Elementary cellular automaton/Random number generator: Difference between revisions

From Rosetta Code
Content added Content deleted
(Added FreeBASIC)
 
(20 intermediate revisions by 12 users not shown)
Line 1: Line 1:
{{draft task}}
{{task}}
[[wp:Rule 30|Rule 30]] is considered to be chaotic enough to generate good pseudo-random numbers. As a matter of fact, rule 30 is used by the [[wp:Mathematica|Mathematica]] software for its default random number generator.
[[wp:Rule 30|Rule 30]] is considered to be chaotic enough to generate good pseudo-random numbers. As a matter of fact, for a long time rule 30 was used by the [[wp:Mathematica|Mathematica]] software for its default random number generator.


Steven Wolfram's recommendation for random number generation from rule 30 consists in extracting successive bits in a fixed position in the array of cells, as the automaton changes state.
Steven Wolfram's recommendation for random number generation from rule 30 consists in extracting successive bits in a fixed position in the array of cells, as the automaton changes state.
Line 12: Line 12:
;Reference:
;Reference:
* [http://www.cs.indiana.edu/~dgerman/2005midwestNKSconference/dgelbm.pdf Cellular automata: Is Rule 30 random]? (PDF).
* [http://www.cs.indiana.edu/~dgerman/2005midwestNKSconference/dgelbm.pdf Cellular automata: Is Rule 30 random]? (PDF).


=={{header|11l}}==
{{trans|Nim}}

<syntaxhighlight lang="11l">V n = 64

F pow2(x)
R UInt64(1) << x

F evolve(UInt64 =state; rule)
L 10
V b = UInt64(0)
L(q) (7 .. 0).step(-1)
V st = state
b [|]= (st [&] 1) << q
state = 0
L(i) 0 .< :n
V t = ((st >> (i - 1)) [|] (st << (:n + 1 - i))) [&] 7
I (rule [&] pow2(t)) != 0
state [|]= pow2(i)
print(‘ ’b, end' ‘’)
print()

evolve(1, 30)</syntaxhighlight>

{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>

=={{header|C}}==
=={{header|C}}==
64-bits array size, cyclic borders.
64-bits array size, cyclic borders.
<lang c>#include <stdio.h>
<syntaxhighlight lang="c">#include <stdio.h>
#include <limits.h>
#include <limits.h>


Line 44: Line 75:
evolve(1, 30);
evolve(1, 30);
return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
Line 50: Line 81:
=={{header|C++}}==
=={{header|C++}}==
We'll re-write the code of the parent task here.
We'll re-write the code of the parent task here.
<lang cpp>#include <bitset>
<syntaxhighlight lang="cpp">#include <bitset>
#include <stdio.h>
#include <stdio.h>


Line 87: Line 118:
printf("%u%c", byte(state), i ? ' ' : '\n');
printf("%u%c", byte(state), i ? ' ' : '\n');
return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
<pre>220 197 147 174 117 97 149 171 240 241</pre>
Line 94: Line 125:
{{trans|C}}
{{trans|C}}
Adapted from the C version, with improvements and bug fixes. Optimized for performance as requested in the task description. This is a lazy range.
Adapted from the C version, with improvements and bug fixes. Optimized for performance as requested in the task description. This is a lazy range.
<lang d>import std.stdio, std.range, std.typecons;
<syntaxhighlight lang="d">import std.stdio, std.range, std.typecons;


struct CellularRNG {
struct CellularRNG {
Line 145: Line 176:
CellularRNG(1, 30).take(10).writeln;
CellularRNG(1, 30).take(10).writeln;
CellularRNG(1, 30).drop(2_000_000).front.writeln;
CellularRNG(1, 30).drop(2_000_000).front.writeln;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>[220, 197, 147, 174, 117, 97, 149, 171, 100, 151]
<pre>[220, 197, 147, 174, 117, 97, 149, 171, 100, 151]
44</pre>
44</pre>
Run-time: less than two seconds with the ldc2 compiler.
Run-time: less than two seconds with the ldc2 compiler.

=={{header|FreeBASIC}}==
{{trans|Go}}
<syntaxhighlight lang="vbnet">Const n As Uinteger = 64

#define pow2(x) Culng(1) Shl x

Sub Evolve(state As Integer, rule As Integer)
Dim As Integer i, p, q
Dim As Ulongint b, st, t1, t2, t3
For p = 0 To 9
b = 0
For q = 7 To 0 Step -1
st = state
b Or= (st And 1) Shl q
state = 0
For i = 0 To n - 1
t1 = Iif(i > 0, st Shr (i - 1), st Shr 63)
Select Case i
Case 0: t2 = st Shl 1
Case 1: t2 = st Shl 63
Case Else: t2 = st Shl (n + 1 - i)
End Select
t3 = 7 And (t1 Or t2)
If (rule And pow2(t3)) <> 0 Then state Or= pow2(i)
Next i
Next q
Print Using "####"; b;
Next p
Print
End Sub

Evolve(1, 30)

Sleep</syntaxhighlight>
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>


=={{header|F_Sharp|F#}}==
=={{header|F_Sharp|F#}}==
This task uses [[Elementary cellular automaton#The_Function]]
This task uses [[Elementary cellular automaton#The_Function]]
<lang fsharp>
<syntaxhighlight lang="fsharp">
// Generate random numbers using Rule 30. Nigel Galloway: August 1st., 2019
// Generate random numbers using Rule 30. Nigel Galloway: August 1st., 2019
eca 30 [|yield 1; yield! Array.zeroCreate 99|]|>Seq.chunkBySize 8|>Seq.map(fun n->n|>Array.mapi(fun n g->g.[0]<<<(7-n))|>Array.sum)|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
eca 30 [|yield 1; yield! Array.zeroCreate 99|]|>Seq.chunkBySize 8|>Seq.map(fun n->n|>Array.mapi(fun n g->g.[0]<<<(7-n))|>Array.sum)|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 164: Line 233:
=={{header|Go}}==
=={{header|Go}}==
{{trans|C}}
{{trans|C}}
<lang go>package main
<syntaxhighlight lang="go">package main


import "fmt"
import "fmt"
Line 209: Line 278:
func main() {
func main() {
evolve(1, 30)
evolve(1, 30)
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 220: Line 289:
Assume the comonadic solution given at [[Elementary cellular automaton#Haskell]] is packed in a module <code>CellularAutomata</code>
Assume the comonadic solution given at [[Elementary cellular automaton#Haskell]] is packed in a module <code>CellularAutomata</code>


<lang Haskell>import CellularAutomata (runCA, rule, fromList)
<syntaxhighlight lang="haskell">import CellularAutomata (fromList, rule, runCA)
import Data.List (unfoldr)
import Control.Comonad
import Control.Comonad
import Data.List (unfoldr)


rnd = fromBits <$> unfoldr (pure . splitAt 8) bits
rnd = fromBits <$> unfoldr (pure . splitAt 8) bits
where size = 80
where
size = 80
bits = extract <$> runCA (rule 30) (fromList (1:replicate size 0))
bits =
extract
<$> runCA
(rule 30)
(fromList (1 : replicate size 0))


fromBits = foldl (\res x -> 2*res + x) 0</lang>
fromBits = foldl ((+) . (2 *)) 0</syntaxhighlight>


{{Out}}
{{Out}}
Line 236: Line 310:
Using the rule 30 CA it is possible to determine the <code>RandomGen</code> instance which could be utilized by the <code>Random</code> class:
Using the rule 30 CA it is possible to determine the <code>RandomGen</code> instance which could be utilized by the <code>Random</code> class:


<lang Haskell>import System.Random
<syntaxhighlight lang="haskell">import System.Random


instance RandomGen (Cycle Int) where
instance RandomGen (Cycle Int) where
next c =
next c = let x = c =>> step (rule 30) in (fromBits (view x), x)
split c = (c, fromList (reverse (view c)))</lang>
let x = c =>> step (rule 30)
in (fromBits (view x), x)
split = (,) <*> (fromList . reverse . view)</syntaxhighlight>


