Jump to content

Find squares n where n+1 is prime: Difference between revisions

Added Easylang
(Add Cowgol)
(Added Easylang)
 
(28 intermediate revisions by 18 users not shown)
Line 6:
=={{header|ALGOL 68}}==
{{libheader|ALGOL 68-primes}}
<langsyntaxhighlight lang="algol68">BEGIN # find squares n where n + 1 is prime #
PR read "primes.incl.a68" PR
[]BOOL prime = PRIMESIEVE 1 000; # construct a sieve of primes up to 1000 #
Line 19:
FI
OD
END</langsyntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|ALGOL W}}==
Using the difference of two squares to optimise the primality tests and the square loop (similar to the Phix and Applescript samples), though with the small number of values to test, that probably doesn't affect runtime much...
<syntaxhighlight lang="algolw">
begin % find squares n where n + 1 is prime %
 
% returns true if n is prime, false otherwise, uses trial division %
logical procedure isPrime ( integer value n ) ;
if n < 3 then n = 2
else if n rem 3 = 0 then n = 3
else if not odd( n ) then false
else begin
logical prime;
integer f, f2, toNext;
prime := true;
f := 5;
f2 := 25;
toNext := 24; % note: ( 2n + 1 )^2 - ( 2n - 1 )^2 = 8n %
while f2 <= n and prime do begin
prime := n rem f not = 0;
f := f + 2;
f2 := toNext;
toNext := toNext + 8
end while_f2_le_n_and_prime ;
prime
end isPrime ;
 
% other than 1, the numbers must be even %
if isPrime( 2 % i.e.: ( 1 * 1 ) + 1 % ) then write( ( " 1" ) );
 
begin
integer i2, toNext;
toNext := i2 := 4; % note: ( 2n + 2 )^2 - 2n^2 = 8n + 4 %
while i2 < 1000 do begin
if isPrime( i2 + 1 ) then writeon( i_w := 1, s_w := 0, " ", i2 );
toNext := toNext + 8;
i2 := i2 + toNext
end while_i2_lt_1000
end
 
end.
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript">on isPrime(n)
if (n < 4) then return (n > 1)
if ((n mod 2 is 0) or (n mod 3 is 0)) then return false
repeat with i from 5 to (n ^ 0.5) div 1 by 6
if ((n mod i is 0) or (n mod (i + 2) is 0)) then return false
end repeat
return true
end isPrime
 
on task()
set output to {}
if (isPrime(1 * 1 + 1)) then set end of output to 1 * 1
repeat with sqrt from 2 to (1000 ^ 0.5) by 2
set n to sqrt * sqrt
if (isPrime(n + 1)) then set end of output to n
end repeat
return output
end task
 
task()</syntaxhighlight>
 
{{output}}
<syntaxhighlight lang="applescript">{1, 4, 16, 36, 100, 196, 256, 400, 576, 676}</syntaxhighlight>
 
{{trans|Phix}}
The first Phix solution's method of incrementing the square is fun, but not more efficient in AppleScript than the more straightforward method above. It can be optimised slightly by incrementing the ''d'' variable by 8 instead of incrementing by 4 and multiplying the result by 2. Also by incrementing the square + 1 each time instead of the square itself, so that 1 only has to be subtracted from the hits instead of being added to every square.
<syntaxhighlight lang="applescript">on task()
set output to {1}
set nPlus1 to 5
repeat with d from 12 to (1000 ^ 0.5 div 0.25) by 8
if (isPrime(nPlus1)) then set end of output to nPlus1 - 1
set nPlus1 to nPlus1 + d
end repeat
return output
end task</syntaxhighlight>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">1..31 | select 'x -> prime? 1 + x^2
| map 'x -> x^2
| print</syntaxhighlight>
 
