Faulhaber's formula: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 67: Line 67:


=={{header|Racket}}==
=={{header|Racket}}==

Racket will simplify rational numbers; if this code simplifies the expressions too much for your tastes (e.g. you like <code>1/1 * (n)</code>) then tweak the simplify... clauses to taste.


<lang racket>#lang racket/base
<lang racket>#lang racket/base

Revision as of 09:01, 11 January 2016

Faulhaber's formula is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.

Task

Generate the first 10 closed-form expressions, starting with p = 0.

See also


Perl 6

Works with: rakudo version 2015.12

<lang perl6>use experimental :cached;

sub bernoulli_number($n) is cached {

   return 1/2 if $n == 1;
   return 0/1 if $n % 2;
   my @A;
   for 0..$n -> $m {
       @A[$m] = 1 / ($m + 1);
       for $m, $m-1 ... 1 -> $j {
           @A[$j - 1] = $j * (@A[$j - 1] - @A[$j]);
       }
   }
   return @A[0];

}

sub binomial($n, $k) is cached {

   $k == 0 || $n == $k ?? 1 !! binomial($n-1, $k-1) + binomial($n-1, $k);

}

sub faulhaber_s_formula($p) {

   my @formula = gather for 0..$p -> $j {
       take '('
           ~ join('/', (binomial($p+1, $j) * bernoulli_number($j)).Rat.nude)
           ~ ")*n^{$p+1 - $j}";
   }
   my $formula = join(' + ', @formula.grep({!m{'(0/1)*'}}));
   $formula .= subst(rx{ '(1/1)*' }, , :g);
   $formula .= subst(rx{ '^1'» }, , :g);
   "1/{$p+1} * ($formula)";

}

for 0..9 -> $p {

   say "f($p) = ", faulhaber_s_formula($p);

}</lang>

Output:
f(0) = 1/1 * (n)
f(1) = 1/2 * (n^2 + n)
f(2) = 1/3 * (n^3 + (3/2)*n^2 + (1/2)*n)
f(3) = 1/4 * (n^4 + (2/1)*n^3 + n^2)
f(4) = 1/5 * (n^5 + (5/2)*n^4 + (5/3)*n^3 + (-1/6)*n)
f(5) = 1/6 * (n^6 + (3/1)*n^5 + (5/2)*n^4 + (-1/2)*n^2)
f(6) = 1/7 * (n^7 + (7/2)*n^6 + (7/2)*n^5 + (-7/6)*n^3 + (1/6)*n)
f(7) = 1/8 * (n^8 + (4/1)*n^7 + (14/3)*n^6 + (-7/3)*n^4 + (2/3)*n^2)
f(8) = 1/9 * (n^9 + (9/2)*n^8 + (6/1)*n^7 + (-21/5)*n^5 + (2/1)*n^3 + (-3/10)*n)
f(9) = 1/10 * (n^10 + (5/1)*n^9 + (15/2)*n^8 + (-7/1)*n^6 + (5/1)*n^4 + (-3/2)*n^2)

Racket

Racket will simplify rational numbers; if this code simplifies the expressions too much for your tastes (e.g. you like 1/1 * (n)) then tweak the simplify... clauses to taste.

<lang racket>#lang racket/base

(require racket/match

        racket/string
        math/number-theory)

(define simplify-arithmetic-expression

 (letrec ((s-a-e
           (match-lambda
             [(list (and op '+) l ... (list '+ m ...) r ...) (s-a-e `(,op ,@l ,@m ,@r))]
             [(list (and op '+) l ... (? number? n1) m ... (? number? n2) r ...) (s-a-e `(,op ,@l ,(+ n1 n2) ,@m ,@r))]
             [(list (and op '+) (app s-a-e l _) ... 0 (app s-a-e r _) ...) (s-a-e `(,op ,@l ,@r))]
             [(list (and op '+) (app s-a-e x _)) (values x #t)]
             [(list (and op '*) l ... (list '* m ...) r ...) (s-a-e `(,op ,@l ,@m ,@r))]
             [(list (and op '*) l ... (? number? n1) m ... (? number? n2) r ...) (s-a-e `(,op ,@l ,(* n1 n2) ,@m ,@r))]
             [(list (and op '*) (app s-a-e l _) ... 1 (app s-a-e r _) ...) (s-a-e `(,op ,@l ,@r))]
             [(list (and op '*) (app s-a-e l _) ... 0 (app s-a-e r _) ...) (values 0 #t)]
             [(list (and op '*) (app s-a-e x _)) (values x #t)]
             [(list 'expt (app s-a-e x x-simplified?) 1) (values x x-simplified?)]
             [(list op (app s-a-e a #f) ...) (values `(,op ,@a) #f)]
             [(list op (app s-a-e a _) ...) (s-a-e `(,op ,@a))]
             [e (values e #f)])))
   s-a-e))