<pre>λ> let r30 = fromList [1,0,1,0,1,0,1,0,1,0,1,0,1] :: Cycle Int
<pre>λ> let r30 = fromList [1,0,1,0,1,0,1,0,1,0,1,0,1] :: Cycle Int
Line 262: Line 338:
=={{header|J}}==
=={{header|J}}==
ca is a cellular automata class. The rng class inherits ca and extends it with bit and byte verbs to sample the ca.
ca is a cellular automata class. The rng class inherits ca and extends it with bit and byte verbs to sample the ca.
<syntaxhighlight lang="j">
<lang J>
coclass'ca'
coclass'ca'
DOC =: 'locale creation: (RULE ; INITIAL_STATE) conew ''ca'''
DOC =: 'locale creation: (RULE ; INITIAL_STATE) conew ''ca'''
Line 274: Line 350:
byte =: [: #. [: , [: bit"0 (i.8)"_
byte =: [: #. [: , [: bit"0 (i.8)"_
coclass'base'
coclass'base'
</syntaxhighlight>
</lang>
Having installed these into a j session we create and use the mathematica prng.
Having installed these into a j session we create and use the mathematica prng.
<pre>
<pre>
m =: (30 ; 64 {. 1) conew 'rng'
m =: (30 ; 64 {. 1) conew 'rng'
byte__m"0 i.10
byte__m"0 i.10
220 197 147 174 117 97 149 171 100 151
</pre>

=={{header|Java}}==
<syntaxhighlight lang="java">
public class ElementaryCellularAutomatonRandomNumberGenerator {

public static void main(String[] aArgs) {
final int seed = 989898989;
evolve(seed, 30);
}
private static void evolve(int aState, int aRule) {
long state = aState;
for ( int i = 0; i <= 9; i++ ) {
int b = 0;
for ( int q = 7; q >= 0; q-- ) {
long stateCopy = state;
b |= ( stateCopy & 1 ) << q;
state = 0;
for ( int j = 0; j < BIT_COUNT; j++ ) {
long t = ( stateCopy >>> ( j - 1 ) ) | ( stateCopy << ( BIT_COUNT + 1 - j ) ) & 7;
if ( ( aRule & ( 1L << t ) ) != 0 ) {
state |= 1 << j;
}
}
}
System.out.print(" " + b);
}
System.out.println();
}
private static final int BIT_COUNT = 64;

}
</syntaxhighlight>
{{ out }}
<pre>
231 223 191 126 253 251 247 239 223 191
</pre>

=={{header|jq}}==
'''Works with jq and gojq, the C and Go implementations of jq'''

The following also works with jaq, the Rust implementation of jq, provided
the "include" directive is replaced with the set of definitions from
the parent task, and that a suitable alternative to 100*"0" is
presented.

<syntaxhighlight lang=jq>
include "elementary-cellular-automaton" {search : "."};

# If using jq, the def of _nwise can be omitted.
def _nwise($n):
def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
n;

# Input: an array of bits represented by 0s, 1s, "0"s, or "1"s
# Output: the corresponding decimal on the assumption that the leading bits are least significant,
# e.g. [0,1] => 2
def binary2number:
reduce (.[]|tonumber) as $x ({p:1}; .n += .p * $x | .p *= 2) | .n;
("1" + 100 * "0" ) | [automaton(30; 80) | .[0:1]] | [_nwise(8) | reverse | binary2number]
</syntaxhighlight>
{{output}}
<pre>
[220,197,147,174,117,97,149,171,240,241]
</pre>

=={{header|Julia}}==
{{trans|C, Go}}
<syntaxhighlight lang="julia">function evolve(state, rule, N=64)
B(x) = UInt64(1) << x
for p in 0:9
b = UInt64(0)
for q in 7:-1:0
st = UInt64(state)
b |= (st & 1) << q
state = UInt64(0)
for i in 0:N-1
t1 = (i > 0) ? st >> (i - 1) : st >> (N - 1)
t2 = (i == 0) ? st << 1 : (i == 1) ? st << (N - 1) : st << (N + 1 - i)
if UInt64(rule) & B(7 & (t1 | t2)) != 0
state |= B(i)
end
end
end
print("$b ")
end
println()
end

evolve(1, 30)
</syntaxhighlight>{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
220 197 147 174 117 97 149 171 100 151
</pre>
</pre>
Line 284: Line 456:
=={{header|Kotlin}}==
=={{header|Kotlin}}==
{{trans|C}}
{{trans|C}}
<lang scala>// version 1.1.51
<syntaxhighlight lang="scala">// version 1.1.51


const val N = 64
const val N = 64
Line 310: Line 482:
fun main(args: Array<String>) {
fun main(args: Array<String>) {
evolve(1, 30)
evolve(1, 30)
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 316: Line 488:
220 197 147 174 117 97 149 171 100 151
220 197 147 174 117 97 149 171 100 151
</pre>
</pre>

=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">FromDigits[#, 2] & /@ Partition[Flatten[CellularAutomaton[30, {{1}, 0}, {200, 0}]], 8]</syntaxhighlight>
{{out}}
<pre>{220, 197, 147, 174, 117, 97, 149, 171, 240, 241, 92, 18, 199, 27, 104, 8, 251, 167, 29, 112, 100, 103, 159, 129, 253}</pre>

=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">const N = 64

template pow2(x: uint): uint = 1u shl x

proc evolve(state: uint; rule: Positive) =
var state = state
for _ in 1..10:
var b = 0u
for q in countdown(7, 0):
let st = state
b = b or (st and 1) shl q
state = 0
for i in 0u..<N:
let t = (st shr (i - 1) or st shl (N + 1 - i)) and 7
if (rule.uint and pow2(t)) != 0: state = state or pow2(i)
stdout.write ' ', b
echo ""