{{out}}
 
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|AutoHotkey}}==
{{trans|FreeBASIC}}
<syntaxhighlight lang="autohotkey">n := 0
while ((n2 := (n+=2)**2) < 1000)
if isPrime(n2+1)
result .= (result ? ", ":"" ) n2
MsgBox % result := 1 ", " result
return
 
isPrime(n, i:=2){
while (i < Sqrt(n)+1)
if !Mod(n, i++)
return False
return True
}</syntaxhighlight>
{{out}}
<pre>1, 4, 16, 36, 100, 196, 256, 400, 576, 676</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
# syntax: GAWK -f FIND_SQUARES_N_WHERE_N+1_IS_PRIME.AWK
BEGIN {
start = 1
stop = 999
n = 2
n2 = n^2
printf("1")
count++
while (n2 < stop) {
if (is_prime(n2+1)) {
printf(" %d",n2)
count++
}
n += 2
n2 = n^2
}
printf("\nFind squares %d-%d: %d\n",start,stop,count)
exit(0)
}
function is_prime(n, d) {
d = 5
if (n < 2) { return(0) }
if (n % 2 == 0) { return(n == 2) }
if (n % 3 == 0) { return(n == 3) }
while (d*d <= n) {
if (n % d == 0) { return(0) }
d += 2
if (n % d == 0) { return(0) }
d += 4
}
return(1)
}
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
Find squares 1-999: 10
</pre>
 
=={{header|BASIC}}==
<langsyntaxhighlight lang="basic">10 DEFINT A-Z: N=1000
20 DIM C(N)
30 FOR P=2 TO SQR(N)
Line 35 ⟶ 190:
80 X=I-1: R=SQR(X)
90 IF R*R=X THEN PRINT X;
100 NEXT</langsyntaxhighlight>
{{out}}
<pre> 1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|BCPL}}==
<langsyntaxhighlight lang="bcpl">get "libhdr"
manifest $( MAX = 1000 $)
 
Line 81 ⟶ 236:
$)
wrch('*N')
$)</langsyntaxhighlight>
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdbool.h>
#include <math.h>
Line 114 ⟶ 269:
printf("\n");
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|CLU}}==
<langsyntaxhighlight lang="clu">isqrt = proc (s: int) returns (int)
x0: int := s/2
if x0=0 then return(s) end
Line 158 ⟶ 313:
if is_square(n) then stream$puts(po, int$unparse(n) || " ") end
end
end start_up</langsyntaxhighlight>
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|COBOL}}==
<syntaxhighlight lang="cobol"> IDENTIFICATION DIVISION.
PROGRAM-ID. SQUARE-PLUS-1-PRIME.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 N PIC 999.
01 P PIC 9999 VALUE ZERO.
01 PRIMETEST.
03 DSOR PIC 9999.
03 PRIME-FLAG PIC X.
88 PRIME VALUE '*'.
03 DIVTEST PIC 9999V999.
03 FILLER REDEFINES DIVTEST.
05 FILLER PIC 9999.
05 FILLER PIC 999.
88 DIVISIBLE VALUE ZERO.
PROCEDURE DIVISION.
BEGIN.
PERFORM CHECK-N VARYING N FROM 1 BY 1
UNTIL P IS GREATER THAN 1000.
STOP RUN.
CHECK-N.
MULTIPLY N BY N GIVING P.
ADD 1 TO P.
PERFORM CHECK-PRIME.
SUBTRACT 1 FROM P.
IF PRIME, DISPLAY P.
CHECK-PRIME.
IF P IS LESS THAN 2, MOVE SPACE TO PRIME-FLAG,
ELSE, MOVE '*' TO PRIME-FLAG.
PERFORM CHECK-DSOR VARYING DSOR FROM 2 BY 1
UNTIL NOT PRIME OR DSOR IS GREATER THAN N.
CHECK-DSOR.
DIVIDE P BY DSOR GIVING DIVTEST.
IF DIVISIBLE, MOVE SPACE TO PRIME-FLAG.</syntaxhighlight>
{{out}}
<pre>0001
0004
0016
0036
0100
0196
0256
0400
0576
0676</pre>
 
