " << moves << " moves." << endl << endl;

   }
   void display()
   { system( "cls" ); output( "TARGET:", target ); output( "YOU:", field ); }
   void output( string t, byte* f )
   {

cout << t << endl; cout << " "; for( int x = 0; x < wid; x++ ) cout << " " << static_cast<char>( x + '1' ); cout << endl; for( int y = 0; y < hei; y++ ) { cout << static_cast<char>( y + 'a' ) << " "; for( int x = 0; x < wid; x++ ) cout << static_cast<char>( f[x + y * wid] + 48 ) << " "; cout << endl; } cout << endl << endl;

   }
   bool solved()
   {

for( int y = 0; y < hei; y++ ) for( int x = 0; x < wid; x++ ) if( target[x + y * wid] != field[x + y * wid] ) return false; return true;

   }
   void createTarget()
   {

for( int y = 0; y < hei; y++ ) for( int x = 0; x < wid; x++ ) if( frnd() < .5f ) target[x + y * wid] = 1; else target[x + y * wid] = 0; memcpy( field, target, wid * hei );

   }
   void flipCol( int c )
   { for( int x = 0; x < hei; x++ ) field[c + x * wid] = !field[c + x * wid]; }
   void flipRow( int r )
   { for( int x = 0; x < wid; x++ ) field[x + r * wid] = !field[x + r * wid]; }
   void calcStartPos()
   {

int flips = ( rand() % wid + wid + rand() % hei + hei ) >> 1; for( int x = 0; x < flips; x++ ) { if( frnd() < .5f ) flipCol( rand() % wid ); else flipRow( rand() % hei ); }

   }
   void createField()
   {
       if( field ){ delete [] field; delete [] target; }
       int t = wid * hei; field = new byte[t]; target = new byte[t];

memset( field, 0, t ); memset( target, 0, t ); createTarget(); while( true ) { calcStartPos(); if( !solved() ) break; }

   }
   float frnd() { return static_cast<float>( rand() ) / static_cast<float>( RAND_MAX ); }
   byte* field, *target; int wid, hei;

};

int main( int argc, char* argv[] ) { srand( time( NULL ) ); flip g; g.play( 3, 3 ); return system( "pause" ); } </lang>

Output:
TARGET:
  1 2 3
a 0 1 0 
b 0 1 0 
c 0 1 0 

YOU:
  1 2 3
a 0 0 0 
b 0 0 0 
c 1 1 1 

Enter rows letters and/or column numbers: 2c

** Well done! **
Used 2 moves.

D

Translation of: Python

<lang d>import std.stdio, std.random, std.ascii, std.string, std.range,

      std.algorithm, std.conv;

enum N = 3; // Board side. static assert(N <= lowercase.length); enum columnIDs = lowercase[0 .. N]; alias Board = ubyte[N][N];

void flipBits(ref Board board, in size_t count=1) {

   foreach (immutable _; 0 .. count)
       board[uniform(0, $)][uniform(0, $)] ^= 1;

}

void notRow(ref Board board, in size_t i) pure nothrow {

   board[i][] ^= 1;

}

void notColumn(ref Board board, in size_t i) pure nothrow {

   foreach (ref row; board)
       row[i] ^= 1;

}

Board generateGameBoard(in ref Board target) {

   // board is generated with many flips, to keep parity unchanged.
   Board board = target;
   while (board == target)
       foreach (immutable _; 0 .. 2 * N)
           [&notRow, &notColumn][uniform(0, 2)](board, uniform(0, N));
   return board;

}

void show(in ref Board board, in string comment) {

   comment.writeln;
   writefln("     %-(%c %)", columnIDs);
   foreach (immutable j, const row; board)
       writefln("  %2d %-(%d %)", j + 1, row);

}

void main() {

   "T prints the target, and Q exits.\n".writeln;
   // Create target and flip some of its bits randomly.
   Board target;
   flipBits(target, uniform(0, N) + 1);
   show(target, "Target configuration is:");
   auto board = generateGameBoard(target);
   immutable prompt = format("  1-%d / %s-%s to flip, or T, Q: ",
                             N, columnIDs[0], columnIDs.back);
   uint move = 1;
   while (board != target) {
       show(board, format("\nMove %d:", move));
       prompt.write;
       immutable ans = readln.strip;
       if (ans.length == 1 && columnIDs.canFind(ans)) {
           board.notColumn(columnIDs.countUntil(ans));
           move++;
       } else if (iota(1, N + 1).map!text.canFind(ans)) {
           board.notRow(ans.to!uint - 1);
           move++;
       } else if (ans == "T") {
           show(target, "Target configuration is:");
       } else if (ans == "Q") {
           return "Game stopped.".writeln;
       } else
           writefln("  Wrong input '%s'. Try again.\n", ans.take(9));
   }
   "\nWell done!".writeln;

}</lang>

Output:
T prints the target, and Q exits.

Target configuration is:
     a b c
   1 1 1 1
   2 0 0 0
   3 0 0 0

Move 1:
     a b c
   1 1 0 0
   2 1 0 0
   3 1 0 0
  1-3 / a-c to flip, or T, Q: a

Move 2:
     a b c
   1 0 0 0
   2 0 0 0
   3 0 0 0
  1-3 / a-c to flip, or T, Q: 1

Well done!

Fortran

This version uses some routines (like rand(), srand() and date_and_time()) from the GNU Fortran compiler. Formats are used to print data on the screen in an appropriate manner. The number of rows (or columns) is a variable and the current implementation allows for any number between 1 and 10. Incorrect inputs are also verified.