evolve(1, 30)</syntaxhighlight>

{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>


=={{header|Pascal}}==
=={{header|Pascal}}==
{{Works with|Free Pascal}}
{{Works with|Free Pascal}}
Using ROR and ROL is as fast as assembler and more portable.<BR>[https://tio.run/##7VZdb@pGEH33r5iHSEAvYJsQ0kBTifBxawmwC6a9bVVFjr3AKmZtrZdwaZS/Xjq7iwPckOThvvQhSHx45szMmbPD7qZBFgZxZZaG263HkzkPljBexeTcahmmuRAibZomYdU1vacpiWhQTfjclE/miHwVtxMRCHIrI26PQpaBWKwTHkfVdRLPMGs1TJamzlxdiGVsPJ45/W6vD32v82QAPJ4Nk4hAl8Tpgj49nrUnw6Hb7YEz8nsDDXA93xk6f7Z9xx2BOyq3B@gwTenqILQ9cD6PIOVJeG0/YfreYNLTgW3P8//wetBxRxN30FPOUdfpPxmrjGQImWyyqaBx1jLChGUCLcvg6zhZsSiDa6j9YFuWpT5a6OLajq9rsNFiPAQczbo3LQg0YUqZaNTRO1uxUNCEwWciOt701qdL0oSdV2xSgrF@J11hNk7ChEcGHLx@oegqH5kGiUQ3oYv6Rq29izB80lwQIBAh07aMOzKnDI1BtpQ0u/6kI6OG7m86BXiCw18I9asq9d/lXvvLKwBFBwFdCVAFAdZULHTFKFFsOMlWMda/1l0WMcibliBbxHBeg0@6gZahwg25XiRacQIOo@JQxBZlMWVk38ChE5PbL1OcGMk8iRaGr1gZR4Q8lBlC96uUl0A/SOJHPNDuYYiyu@NfpSRFmcguSZdMpF2Db11HIyExRQV2x7JOCb7gD8kl7@N5UmQbOvZmg62OAkEfiMOE/H816pUbx4cwYIDDi3PKNij4nGaC8OydLnGsNy5T0@loy807fe@X0tqHgxYfwDSnjCcxCjyHgEWgtJYPL9cB7jawQMxRzqL@@Ul/laQwUj1oj7q61HsCv7EseUevSf5B5IPIB5H/LZHj0/S9nXN/AkxSQiJBMpHv@L5d9i3c8ZzRbgukTTjYUPMNcM2pIDErFp4TwCzhkMn6Gf2HQDKDQrlRLxfgjoqsUNL73@8BX8IqlTguQCSwDu6JNOCJh4A@pqBqu9zdH9RHxcaTcs0QbeVH5qm7lCRvyeCDi4Os@uKc3BXSlZ4vLq9U2Z8rLaXOiQK5Fsfw0qGrEG7CmGSQEg7SiQIXykXfrgirZD5TaFrN2mHYy@Xyg@w@XymqbkVkTviJZfEXBASCQSv/tga2XIndNW3Xukr0TUfN@ilyeWk1CL6aJNjxzNMU4KceXkvHP0s2nATRLrqK5zNec1MakwjkQU2F8cY8Nepqlox63XgpJ16Try4MI@/bgFrNAvvqEuw6vi/rYNuXAOr5Cp9tOWJgX9hGzs04JHNe@y4ydu3H6kXju9hst/@GsziYZ9uKe76tTB7@Aw Try it online!] counting CPU-Cycles 32 vs 31 on Ryzen Zen1 per Byte -> 100Mb/s
Using ROR and ROL is as fast as assembler and more portable.<BR>[https://tio.run/##7VZdb@pGEH33r5iHSEAvYJsQ0kBTifBxawmwC6a9bVVFjr3AKmZtrZdwaZS/Xjq7iwPckOThvvQhSHx45szMmbPD7qZBFgZxZZaG263HkzkPljBexeTcahmmuRAibZomYdU1vacpiWhQTfjclE/miHwVtxMRCHIrI26PQpaBWKwTHkfVdRLPMGs1TJamzlxdiGVsPJ45/W6vD32v82QAPJ4Nk4hAl8Tpgj49nrUnw6Hb7YEz8nsDDXA93xk6f7Z9xx2BOyq3B@gwTenqILQ9cD6PIOVJeG0/YfreYNLTgW3P8//wetBxRxN30FPOUdfpPxmrjGQImWyyqaBx1jLChGUCLcvg6zhZsSiDa6j9YFuWpT5a6OLajq9rsNFiPAQczbo3LQg0YUqZaNTRO1uxUNCEwWciOt701qdL0oSdV2xSgrF@J11hNk7ChEcGHLx@oegqH5kGiUQ3oYv6Rq29izB80lwQIBAh07aMOzKnDI1BtpQ0u/6kI6OG7m86BXiCw18I9asq9d/lXvvLKwBFBwFdCVAFAdZULHTFKFFsOMlWMda/1l0WMcibliBbxHBeg0@6gZahwg25XiRacQIOo@JQxBZlMWVk38ChE5PbL1OcGMk8iRaGr1gZR4Q8lBlC96uUl0A/SOJHPNDuYYiyu@NfpSRFmcguSZdMpF2Db11HIyExRQV2x7JOCb7gD8kl7@N5UmQbOvZmg62OAkEfiMOE/H816pUbx4cwYIDDi3PKNij4nGaC8OydLnGsNy5T0@loy807fe@X0tqHgxYfwDSnjCcxCjyHgEWgtJYPL9cB7jawQMxRzqL@@Ul/laQwUj1oj7q61HsCv7EseUevSf5B5IPIB5H/LZHj0/S9nXN/AkxSQiJBMpHv@L5d9i3c8ZzRbgukTTjYUPMNcM2pIDErFp4TwCzhkMn6Gf2HQDKDQrlRLxfgjoqsUNL73@8BX8IqlTguQCSwDu6JNOCJh4A@pqBqu9zdH9RHxcaTcs0QbeVH5qm7lCRvyeCDi4Os@uKc3BXSlZ4vLq9U2Z8rLaXOiQK5Fsfw0qGrEG7CmGSQEg7SiQIXykXfrgirZD5TaFrN2mHYy@Xyg@w@XymqbkVkTviJZfEXBASCQSv/tga2XIndNW3Xukr0TUfN@ilyeWk1CL6aJNjxzNMU4KceXkvHP0s2nATRLrqK5zNec1MakwjkQU2F8cY8Nepqlox63XgpJ16Try4MI@/bgFrNAvvqEuw6vi/rYNuXAOr5Cp9tOWJgX9hGzs04JHNe@y4ydu3H6kXju9hst/@GsziYZ9uKe76tTB7@Aw Try it online!] counting CPU-Cycles 32 vs 31 on Ryzen Zen1 per Byte -> 100Mb/s
<lang pascal>Program Rule30;
<syntaxhighlight lang="pascal">Program Rule30;
//http://en.wikipedia.org/wiki/Next_State_Rule_30;
//http://en.wikipedia.org/wiki/Next_State_Rule_30;
//http://mathworld.wolfram.com/Rule30.html
//http://mathworld.wolfram.com/Rule30.html
Line 459: Line 661:
Task;
Task;
write(' <ENTER> ');readln;
write(' <ENTER> ');readln;
end.</lang>
end.</syntaxhighlight>
{{out}}
{{out}}
<pre>//compiled 64-Bit
<pre>//compiled 64-Bit
Line 480: Line 682:


=={{header|Perl}}==
=={{header|Perl}}==
{{trans|Perl 6}}
{{trans|Raku}}
<lang perl>package Automaton {
<syntaxhighlight lang="perl">package Automaton {
sub new {
sub new {
my $class = shift;
my $class = shift;
Line 517: Line 719:
}
}
print $sum, $n == 10 ? "\n" : " ";
print $sum, $n == 10 ? "\n" : " ";
}</lang>
}</syntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>

=={{header|Perl 6}}==
<lang perl6>class Automaton {
has $.rule;
has @.cells;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
method gist { "|{ @!cells.map({+$_ ?? '#' !! ' '}).join }|" }
method succ {
self.new: :$!rule, :@!code, :cells(
@!code[
4 «*« @!cells.rotate(-1)
»+« 2 «*« @!cells
»+« @!cells.rotate(1)
]
)
}
}

my Automaton $a .= new: :rule(30), :cells( flat 1, 0 xx 100 );