=={{header|Cowgol}}==
<langsyntaxhighlight lang="cowgol">include "cowgol.coh";
 
const MAX := 1000;
Line 206 ⟶ 413:
end if;
i := i + 1;
end loop;</langsyntaxhighlight>
{{out}}
<pre>1
Line 218 ⟶ 425:
576
676</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
 
 
<syntaxhighlight lang="Delphi">
 
 
function IsPrime(N: integer): boolean;
{Fast, optimised prime test}
var I,Stop: integer;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
begin
I:=5;
Stop:=Trunc(sqrt(N));
Result:=False;
while I<=Stop do
begin
if ((N mod I) = 0) or ((N mod (I + 2)) = 0) then exit;
Inc(I,6);
end;
Result:=True;
end;
end;
 
 
procedure ShowPrimeSquares(Memo: TMemo);
var N,S2: integer;
begin
for N:= 1 to Trunc(sqrt(1000-1)) do
begin
S2:=N*N;
if IsPrime(S2+1) then Memo.Text:=Memo.Text+' '+IntToStr(S2);
end;
end;
 
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight>
fastfunc isprim num .
i = 2
while i <= sqrt num
if num mod i = 0
return 0
.
i += 1
.
return 1
.
n0 = 1
repeat
n = n0 * n0
until n >= 1000
if isprim (n + 1) = 1
write n & " "
.
n0 += 1
.
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|F_Sharp|F#}}==
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_functions Extensible Prime Generator (F#)]
<langsyntaxhighlight lang="fsharp">
// Find squares n where n+1 is prime. Nigel Galloway: December 17th., 2021
seq{yield 1; for g in 2..2..30 do let n=g*g in if isPrime(n+1) then yield n}|>Seq.iter(printf "%d "); printfn ""
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 231 ⟶ 511:
 
=={{header|Fermat}}==
<langsyntaxhighlight lang="fermat">!!1;
i:=2;
i2:=4;
Line 238 ⟶ 518:
i:+2;
i2:=i^2;
od;</langsyntaxhighlight>
{{out}}<pre>1
4
Line 252 ⟶ 532:
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">function isprime(n as integer) as boolean
if n<0 then return isprime(-n)
if n<2 then return false
Line 271 ⟶ 551:
n+=2
n2=n^2
wend</langsyntaxhighlight>
{{out}}<pre> 1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|Go}}==
{{trans|Wren}}
{{libheader|Go-rcu}}
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"math"
"rcu"
)
 
func main() {
var squares []int
limit := int(math.Sqrt(1000))
i := 1
for i <= limit {
n := i * i
if rcu.IsPrime(n + 1) {
squares = append(squares, n)
}
if i == 1 {
i = 2
} else {
i += 2
}
}
fmt.Println("There are", len(squares), "square numbers 'n' where 'n+1' is prime, viz:")
fmt.Println(squares)
}</syntaxhighlight>
 
{{out}}
<pre>
There are 10 square numbers 'n' where 'n+1' is prime, viz:
[1 4 16 36 100 196 256 400 576 676]
</pre>
 
=={{header|GW-BASIC}}==
<langsyntaxhighlight lang="gwbasic">10 PRINT 1
20 N = 2 : N2 = 4
30 WHILE N2 < 1000
Line 294 ⟶ 610:
180 I=I +2
190 WEND
200 RETURN</langsyntaxhighlight>
{{out}}<pre>1
4
Line 305 ⟶ 621:
576
676
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">
module Squares
where
 
isPrime :: Int -> Bool
isPrime n
|n == 2 = True
|n == 1 = False
|otherwise = null $ filter (\i -> mod n i == 0 ) [2 .. root]
where
root :: Int
root = floor $ sqrt $ fromIntegral n
 
isSquare :: Int -> Bool
isSquare n = theFloor * theFloor == n
where
theFloor :: Int
theFloor = floor $ sqrt $ fromIntegral n
 
solution :: [Int]
solution = [d | d <- [1..999] , isSquare d && isPrime ( d + 1 )]
</syntaxhighlight>
{{out}}
<pre>
[1,4,16,36,100,196,256,400,576,676]
</pre>
 
