Find squares n where n+1 is prime: Difference between revisions

Added Easylang
(rm (require racket))
(Added Easylang)
 
(18 intermediate revisions by 11 users not shown)
Line 24:
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|ALGOL W}}==
Using the difference of two squares to optimise the primality tests and the square loop (similar to the Phix and Applescript samples), though with the small number of values to test, that probably doesn't affect runtime much...
<syntaxhighlight lang="algolw">
begin % find squares n where n + 1 is prime %
 
% returns true if n is prime, false otherwise, uses trial division %
logical procedure isPrime ( integer value n ) ;
if n < 3 then n = 2
else if n rem 3 = 0 then n = 3
else if not odd( n ) then false
else begin
logical prime;
integer f, f2, toNext;
prime := true;
f := 5;
f2 := 25;
toNext := 24; % note: ( 2n + 1 )^2 - ( 2n - 1 )^2 = 8n %
while f2 <= n and prime do begin
prime := n rem f not = 0;
f := f + 2;
f2 := toNext;
toNext := toNext + 8
end while_f2_le_n_and_prime ;
prime
end isPrime ;
 
% other than 1, the numbers must be even %
if isPrime( 2 % i.e.: ( 1 * 1 ) + 1 % ) then write( ( " 1" ) );
 
begin
integer i2, toNext;
toNext := i2 := 4; % note: ( 2n + 2 )^2 - 2n^2 = 8n + 4 %
while i2 < 1000 do begin
if isPrime( i2 + 1 ) then writeon( i_w := 1, s_w := 0, " ", i2 );
toNext := toNext + 8;
i2 := i2 + toNext
end while_i2_lt_1000
end
 
end.
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript">on isPrime(n)
if (n < 4) then return (n > 1)
if ((n mod 2 is 0) or (n mod 3 is 0)) then return false
repeat with i from 5 to (n ^ 0.5) div 1 by 6
if ((n mod i is 0) or (n mod (i + 2) is 0)) then return false
end repeat
return true
end isPrime
 
on task()
set output to {}
if (isPrime(1 * 1 + 1)) then set end of output to 1 * 1
repeat with sqrt from 2 to (1000 ^ 0.5) by 2
set n to sqrt * sqrt
if (isPrime(n + 1)) then set end of output to n
end repeat
return output
end task
 
task()</syntaxhighlight>
 
{{output}}
<syntaxhighlight lang="applescript">{1, 4, 16, 36, 100, 196, 256, 400, 576, 676}</syntaxhighlight>
 
{{trans|Phix}}
The first Phix solution's method of incrementing the square is fun, but not more efficient in AppleScript than the more straightforward method above. It can be optimised slightly by incrementing the ''d'' variable by 8 instead of incrementing by 4 and multiplying the result by 2. Also by incrementing the square + 1 each time instead of the square itself, so that 1 only has to be subtracted from the hits instead of being added to every square.
<syntaxhighlight lang="applescript">on task()
set output to {1}
set nPlus1 to 5
repeat with d from 12 to (1000 ^ 0.5 div 0.25) by 8
if (isPrime(nPlus1)) then set end of output to nPlus1 - 1
set nPlus1 to nPlus1 + d
end repeat
return output
end task</syntaxhighlight>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">1..31 | select 'x -> prime? 1 + x^2
| map 'x -> x^2
| print</syntaxhighlight>
 
{{out}}
 
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|AutoHotkey}}==
Line 329 ⟶ 425:
576
676</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
 
 
<syntaxhighlight lang="Delphi">
 
 
function IsPrime(N: integer): boolean;
{Fast, optimised prime test}
var I,Stop: integer;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
begin
I:=5;
Stop:=Trunc(sqrt(N));
Result:=False;
while I<=Stop do
begin
if ((N mod I) = 0) or ((N mod (I + 2)) = 0) then exit;
Inc(I,6);
end;
Result:=True;
end;
end;
 
 
procedure ShowPrimeSquares(Memo: TMemo);
var N,S2: integer;
begin
for N:= 1 to Trunc(sqrt(1000-1)) do
begin
S2:=N*N;
if IsPrime(S2+1) then Memo.Text:=Memo.Text+' '+IntToStr(S2);
end;
end;
 