<lang Fortran> !Implemented by Anant Dixit (October 2014) program flipping_bits implicit none character(len=*), parameter :: cfmt = "(A3)", ifmt = "(I3)" integer :: N, i, j, io, seed(8), moves, input logical, allocatable :: Brd(:,:), Trgt(:,:) logical :: solved double precision :: r

do

 write(*,*) 'Enter the number of squares (between 1 and 10) you would like: '
 read(*,*,iostat=io) N
 if(N.gt.0 .and. N.le.10 .and. io.eq.0) exit
 write(*,*) 'Please, an integer between 1 and 10'

end do

allocate(Brd(N,N),Trgt(N,N)) call date_and_time(values=seed) call srand(1000*seed(7)+seed(8)+60000*seed(6)) do i = 1,N

 do j = 1,N
   r = rand()
   if(r.gt.0.5D0) then
     Brd(i,j) = .TRUE.
     Trgt(i,j) = .TRUE.
   else
     Brd(i,j) = .FALSE.
     Trgt(i,j) = .FALSE.
   end if
 end do

end do ! Random moves taken by the program to `create' a target moves = N do i = 1,moves

 r = 1+2.0D0*dble(N)*rand() - 1.0D-17 !Only to make sure that the number is between 1 and 2N (less than 2N-1)
 if(floor(r).le.N) then
   do j = 1,N
     Trgt(floor(r),j) = .NOT.Trgt(floor(r),j)
   end do
 else
   r = r-N
   do j = 1,N
     Trgt(j,floor(r)) = .NOT.Trgt(j,floor(r))
   end do
 end if

end do

!This part checks if the target and the starting configurations are same or not. do

 input = N
 call next_move(Brd,Trgt,N,input,solved)
 call next_move(Brd,Trgt,N,input,solved)
 if(solved) then
   r = 1+2.0D0*dble(N)*rand() - 1.0D-17
   if(floor(r).le.N) then
     do j = 1,N
       Trgt(floor(r),j) = .NOT.Trgt(floor(r),j)
     end do
   else
     r = r-N
     do j = 1,N
       Trgt(j,floor(r)) = .NOT.Trgt(j,floor(r))
     end do
   end if
 else
   exit
 end if

end do

write(*,*) 'Welcome to the Flipping Bits game!' write(*,*) 'You have the current position'

moves = 0 call display(Brd,Trgt,N) input = N do

 write(*,*) 'Number of moves so far:', moves
 write(*,*) 'Select the column or row you wish to flip: '
 read(*,*,iostat=io) input
 if(io.eq.0 .and. input.gt.0 .and. input.le.(2*N)) then
   moves = moves+1
   write(*,*) 'Flipping ', input
   call next_move(Brd,Trgt,N,input,solved)
   call display(Brd,Trgt,N)
   if(solved) exit
 else
   write(*,*) 'Please enter a valid column or row number. To quit, press Ctrl+C!'
 end if

end do

write(*,*) 'Congratulations! You finished the game!' write(*,ifmt,advance='no') moves write(*,*) ' moves were taken by you!!' deallocate(Brd,Trgt) end program

subroutine display(Brd,Trgt,N) implicit none !arguments integer :: N logical :: Brd(N,N), Trgt(N,N) !local character(len=*), parameter :: cfmt = "(A3)", ifmt = "(I3)" integer :: i, j write(*,*) 'Current Configuration: ' do i = 0,N

 if(i.eq.0) then
   write(*,cfmt,advance='no') 'R/C'
   write(*,cfmt,advance='no') ' | '
 else
   write(*,ifmt,advance='no') i
 end if

end do write(*,*) do i = 0,N

 if(i.eq.0) then
   do j = 0,N+2
     write(*,cfmt,advance='no') '---'
   end do
 else
   write(*,ifmt,advance='no') i+N
   write(*,cfmt,advance='no') ' | '
   do j = 1,N
     if(Brd(i,j)) then
       write(*,ifmt,advance='no') 1
     else
       write(*,ifmt,advance='no') 0
     end if
   end do
 end if
 write(*,*)

end do

write(*,*) write(*,*)

write(*,*) 'Target Configuration' do i = 0,N

 if(i.eq.0) then
   write(*,cfmt,advance='no') 'R/C'
   write(*,cfmt,advance='no') ' | '
 else
   write(*,ifmt,advance='no') i
 end if

end do write(*,*) do i = 0,N

 if(i.eq.0) then
   do j = 0,N+2
     write(*,cfmt,advance='no') '---'
   end do
 else
   write(*,ifmt,advance='no') i+N
   write(*,cfmt,advance='no') ' | '
   do j = 1,N
     if(Trgt(i,j)) then
       write(*,ifmt,advance='no') 1
     else
       write(*,ifmt,advance='no') 0
     end if
   end do
 end if
 write(*,*)

end do write(*,*) write(*,*) end subroutine

subroutine next_move(Brd,Trgt,N,input,solved) implicit none !arguments integer :: N, input logical :: Brd(N,N), Trgt(N,N), solved !others integer :: i,j

if(input.gt.N) then

 input = input-N
 do i = 1,N
   Brd(input,i) = .not.Brd(input,i)
 end do

else

 do i = 1,N
   Brd(i,input) = .not.Brd(i,input)
 end do

end if solved = .TRUE. do i = 1,N

 do j = 1,N
   if( (.not.Brd(i,j).and.Trgt(i,j)) .or. (Brd(i,j).and..not.Trgt(i,j)) ) then
     solved = .FALSE.
     exit
   end if
 end do
 if(.not.solved) exit

end do end subroutine </lang>

Example:

./flipping_bits 
 Enter the number of squares (between 1 and 10) you would like: 
3
 Welcome to the Flipping Bits game!
 You have the current position
 Current Configuration: 
R/C |   1  2  3
------------
  4 |   1  0  0
  5 |   1  1  0
  6 |   0  0  0


 Target Configuration
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   1  0  0


 Select the column or row you wish to flip: 
2
 Current Configuration: 
R/C |   1  2  3
------------
  4 |   1  1  0
  5 |   1  0  0
  6 |   0  1  0


 Target Configuration
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   1  0  0


 Select the column or row you wish to flip: 
3
 Current Configuration: 
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   0  1  1


 Target Configuration
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   1  0  0


 Select the column or row you wish to flip: 
6
 Current Configuration: 
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   1  0  0


 Target Configuration
R/C |   1  2  3
------------
  4 |   1  1  1
  5 |   1  0  1
  6 |   1  0  0


 Congratulations! You finished the game!
  3  moves were taken by you!!

Go

This example is incorrect. Please fix the code and remove this message.

Details: No attempt to ensure target is reachable from starting position.

The code just works for N=3, but could easily be changed to accomodate higher Ns.