=={{header|J}}==
<langsyntaxhighlight lang="j">((<.=])@%:#+)@(i.&.(p:^:_1)-1:) 1000</langsyntaxhighlight>
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
See [[Erdős-primes#jq]] for a suitable definition of `is_prime` as used here.
 
<syntaxhighlight lang="jq">def squares_for_which_successor_is_prime:
(. // infinite) as $limit
| {i:1, sq: 1}
| while( .sq < $limit; .i += 1 | .sq = .i*.i)
| .sq
| select((. + 1)|is_prime) ;
 
1000 | squares_for_which_successor_is_prime</syntaxhighlight>
{{out}}
<pre>
1
4
16
36
100
196
256
400
576
676
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Primes
 
isintegersquarebeforeprime(n) = isqrt(n)^2 == n && isprime(n + 1)
 
foreach(p -> print(lpad(last(p), 5)), filter(isintegersquarebeforeprime, 1:1000))
</langsyntaxhighlight>{{out}}<pre> 1 4 16 36 100 196 256 400 576 676 </pre>
 
=={{header|MAD}}==
<langsyntaxhighlight MADlang="mad"> NORMAL MODE IS INTEGER
BOOLEAN PRIME
DIMENSION PRIME(1000)
Line 353 ⟶ 725:
 
VECTOR VALUES FMT = $I4*$
END OF PROGRAM</langsyntaxhighlight>
{{out}}
<pre> 1
Line 366 ⟶ 738:
676</pre>
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">Cases[Table[n^2, {n, 101}], _?(PrimeQ[# + 1] &)]</langsyntaxhighlight>
{{out}}<pre>
{1,4,16,36,100,196,256,400,576,676,1296,1600,2916,3136,4356,5476,7056,8100,8836}
Line 372 ⟶ 744:
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">MODULE SquareAlmostPrime;
FROM InOut IMPORT WriteCard, WriteLn;
FROM MathLib IMPORT sqrt;
Line 415 ⟶ 787:
END;
END;
END SquareAlmostPrime.</langsyntaxhighlight>
{{out}}
<pre> 1
Line 428 ⟶ 800:
676</pre>
 
=={{header|PARI/GPNim}}==
<syntaxhighlight lang="Nim">import std/strutils
 
func isPrime(n: Positive): bool =
if n < 2: return false
if (n and 1) == 0: return n == 2
var d = 3
while d * d <= n:
if n mod d == 0:
return false
inc d, 2
result = true
 
var list = @[1]
var n = 2
var n2 = 4
while n2 < 1000:
if isPrime(n2 + 1):
list.add n2
inc n, 2
n2 = n * n
 
echo list.join(" ")
</syntaxhighlight>
 
{{out}}
<pre>1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|OCaml}}==
<syntaxhighlight lang="ocaml">let is_prime n =
let rec test x =
x * x > n || n mod x <> 0 && n mod (x + 2) <> 0 && test (x + 6)
in if n < 5 then n lor 1 = 3 else n land 1 <> 0 && n mod 3 <> 0 && test 5
 
let seq_squares =
let rec next n a () = Seq.Cons (n, next (n + a) (a + 2)) in
next 0 1
 
let () =
let cond n = is_prime (succ n) in
seq_squares |> Seq.take_while ((>) 1000) |> Seq.filter cond
|> Seq.iter (Printf.printf " %u") |> print_newline</syntaxhighlight>
{{out}}
<pre> 1 4 16 36 100 196 256 400 576 676</pre>
 
=={{header|PARI/GP}}==
This is not terribly efficient, but it does show off the issquare and isprime functions.
 
