Egyptian division: Difference between revisions

From Rosetta Code
Content added Content deleted
m (Lang.)
(Add Swift)
Line 2,072: Line 2,072:
Quotient = 17 Remainder = 2
Quotient = 17 Remainder = 2
</pre>
</pre>

=={{header|Swift}}==

<lang swift>extension BinaryInteger {
@inlinable
public func egyptianDivide(by divisor: Self) -> (quo: Self, rem: Self) {
let table =
(0...).lazy
.map({i -> (Self, Self) in
let power = Self(2).power(Self(i))

return (power, power * divisor)
})
.prefix(while: { $0.1 <= self })
.reversed()

let (answer, acc) = table.reduce((Self(0), Self(0)), {cur, row in
let ((ans, acc), (power, doubling)) = (cur, row)

return acc + doubling <= self ? (ans + power, doubling + acc) : cur
})

return (answer, Self((acc - self).magnitude))
}

@inlinable
public func power(_ n: Self) -> Self {
return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
}
}

let dividend = 580
let divisor = 34
let (quo, rem) = dividend.egyptianDivide(by: divisor)

print("\(dividend) divided by \(divisor) = \(quo) rem \(rem)")
</lang>

{{out}}

<pre>580 divided by 34 = 17 rem 2</pre>


=={{header|VBA}}==
=={{header|VBA}}==

Revision as of 11:00, 13 November 2019

Task
Egyptian division
You are encouraged to solve this task according to the task description, using any language you may know.

Egyptian division is a method of dividing integers using addition and doubling that is similar to the algorithm of Ethiopian multiplication

Algorithm:

Given two numbers where the dividend is to be divided by the divisor:

  1. Start the construction of a table of two columns: powers_of_2, and doublings; by a first row of a 1 (i.e. 2^0) in the first column and 1 times the divisor in the first row second column.
  2. Create the second row with columns of 2 (i.e 2^1), and 2 * divisor in order.
  3. Continue with successive i’th rows of 2^i and 2^i * divisor.
  4. Stop adding rows, and keep only those rows, where 2^i * divisor is less than or equal to the dividend.
  5. We now assemble two separate sums that both start as zero, called here answer and accumulator
  6. Consider each row of the table, in the reverse order of its construction.
  7. If the current value of the accumulator added to the doublings cell would be less than or equal to the dividend then add it to the accumulator, as well as adding the powers_of_2 cell value to the answer.
  8. When the first row has been considered as above, then the integer division of dividend by divisor is given by answer.
    (And the remainder is given by the absolute value of accumulator - dividend).


Example: 580 / 34

Table creation:

powers_of_2 doublings
1 34
2 68
4 136
8 272
16 544

Initialization of sums:

powers_of_2 doublings answer accumulator
1 34
2 68
4 136
8 272
16 544
0 0

Considering table rows, bottom-up:

When a row is considered it is shown crossed out if it is not accumulated, or bold if the row causes summations.

powers_of_2 doublings answer accumulator
1 34
2 68
4 136
8 272
16 544 16 544
powers_of_2 doublings answer accumulator
1 34
2 68
4 136
8 272 16 544
16 544
powers_of_2 doublings answer accumulator
1 34
2 68
4 136 16 544
8 272
16 544
powers_of_2 doublings answer accumulator
1 34
2 68 16 544
4 136
8 272
16 544
powers_of_2 doublings answer accumulator
1 34 17 578
2 68
4 136
8 272
16 544

Answer

So 580 divided by 34 using the Egyptian method is 17 remainder (578 - 580) or 2.

Task

The task is to create a function that does Egyptian division. The function should
closely follow the description above in using a list/array of powers of two, and
another of doublings.

  • Functions should be clear interpretations of the algorithm.
  • Use the function to divide 580 by 34 and show the answer here, on this page.