<lang Go> package main

import ( "fmt" "math/rand" "time" "bufio" "os" "strconv" )

type matrix [3][3]int

func main() {

var target, current matrix var s,t string var moves int moves = 1 target = randMatrix() current = randMatrix()

fmt.Println("Target:") drawBoard(target) fmt.Println("\nBoard:") drawBoard(current)

if target == current { fmt.Println("You win!") } else { fmt.Println("Go on, next move!") }

for { fmt.Print("Flip row (r) or column (c) 1 .. 3 (c1, r3, ...): ") scanner := bufio.NewScanner(os.Stdin) scanner.Split(bufio.ScanBytes) i := 0 for scanner.Scan () { if i==0 { s = scanner.Text() } if i==1 { t = scanner.Text() } i++ if i>1 { break } } moves++ u, _ := strconv.ParseInt(t,0,64) if u>3 { fmt.Println("Wrong command!") continue } switch s { case "c": { fmt.Printf("Column %s will be flipped\n", t) for i:=0;i<3;i++ { if current[i][u-1]==0 { current[i][u-1]=1 } else { current[i][u-1]=0 } } } case "r": { fmt.Printf("Row %s will be flipped\n", t) for i:=0;i<3;i++ { if current[u-1][i]==0 { current[u-1][i]=1 } else { current[u-1][i]=0 } } } default: { fmt.Println("Wrong command!") continue } } fmt.Println("\nMoves taken: ", moves) fmt.Println("Target:") drawBoard(target) fmt.Println("Board:") drawBoard(current)

if target == current { fmt.Println("You win!") break } } }

func drawBoard(todraw matrix) { fmt.Println(" 1 2 3") for i:=0;i<3;i++ { fmt.Print(i+1, " ") for j:=0;j<3;j++ { fmt.Print(todraw[i][j], " ") if j==2 { fmt.Print("\n") } } } }

func randMatrix() matrix { var randMat matrix rand.Seed(time.Now().UTC().UnixNano()) for i:=0;i<3;i++ { for j:=0;j<3;j++ { randMat[i][j]=rand.Intn(2) } } return randMat } </lang>

Example:

Target:
  1 2 3
1 1 0 1 
2 0 0 1 
3 0 1 0 

Board:
  1 2 3
1 0 0 1 
2 1 0 0 
3 1 0 1 
Go on, next move!
Flip row (r) or column (c)  1 .. 3 (c1, r3, ...): 

J

Using J's command line as the game ui:

<lang J>start=:3 :0

 Moves=:0
 N=:i.y
 Board=: ?2$~,~y
 'fr fc'=. (2,y)$}.#:(+?&.<:@<:)2x^2*y
 End=: fr~:fc~:"1 Board
 Board;End

)

abc=:'abcdefghij' move=:3 :0

 fc=. N e.abc i. y ([-.-.)abc
 fr=. N e._-.~_ "."0 abc-.~":y
 Board=: fr~:fc~:"1 Board
 smoutput (":Moves=:Moves++/fr,fc),' moves'
 if. Board-:End do.
   'yes'
 else.
   Board;End
 end.

)</lang>

Example:

<lang J> start 3 ┌─────┬─────┐ │1 1 1│1 0 1│ │1 1 0│0 1 1│ │1 0 0│0 0 1│ └─────┴─────┘

  move 'b2'

2 moves ┌─────┬─────┐ │1 0 1│1 0 1│ │1 0 0│0 1 1│ │0 0 1│0 0 1│ └─────┴─────┘

  move '1'

3 moves yes</lang>

Note that any size game may be generated but this version only recognizes column flips for the first ten columns.

MATLAB

Size can be passed in as an argument or entered after a prompt. <lang MATLAB>function FlippingBitsGame(n) % Play the flipping bits game on an n x n array

   % Generate random target array
   fprintf('Welcome to the Flipping Bits Game!\n')
   if nargin < 1
       n = input('What dimension array should we use? ');
   end
   Tar = logical(randi([0 1], n));
   
   % Generate starting array by randomly flipping rows or columns
   Cur = Tar;
   while all(Cur(:) == Tar(:))
       nFlips = randi([3*n max(10*n, 100)]);
       randDim = randi([0 1], nFlips, 1);
       randIdx = randi([1 n], nFlips, 1);
       for k = 1:nFlips
           if randDim(k)
               Cur(randIdx(k), :) = ~Cur(randIdx(k), :);
           else
               Cur(:, randIdx(k)) = ~Cur(:, randIdx(k));
           end
       end
   end
   
   % Print rules
   fprintf('Given a %d x %d logical array,\n', n, n)
   fprintf('and a target array configuration,\n')
   fprintf('attempt to transform the array to the target\n')
   fprintf('by inverting the bits in a whole row or column\n')
   fprintf('at once in as few moves as possible.\n')
   fprintf('Enter the corresponding letter to invert a column,\n')
   fprintf('or the corresponding number to invert a row.\n')
   fprintf('0 will reprint the target array, and no entry quits.\n\n')
   fprintf('Target:\n')
   PrintArray(Tar)
   
   % Play until player wins or quits
   move = true;
   nMoves = 0;
   while ~isempty(move) && any(Cur(:) ~= Tar(:))
       fprintf('Move %d:\n', nMoves)
       PrintArray(Cur)
       move = lower(input('Enter move: ', 's'));
       if length(move) > 1
           fprintf('Invalid move, try again\n')
       elseif move
           r = str2double(move);
           if isnan(r)
               c = move-96;
               if c > n || c < 1
                   fprintf('Invalid move, try again\n')
               else
                   Cur(:, c) = ~Cur(:, c);
                   nMoves = nMoves+1;
               end
           else
               if r > n || r < 0
                   fprintf('Invalid move, try again\n')
               elseif r == 0
                   fprintf('Target:\n')
                   PrintArray(Tar)
               else
                   Cur(r, :) = ~Cur(r, :);
                   nMoves = nMoves+1;
               end
           end
       end
   end
   
   if all(Cur(:) == Tar(:))
       fprintf('You win in %d moves! Try not to flip out!\n', nMoves)
   else
       fprintf('Quitting? The challenge a bit much for you?\n')
   end

end

function PrintArray(A)

   [nRows, nCols] = size(A);
   fprintf('        ')
   fprintf(' %c', (1:nCols)+96)
   fprintf('\n')
   for r = 1:nRows
       fprintf('%8d%s\n', r, sprintf(' %d', A(r, :)))
   end
   fprintf('\n')

end</lang>

Output:

Normal play and winning:

Welcome to the Flipping Bits Game!
What dimension array should we use? 3
Given a 3 x 3 logical array,
and a target array configuration,
attempt to transform the array to the target
by inverting the bits in a whole row or column
at once in as few moves as possible.
Enter the corresponding letter to invert a column,
or the corresponding number to invert a row.
0 will reprint the target array, and no entry quits.