<langsyntaxhighlight lang="parigp">for(n = 1, 1000, if(issquare(n)&&isprime(n+1),print(n)))</langsyntaxhighlight>
 
{{out}}<pre>1
Line 446 ⟶ 864:
=={{header|Perl}}==
===Simple and Clear===
<langsyntaxhighlight lang="perl">#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Find_squares_n_where_n%2B1_is_prime
use warnings;
Line 452 ⟶ 870:
 
my @answer = grep is_square($_), map $_ - 1, @{ primes(1000) };
print "@answer\n";</langsyntaxhighlight>
{{out}}
<pre>
Line 459 ⟶ 877:
===More Than One Way===
TMTOWTDI, right? So do it.
<langsyntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
Line 474 ⟶ 892:
 
# or dispense with the module and find primes the slowest way possible
(1 x (1+$_**2)) !~ /^(11+)\1+$/ and say $_**2 for 1 .. int sqrt 1000;</langsyntaxhighlight>
{{out}}
In all cases:
Line 489 ⟶ 907:
 
=={{header|Phix}}==
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}</span>
Line 501 ⟶ 919:
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%V\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">res</span><span style="color: #0000FF;">})</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre>
Line 507 ⟶ 925:
</pre>
Alternative, same output, but 168 iterations/tests compared to just 16 by the above:
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">sq</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sqrt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">))</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">filter</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sq_sub</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">get_primes_le</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">sq</span><span style="color: #0000FF;">))</span>
<!--</langsyntaxhighlight>-->
Drop the filter to get the 168 (cheekily humorous) squares-of-integers-and-non-integers result of Raku (and format/arrange them identically):
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">join_by</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #004600;">true</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">,{{</span><span style="color: #008000;">"%3d"</span><span style="color: #0000FF;">},</span><span style="color: #7060A8;">sq_sub</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">get_primes_le</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)}),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">20</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" "</span><span style="color: #0000FF;">))</span>
<!--</langsyntaxhighlight>-->
 
=={{header|PL/M}}==
{{Trans|ALGOL W}}
{{works with|8080 PL/M Compiler}} ... under CP/M (or an emulator)
<syntaxhighlight lang="plm">
100H: /* FIND SQUARES N WHERE N + ! IS PRIME */
 
/* CP/M BDOS SYSTEM CALL AND I/O ROUTINES */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
PR$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PR$NL: PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH */
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
V = N;
W = LAST( N$STR );
N$STR( W ) = '$';
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL PR$STRING( .N$STR( W ) );
END PR$NUMBER;
 
/* RETURNS TRUE IF N IS PRIME, FALSE OTHERWISE, USES TRIAL DIVISION */
IS$PRIME: PROCEDURE( N )BYTE;
DECLARE N ADDRESS;
DECLARE PRIME BYTE;
IF N < 3 THEN PRIME = N = 2;
ELSE IF N MOD 3 = 0 THEN PRIME = N = 3;
ELSE IF N MOD 2 = 0 THEN PRIME = 0;
ELSE DO;
DECLARE ( F, F2, TO$NEXT ) ADDRESS;
PRIME = 1;
F = 5;
F2 = 25;
TO$NEXT = 24; /* NOTE: ( 2N + 1 )^2 - ( 2N - 1 )^2 = 8N */
DO WHILE F2 <= N AND PRIME;
PRIME = N MOD F <> 0;
F = F + 2;
F2 = F2 + TO$NEXT;
TO$NEXT = TO$NEXT + 8;
END;
END;
RETURN PRIME;
END IS$PRIME;
 
/* TASK */
 
/* OTHER THAN 1, THE NUMBERS MUST BE EVEN */
IF IS$PRIME( 2 /* I.E.: ( 1 * 1 ) + 1 */ ) THEN DO;
CALL PR$CHAR( ' ' );
CALL PR$CHAR( '1' );
END;
 