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight>
fastfunc isprim num .
i = 2
while i <= sqrt num
if num mod i = 0
return 0
.
i += 1
.
return 1
.
n0 = 1
repeat
n = n0 * n0
until n >= 1000
if isprim (n + 1) = 1
write n & " "
.
n0 += 1
.
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|F_Sharp|F#}}==
Line 452 ⟶ 621:
576
676
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">
module Squares
where
 
isPrime :: Int -> Bool
isPrime n
|n == 2 = True
|n == 1 = False
|otherwise = null $ filter (\i -> mod n i == 0 ) [2 .. root]
where
root :: Int
root = floor $ sqrt $ fromIntegral n
 
isSquare :: Int -> Bool
isSquare n = theFloor * theFloor == n
where
theFloor :: Int
theFloor = floor $ sqrt $ fromIntegral n
 
solution :: [Int]
solution = [d | d <- [1..999] , isSquare d && isPrime ( d + 1 )]
</syntaxhighlight>
{{out}}
<pre>
[1,4,16,36,100,196,256,400,576,676]
</pre>
 
Line 603 ⟶ 800:
676</pre>
 
=={{header|PARI/GPNim}}==
<syntaxhighlight lang="Nim">import std/strutils
 
func isPrime(n: Positive): bool =
if n < 2: return false
if (n and 1) == 0: return n == 2
var d = 3
while d * d <= n:
if n mod d == 0:
return false
inc d, 2
result = true
 
var list = @[1]
var n = 2
var n2 = 4
while n2 < 1000:
if isPrime(n2 + 1):
list.add n2
inc n, 2
n2 = n * n
 
echo list.join(" ")
</syntaxhighlight>
 
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|OCaml}}==
<syntaxhighlight lang="ocaml">let is_prime n =
let rec test x =
x * x > n || n mod x <> 0 && n mod (x + 2) <> 0 && test (x + 6)
in if n < 5 then n lor 1 = 3 else n land 1 <> 0 && n mod 3 <> 0 && test 5
 
let seq_squares =
let rec next n a () = Seq.Cons (n, next (n + a) (a + 2)) in
next 0 1
 
let () =
let cond n = is_prime (succ n) in
seq_squares |> Seq.take_while ((>) 1000) |> Seq.filter cond
|> Seq.iter (Printf.printf " %u") |> print_newline</syntaxhighlight>
{{out}}
<pre> 1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|PARI/GP}}==
This is not terribly efficient, but it does show off the issquare and isprime functions.
 
Line 691 ⟶ 934:
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">join_by</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #004600;">true</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">,{{</span><span style="color: #008000;">"%3d"</span><span style="color: #0000FF;">},</span><span style="color: #7060A8;">sq_sub</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">get_primes_le</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)}),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">20</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" "</span><span style="color: #0000FF;">))</span>
<!--</syntaxhighlight>-->
 
=={{header|PL/M}}==
{{Trans|ALGOL W}}
{{works with|8080 PL/M Compiler}} ... under CP/M (or an emulator)
<syntaxhighlight lang="plm">
100H: /* FIND SQUARES N WHERE N + ! IS PRIME */
 
/* CP/M BDOS SYSTEM CALL AND I/O ROUTINES */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
PR$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PR$NL: PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH */
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
V = N;
W = LAST( N$STR );
N$STR( W ) = '$';
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL PR$STRING( .N$STR( W ) );
END PR$NUMBER;
 
/* RETURNS TRUE IF N IS PRIME, FALSE OTHERWISE, USES TRIAL DIVISION */
IS$PRIME: PROCEDURE( N )BYTE;
DECLARE N ADDRESS;
DECLARE PRIME BYTE;
IF N < 3 THEN PRIME = N = 2;
ELSE IF N MOD 3 = 0 THEN PRIME = N = 3;
ELSE IF N MOD 2 = 0 THEN PRIME = 0;
ELSE DO;
DECLARE ( F, F2, TO$NEXT ) ADDRESS;
PRIME = 1;
F = 5;
F2 = 25;
TO$NEXT = 24; /* NOTE: ( 2N + 1 )^2 - ( 2N - 1 )^2 = 8N */
DO WHILE F2 <= N AND PRIME;
PRIME = N MOD F <> 0;
F = F + 2;
F2 = F2 + TO$NEXT;
TO$NEXT = TO$NEXT + 8;
END;
END;
RETURN PRIME;
END IS$PRIME;
 
/* TASK */
 
/* OTHER THAN 1, THE NUMBERS MUST BE EVEN */
IF IS$PRIME( 2 /* I.E.: ( 1 * 1 ) + 1 */ ) THEN DO;
CALL PR$CHAR( ' ' );
CALL PR$CHAR( '1' );
END;
 