Target:
         a b c
       1 0 0 0
       2 0 1 0
       3 0 0 0

Move 0:
         a b c
       1 1 1 1
       2 1 0 1
       3 1 1 1

Enter move: a
Move 1:
         a b c
       1 0 1 1
       2 0 0 1
       3 0 1 1

Enter move: b
Move 2:
         a b c
       1 0 0 1
       2 0 1 1
       3 0 0 1

Enter move: c
You win in 3 moves! Try not to flip out!

Bad input, reprinting target, and quitting:

Welcome to the Flipping Bits Game!
What dimension array should we use? 3
Given a 3 x 3 logical array,
and a target array configuration,
attempt to transform the array to the target
by inverting the bits in a whole row or column
at once in as few moves as possible.
Enter the corresponding letter to invert a column,
or the corresponding number to invert a row.
0 will reprint the target array, and no entry quits.

Target:
         a b c
       1 0 0 1
       2 1 0 0
       3 1 0 0

Move 0:
         a b c
       1 0 0 0
       2 0 1 0
       3 0 1 0

Enter move: a
Move 1:
         a b c
       1 1 0 0
       2 1 1 0
       3 1 1 0

Enter move: b
Move 2:
         a b c
       1 1 1 0
       2 1 0 0
       3 1 0 0

Enter move: 0
Target:
         a b c
       1 0 0 1
       2 1 0 0
       3 1 0 0

Move 2:
         a b c
       1 1 1 0
       2 1 0 0
       3 1 0 0

Enter move: hello
Invalid move, try again
Move 2:
         a b c
       1 1 1 0
       2 1 0 0
       3 1 0 0

Enter move: d
Invalid move, try again
Move 2:
         a b c
       1 1 1 0
       2 1 0 0
       3 1 0 0

Enter move: 4
Invalid move, try again
Move 2:
         a b c
       1 1 1 0
       2 1 0 0
       3 1 0 0

Enter move: 
Quitting? The challenge a bit much for you?


Perl

Pass the size of the puzzle on the command line. It defaults to 4. You can play any size game between 2 and 26. While playing, the game accepts anything which looks like valid rows or columns, and disregards any irrelevant text in between.

<lang perl>#!perl use strict; use warnings qw(FATAL all);

my $n = shift(@ARGV) || 4; if( $n < 2 or $n > 26 ) { die "You can't play a size $n game\n"; }

my $n2 = $n*$n;

my (@rows, @cols); for my $i ( 0 .. $n-1 ) { my $row = my $col = "\x00" x $n2; vec($row, $i * $n + $_, 8) ^= 1 for 0 .. $n-1; vec($col, $i + $_ * $n, 8) ^= 1 for 0 .. $n-1; push @rows, $row; push @cols, $col; }

my $goal = "0" x $n2; int(rand(2)) or (vec($goal, $_, 8) ^= 1) for 0 .. $n2-1; my $start = $goal; { for(@rows, @cols) { $start ^= $_ if int rand 2; } redo if $start eq $goal; }

my @letters = ('a'..'z')[0..$n-1]; sub to_strings { my $board = shift; my @result = join(" ", " ", @letters); for( 0 .. $n-1 ) { my $res = sprintf("%2d ",$_+1); $res .= join " ", split //, substr $board, $_*$n, $n; push @result, $res; } \@result; }

my $fmt; my ($stext, $etext) = ("Starting board", "Ending board"); my $re = join "|", reverse 1 .. $n, @letters; my $moves_so_far = 0; while( 1 ) { my ($from, $to) = (to_strings($start), to_strings($goal)); unless( $fmt ) { my $len = length $from->[0]; $len = length($stext) if $len < length $stext; $fmt = join($len, "%", "s%", "s\n"); } printf $fmt, $stext, $etext; printf $fmt, $from->[$_], $to->[$_] for 0 .. $n; last if $start eq $goal; INPUT_LOOP: { printf "Move #%s: Type one or more row numbers and/or column letters: ", $moves_so_far+1; my $input = <>; die unless defined $input; my $did_one; for( $input =~ /($re)/gi ) { $did_one = 1; if( /\d/ ) { $start ^= $rows[$_-1]; } else { $_ = ord(lc) - ord('a'); $start ^= $cols[$_]; } ++$moves_so_far; } redo INPUT_LOOP unless $did_one; } } print "You won after $moves_so_far moves.\n";</lang>

Output:
$ perl FlippingBitsGame.pl 3
Starting board  Ending board
         a b c         a b c
       1 0 0 1       1 1 1 1
       2 0 1 1       2 1 0 1
       3 0 0 0       3 0 0 1
Move #1: Type one or more row numbers and/or column letters: 12
Starting board  Ending board
         a b c         a b c
       1 1 1 0       1 1 1 1
       2 1 0 0       2 1 0 1
       3 0 0 0       3 0 0 1
Move #3: Type one or more row numbers and/or column letters: c
Starting board  Ending board
         a b c         a b c
       1 1 1 1       1 1 1 1
       2 1 0 1       2 1 0 1
       3 0 0 1       3 0 0 1
You won after 3 moves.

The same game could have been won after typing 1 2 c in any order, with multiple lines or even "12c" on a single line.

Perl 6

Pass in a parameter to set the square size for the puzzle. (Defaults to 4.) Arbitrarily limited to between 1 and 26. Yes, you can choose to solve a 1 element square puzzle, but it won't be very challenging. Accepts upper or lower case letters for columns. Disregards any out-of-range indices. Enter a blank or 0 (zero) to exit.

<lang perl6>sub MAIN ($square = 4) {

   say "{$square}? Seriously?" and exit if $square < 1 or $square > 26;
   my %bits = map { $_ => %( map { $_ => 0 }, ('A' .. *)[^ $square] ) },
       (1 .. *)[^ $square];
   scramble %bits;
   my $target = build %bits;
   scramble %bits until build(%bits) ne $target;
   display($target, %bits);
   my $turns = 0;
   while my $flip = prompt "Turn {++$turns}: Flip which row / column? " {
       flip $flip.match(/\w/).uc, %bits;
       if display($target, %bits) {
           say "Hurray! You solved it in $turns turns.";
           last;
       }
   }

}

sub display($goal, %hash) {

   shell('clear');
   say "Goal\n$goal\nYou";
   my $this = build %hash;
   say $this;
   return ($goal eq $this);