References


Related tasks



Ada

<lang Ada> with Ada.Text_IO;

procedure Egyptian_Division is

 procedure Divide  (a : Natural; b : Positive; q, r : out Natural) is
   doublings : array (0..31) of Natural;  -- The natural type holds values < 2^32 so no need going beyond
   m, sum, last_index_touched : Natural := 0;    
 begin
   for i in doublings'Range loop
     m := b * 2**i; 
     exit when m > a ;
     doublings (i) := m;
     last_index_touched := i;
   end loop;
   q := 0;
   for i in reverse doublings'First .. last_index_touched loop
       m := sum + doublings (i);
       if m <= a then 
         sum := m; 
         q := q + 2**i;
       end if;
   end loop;
   r := a -sum;
 end Divide;
 
 q, r : Natural;

begin

 Divide (580,34, q, r);
 Ada.Text_IO.put_line ("Quotient="&q'Img & " Remainder="&r'img);

end Egyptian_Division; </lang>

Output:
Quotient= 17 Remainder= 2

ALGOL 68

<lang algol68>BEGIN

   # performs Egyptian division of dividend by divisor, setting quotient and remainder #
   # this uses 32 bit numbers, so a table of 32 powers of 2 should be sufficient       #
   # ( divisors > 2^30 will probably overflow - this is not checked here )             #
   PROC egyptian division = ( INT dividend, divisor, REF INT quotient, remainder )VOID:
        BEGIN
           [ 1 : 32 ]INT powers of 2, doublings;
           # initialise the powers of 2 and doublings tables #
           powers of 2[ 1 ] := 1;
           doublings  [ 1 ] := divisor;
           INT   table pos  := 1;
           WHILE table pos +:= 1;
                 powers of 2[ table pos ] := powers of 2[ table pos - 1 ] * 2;
                 doublings  [ table pos ] := doublings  [ table pos - 1 ] * 2;
                 doublings[ table pos ] <= dividend
           DO
               SKIP
           OD;
           # construct the accumulator and answer #
           INT accumulator := 0, answer := 0;
           WHILE table pos >=1
           DO
               IF ( accumulator + doublings[ table pos ] ) <= dividend
               THEN
                   accumulator +:= doublings  [ table pos ];
                   answer      +:= powers of 2[ table pos ] 
               FI;
               table pos -:= 1
           OD;
           quotient  := answer;
           remainder := ABS ( accumulator - dividend )
       END # egyptian division # ;
   # task test case #
   INT quotient, remainder;
   egyptian division( 580, 34, quotient, remainder );
   print( ( "580 divided by 34 is: ", whole( quotient, 0 ), " remainder: ", whole( remainder, 0 ), newline ) )

END</lang>

Output:
580 divided by 34 is: 17 remainder: 2

AppleScript

Unfold to derive successively doubled rows, fold to sum quotient and derive remainder <lang AppleScript>-- EGYPTIAN DIVISION ------------------------------------

-- eqyptianQuotRem :: Int -> Int -> (Int, Int) on egyptianQuotRem(m, n)

   script expansion
       on |λ|(ix)
           set {i, x} to ix
           if x > m then
               Nothing()
           else
               Just({ix, {i + i, x + x}})
           end if
       end |λ|
   end script
   
   script collapse
       on |λ|(ix, qr)
           set {i, x} to ix
           set {q, r} to qr
           if x < r then
               {q + i, r - x}
           else
               qr
           end if
       end |λ|
   end script
   
   return foldr(collapse, {0, m}, ¬
       unfoldr(expansion, {1, n}))

end egyptianQuotRem


-- TEST ------------------------------------------------- on run

   egyptianQuotRem(580, 34)

end run

-- GENERIC FUNCTIONS ------------------------------------

-- Just :: a -> Maybe a on Just(x)

   {type:"Maybe", Nothing:false, Just:x}

end Just

-- Nothing :: Maybe a on Nothing()

   {type:"Maybe", Nothing:true}

end Nothing

-- foldr :: (a -> b -> b) -> b -> [a] -> b on foldr(f, startValue, xs)

   tell mReturn(f)
       set v to startValue
       set lng to length of xs
       repeat with i from lng to 1 by -1
           set v to |λ|(item i of xs, v, i, xs)
       end repeat
       return v
   end tell

end foldr

-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f)

   if class of f is script then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn

-- > unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10 -- > [10,9,8,7,6,5,4,3,2,1] -- unfoldr :: (b -> Maybe (a, b)) -> b -> [a] on unfoldr(f, v)

   set xr to {v, v} -- (value, remainder)
   set xs to {}
   tell mReturn(f)
       repeat -- Function applied to remainder.
           set mb to |λ|(item 2 of xr)
           if Nothing of mb then
               exit repeat
           else -- New (value, remainder) tuple,
               set xr to Just of mb
               -- and value appended to output list.
               set end of xs to item 1 of xr
           end if
       end repeat
   end tell
   return xs

end unfoldr</lang>

Output:
{17, 2}

AutoHotkey

<lang AutoHotkey>divident := 580 divisor := 34

answer := accumulator := 0 obj := [] , div := divisor

while (div < divident) { obj[2**(A_Index-1)] := div ; obj[powers_of_2] := doublings div *= 2 ; double up }

while obj.MaxIndex() ; iterate rows "in the reverse order" { if (accumulator + obj[obj.MaxIndex()] <= divident) ; If (accumulator + current doubling) <= dividend { accumulator += obj[obj.MaxIndex()] ; add current doubling to the accumulator answer += obj.MaxIndex() ; add the powers_of_2 value to the answer. } obj.pop() ; remove current row } MsgBox % divident "/" divisor " = " answer ( divident-accumulator > 0 ? " r" divident-accumulator : "")</lang>

Outputs:

580/34 = 17 r2


BaCon

<lang c>

'---Ported from the c code example to BaCon by bigbass

'================================================================================== FUNCTION EGYPTIAN_DIVISION(long dividend, long divisor, long remainder) TYPE long '================================================================================== '--- remainder is the third parameter, pass 0 if you do not need the remainder

DECLARE powers[64] TYPE long DECLARE doublings[64] TYPE long

LOCAL i TYPE long

FOR i = 0 TO 63 STEP 1 powers[i] = 1 << i doublings[i] = divisor << i IF (doublings[i] > dividend) THEN BREAK ENDIF NEXT

LOCAL answer TYPE long LOCAL accumulator TYPE long answer = 0 accumulator = 0

WHILE i >= 0 '--- If the current value of the accumulator added to the '--- doublings cell would be less than or equal to the '--- dividend then add it to the accumulator IF (accumulator + doublings[i] <= dividend) THEN accumulator = accumulator + doublings[i] answer = answer + powers[i] ENDIF DECR i WEND

IF remainder THEN remainder = dividend - accumulator PRINT dividend ," / ", divisor, " = " , answer ," remainder " , remainder

       PRINT "Decoded the answer to a standard fraction"
       PRINT  (remainder + 0.0 )/ (divisor + 0.0) + answer
       PRINT

ELSE PRINT dividend ," / ", divisor , " = " , answer ENDIF

RETURN answer

ENDFUNCTION


'--- the large number divided by the smaller number '--- the third argument is 1 if you want to have a remainder '--- and 0 if you dont want to have a remainder

EGYPTIAN_DIVISION(580,34,1) EGYPTIAN_DIVISION(580,34,0)

EGYPTIAN_DIVISION(580,34,1)


</lang>


C

<lang c>

  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <stdint.h>
  4. include <assert.h>

uint64_t egyptian_division(uint64_t dividend, uint64_t divisor, uint64_t *remainder) { // remainder is an out parameter, pass NULL if you do not need the remainder

static uint64_t powers[64]; static uint64_t doublings[64];

int i;

for(i = 0; i < 64; i++) { powers[i] = 1 << i; doublings[i] = divisor << i; if(doublings[i] > dividend) break; }

uint64_t answer = 0; uint64_t accumulator = 0;