DECLARE ( I2, TO$NEXT ) ADDRESS;
TO$NEXT, I2 = 4; /* NOTE: ( 2N + 2 )^2 - 2N^2 = 8N + 4 */
DO WHILE I2 < 1000;
IF IS$PRIME( I2 + 1 ) THEN DO;
CALL PR$CHAR( ' ' );
CALL PR$NUMBER( I2 );
END;
TO$NEXT = TO$NEXT + 8;
I2 = I2 + TO$NEXT;
END;
 
EOF
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|PROMAL}}==
{{Trans|ALGOL W}}
<syntaxhighlight lang="promal">
;;; Find squares n where n + 1 is prime
PROGRAM primesq
INCLUDE library
 
;;; returns TRUE(1) if p is prime, FALSE(0) otherwise
FUNC BYTE isPrime
ARG WORD n
WORD i
WORD f
WORD f2
WORD toNext
BYTE prime
BEGIN
IF n < 3
prime = n = 2
ELSE IF n % 3 = 0
prime = n = 3
ELSE IF n % 2 = 0
prime = 0
ELSE
prime = 1
f = 5
f2 = 25
toNext = 24 ; note: ( 2n + 1 )^2 - ( 2n - 1 )^2 = 8n
WHILE f2 <= n AND prime
prime = n % f <> 0
f = f + 2
f2 = toNext
toNext = toNext + 8
RETURN prime
END
 
WORD i2
WORD toNext
BEGIN
 
IF isPrime( ( 1 * 1 ) + 1 ) ; 1 is the only possible odd number
OUTPUT " 1"
 
i2 = 4
toNext = 4 ; note: ( 2n + 2 )^2 - 2n^2 = 8n + 4
WHILE i2 < 1000
IF isPrime( i2 + 1 )
OUTPUT " #W", i2
toNext = toNext + 8
i2 = i2 + toNext
END
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">
limit = 1000
print("working...")
Line 540 ⟶ 1,087:
print()
print("done...")
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 546 ⟶ 1,093:
1 4 16 36 100 196 256 400 576 676
done...
</pre>
 
=={{header|Quackery}}==
 
<code>isprime</code> is defined at [[Primality by trial division#Quackery]].
 
<syntaxhighlight lang="Quackery"> [] [] 0
[ 1+ dup 2 **
dup 1000 < while
1+ isprime if
[ dup dip join ]
again ]
2drop
witheach [ 2 ** join ]
echo</syntaxhighlight>
 
{{out}}
 
<pre>[ 1 4 16 36 100 196 256 400 576 676 ]</pre>
 
=={{header|Racket}}==
 
<syntaxhighlight lang="racket">
#lang racket
 
(define (find-subprime-squares up-to)
(let rc ([curr-num 1]
[found '()])
(let ([n-sq (* curr-num curr-num)])
(cond [(>= n-sq up-to) (reverse found)]
[(prime? (add1 n-sq)) (rc (add1 curr-num) (cons n-sq found))]
[else (rc (add1 curr-num) found)]))))
 
(define (prime? n)
(let iter ([counter 2])
(cond [(eq? n 1) #f]
[(<= (expt counter 2) n)
(if (zero? (remainder n counter))
#f
(iter (add1 counter)))]
[else #t])))
 
(find-subprime-squares 1000)
</syntaxhighlight>
 
{{out}}
<pre>
'(1 4 16 36 100 196 256 400 576 676)
</pre>
 
=={{header|Raku}}==
Use up to to one thousand (1,000) rather than up to one (1.000) as otherwise it would be a pretty short list...
<syntaxhighlight lang="raku" perl6line>say ({$++²}…^*>Ⅿ).grep: (*+1).is-prime</langsyntaxhighlight>
{{out}}
<pre>(1 4 16 36 100 196 256 400 576 676)</pre>
 