(define (expression->infix-string e)

 (define (parenthesise-maybe s p?)
   (if p? (string-append "(" s ")") s))
 
 (letrec ((e->is
           (lambda (paren?)
             (match-lambda
               [(list (and op (or '+ '- '* '*)) (app (e->is #t) a p?) ...)
                (define bits (map parenthesise-maybe a p?))
                (define compound (string-join bits (format " ~a " op)))
                (values (if paren? (string-append "(" compound ")") compound) #f)]
               [(list 'expt (app (e->is #t) x xp?) (app (e->is #t) n np?))
                (values (format "~a^~a" (parenthesise-maybe x xp?) (parenthesise-maybe n np?)) #f)]                
               [(? number? (app number->string s)) (values s #f)]
               [(? symbol? (app symbol->string s)) (values s #f)]))))
   (define-values (str needs-parens?) ((e->is #f) e))
   str))

(define (faulhaber p)

 (define p+1 (add1 p))
 (define-values (simpler simplified?)
   (simplify-arithmetic-expression
    `(* ,(/ 1 p+1)
        (+ ,@(for/list ((j (in-range p+1)))
               `(* ,(* (expt -1 j)
                       (binomial p+1 j))
                   (* ,(bernoulli-number j)
                      (expt n ,(- p+1 j)))))))))
 simpler)

(for ((p (in-range 0 (add1 9))))

 (printf "f(~a) = ~a~%" p (expression->infix-string (faulhaber p))))

</lang>

Output:
f(0) = n
f(1) = 1/2 * (n^2 + n)
f(2) = 1/3 * (n^3 + (3/2 * n^2) + (1/2 * n))
f(3) = 1/4 * (n^4 + (2 * n^3) + n^2)
f(4) = 1/5 * (n^5 + (5/2 * n^4) + (5/3 * n^3) + (-1/6 * n))
f(5) = 1/6 * (n^6 + (3 * n^5) + (5/2 * n^4) + (-1/2 * n^2))
f(6) = 1/7 * (n^7 + (7/2 * n^6) + (7/2 * n^5) + (-7/6 * n^3) + (1/6 * n))
f(7) = 1/8 * (n^8 + (4 * n^7) + (14/3 * n^6) + (-7/3 * n^4) + (2/3 * n^2))
f(8) = 1/9 * (n^9 + (9/2 * n^8) + (6 * n^7) + (-21/5 * n^5) + (2 * n^3) + (-3/10 * n))
f(9) = 1/10 * (n^10 + (5 * n^9) + (15/2 * n^8) + (-7 * n^6) + (5 * n^4) + (-3/2 * n^2))

Sidef

<lang ruby>func bernoulli_number((1)) { 1/2 } func bernoulli_number({.is_odd}) { 0/1 }

func bernoulli_number(n) {

   var a = [];
   0.to(n).each { |m|
       a[m] = 1/(m + 1)
       m.downto(1).each { |j|
           a[j-1] = j*(a[j-1] - a[j])
       }
   }
   return a[0]

}

func faulhaber_s_formula(p) {

   var formula = gather {
       0.to(p).each { |j|
           take "(#{binomial(p+1, j) * bernoulli_number(j) -> as_rat})*n^#{p+1 - j}"
       }
   }
   formula.grep! { !.contains('(0)*') }.join!(' + ')
   formula -= /\(1\)\*/g
   formula -= /\^1\b/g
   "1/#{p + 1} * (#{formula})"

}

0.to(9).each { |p|

   printf("%2d: %s\n", p, faulhaber_s_formula(p))

}</lang>

Output:
f(0) = 1/1 * (n)
f(1) = 1/2 * (n^2 + n)
f(2) = 1/3 * (n^3 + (3/2)*n^2 + (1/2)*n)
f(3) = 1/4 * (n^4 + (2)*n^3 + n^2)
f(4) = 1/5 * (n^5 + (5/2)*n^4 + (5/3)*n^3 + (-1/6)*n)
f(5) = 1/6 * (n^6 + (3)*n^5 + (5/2)*n^4 + (-1/2)*n^2)
f(6) = 1/7 * (n^7 + (7/2)*n^6 + (7/2)*n^5 + (-7/6)*n^3 + (1/6)*n)
f(7) = 1/8 * (n^8 + (4)*n^7 + (14/3)*n^6 + (-7/3)*n^4 + (2/3)*n^2)
f(8) = 1/9 * (n^9 + (9/2)*n^8 + (6)*n^7 + (-21/5)*n^5 + (2)*n^3 + (-3/10)*n)
f(9) = 1/10 * (n^10 + (5)*n^9 + (15/2)*n^8 + (-7)*n^6 + (5)*n^4 + (-3/2)*n^2)