say :2[$a++.cells[0] xx 8] xx 10;</lang>
{{out}}
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
<pre>220 197 147 174 117 97 149 171 240 241</pre>
Line 550: Line 727:
and with the changes marked [2] C++, Haskell, Perl, Python, Ruby, Scheme, and Sidef, but completely different to Rust and Tcl.
and with the changes marked [2] C++, Haskell, Perl, Python, Ruby, Scheme, and Sidef, but completely different to Rust and Tcl.
No attempt to optimise.
No attempt to optimise.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>--string s = ".........#.........", --(original)
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
string s = "...............................#"&
"................................",
<span style="color: #000080;font-style:italic;">--string s = ".........#.........", --(original)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"...............................#"</span><span style="color: #0000FF;">&</span>
--string s = "#"&repeat('.',100), -- [2]
<span style="color: #008000;">"................................"</span><span style="color: #0000FF;">,</span>
t=s, r = "........"
<span style="color: #000080;font-style:italic;">--string s = "#"&repeat('.',100), -- [2]</span>
integer rule = 30, k, l = length(s), w = 0
<span style="color: #000000;">t</span><span style="color: #0000FF;">=</span><span style="color: #000000;">s</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"........"</span>
for i=1 to 8 do
<span style="color: #004080;">integer</span> <span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">30</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">w</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
r[i] = iff(mod(rule,2)?'#':'.')
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">8</span> <span style="color: #008080;">do</span>
rule = floor(rule/2)
<span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)?</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">)</span>
end for
<span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
sequence res = {}
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
for i=0 to 80 do
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
w = w*2 + (s[32]='#')
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">80</span> <span style="color: #008080;">do</span>
-- w = w*2 + (s[1]='#') -- [2]
<span style="color: #000000;">w</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">w</span><span style="color: #0000FF;">*</span><span style="color: #000000;">2</span> <span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">32</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)</span>
if mod(i+1,8)=0 then res&=w w=0 end if
<span style="color: #000080;font-style:italic;">-- w = w*2 + (s[1]='#') -- [2]</span>
for j=1 to l do
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">8</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">&=</span><span style="color: #000000;">w</span> <span style="color: #000000;">w</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
k = (s[iff(j=1?l:j-1)]='#')*4
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">l</span> <span style="color: #008080;">do</span>
+ (s[ j ]='#')*2
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">?</span><span style="color: #000000;">l</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">4</span>
+ (s[iff(j=l?1:j+1)]='#')+1
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">2</span>
t[j] = r[k]
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">l</span><span style="color: #0000FF;">?</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span>
end for
<span style="color: #000000;">t</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]</span>
s = t
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end for
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">t</span>
?res</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
{{out}}
<pre>
<pre>
Line 586: Line 766:
=={{header|Python}}==
=={{header|Python}}==
===Python: With zero padded ends===
===Python: With zero padded ends===
<lang python>from elementary_cellular_automaton import eca, eca_wrap
<syntaxhighlight lang="python">from elementary_cellular_automaton import eca, eca_wrap


def rule30bytes(lencells=100):
def rule30bytes(lencells=100):
Line 595: Line 775:


if __name__ == '__main__':
if __name__ == '__main__':
print([b for i,b in zip(range(10), rule30bytes())])</lang>
print([b for i,b in zip(range(10), rule30bytes())])</syntaxhighlight>


{{out}}
{{out}}
Line 602: Line 782:


===Python: With wrapping of end cells===
===Python: With wrapping of end cells===
<lang python>def rule30bytes(lencells=100):
<syntaxhighlight lang="python">def rule30bytes(lencells=100):
cells = '1' + '0' * (lencells - 1)
cells = '1' + '0' * (lencells - 1)
gen = eca_wrap(cells, 30)
gen = eca_wrap(cells, 30)
while True:
while True:
yield int(''.join(next(gen)[0] for i in range(8)), 2))</lang>
yield int(''.join(next(gen)[0] for i in range(8)), 2))</syntaxhighlight>


{{out}}
{{out}}
Line 615: Line 795:
Implementation of [[Elementary cellular automaton]] is saved in "Elementary_cellular_automata.rkt"
Implementation of [[Elementary cellular automaton]] is saved in "Elementary_cellular_automata.rkt"


<lang racket>#lang racket
<syntaxhighlight lang="racket">#lang racket
;; below is the code from the parent task
;; below is the code from the parent task
(require "Elementary_cellular_automata.rkt")
(require "Elementary_cellular_automata.rkt")
Line 654: Line 834:
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16))</lang>
(number->string (C30-rand-64 256) 16))</syntaxhighlight>


{{out}}
{{out}}
Line 663: Line 843:
"6d85153a987dad6f013bc6159a41bf95b9d9b14af87733e17c702a3dc9052172"
"6d85153a987dad6f013bc6159a41bf95b9d9b14af87733e17c702a3dc9052172"
"fc6fd302f5ea8f2fba6f476cfe9d090dc877dbd558e5afba49044d05b14d258"</pre>
"fc6fd302f5ea8f2fba6f476cfe9d090dc877dbd558e5afba49044d05b14d258"</pre>

=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>class Automaton {
has $.rule;
has @.cells handles <AT-POS>;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
method gist { "|{ @!cells.map({+$_ ?? '#' !! ' '}).join }|" }
method succ {
self.new: :$!rule, :@!code, :cells(
@!code[
4 «*« @!cells.rotate(-1)
»+« 2 «*« @!cells
»+« @!cells.rotate(1)
]
)
}
}

my Automaton $a .= new: :rule(30), :cells( flat 1, 0 xx 100 );

say :2[$a++[0] xx 8] xx 10;</syntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>


=={{header|Ruby}}==
=={{header|Ruby}}==
<lang ruby>size = 100
<syntaxhighlight lang="ruby">size = 100
eca = ElemCellAutomat.new("1"+"0"*(size-1), 30)
eca = ElemCellAutomat.new("1"+"0"*(size-1), 30)
eca.take(80).map{|line| line[0]}.each_slice(8){|bin| p bin.join.to_i(2)}</lang>
eca.take(80).map{|line| line[0]}.each_slice(8){|bin| p bin.join.to_i(2)}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 681: Line 887:
241
241
</pre>
</pre>

=={{header|Rust}}==
=={{header|Rust}}==
<lang rust>
<syntaxhighlight lang="rust">
//Assuming the code from the Elementary cellular automaton task is in the namespace.
//Assuming the code from the Elementary cellular automaton task is in the namespace.
fn main() {
fn main() {
Line 704: Line 911:
}
}
}
}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
157 209 228 58 87 195 212 106 147 244
157 209 228 58 87 195 212 106 147 244
</pre>
</pre>

=={{header|Scheme}}==
=={{header|Scheme}}==
<lang scheme>
<syntaxhighlight lang="scheme">
; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html
; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html


Line 730: Line 938:


(random-r30 10)
(random-r30 10)
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 739: Line 947:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>var auto = Automaton(30, [1] + 100.of(0));
<syntaxhighlight lang="ruby">var auto = Automaton(30, [1] + 100.of(0));


10.times {
10.times {
Line 748: Line 956:
};
};
say sum;
say sum;
};</lang>
};</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 765: Line 973:
=={{header|Tcl}}==
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
{{works with|Tcl|8.6}}
<lang tcl>oo::class create RandomGenerator {
<syntaxhighlight lang="tcl">oo::class create RandomGenerator {
superclass ElementaryAutomaton
superclass ElementaryAutomaton
variable s
variable s
Line 781: Line 989:
return [scan [join $bits ""] %b]
return [scan [join $bits ""] %b]
}
}
}</lang>
}</syntaxhighlight>
Demonstrating:
Demonstrating:
<lang tcl>set rng [RandomGenerator new 31]
<syntaxhighlight lang="tcl">set rng [RandomGenerator new 31]
for {set r {}} {[llength $r]<10} {} {
for {set r {}} {[llength $r]<10} {} {
lappend r [$rng rand]
lappend r [$rng rand]
}
}
puts [join $r ,]</lang>
puts [join $r ,]</syntaxhighlight>
{{out}}
{{out}}
220,197,147,174,241,126,135,130,143,234
220,197,147,174,241,126,135,130,143,234
Note that as the number of state bits is increased (the parameter to the constructor), the sequence tends to a limit of <math>220,</math> <math>197,</math> <math>147,</math> <math>174,</math> <math>117,</math> <math>97,</math> <math>149,</math> <math>171,</math> <math>240,</math> <math>241,</math> <math>\ldots</math> and that deviations from this are due to interactions between the state modification “wavefront” as the automaton wraps round.
Note that as the number of state bits is increased (the parameter to the constructor), the sequence tends to a limit of <math>220,</math> <math>197,</math> <math>147,</math> <math>174,</math> <math>117,</math> <math>97,</math> <math>149,</math> <math>171,</math> <math>240,</math> <math>241,</math> <math>\ldots</math> and that deviations from this are due to interactions between the state modification “wavefront” as the automaton wraps round.