}

sub flip ($a, %hash) {

   given $a {
       when any(keys %hash) {
           %hash{$a}{$_} = %hash{$a}{$_} +^ 1 for %hash{$a}.keys
       };
       when any(keys %hash{'1'}) {
           %hash{$_}{$a} = %hash{$_}{$a} +^ 1 for %hash.keys
       };
   }

}

sub build (%hash) {

   my $string = '   ';
   $string ~= sprintf "%2s ", $_ for sort keys %hash{'1'};
   $string ~= "\n";
   for sort keys %hash -> $key {
       $string ~= sprintf "%2s ", $key;
       $string ~= sprintf "%2s ", %hash{$key}{$_} for sort keys %hash{$key};
       $string ~=  "\n";
   };
   $string

}

sub scramble(%hash) {

   my @keys = keys %hash;
   @keys ,= keys %hash{'1'};
   flip $_,  %hash for @keys.pick( @keys/2 );

}</lang> A sample 3 x 3 game might look like this:

Goal
    A  B  C 
 1  1  1  0 
 2  0  0  1 
 3  1  1  0 

You
    A  B  C 
 1  0  0  0 
 2  1  1  1 
 3  1  1  1 

Turn 1: Flip which row / column? 2

Goal
    A  B  C 
 1  1  1  0 
 2  0  0  1 
 3  1  1  0 

You
    A  B  C 
 1  0  0  0 
 2  0  0  0 
 3  1  1  1 

Turn 2: Flip which row / column? 1

Goal
    A  B  C 
 1  1  1  0 
 2  0  0  1 
 3  1  1  0 

You
    A  B  C 
 1  1  1  1 
 2  0  0  0 
 3  1  1  1 

Turn 3: Flip which row / column? c

Goal
    A  B  C 
 1  1  1  0 
 2  0  0  1 
 3  1  1  0 

You
    A  B  C 
 1  1  1  0 
 2  0  0  1 
 3  1  1  0 

Hurray! You solved it in 3 turns.

PL/I

<lang PL/I>(subscriptrange, stringrange, stringsize): flip: procedure options (main);

  declare n fixed binary;
  put skip list ('This is the bit-flipping game.  What size of board do you want?');
  get list (n);
  put skip list
     ('Your task is to change your board so as match the board on the right (the objective)');
  begin;
     declare initial(n,n) bit (1), objective(n,n) bit (1);
     declare (i, j, k, move) fixed binary;
     declare ch character(1);
     declare alphabet character (26) initial ('abcdefghijklmnopqrstuvwxyz');
     on subrg
        begin; put skip list ('Your row or column ' || trim(ch) || ' is out of range'); stop; end;
     initial, objective = iand(random()*99, 1) = 1;
     /* Set up the objective array: */
     do i = 1 to n-1;
        j = random()*n+1;  objective(j,*) = ^objective(j,*);
        j = random()*n+1;  objective(*,j) = ^objective(*,j);
     end;
     do move = 0 by 1;
        put skip edit ( center('You', n*3), center('The objective', 3*n+4) ) (x(3), a);
        put skip edit ( (substr(alphabet, i, 1) do i = 1 to n) ) (x(5), (n) a(3));
        put      edit ( (substr(alphabet, i, 1) do i = 1 to n) ) (x(3), (n) a(3));
        do i = 1 to n;
           put skip edit (i, initial(i,*), objective(i,*)) ((n+1) f(3), x(3), (n) F(3));
        end;
        if all(initial = objective) then leave;
        put skip(2) list
           ('Please type a row number or column letter whose bits you want to flip: ');
        get edit (ch) (L); put edit (ch) (a);
        k = index(alphabet, ch);
        if k > 0 then
           initial(*, k) = ^initial(*,k); /* Flip column k */
        else
           initial(ch,*) = ^initial(ch,*); /* Flip row ch */
     end;
     put skip(2) list ('Congratulations. You solved it in ' || trim(move) || ' moves.');
  end;

end flip;</lang>

Output:
This is the bit-flipping game.  What size of board do you want? 

Your task is to change your board so as match the board on the right (the objective) 
      You      The objective
     a  b  c     a  b  c  
  1  1  1  1     0  1  1
  2  0  0  0     1  0  0
  3  1  1  1     1  0  0

Please type a row number or column letter whose bits you want to flip:  
3
      You      The objective
     a  b  c     a  b  c  
  1  1  1  1     0  1  1
  2  0  0  0     1  0  0
  3  0  0  0     1  0  0

Please type a row number or column letter whose bits you want to flip:  
a
      You      The objective
     a  b  c     a  b  c  
  1  0  1  1     0  1  1
  2  1  0  0     1  0  0
  3  1  0  0     1  0  0

Congratulations. You solved it in 2 moves.

Python

<lang python>""" Given a %i by %i sqare array of zeroes or ones in an initial configuration, and a target configuration of zeroes and ones The task is to transform one to the other in as few moves as possible by inverting whole numbered rows or whole lettered columns at once. In an inversion any 1 becomes 0 and any 0 becomes 1 for that whole row or column.

"""

from random import randrange from copy import deepcopy from string import ascii_lowercase


try: # 2to3 fix

   input = raw_input

except:

   pass

N = 3 # N x N Square arrray

board = [[0]* N for i in range(N)]

def setbits(board, count=1):

   for i in range(count):
       board[randrange(N)][randrange(N)] ^= 1

def shuffle(board, count=1):

   for i in range(count):
       if randrange(0, 2):
           fliprow(randrange(N))
       else:
           flipcol(randrange(N))


def pr(board, comment=):

   print(str(comment))
   print('     ' + ' '.join(ascii_lowercase[i] for i in range(N)))
   print('  ' + '\n  '.join(' '.join(['%2s' % j] + [str(i) for i in line])
                            for j, line in enumerate(board, 1)))

def init(board):

   setbits(board, count=randrange(N)+1)
   target = deepcopy(board)
   while board == target:
       shuffle(board, count=2 * N)
   prompt = '  X, T, or 1-%i / %s-%s to flip: ' % (N, ascii_lowercase[0], 
                                                   ascii_lowercase[N-1])
   return target, prompt

def fliprow(i):

   board[i-1][:] = [x ^ 1 for x in board[i-1] ]
   

def flipcol(i):

   for row in board:
       row[i] ^= 1

if __name__ == '__main__':

   print(__doc__ % (N, N))
   target, prompt = init(board)
   pr(target, 'Target configuration is:')
   print()
   turns = 0
   while board != target:
       turns += 1
       pr(board, '%i:' % turns)
       ans = input(prompt).strip()
       if (len(ans) == 1 
           and ans in ascii_lowercase and ascii_lowercase.index(ans) < N):
           flipcol(ascii_lowercase.index(ans))
       elif ans and all(ch in '0123456789' for ch in ans) and 1 <= int(ans) <= N:
           fliprow(int(ans))
       elif ans == 'T':
           pr(target, 'Target configuration is:')
           turns -= 1
       elif ans == 'X':
           break
       else:
           print("  I don't understand %r... Try again. "
                 "(X to exit or T to show target)\n" % ans[:9])
           turns -= 1
   else:
       print('\nWell done!\nBye.')</lang>
Output:
Given a 3 by 3 sqare array of zeroes or ones in an initial
configuration, and a target configuration of zeroes and ones
The task is to transform one to the other in as few moves as 
possible by inverting whole numbered rows or whole lettered 
columns at once.
In an inversion any 1 becomes 0 and any 0 becomes 1 for that
whole row or column.