for(i = i - 1; i >= 0; i--) { // If the current value of the accumulator added to the // doublings cell would be less than or equal to the // dividend then add it to the accumulator if(accumulator + doublings[i] <= dividend) { accumulator += doublings[i]; answer += powers[i]; } }

if(remainder) *remainder = dividend - accumulator; return answer; }

void go(uint64_t a, uint64_t b) { uint64_t x, y; x = egyptian_division(a, b, &y); printf("%llu / %llu = %llu remainder %llu\n", a, b, x, y); assert(a == b * x + y); }

int main(void) { go(580, 32); } </lang>

C++

Translation of: C

<lang cpp>#include <cassert>

  1. include <iostream>

typedef unsigned long ulong;

/*

* Remainder is an out paramerter. Use nullptr if the remainder is not needed.
*/

ulong egyptian_division(ulong dividend, ulong divisor, ulong* remainder) {

   constexpr int SIZE = 64;
   ulong powers[SIZE];
   ulong doublings[SIZE];
   int i = 0;
   for (; i < SIZE; ++i) {
       powers[i] = 1 << i;
       doublings[i] = divisor << i;
       if (doublings[i] > dividend) {
           break;
       }
   }
   ulong answer = 0;
   ulong accumulator = 0;
   for (i = i - 1; i >= 0; --i) {
       /*
        * If the current value of the accumulator added to the
        * doublings cell would be less than or equal to the
        * dividend then add it to the accumulator
        */
       if (accumulator + doublings[i] <= dividend) {
           accumulator += doublings[i];
           answer += powers[i];
       }
   }
   if (remainder) {
       *remainder = dividend - accumulator;
   }
   return answer;

}

void print(ulong a, ulong b) {

   using namespace std;
   ulong x, y;
   x = egyptian_division(a, b, &y);
   cout << a << " / " << b << " = " << x << " remainder " << y << endl;
   assert(a == b * x + y);

}

int main() {

   print(580, 34);
   return 0;

}</lang>

Output:
580 / 34 = 17 remainder 2

C#

<lang csharp> using System; using System.Collections;

namespace Egyptian_division { class Program { public static void Main(string[] args) { Console.Clear(); Console.WriteLine(); Console.WriteLine(" Egyptian division "); Console.WriteLine(); Console.Write(" Enter value of dividend : "); int dividend = int.Parse(Console.ReadLine());

Console.Write(" Enter value of divisor : "); int divisor = int.Parse(Console.ReadLine());

Divide(dividend, divisor);

Console.WriteLine(); Console.Write("Press any key to continue . . . "); Console.ReadKey(true);


}

static void Divide(int dividend, int divisor) { // // Local variable declaration and initialization // int result = 0; int reminder = 0;

int powers_of_two = 0; int doublings = 0;

int answer = 0; int accumulator = 0;

int two = 2; int pow = 0; int row = 0;

// // Tables declaration // ArrayList table_powers_of_two = new ArrayList(); ArrayList table_doublings = new ArrayList();

// // Fill and Show table values // Console.WriteLine(" "); Console.WriteLine(" powers_of_2 doublings "); Console.WriteLine(" ");

// Set initial values powers_of_two = 1; doublings = divisor; while( doublings <= dividend ) { // Set table value table_powers_of_two.Add( powers_of_two ); table_doublings.Add( doublings );

// Show new table row Console.WriteLine("{0,8}{1,16}",powers_of_two, doublings);


pow++;

powers_of_two = (int)Math.Pow( two, pow ); doublings = powers_of_two * divisor; } Console.WriteLine(" ");

// // Calculate division and Show table values // row = pow - 1; Console.WriteLine(" "); Console.WriteLine(" powers_of_2 doublings answer accumulator"); Console.WriteLine(" "); Console.SetCursorPosition(Console.CursorLeft, Console.CursorTop + row);

pow--; while( pow >= 0 && accumulator < dividend ) { // Get values from tables doublings = int.Parse(table_doublings[pow].ToString()); powers_of_two = int.Parse(table_powers_of_two[pow].ToString());

if(accumulator + int.Parse(table_doublings[pow].ToString()) <= dividend ) { // Set new values accumulator += doublings; answer += powers_of_two;