=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-big}}
As Wren cannot deal accurately with 64-bit unsigned integers and bit-wise operations thereon, we need to use BigInt here.
<syntaxhighlight lang="wren">import "./big" for BigInt

var n = 64

var pow2 = Fn.new { |x| BigInt.one << x }

var evolve = Fn.new { |state, rule|
for (p in 0..9) {
var b = BigInt.zero
for (q in 7..0) {
var st = state.copy()
b = b | ((st & 1) << q)
state = BigInt.zero
for (i in 0...n) {
var t1 = (i > 0) ? st >> (i-1) : st >> 63
var t2 = (i == 0) ? st << 1 : (i == 1) ? st << 63 : st << (n+1-i)
var t3 = (t1 | t2) & 7
if ((pow2.call(t3) & rule) != BigInt.zero) state = state | pow2.call(i)
}
}
System.write(" %(b)")
}
System.print()
}

evolve.call(BigInt.one, 30)</syntaxhighlight>

{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>


=={{header|zkl}}==
=={{header|zkl}}==
No attempts at extra credit and not fast.
No attempts at extra credit and not fast.
<lang zkl>fcn rule(n){ n=n.toString(2); "00000000"[n.len() - 8,*] + n }
<syntaxhighlight lang="zkl">fcn rule(n){ n=n.toString(2); "00000000"[n.len() - 8,*] + n }
fcn applyRule(rule,cells){
fcn applyRule(rule,cells){
cells=String(cells[-1],cells,cells[0]); // wrap edges
cells=String(cells[-1],cells,cells[0]); // wrap edges
Line 807: Line 1,051:
}
}
n
n
}</lang>
}</syntaxhighlight>
Note that "var" in a function is "static" in C, ie function local variables, initialized once.
Note that "var" in a function is "static" in C, ie function local variables, initialized once.
<lang zkl>do(10){ rand30().print(","); }</lang>
<syntaxhighlight lang="zkl">do(10){ rand30().print(","); }</syntaxhighlight>
{{out}}
{{out}}
<pre>220,197,147,174,117,97,149,171,100,151,</pre>
<pre>220,197,147,174,117,97,149,171,100,151,</pre>

Latest revision as of 09:10, 17 March 2024

Task
Elementary cellular automaton/Random number generator
You are encouraged to solve this task according to the task description, using any language you may know.

Rule 30 is considered to be chaotic enough to generate good pseudo-random numbers. As a matter of fact, for a long time rule 30 was used by the Mathematica software for its default random number generator.

Steven Wolfram's recommendation for random number generation from rule 30 consists in extracting successive bits in a fixed position in the array of cells, as the automaton changes state.

The purpose of this task is to demonstrate this. With the code written in the parent task, which you don't need to re-write here, show the ten first bytes that emerge from this recommendation. To be precise, you will start with a state of all cells but one equal to zero, and you'll follow the evolution of the particular cell whose state was initially one. Then you'll regroup those bits by packets of eight, reconstituting bytes with the first bit being the most significant.

You can pick which ever length you want for the initial array but it should be visible in the code so that your output can be reproduced with an other language.

For extra-credits, you will make this algorithm run as fast as possible in your language, for instance with an extensive use of bitwise logic.

Reference


11l

Translation of: Nim
V n = 64

F pow2(x)
   R UInt64(1) << x

F evolve(UInt64 =state; rule)
   L 10
      V b = UInt64(0)
      L(q) (7 .. 0).step(-1)
         V st = state
         b [|]= (st [&] 1) << q
         state = 0
         L(i) 0 .< :n
            V t = ((st >> (i - 1)) [|] (st << (:n + 1 - i))) [&] 7
            I (rule [&] pow2(t)) != 0
               state [|]= pow2(i)
      print(‘ ’b, end' ‘’)
   print()

evolve(1, 30)
Output:
 220 197 147 174 117 97 149 171 100 151

C

64-bits array size, cyclic borders.

#include <stdio.h>
#include <limits.h>

typedef unsigned long long ull;
#define N (sizeof(ull) * CHAR_BIT)
#define B(x) (1ULL << (x))

void evolve(ull state, int rule)
{
	int i, p, q, b;

	for (p = 0; p < 10; p++) {
		for (b = 0, q = 8; q--; ) {
			ull st = state;
			b |= (st&1) << q;

			for (state = i = 0; i < N; i++)
				if (rule & B(7 & (st>>(i-1) | st<<(N+1-i))))
					state |= B(i);
		}
		printf(" %d", b);
	}
	putchar('\n');
	return;
}

int main(void)
{
	evolve(1, 30);
	return 0;
}
Output:
 220 197 147 174 117 97 149 171 100 151

C++

We'll re-write the code of the parent task here.

#include <bitset>
#include <stdio.h>

#define SIZE	           80
#define RULE               30
#define RULE_TEST(x)       (RULE & 1 << (7 & (x)))

void evolve(std::bitset<SIZE> &s) {
    int i;
    std::bitset<SIZE> t(0);
    t[SIZE-1] = RULE_TEST( s[0] << 2 | s[SIZE-1] << 1 | s[SIZE-2] );
    t[     0] = RULE_TEST( s[1] << 2 | s[     0] << 1 | s[SIZE-1] );
    for (i = 1; i < SIZE-1; i++)
	t[i] = RULE_TEST( s[i+1] << 2 | s[i] << 1 | s[i-1] );
    for (i = 0; i < SIZE; i++) s[i] = t[i];
}
void show(std::bitset<SIZE> s) {
    int i;
    for (i = SIZE; i--; ) printf("%c", s[i] ? '#' : ' ');
    printf("|\n");
}
unsigned char byte(std::bitset<SIZE> &s) {
    unsigned char b = 0;
    int i;
    for (i=8; i--; ) {
	b |= s[0] << i; 
	evolve(s);
    }
    return b;
}

int main() {
    int i;
    std::bitset<SIZE> state(1);
    for (i=10; i--; )
	printf("%u%c", byte(state), i ? ' ' : '\n');
    return 0;
}
Output:
220 197 147 174 117 97 149 171 240 241

D

Translation of: C

Adapted from the C version, with improvements and bug fixes. Optimized for performance as requested in the task description. This is a lazy range.

import std.stdio, std.range, std.typecons;

struct CellularRNG {
    private uint current;
    private immutable uint rule;
    private ulong state;

    this(in ulong state_, in uint rule_) pure nothrow @safe @nogc {
        this.state = state_;
        this.rule = rule_;
        popFront;
    }

    public enum bool empty = false;
    @property uint front() pure nothrow @safe @nogc { return current; }

    void popFront() pure nothrow @safe @nogc {
        enum uint nBit = 8;
        enum uint NU = ulong.sizeof * nBit;
        current = 0;

        foreach_reverse (immutable i; 0 .. nBit) {
            immutable state2 = state;
            current |= (state2 & 1) << i;

            state = 0;
            /*static*/ foreach (immutable j; staticIota!(0, NU)) {
                // To avoid undefined behavior with out-of-range shifts.
                static if (j > 0)
                    immutable aux1 = state2 >> (j - 1);
                else
                    immutable aux1 = state2 >> 63;

                static if (j == 0)
                    immutable aux2 = state2 << 1;
                else static if (j == 1)
                    immutable aux2 = state2 << 63;
                else
                    immutable aux2 = state2 << (NU + 1 - j);

                immutable aux = 7 & (aux1 | aux2);
                if (rule & (1UL << aux))
                    state |= 1UL << j;
            }
        }
    }
}

void main() {
    CellularRNG(1, 30).take(10).writeln;
    CellularRNG(1, 30).drop(2_000_000).front.writeln;
}
Output:
[220, 197, 147, 174, 117, 97, 149, 171, 100, 151]
44

Run-time: less than two seconds with the ldc2 compiler.