Target configuration is:
     a b c
   1 0 1 0
   2 0 0 0
   3 0 0 0

1:
     a b c
   1 1 0 0
   2 0 0 1
   3 0 0 1
  X, T, or 1-3 / a-c to flip: 1
2:
     a b c
   1 0 1 1
   2 0 0 1
   3 0 0 1
  X, T, or 1-3 / a-c to flip: c

Well done!
Bye.
Showing bad/other inputs
Target configuration is:
     a b c
   1 0 0 0
   2 0 0 0
   3 0 0 1

1:
     a b c
   1 1 0 1
   2 0 1 0
   3 0 1 1
  X, T, or 1-3 / a-c to flip: 3
2:
     a b c
   1 1 0 1
   2 0 1 0
   3 1 0 0
  X, T, or 1-3 / a-c to flip: 4
  I don't understand '4'... Try again. (X to exit or T to show target)

2:
     a b c
   1 1 0 1
   2 0 1 0
   3 1 0 0
  X, T, or 1-3 / a-c to flip: c
3:
     a b c
   1 1 0 0
   2 0 1 1
   3 1 0 1
  X, T, or 1-3 / a-c to flip: d
  I don't understand 'd'... Try again. (X to exit or T to show target)

3:
     a b c
   1 1 0 0
   2 0 1 1
   3 1 0 1
  X, T, or 1-3 / a-c to flip: T
Target configuration is:
     a b c
   1 0 0 0
   2 0 0 0
   3 0 0 1
3:
     a b c
   1 1 0 0
   2 0 1 1
   3 1 0 1
  X, T, or 1-3 / a-c to flip: X

Racket

<lang>#lang racket (define (flip-row! pzzl r)

 (define N (integer-sqrt (bytes-length pzzl)))
 (for* ((c (in-range N)))
   (define idx (+ c (* N r)))
   (bytes-set! pzzl idx (- 1 (bytes-ref pzzl idx)))))

(define (flip-col! pzzl c)

 (define N (integer-sqrt (bytes-length pzzl)))
 (for* ((r (in-range N)))
   (define idx (+ c (* N r)))
   (bytes-set! pzzl idx (- 1 (bytes-ref pzzl idx)))))

(define (new-game N (flips 10))

 (define N2 (sqr N))
 (define targ (list->bytes (for/list ((_ N2)) (random 2))))
 (define strt (bytes-copy targ))
 (for ((_ flips))
   (case (random 2)
     ((0) (flip-col! strt (random N)))
     ((1) (flip-row! strt (random N)))))
 (if (equal? strt targ) (new-game N) (values targ strt)))

(define (show-games #:sep (pzl-sep " | ") . pzzls)

 (define N (integer-sqrt (bytes-length (first pzzls))))
 (define caption (string-join (for/list ((c (in-range N))) (~a (add1 c))) ""))
 (define ruler   (string-join (for/list ((c (in-range N))) "-") ""))
 
 (define ((pzzle-row r) p)
   (string-join (for/list ((c (in-range N))) (~a (bytes-ref p (+ c (* N r))))) ""))
 
 (displayln
  (string-join
   (list*
    (format "  ~a" (string-join (for/list ((_ pzzls)) caption) pzl-sep))
    (format "  ~a" (string-join (for/list ((_ pzzls)) ruler) pzl-sep))
    (for/list ((r (in-range N)) (R (in-naturals (char->integer #\a))))
      (format "~a ~a" (integer->char R) (string-join (map (pzzle-row r) pzzls) pzl-sep))))
   "\n")))

(define (play N)

 (define-values (end start) (new-game N))
 (define (turn n (show? #t))
   (cond
     [(equal? end start) (printf "you won on turn #~a~%" n)]
     [else
      (when show? ;; don't show after whitespace
        (printf "turn #~a~%" n)       
        (show-games start end))
      (match (read-char)
        [(? eof-object?) (printf "sad to see you go :-(~%")]
        [(? char-whitespace?) (turn n #f)]
        [(? char-numeric? c)
         (define cnum (- (char->integer c) (char->integer #\1)))
         (cond [(< -1 cnum N)
                (printf "flipping col ~a~%" (add1 cnum))
                (flip-col! start cnum)
                (turn (add1 n))]
               [else (printf "column number out of range ~a > ~a~%" (add1 cnum) N)
                     (turn n)])]
        [(? char-lower-case? c)
         (define rnum (- (char->integer c) (char->integer #\a)))
         (cond [(< -1 rnum N)
                (printf "flipping row ~a~%" (add1 rnum))
                (flip-row! start rnum)
                (turn (add1 n))]
               [else (printf "row number out of range ~a > ~a~%" (add1 rnum) (sub1 N))
                     (turn n)])]
        [else (printf "unrecognised character in input: ~s~%" else)
              (turn n)])]))  
 (turn 0))</lang>
Output:
(play 3)
turn #0
  123 | 123
  --- | ---
a 001 | 101
b 110 | 101
c 100 | 000
1
flipping col 1
turn #1
  123 | 123
  --- | ---
a 101 | 101
b 010 | 101
c 000 | 000
b
flipping row 2
you won on turn #2

REXX

This REXX version allows the specification (on the invocation line) for:

  •   the size of the array (grid)   [default is 3,   maximum is 26]
  •   the number of bits (for the target) to be set to   on   [default is size of the grid]
  •   the characters which are used for the   on   and   off   (bits)   [defaults are   1   and   0]