DECLARE ( I2, TO$NEXT ) ADDRESS;
TO$NEXT, I2 = 4; /* NOTE: ( 2N + 2 )^2 - 2N^2 = 8N + 4 */
DO WHILE I2 < 1000;
IF IS$PRIME( I2 + 1 ) THEN DO;
CALL PR$CHAR( ' ' );
CALL PR$NUMBER( I2 );
END;
TO$NEXT = TO$NEXT + 8;
I2 = I2 + TO$NEXT;
END;
 
EOF
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|PROMAL}}==
{{Trans|ALGOL W}}
<syntaxhighlight lang="promal">
;;; Find squares n where n + 1 is prime
PROGRAM primesq
INCLUDE library
 
;;; returns TRUE(1) if p is prime, FALSE(0) otherwise
FUNC BYTE isPrime
ARG WORD n
WORD i
WORD f
WORD f2
WORD toNext
BYTE prime
BEGIN
IF n < 3
prime = n = 2
ELSE IF n % 3 = 0
prime = n = 3
ELSE IF n % 2 = 0
prime = 0
ELSE
prime = 1
f = 5
f2 = 25
toNext = 24 ; note: ( 2n + 1 )^2 - ( 2n - 1 )^2 = 8n
WHILE f2 <= n AND prime
prime = n % f <> 0
f = f + 2
f2 = toNext
toNext = toNext + 8
RETURN prime
END
 
WORD i2
WORD toNext
BEGIN
 
IF isPrime( ( 1 * 1 ) + 1 ) ; 1 is the only possible odd number
OUTPUT " 1"
 
i2 = 4
toNext = 4 ; note: ( 2n + 2 )^2 - 2n^2 = 8n + 4
WHILE i2 < 1000
IF isPrime( i2 + 1 )
OUTPUT " #W", i2
toNext = toNext + 8
i2 = i2 + toNext
END
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|Python}}==
Line 722 ⟶ 1,094:
done...
</pre>
 
=={{header|Quackery}}==
 
<code>isprime</code> is defined at [[Primality by trial division#Quackery]].
 
<syntaxhighlight lang="Quackery"> [] [] 0
[ 1+ dup 2 **
dup 1000 < while
1+ isprime if
[ dup dip join ]
again ]
2drop
witheach [ 2 ** join ]
echo</syntaxhighlight>
 
{{out}}
 
<pre>[ 1 4 16 36 100 196 256 400 576 676 ]</pre>
 
=={{header|Racket}}==
Line 812 ⟶ 1,202:
Found 10 numbers
done...
</pre>
 
=={{header|RPL}}==
≪ { }
1 1000 √ '''FOR''' j
'''IF''' j SQ 1 + ISPRIME? '''THEN''' j SQ + '''END'''
'''NEXT'''
≫ '<span style="color:blue>TASK</span>' STO
{{out}}
<pre>
1: { 1 4 16 36 100 196 256 400 576 676 }
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">require 'prime'
 
p (1..Integer.sqrt(1000)).filter_map{|n| sqr = n*n; sqr if (sqr+1).prime? }</syntaxhighlight>
{{out}}
<pre>
[1, 4, 16, 36, 100, 196, 256, 400, 576, 676]
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">
use primes::is_prime ;
 
fn is_square( number : u64 ) -> bool {
let floor : u64 = (number as f64).sqrt( ).floor( ) as u64 ;
floor * floor == number
}
 
fn main() {
let solution : Vec<u64> = (1..1000).into_iter( ).
filter( | d | is_square( *d ) && is_prime( *d + 1 )).collect( ) ;
println!("{:?}" , solution);
}
</syntaxhighlight>
{{out}}<pre>
[1, 4, 16, 36, 100, 196, 256, 400, 576, 676]
</pre>
 
Line 849 ⟶ 1,278:
576
676</pre>
 
=={{header|VTL-2}}==
{{Trans|TinyBASIC}}
<syntaxhighlight lang="vtl2">
1000 ?=1
1010 N=2
1020 M=4
1030 J=M+1
1040 #=2000
1050 #=P=1=0*1080
1060 $=32
1070 ?=M
1080 N=N+2
1090 M=N*N
1100 #=M<1000*1030
1110 #=9999
2000 R=!
2010 P=0
2020 I=3
2030 #=J/I*0+%=0*R
2040 I=I+2
2050 #=I*I<J*2030
2060 P=1
2070 #=R
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-math}}
<syntaxhighlight lang="ecmascriptwren">import "./math" for Int
 
var squares = []
1,983

edits