// Show accumulated row values in different collor Console.ForegroundColor = ConsoleColor.Green; Console.Write("{0,8}{1,16}",powers_of_two, doublings); Console.ForegroundColor = ConsoleColor.Green; Console.WriteLine("{0,10}{1,12}", answer, accumulator); Console.SetCursorPosition(Console.CursorLeft, Console.CursorTop - 2); } else { // Show not accumulated row walues Console.ForegroundColor = ConsoleColor.DarkGray; Console.Write("{0,8}{1,16}",powers_of_two, doublings); Console.ForegroundColor = ConsoleColor.Gray; Console.WriteLine("{0,10}{1,12}", answer, accumulator); Console.SetCursorPosition(Console.CursorLeft, Console.CursorTop - 2); }


pow--; }

Console.WriteLine(); Console.SetCursorPosition(Console.CursorLeft, Console.CursorTop + row + 2); Console.ResetColor();

// Set result and reminder result = answer; if( accumulator < dividend ) { reminder = dividend - accumulator;

Console.WriteLine(" So " + dividend + " divided by " + divisor + " using the Egyptian method is \n " + result + " remainder (" + dividend + " - " + accumulator + ") or " + reminder); Console.WriteLine(); } else { reminder = 0;

Console.WriteLine(" So " + dividend + " divided by " + divisor + " using the Egyptian method is \n " + result + " remainder " + reminder); Console.WriteLine(); } } } } </lang>

Program Input and Output
Instead of bold and strikeout text format, numbers are represented in different color:

 Egyptian division

 Enter value of dividend : 580
 Enter value of divisor  : 34

 powers_of_2     doublings

       1              34
       2              68
       4             136
       8             272
      16             544


 powers_of_2     doublings   answer   accumulator

       1              34        17         578
       2              68        16         544
       4             136        16         544
       8             272        16         544
      16             544        16         544

 So 580 divided by 34 using the Egyptian method is
 17 remainder (580 - 578) or 2


Press any key to continue . . .

D

<lang D> import std.stdio;

version(unittest) {

   // empty

} else {

   int main(string[] args) {
       import std.conv;
       if (args.length < 3) {
           stderr.writeln("Usage: ", args[0], " dividend divisor");
           return 1;
       }
       ulong dividend = to!ulong(args[1]);
       ulong divisor = to!ulong(args[2]);
       ulong remainder;
       auto ans = egyptian_division(dividend, divisor, remainder);
       writeln(dividend, " / ", divisor, " = ", ans, " rem ", remainder);
       return 0;
   }

}

ulong egyptian_division(ulong dividend, ulong divisor, out ulong remainder) {

   enum SIZE = 64;
   ulong[SIZE] powers;
   ulong[SIZE] doublings;
   int i;
   for (; i<SIZE; ++i) {
       powers[i] = 1 << i;
       doublings[i] = divisor << i;
       if (doublings[i] > dividend) {
           break;
       }
   }
   ulong answer;
   ulong accumulator;
   for (i=i-1; i>=0; --i) {
       if (accumulator + doublings[i] <= dividend) {
           accumulator += doublings[i];
           answer += powers[i];
       }
   }
   remainder = dividend - accumulator;
   return answer;

}

unittest {

   ulong remainder;
   assert(egyptian_division(580UL, 34UL, remainder) == 17UL);
   assert(remainder == 2);

} </lang>

Erlang

<lang erlang>-module(egypt).