Programming note:   none of the command line parameters are checked for errors (so as to make the program simpler). <lang rexx>/*REXX program presents a "flipping bit" puzzle, user can solve via C.L.*/ parse arg N u on off . /*get optional arguments. */ if N== | N==',' then N=3 /*Size given? Then use default.*/ if u== | u==',' then u=N /*number of bits initialized ON.*/ if on == then on =1 /*character used for "on". */ if off== then off=0 /*character used for "off". */ col@='a b c d e f g h i j k l m n o p q r s t u v w x y z' /*for col id.*/ cols=space(col@,0); upper cols /*letters to be used for columns.*/ @.=off;  !.=off /*set both arrays to "off" chars.*/ tries=0 /*# of player's attempts used. */

        do  while  show(0)<u          /* [↓]   turn  "on"    U    bits.*/
        r=random(1,N); c=random(1,N)  /*get a random  row  and  column.*/
        @.r.c=on     ; !.r.c=on       /*set (both)  row & column  to ON*/
        end   /*while*/               /* [↑] keep going 'til U bits set*/

oz=z /*keep the original array string.*/ call show 1, ' ◄───target' /*show target for user to attain.*/

      do random(1,2);  call flip 'R',random(1,N)   /*flip a row of bits*/
                       call flip 'C',random(1,N)   /*  "  " col  "   " */
      end   /*random···*/                          /* [↑]  1 or 2 times*/

if z==oz then call flip 'R',random(1,N) /*ensure it's not the target.*/

      do  until  z==oz                /*prompt until they get it right.*/
      call prompt                     /*get a row or column # from C.L.*/
      call flip left(?,1),substr(?,2) /*flip a user selected row or col*/
      call show 0                     /*get image (Z) of updated array.*/
      end   /*until···*/

call show 1, ' ◄───your array' /*display the array to the screen*/ say '─────────Congrats! You did it in' tries "tries." exit tries /*stick a fork in it, we're done.*/ /*──────────────────────────────────FLIP subroutine─────────────────────*/ flip: parse arg x,# /*x is R or C, # is which one*/

 do c=1 for N  while x=='R'; if @.#.c==on then @.#.c=off; else @.#.c=on; end
 do r=1 for N  while x=='C'; if @.r.#==on then @.r.#=off; else @.r.#=on; end

return /* [↑] bits can be ON or OFF.*/ /*──────────────────────────────────PROMPTER subroutine─────────────────*/ prompt: if tries\==0 then say '─────────bit array after play: ' tries signal on halt /*another way for player to quit.*/ !='─────────Please enter a row number or column letter, or Quit:' call show 1, ' ◄───your array' /*display the array to the screen*/

  do forever;  ok=1;  say;  say !;  pull ? .         /*prompt & get ans*/
  if abbrev('QUIT',?,1)     then do; say 'quitting···';  exit 0;  end
  if ?==                  then do; call show 1,'   ◄───target',.;  ok=0
                                     call show 1,'   ◄───your array'
                                 end
  if \isInt(?) & \isLet(?)  then call terr 'row/column: ' ?
  if isLet(?)               then a=pos(?,cols)
  if isLet(?) & (a<1 | a>N) then call terr 'column: ' ?
  if isLet(?) & length(?)>1 then call terr 'column: ' ?
  if isLet(?)               then ?='C'pos(?,cols)
  if isInt(?) & (?<1 | ?>N) then call terr 'row: ' ?
  if isInt(?)               then ?=?/1               /*normalize number*/
  if isInt(?)               then ?='R'?
  if ok                     then leave               /*No errors? Leave*/
  end   /*forever*/

tries=tries+1 /*bump the counter*/ return ? /*return response.*/ /*──────────────────────────────────SHOW subroutine─────────────────────*/ show: $=0; _=; z=; parse arg tell,tx,o /*$: on bits.*/ if tell then do

             say                                          /*blank line.*/
             say '     ' subword(col@,1,N) "  column letter"
             say 'row ╔'copies('═',N+N+1)
             end
 do   r=1  for N
   do c=1  for N
   if o==.  then do; z=z||!.r.c; _=_ !.r.c; $=$+(!.r.c==on); end
            else do; z=z||@.r.c; _=_ @.r.c; $=$+(@.r.c==on); end
   end   /*c*/
 if tx\==  then tar.r=_ tx
 if tell     then say right(r,2) ' ║'_ tx;  _=            /*show array?*/
 end     /*r*/

if tell then say /*blank line.*/ return $ /*$=# bits ON*/ /*──────────────────────────────────one-liner subroutines───────────────*/ halt: say 'program was halted!'; exit /*the REXX program was halted.*/ isInt: return datatype(arg(1),'W') /*returns 1 if arg is an int. */ isLet: return datatype(arg(1),'M') /*returns 1 if arg is a letter*/ terr: if ok then say '***error!***: illegal' arg(1); ok=0; return</lang> output when using the default input of:   3


Note that the user's input is also shown.
Also note that the 2nd answer was a blank (or nothing), which caused the program to re-show the target array.

      a b c   column letter
row ╔═══════
 1  ║ 0 1 1    ◄───target
 2  ║ 0 0 0    ◄───target
 3  ║ 1 0 0    ◄───target


      a b c   column letter
row ╔═══════
 1  ║ 1 0 1    ◄───your array
 2  ║ 0 0 1    ◄───your array
 3  ║ 0 1 0    ◄───your array


─────────Please enter a  row number  or  column letter,    or  Quit:
2
─────────bit array after play:  1

      a b c   column letter
row ╔═══════
 1  ║ 1 0 1    ◄───your array
 2  ║ 1 1 0    ◄───your array
 3  ║ 0 1 0    ◄───your array


─────────Please enter a  row number  or  column letter,    or  Quit:


      a b c   column letter
row ╔═══════
 1  ║ 0 1 1    ◄───target
 2  ║ 0 0 0    ◄───target
 3  ║ 1 0 0    ◄───target


      a b c   column letter
row ╔═══════
 1  ║ 1 0 1    ◄───your array
 2  ║ 1 1 0    ◄───your array
 3  ║ 0 1 0    ◄───your array


─────────Please enter a  row number  or  column letter,    or  Quit:
b
─────────bit array after play:  2

      a b c   column letter
row ╔═══════
 1  ║ 1 1 1    ◄───your array
 2  ║ 1 0 0    ◄───your array
 3  ║ 0 0 0    ◄───your array