FreeBASIC

Translation of: Go
Const n As Uinteger = 64

#define  pow2(x) Culng(1) Shl x

Sub Evolve(state As Integer, rule As Integer)
    Dim As Integer i, p, q
    Dim As Ulongint b, st, t1, t2, t3
    
    For p = 0 To 9
        b = 0
        For q = 7 To 0 Step -1
            st = state
            b Or= (st And 1) Shl q
            state = 0
            For i = 0 To n - 1
                t1 = Iif(i > 0, st Shr (i - 1), st Shr 63)
                Select Case i
                Case 0: t2 = st Shl 1
                Case 1: t2 = st Shl 63
                Case Else: t2 = st Shl (n + 1 - i)
                End Select
                t3 = 7 And (t1 Or t2)
                If (rule And pow2(t3)) <> 0 Then state Or= pow2(i)
            Next i
        Next q
        Print Using "####"; b;
    Next p
    Print
End Sub

Evolve(1, 30)

Sleep
Output:
 220 197 147 174 117  97 149 171 100 151

F#

This task uses Elementary cellular automaton#The_Function

// Generate random numbers using Rule 30. Nigel Galloway: August 1st., 2019
eca 30 [|yield 1; yield! Array.zeroCreate 99|]|>Seq.chunkBySize 8|>Seq.map(fun n->n|>Array.mapi(fun n g->g.[0]<<<(7-n))|>Array.sum)|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
Output:
220 197 147 174 117 97 149 171 240 241

Go

Translation of: C
package main

import "fmt"

const n = 64

func pow2(x uint) uint64 {
    return uint64(1) << x
}

func evolve(state uint64, rule int) {
    for p := 0; p < 10; p++ {
        b := uint64(0)
        for q := 7; q >= 0; q-- {
            st := state
            b |= (st & 1) << uint(q)
            state = 0
            for i := uint(0); i < n; i++ {
                var t1, t2, t3 uint64
                if i > 0 {
                    t1 = st >> (i - 1)
                } else {
                    t1 = st >> 63
                }
                if i == 0 {
                    t2 = st << 1
                } else if i == 1 {
                    t2 = st << 63

                } else {
                    t2 = st << (n + 1 - i)
                }
                t3 = 7 & (t1 | t2)
                if (uint64(rule) & pow2(uint(t3))) != 0 {
                    state |= pow2(i)
                }
            }
        }
        fmt.Printf("%d ", b)
    }
    fmt.Println()
}

func main() {
    evolve(1, 30)
}
Output:
220 197 147 174 117 97 149 171 100 151 

Haskell

Assume the comonadic solution given at Elementary cellular automaton#Haskell is packed in a module CellularAutomata

import CellularAutomata (fromList, rule, runCA)
import Control.Comonad
import Data.List (unfoldr)

rnd = fromBits <$> unfoldr (pure . splitAt 8) bits
  where
    size = 80
    bits =
      extract
        <$> runCA
          (rule 30)
          (fromList (1 : replicate size 0))

fromBits = foldl ((+) . (2 *)) 0
Output:
λ> take 10 rnd
[220,197,147,174,117,97,149,171,240,241]

Using the rule 30 CA it is possible to determine the RandomGen instance which could be utilized by the Random class:

import System.Random

instance RandomGen (Cycle Int) where
  next c =
    let x = c =>> step (rule 30)
     in (fromBits (view x), x)
  split = (,) <*> (fromList . reverse . view)
λ> let r30 = fromList [1,0,1,0,1,0,1,0,1,0,1,0,1] :: Cycle Int

λ> take 15 $ randoms r30
[7509,4949,2517,2229,2365,2067,6753,5662,5609,7576,2885,3017,2912,5081,2356]

λ> take 30 $ randomRs ('A','J') r30
"DHJHHFJHBDDFCBHACHDEHDHFBAEJFE"

We can compare it with standard generator on a small integer range, using simple bin counter:

λ> let bins lst = [ (n, length (filter (==n) lst)) | n <- nub lst]

λ> bins . take 10000 . randomRs ('A','J') $ r30
[('D',1098),('H',1097),('J',1093),('F',850),('B',848),('C',1014),('A',1012),('E',1011),('G',1253),('I',724)]

λ> bins . take 10000 . randomRs ('A','J') <$> getStdGen
[('G',975),('B',1035),('F',970),('J',1034),('I',956),('H',984),('C',1009),('E',1023),('A',1009),('D',1005)]

J

ca is a cellular automata class. The rng class inherits ca and extends it with bit and byte verbs to sample the ca.

coclass'ca'
DOC =: 'locale creation: (RULE ; INITIAL_STATE) conew ''ca'''
create =: 3 :'''RULE STATE'' =: y'
next =: 3 :'STATE =: RULE (((8$2) #: [) {~ [: #. [: -. [: |: |.~"1 0&_1 0 1@]) STATE'
coclass'base'

coclass'rng'
coinsert'ca'
bit =: 3 :'([ next) ({. STATE)'
byte =: [: #. [: , [: bit"0 (i.8)"_
coclass'base'

Having installed these into a j session we create and use the mathematica prng.

                    
   m =: (30 ; 64 {. 1) conew 'rng'
   byte__m"0 i.10
220 197 147 174 117 97 149 171 100 151

Java

public class ElementaryCellularAutomatonRandomNumberGenerator {

	public static void main(String[] aArgs) {
		final int seed = 989898989;
		evolve(seed, 30);
	}
	
	private static void evolve(int aState, int aRule) {
		long state = aState;
	    for ( int i = 0; i <= 9; i++ ) {
	        int b = 0;
	        for ( int q = 7; q >= 0; q-- ) {
	            long stateCopy = state;
	            b |= ( stateCopy & 1 ) << q;
	            state = 0;
	            for ( int j = 0; j < BIT_COUNT; j++ ) {
	                long t = ( stateCopy >>> ( j - 1 ) ) | ( stateCopy << ( BIT_COUNT + 1 - j ) ) & 7;
	                if ( ( aRule & ( 1L << t ) ) != 0 ) {
	                	state |= 1 << j;
	                }
	            }
	        }
	        System.out.print(" " + b);
	    }
	    System.out.println();
	}
	
	private static final int BIT_COUNT = 64;

}
Output:
 231 223 191 126 253 251 247 239 223 191

jq

Works with jq and gojq, the C and Go implementations of jq

The following also works with jaq, the Rust implementation of jq, provided the "include" directive is replaced with the set of definitions from the parent task, and that a suitable alternative to 100*"0" is presented.

include "elementary-cellular-automaton" {search : "."};

# If using jq, the def of _nwise can be omitted.
def _nwise($n):
  def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
  n;

# Input: an array of bits represented by 0s, 1s, "0"s, or "1"s
# Output: the corresponding decimal on the assumption that the leading bits are least significant,
# e.g. [0,1] => 2
def binary2number:
  reduce (.[]|tonumber) as $x ({p:1}; .n += .p * $x | .p *= 2) | .n;
  
("1" + 100 * "0" ) | [automaton(30; 80) | .[0:1]] | [_nwise(8) | reverse | binary2number]
Output:
[220,197,147,174,117,97,149,171,240,241]

Julia

Translation of: C, Go
function evolve(state, rule, N=64)
    B(x) = UInt64(1) << x
    for p in 0:9
        b = UInt64(0)
        for q in 7:-1:0
            st = UInt64(state)
            b |= (st & 1) << q
            state = UInt64(0)
            for i in 0:N-1
                t1 = (i > 0) ? st >> (i - 1) : st >> (N - 1)
                t2 = (i == 0) ? st << 1 : (i == 1) ? st << (N - 1) : st << (N + 1 - i)
                if UInt64(rule) & B(7 & (t1 | t2)) != 0
                    state |= B(i)
                end
            end
        end
        print("$b ")
    end
    println()
end

evolve(1, 30)
Output:
220 197 147 174 117 97 149 171 100 151

Kotlin

Translation of: C
// version 1.1.51

const val N = 64

fun pow2(x: Int) = 1L shl x

fun evolve(state: Long, rule: Int) {
    var state2 = state
    for (p in 0..9) {
        var b = 0
        for (q in 7 downTo 0) {
            val st = state2
            b = (b.toLong() or ((st and 1L) shl q)).toInt()
            state2 = 0L
            for (i in 0 until N) {
                val t = ((st ushr (i - 1)) or (st shl (N + 1 - i)) and 7L).toInt()
                if ((rule.toLong() and pow2(t)) != 0L) state2 = state2 or pow2(i)
            }
        }
        print(" $b")
    }
    println()
}

fun main(args: Array<String>) {
    evolve(1, 30)
}
Output:
 220 197 147 174 117 97 149 171 100 151