Although, technically, there is absolutely nothing in the task directions specifying that '''n''' needs to be the square of an ''integer''. So, more accurately...
<syntaxhighlight lang="raku" perl6line>put (^Ⅿ).grep(*.is-prime).map(*-1).batch(20)».fmt("%3d").join: "\n"</langsyntaxhighlight>
{{out}}
<pre> 1 2 4 6 10 12 16 18 22 28 30 36 40 42 46 52 58 60 66 70
Line 568 ⟶ 1,163:
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
load "stdlib.ring"
row = 0
Line 591 ⟶ 1,186:
next
return 0
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 607 ⟶ 1,202:
Found 10 numbers
done...
</pre>
 
=={{header|RPL}}==
≪ { }
1 1000 √ '''FOR''' j
'''IF''' j SQ 1 + ISPRIME? '''THEN''' j SQ + '''END'''
'''NEXT'''
≫ '<span style="color:blue>TASK</span>' STO
{{out}}
<pre>
1: { 1 4 16 36 100 196 256 400 576 676 }
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">require 'prime'
 
p (1..Integer.sqrt(1000)).filter_map{|n| sqr = n*n; sqr if (sqr+1).prime? }</syntaxhighlight>
{{out}}
<pre>
[1, 4, 16, 36, 100, 196, 256, 400, 576, 676]
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">
use primes::is_prime ;
 
fn is_square( number : u64 ) -> bool {
let floor : u64 = (number as f64).sqrt( ).floor( ) as u64 ;
floor * floor == number
}
 
fn main() {
let solution : Vec<u64> = (1..1000).into_iter( ).
filter( | d | is_square( *d ) && is_prime( *d + 1 )).collect( ) ;
println!("{:?}" , solution);
}
</syntaxhighlight>
{{out}}<pre>
[1, 4, 16, 36, 100, 196, 256, 400, 576, 676]
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">1..1000.isqrt -> map { _**2 }.grep { is_prime(_+1) }.say</syntaxhighlight>
{{out}}
<pre>
[1, 4, 16, 36, 100, 196, 256, 400, 576, 676]
</pre>
 
=={{header|Tiny BASIC}}==
<langsyntaxhighlight lang="tinybasic"> PRINT 1
LET N = 2
LET M = 4
Line 626 ⟶ 1,267:
IF I*I < J THEN GOTO 30
LET P = 1
RETURN</langsyntaxhighlight>
{{out}}<pre>1
4
Line 637 ⟶ 1,278:
576
676</pre>
 
=={{header|VTL-2}}==
{{Trans|TinyBASIC}}
<syntaxhighlight lang="vtl2">
1000 ?=1
1010 N=2
1020 M=4
1030 J=M+1
1040 #=2000
1050 #=P=1=0*1080
1060 $=32
1070 ?=M
1080 N=N+2
1090 M=N*N
1100 #=M<1000*1030
1110 #=9999
2000 R=!
2010 P=0
2020 I=3
2030 #=J/I*0+%=0*R
2040 I=I+2
2050 #=I*I<J*2030
2060 P=1
2070 #=R
</syntaxhighlight>
{{out}}
<pre>
1 4 16 36 100 196 256 400 576 676
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-math}}
<langsyntaxhighlight ecmascriptlang="wren">import "./math" for Int
 
var squares = []
Line 651 ⟶ 1,321:
}
System.print("There are %(squares.count) square numbers 'n' where 'n+1' is prime, viz:")
System.print(squares)</langsyntaxhighlight>
 
{{out}}
Line 660 ⟶ 1,330:
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">func IsPrime(N); \Return 'true' if N is prime
int N, I;
[if N <= 2 then return N = 2;
Line 675 ⟶ 1,345:
if IsPrime(N*N+1) then
[IntOut(0, N*N); ChOut(0, ^ )];
]</langsyntaxhighlight>
 
{{out}}
2,016

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.