─────────Please enter a  row number  or  column letter,    or  Quit:
a

      a b c   column letter
row ╔═══════
 1  ║ 0 1 1    ◄───your array
 2  ║ 0 0 0    ◄───your array
 3  ║ 1 0 0    ◄───your array

─────────Congrats!    You did it in 3 tries.

output when the following was used for input: 4 , + -

      a b c d   column letter
row ╔═════════
 1  ║ + + - -    ◄───target
 2  ║ - + - +    ◄───target
 3  ║ - - - -    ◄───target
 4  ║ - - - -    ◄───target


      a b c d   column letter
row ╔═════════
 1  ║ - + - +    ◄───your array
 2  ║ - - + +    ◄───your array
 3  ║ + - - +    ◄───your array
 4  ║ + - - +    ◄───your array


─────────Please enter a  row number  or  column letter,    or  Quit:
q

Ruby

<lang ruby>class FlipBoard

 def initialize(size)
   raise ArgumentError.new("Invalid board size: #{size}") if size < 2
   
   @size = size
   @board = Array.new(size**2, 0)
   
   randomize_board
   loop do
     @target = generate_target
     break unless solved?
   end 
   
   # these are used for validating user input
   @columns = [*'a'...('a'.ord+@size).chr]
   @rows = (1..@size).map(&:to_s)
 end
 
 ############################################################
 
 def play
   moves = 0
   puts "your target:", target
   
   until solved? 
     puts "", "move #{moves}:", self
     print "Row/column to flip: "
     ans = $stdin.gets.strip
     
     if @columns.include? ans
       flip_column @columns.index(ans)
       moves += 1
     elsif @rows.include? ans
       flip_row @rows.index(ans)
       moves += 1
     else
       puts "invalid input: " + ans
     end
   end
   
   puts "", "you solved the game in #{moves} moves", self
 end
 
 # the target formation as a string
 def target
   format_array @target
 end
 
 # the current formation as a string
 def to_s
   format_array @board
 end
 
 ############################################################
 private
 
 def solved?
   @board == @target
 end
 
 # flip a random number of bits on the board
 def randomize_board
   (@size + rand(@size)).times do
     flip_bit rand(@size), rand(@size)
   end
 end
 
 # generate a random number of flip_row/flip_column calls
 def generate_target
   orig_board = @board.clone
   (@size + rand(@size)).times do 
     rand(2).zero? ? flip_row( rand(@size) ) : flip_column( rand(@size) )
   end
   target, @board = @board, orig_board
   target
 end
 
 def flip_row(row)
   @size.times {|col| flip_bit(row, col)}
 end
 
 def flip_column(col)
   @size.times {|row| flip_bit(row, col)}
 end
 
 def flip_bit(row, col)
   @board[@size * row + col] ^= 1
 end
 
 def format_array(ary)
   str = "   " + @columns.join(" ") + "\n"
   @size.times do |row|
     str << "%2s " % @rows[row] + ary[@size*row, @size].join(" ") + "\n"
   end
   str
 end

end

begin

 FlipBoard.new(ARGV.shift.to_i).play

rescue => e

 puts e.message

end</lang>

Sample game:

$ ruby flipping_bits.rb 3
your target:
   a b c
 1 1 0 1
 2 0 1 1
 3 0 1 0

move 0:
   a b c
 1 0 0 1
 2 0 0 0
 3 0 0 1
Row/column to flip: 1

move 1:
   a b c
 1 1 1 0
 2 0 0 0
 3 0 0 1
Row/column to flip: b

move 2:
   a b c
 1 1 0 0
 2 0 1 0
 3 0 1 1
Row/column to flip: c

you solved the game in 3 moves
   a b c
 1 1 0 1
 2 0 1 1
 3 0 1 0

Tcl

Works with: Tcl version 8.6

<lang tcl>package require Tcl 8.6

oo::class create Flip {

   variable board target s
   constructor {size} {

set s $size set target [my RandomConfiguration] set board $target while {$board eq $target} { for {set i 0} {$i < $s} {incr i} { if {rand()<.5} { my SwapRow $i } if {rand()<.5} { my SwapColumn $i } } }

   }
   method RandomConfiguration Template:P 0.5 {

for {set row 0} {$row < $s} {incr row} { set r {} for {set col 0} {$col < $s} {incr col} { lappend r [expr {rand() < $p}] } lappend result $r } return $result

   }
   method SwapRow {rowId} {

for {set i 0} {$i < $s} {incr i} { lset board $rowId $i [expr {![lindex $board $rowId $i]}] }

   }
   method SwapColumn {columnId} {

for {set i 0} {$i < $s} {incr i} { lset board $i $columnId [expr {![lindex $board $i $columnId]}] }

   }
   method Render {configuration {prefixes {}}} {

join [lmap r $configuration p $prefixes { format %s%s $p [join [lmap c $r {string index ".X" $c}] ""] }] "\n"

   }
   method GetInput {prompt} {

puts -nonewline "${prompt}: " flush stdout gets stdin

   }
   method play {} {

set p0 {} set p {} set top [format "%*s " [string length $s] ""] for {set i 1;set j 97} {$i<=$s} {incr i;incr j} { append top [format %c $j] lappend p [format "%*d " [string length $s] $i] lappend p0 [format "%*s " [string length $s] ""] }

set moves 0 puts "You are trying to get to:\n[my Render $target $p0]\n" while true { puts "Current configuration (#$moves):\n$top\n[my Render $board $p]"

# Test for if we've won if {$board eq $target} break

# Ask the user for a move set i [my GetInput "Pick a column (letter) or row (number) to flip"]

# Parse the move and apply it if {[string is lower -strict $i] && [set c [expr {[scan $i "%c"] - 97}]]<$s} { my SwapColumn $c incr moves } elseif {[string is integer -strict $i] && $i>0 && $i<=$s} { my SwapRow [expr {$i - 1}] incr moves } else { puts "Error: bad selection" } puts "" } puts "\nYou win! (You took $moves moves.)"

   }

}

Flip create flip 3 flip play </lang>

Example game:
You are trying to get to:
  .XX
  XXX
  X.X

Current configuration (#0):
  abc
1 .X.
2 ..X
3 X..
Pick a column (letter) or row (number) to flip: 2

Current configuration (#1):
  abc
1 .X.
2 XX.
3 X..
Pick a column (letter) or row (number) to flip: c

Current configuration (#2):
  abc
1 .XX
2 XXX
3 X.X

You win! (You took 2 moves.)