Mathematica / Wolfram Language

FromDigits[#, 2] & /@ Partition[Flatten[CellularAutomaton[30, {{1}, 0}, {200, 0}]], 8]
Output:
{220, 197, 147, 174, 117, 97, 149, 171, 240, 241, 92, 18, 199, 27, 104, 8, 251, 167, 29, 112, 100, 103, 159, 129, 253}

Nim

Translation of: Kotlin
const N = 64

template pow2(x: uint): uint = 1u shl x

proc evolve(state: uint; rule: Positive) =
  var state = state
  for _ in 1..10:
    var b = 0u
    for q in countdown(7, 0):
      let st = state
      b = b or (st and 1) shl q
      state = 0
      for i in 0u..<N:
        let t = (st shr (i - 1) or st shl (N + 1 - i)) and 7
        if (rule.uint and pow2(t)) != 0: state = state or pow2(i)
    stdout.write ' ', b
  echo ""

evolve(1, 30)
Output:
 220 197 147 174 117 97 149 171 100 151

Pascal

Works with: Free Pascal

Using ROR and ROL is as fast as assembler and more portable.
Try it online! counting CPU-Cycles 32 vs 31 on Ryzen Zen1 per Byte -> 100Mb/s

Program Rule30;
//http://en.wikipedia.org/wiki/Next_State_Rule_30;
//http://mathworld.wolfram.com/Rule30.html
{$IFDEF FPC}
  {$Mode Delphi}{$ASMMODE INTEL}
  {$OPTIMIZATION ON,ALL}
//  {$CODEALIGN proc=1}
{$ELSE}
  {$APPTYPE CONSOLE}
{$ENDIF}
uses
  SysUtils;
const
  maxRounds = 2*1000*1000;
  rounds    = 10;

var
  Rule30_State : Uint64;

function GetCPU_Time: int64;
type
  TCpu = record
            HiCpu,
            LoCpu : Dword;
         end;
var
  Cput : TCpu;
begin
  asm
  RDTSC;
  MOV Dword Ptr [CpuT.LoCpu],EAX
  MOV Dword Ptr [CpuT.HiCpu],EDX
  end;
  with Cput do
    result := int64(HiCPU) shl 32 + LoCpu;
end;

procedure InitRule30_State;inline;
begin
  Rule30_State:= 1;
end;

procedure Next_State_Rule_30;inline;
var
  run, prev,next: Uint64;
begin
  run  := Rule30_State;
  Prev := RORQword(run,1);
  next := ROLQword(run,1);
  Rule30_State  := (next OR run) XOR prev;
end;

function NextRule30Byte:NativeInt;
//64-BIT can use many registers
//32-Bit still fast
var
  run, prev,next: Uint64;
  myOne : UInt64;
Begin
  run  := Rule30_State;
  result := 0;
  myOne  := 1;
  //Unrolling and inlining Next_State_Rule_30 by hand
  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  run  := (next OR run) XOR prev;

  result := (result+result) OR (run AND myOne);
  next := ROLQword(run,1);
  Prev := RORQword(run,1);
  Rule30_State := (next OR run) XOR prev;
end;

procedure Speedtest;
var
  T1,T0 : INt64;
  i: NativeInt;
Begin
  writeln('Speedtest for statesize of ',64,' bits');
  //Warm up start to wake up CPU takes some time
  For i := 100*1000*1000-1 downto 0 do
    Next_State_Rule_30;

  T0 := GetCPU_Time;
  InitRule30_State;
  For  i := maxRounds-1 downto 0 do
    NextRule30Byte;
  T1 := GetCPU_Time;
  writeln(NextRule30Byte);
  writeln('cycles per Byte : ',(T1-t0)/maxRounds:0:2);
  writeln;
end;

procedure Task;
var
  i: integer;
Begin
  writeln('The task ');
  InitRule30_State;
  For  i := 1 to rounds do
    write(NextRule30Byte:4);
  writeln;
end;

Begin
  SpeedTest;
  Task;
  write(' <ENTER> ');readln;
end.
Output:
//compiled 64-Bit
Speedtest for statesize of 64 bits
44
cycles per Byte : 30.95

The task
 220 197 147 174 117  97 149 171 100 151
 <ENTER>

//compiled 32-Bit
Speedtest for statesize of 64 bits
44
cycles per Byte : 128.56

The task
 220 197 147 174 117  97 149 171 100 151
 <ENTER>

Perl

Translation of: Raku
package Automaton {
    sub new {
    my $class = shift;
    my $rule = [ reverse split //, sprintf "%08b", shift ];
    return bless { rule => $rule, cells => [ @_ ] }, $class;
    }
    sub next {
    my $this = shift;
    my @previous = @{$this->{cells}};
    $this->{cells} = [
        @{$this->{rule}}[
        map {
          4*$previous[($_ - 1) % @previous]
        + 2*$previous[$_]
        +   $previous[($_ + 1) % @previous]
        } 0 .. @previous - 1
        ]
    ];
    return $this;
    }
    use overload
    q{""} => sub {
    my $this = shift;
    join '', map { $_ ? '#' : ' ' } @{$this->{cells}}
    };
}

my $a = Automaton->new(30, 1, map 0, 1 .. 100);

for my $n (1 .. 10) {
    my $sum = 0;
    for my $b (1 .. 8) {
	$sum = $sum * 2 + $a->{cells}[0];
	$a->next;
    }
    print $sum, $n == 10 ? "\n" : " ";
}
Output:
220 197 147 174 117 97 149 171 240 241

Phix

Making the minimum possible changes to Elementary_cellular_automaton#Phix, output matches C, D, Go, J, Kotlin, Racket, and zkl, and with the changes marked [2] C++, Haskell, Perl, Python, Ruby, Scheme, and Sidef, but completely different to Rust and Tcl. No attempt to optimise.

with javascript_semantics
--string s = ".........#.........", --(original)
string s = "...............................#"&
           "................................", 
--string s = "#"&repeat('.',100),   -- [2]
       t=s, r = "........"
integer rule = 30, k, l = length(s), w = 0
for i=1 to 8 do
    r[i] = iff(mod(rule,2)?'#':'.')
    rule = floor(rule/2)
end for
sequence res = {}
for i=0 to 80 do
    w = w*2 + (s[32]='#')
--  w = w*2 + (s[1]='#')            -- [2]
    if mod(i+1,8)=0 then res&=w w=0 end if
    for j=1 to l do
        k = (s[iff(j=1?l:j-1)]='#')*4
          + (s[          j   ]='#')*2
          + (s[iff(j=l?1:j+1)]='#')+1
        t[j] = r[k]
    end for
    s = t
end for
pp(res)
Output:
{220,197,147,174,117,97,149,171,100,151}
Output:

with the changes marked [2]

{220,197,147,174,117,97,149,171,240,241}

Python

Python: With zero padded ends

from elementary_cellular_automaton import eca, eca_wrap

def rule30bytes(lencells=100):
    cells = '1' + '0' * (lencells - 1)
    gen = eca(cells, 30)
    while True:
        yield int(''.join(next(gen)[0] for i in range(8)), 2)

if __name__ == '__main__':
    print([b for i,b in zip(range(10), rule30bytes())])
Output:
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255]

!