-export([ediv/2]).

ediv(A, B) ->

   {Twos, Ds} = genpowers(A, [1], [B]),
   {Quot, C} = accumulate(A, Twos, Ds),
   {Quot, abs(C - A)}.
   

genpowers(A, [_|Ts], [D|Ds]) when D > A -> {Ts, Ds}; genpowers(A, [T|_] = Twos, [D|_] = Ds) -> genpowers(A, [2*T|Twos], [D*2|Ds]).

accumulate(N, Twos, Ds) -> accumulate(N, Twos, Ds, 0, 0). accumulate(_, [], [], Q, C) -> {Q, C}; accumulate(N, [T|Ts], [D|Ds], Q, C) when (C + D) =< N -> accumulate(N, Ts, Ds, Q+T, C+D); accumulate(N, [_|Ts], [_|Ds], Q, C) -> accumulate(N, Ts, Ds, Q, C). </lang>

Output:
1> egypt:ediv(580,34).
{17,2}

F#

<lang fsharp>// A function to perform Egyptian Division: Nigel Galloway August 11th., 2017 let egyptianDivision N G =

 let rec fn n g = seq{yield (n,g); yield! fn (n+n) (g+g)}
 Seq.foldBack (fun (n,i) (g,e)->if (i<=g) then ((g-i),(e+n)) else (g,e)) (fn 1 G |> Seq.takeWhile(fun (_,g)->g<=N)) (N,0)

</lang> Which may be used: <lang fsharp> let (n,g) = egyptianDivision 580 34 printfn "580 divided by 34 is %d remainder %d" g n </lang>

Output:
580 divided by 34 is 17 remainder 2

Factor

Works with: Factor version 0.98

<lang factor>USING: assocs combinators formatting kernel make math sequences ; IN: rosetta-code.egyptian-division

table ( dividend divisor -- table )
   [ [ 2dup >= ] [ dup , 2 * ] while ] { } make 2nip
   dup length <iota> [ 2^ ] map zip <reversed> ;
accum ( a b dividend -- c )
   [ 2dup [ first ] bi@ + ] dip < [ [ + ] 2map ] [ drop ] if ;
ediv ( dividend divisor -- quotient remainder )
   {
       [ table ]
       [ 2drop { 0 0 } ]
       [ drop [ accum ] curry reduce first2 swap ]
       [ drop - abs ] 
   } 2cleave ;

580 34 ediv "580 divided by 34 is %d remainder %d\n" printf</lang>

Output:
580 divided by 34 is 17 remainder 2

FreeBASIC

<lang freebasic>' version 09-08-2017 ' compile with: fbc -s console

Data 580, 34

Dim As UInteger dividend, divisor, answer, accumulator, i ReDim As UInteger table(1 To 32, 1 To 2)

Read dividend, divisor

i = 1 table(i, 1) = 1 : table(i, 2) = divisor

While table(i, 2) < dividend

   i += 1
   table(i, 1) = table(i -1, 1) * 2
   table(i, 2) = table(i -1, 2) * 2

Wend

i -= 1 answer = table(i, 1) accumulator = table(i, 2)

While i > 1

   i -= 1
   If table(i,2)+ accumulator <= dividend Then
       answer += table(i, 1)
       accumulator += table(i, 2)
   End If

Wend

Print Str(dividend); " divided by "; Str(divisor); " using Egytian division"; Print " returns "; Str(answer); " mod(ulus) "; Str(dividend-accumulator)

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
580 divided by 34 using Egytian division returns 17 mod(ulus) 2

Go

Translation of: Kotlin

<lang go>package main

import "fmt"

func egyptianDivide(dividend, divisor int) (quotient, remainder int) {

   if dividend < 0 || divisor <= 0 {
       panic("Invalid argument(s)")
   }
   if dividend < divisor {
       return 0, dividend
   }
   powersOfTwo := []int{1}
   doublings := []int{divisor}
   doubling := divisor
   for {
       doubling *= 2
       if doubling > dividend {
           break
       }
       l := len(powersOfTwo)
       powersOfTwo = append(powersOfTwo, powersOfTwo[l-1]*2)
       doublings = append(doublings, doubling)
   }
   answer := 0
   accumulator := 0
   for i := len(doublings) - 1; i >= 0; i-- {
       if accumulator+doublings[i] <= dividend {
           accumulator += doublings[i]
           answer += powersOfTwo[i]
           if accumulator == dividend {
               break
           }
       }
   }
   return answer, dividend - accumulator