Python: With wrapping of end cells

def rule30bytes(lencells=100):
    cells = '1' + '0' * (lencells - 1)
    gen = eca_wrap(cells, 30)
    while True:
        yield int(''.join(next(gen)[0] for i in range(8)), 2))
Output:
[220, 197, 147, 174, 117, 97, 149, 171, 240, 241]

Racket

Implementation of Elementary cellular automaton is saved in "Elementary_cellular_automata.rkt"

#lang racket
;; below is the code from the parent task
(require "Elementary_cellular_automata.rkt")
(require racket/fixnum)

;; This is the RNG automaton
(define (CA30-random-generator
         #:rule [rule 30] ; rule 30 is random, maybe you're interested in using others
         ;; width of the CA... this is implemented as a number of words plus,
         ;; maybe, another word containing the spare bits
         #:bits [bits 256])
  (define-values [full-words more-bits]
    (quotient/remainder bits usable-bits/fixnum))
  (define wrap-rule
    (and (positive? more-bits) (wrap-rule-truncate-left-word more-bits)))
  (define next-gen (CA-next-generation 30 #:wrap-rule wrap-rule))
  (define v (make-fxvector (+ full-words (if more-bits 1 0))))
  (fxvector-set! v 0 1) ; this bit will always have significance

  (define (next-word)
    (define-values [v+ o] (next-gen v 0))
    (begin0 (fxvector-ref v 0) (set! v v+)))

  (lambda (bits)
    (for/fold ([acc 0]) ([_ (in-range bits)])
      ;; the CA is fixnum, but this function returns integers of arbitrary width
      (bitwise-ior (arithmetic-shift acc 1) (bitwise-and (next-word) 1)))))

(module+ main
  ;; To match the other examples on this page, the automaton is 30+30+4 bits long
  ;; (i.e. 64 bits)
  (define C30-rand-64 (CA30-random-generator #:bits 64))
  ;; this should be the list from "C"
  (for/list ([i 10]) (C30-rand-64 8))

  ; we also do big numbers...
  (number->string (C30-rand-64 256) 16)
  (number->string (C30-rand-64 256) 16)
  (number->string (C30-rand-64 256) 16)
  (number->string (C30-rand-64 256) 16))
Output:
(220 197 147 174 117 97 149 171 100 151)
"ecd9fbcdcc34604d833950deb58447124b98706e74ccc74d9337cb4e53f38c5e"
"9c8b6471a4bc2cb3508f10b6635e4eb959ad8bbe484480695e8ddb5795f956a"
"6d85153a987dad6f013bc6159a41bf95b9d9b14af87733e17c702a3dc9052172"
"fc6fd302f5ea8f2fba6f476cfe9d090dc877dbd558e5afba49044d05b14d258"

Raku

(formerly Perl 6)

class Automaton {
    has $.rule;
    has @.cells handles <AT-POS>;
    has @.code = $!rule.fmt('%08b').flip.comb».Int;
 
    method gist { "|{ @!cells.map({+$_ ?? '#' !! ' '}).join }|" }
 
    method succ {
        self.new: :$!rule, :@!code, :cells( 
            @!code[
                    4 «*« @!cells.rotate(-1)
                »+« 2 «*« @!cells
                »+«       @!cells.rotate(1)
            ]
        )
    }
}

my Automaton $a .= new: :rule(30), :cells( flat 1, 0 xx 100 );

say :2[$a++[0] xx 8] xx 10;
Output:
220 197 147 174 117 97 149 171 240 241

Ruby

size = 100
eca = ElemCellAutomat.new("1"+"0"*(size-1), 30)
eca.take(80).map{|line| line[0]}.each_slice(8){|bin| p bin.join.to_i(2)}
Output:
220
197
147
174
117
97
149
171
240
241

Rust

//Assuming the code from the Elementary cellular automaton task is in the namespace.
fn main() {
    struct WolfGen(ElementaryCA);
    impl WolfGen {
        fn new() -> WolfGen {
            let (_, ca) = ElementaryCA::new(30);
            WolfGen(ca)
        }
        fn next(&mut self) -> u8 {
            let mut out = 0;
            for i in 0..8 {
                out |= ((1 & self.0.next())<<i)as u8;
            }
            out
        }
    }
    let mut gen = WolfGen::new();
    for _ in 0..10 {
        print!("{} ", gen.next());
    }
}
Output:
157 209 228 58 87 195 212 106 147 244 

Scheme

; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html

(define (random-r30 n)
  (let ((r30 (vector 0 1 1 1 1 0 0 0)))
    (fold
      (lambda (x y ls)
	(if (= x 1)
	  (cons (* x y) ls)
	  (cons (+ (car ls) (* x y)) (cdr ls))))
      '()
      (circular-list 1 2 4 8 16 32 64 128)
      (unfold-right
	(lambda (x) (zero? (car x)))
	cadr
	(lambda (x) (cons (- (car x) 1)
			  (evolve (cdr x) r30)))
	(cons (* 8 n) (cons 1 (make-list 79 0))))))) ; list

(random-r30 10)
Output:
(220 197 147 174 117 97 149 171 240 241)

Sidef

var auto = Automaton(30, [1] + 100.of(0));

10.times {
    var sum = 0;
    8.times {
        sum = (2*sum + auto.cells[0]);
        auto.next;
    };
    say sum;
};
Output:
220
197
147
174
117
97
149
171
240
241

Tcl

Works with: Tcl version 8.6
oo::class create RandomGenerator {
    superclass ElementaryAutomaton
    variable s
    constructor {stateLength} {
	next 30
	set s [split 1[string repeat 0 $stateLength] ""]
    }

    method rand {} {
	set bits {}
	while {[llength $bits] < 8} {
	    lappend bits [lindex $s 0]
	    set s [my evolve $s]
	}
	return [scan [join $bits ""] %b]
    }
}

Demonstrating:

set rng [RandomGenerator new 31]
for {set r {}} {[llength $r]<10} {} {
    lappend r [$rng rand]
}
puts [join $r ,]
Output:
220,197,147,174,241,126,135,130,143,234

Note that as the number of state bits is increased (the parameter to the constructor), the sequence tends to a limit of and that deviations from this are due to interactions between the state modification “wavefront” as the automaton wraps round.

Wren

Translation of: Go
Library: Wren-big

As Wren cannot deal accurately with 64-bit unsigned integers and bit-wise operations thereon, we need to use BigInt here.

import "./big" for BigInt

var n = 64

var pow2 = Fn.new { |x| BigInt.one << x }

var evolve = Fn.new { |state, rule|
    for (p in 0..9) {
        var b = BigInt.zero
        for (q in 7..0) {
            var st = state.copy()
            b = b | ((st & 1) << q)
            state = BigInt.zero
            for (i in 0...n) {
                var t1 = (i > 0) ? st >> (i-1) : st >> 63
                var t2 = (i == 0) ? st << 1 : (i == 1) ? st << 63 : st << (n+1-i)
                var t3 = (t1 | t2) & 7
                if ((pow2.call(t3) & rule) != BigInt.zero) state = state | pow2.call(i)
            }
        }
        System.write(" %(b)")
    }
    System.print()
}

evolve.call(BigInt.one, 30)
Output:
 220 197 147 174 117 97 149 171 100 151

zkl

No attempts at extra credit and not fast.

fcn rule(n){ n=n.toString(2); "00000000"[n.len() - 8,*] + n }
fcn applyRule(rule,cells){
   cells=String(cells[-1],cells,cells[0]);  // wrap edges
   (cells.len() - 2).pump(String,'wrap(n){ rule[7 - cells[n,3].toInt(2)] })
}
fcn rand30{
   var r30=rule(30), cells="0"*63 + 1; // 64 bits (8 bytes), arbitrary
   n:=0;
   do(8){
      n=n*2 + cells[-1];          // append bit 0
      cells=applyRule(r30,cells); // next state
   }
   n
}

Note that "var" in a function is "static" in C, ie function local variables, initialized once.

do(10){ rand30().print(","); }
Output:
220,197,147,174,117,97,149,171,100,151,