}

func main() {

   dividend := 580
   divisor := 34
   quotient, remainder := egyptianDivide(dividend, divisor)
   fmt.Println(dividend, "divided by", divisor, "is", quotient, "with remainder", remainder)

}</lang>

Output:
580 divided by 34 is 17 with remainder 2

Haskell

Deriving division from (+) and (-) by unfolding from a seed pair (1, divisor) up to a series of successively doubling pairs, and then refolding that series of 'two column rows' back down to a (quotient, remainder) pair, using (0, dividend) as the initial accumulator value. In other words, taking the divisor as a unit, and deriving the binary composition of the dividend in terms of that unit. <lang Haskell>import Data.List (unfoldr)

egyptianQuotRem :: Integer -> Integer -> (Integer, Integer) egyptianQuotRem m n =

 let expansion (i, x)
       | x > m = Nothing
       | otherwise = Just ((i, x), (i + i, x + x))
     collapse (i, x) (q, r)
       | x < r = (q + i, r - x)
       | otherwise = (q, r)
 in foldr collapse (0, m) $ unfoldr expansion (1, n)

main :: IO () main = print $ egyptianQuotRem 580 34</lang>

Output:
(17,2)

We can make the process of calculation more visible by adding a trace layer:

<lang Haskell>import Data.List (unfoldr) import Debug.Trace (trace)

egyptianQuotRem :: Int -> Int -> (Int, Int) egyptianQuotRem m n =

 let rows =
       unfoldr
         (\(i, x) ->
             if x > m
               then Nothing
               else Just ((i, x), (i + i, x + x)))
         (1, n)
 in trace
      (unlines
         [ "Number pair unfolded to series of doubling rows:"
         , show rows
         , "\nRows refolded down to (quot, rem):"
         , show (0, m)
         ])
      foldr
      (\(i, x) (q, r) ->
          if x < r
            then trace
                   (concat
                      ["(+", show i, ", -", show x, ") -> rem ", show (r - x)])
                   (q + i, r - x)
            else (q, r))
      (0, m)
      rows

main :: IO () main = print $ egyptianQuotRem 580 34</lang>

Output:
Number pair unfolded to series of doubling rows:
[(1,34),(2,68),(4,136),(8,272),(16,544)]

Rows refolded down to (quot, rem):
(0,580)

(+16, -544) -> rem 36
(+1, -34) -> rem 2
(17,2)

Another approach, using lazy lists and foldr:

<lang haskell>doublings = iterate (* 2)

powers = doublings 1

k n (u, v) (ans, acc) =

 if v + ans <= n
   then (v + ans, u + acc)
   else (ans, acc)

egy n = snd . foldr (k n) (0, 0) . zip powers . takeWhile (<= n) . doublings

main :: IO () main = print $ egy 580 34</lang>

Output:
17

J

Implementation:

<lang J>doublings=:_1 }. (+:@]^:(> {:)^:a: (,~ 1:)) ansacc=: 1 }. (] + [ * {.@[ >: {:@:+)/@([,.doublings) egydiv=: (0,[)+1 _1*ansacc</lang>

Task example:

<lang J> 580 doublings 34

1  34
2  68
4 136
8 272

16 544

  580 ansacc 34

17 578

  580 egydiv 34

17 2</lang>

Notes: pre When building the doublings table, we don't actually know we've exceeded our numerator until we are done. This would result in an excess row, so we have to explicitly not include that excess row in our doublings result.

Our "fold" is actually not directly on the result of doublings - for our fold, we add another column where every value is the numerator. This conveniently makes it available for comparison at every stage of the fold and seems a more concise approach than creating a closure. (We do not include this extra value in our ansacc result, of course.)

Java

<lang Java> import java.util.ArrayList; import java.util.List;

public class EgyptianDivision {

   /**
    * Runs the method and divides 580 by 34
    *
    * @param args not used
    */
   public static void main(String[] args) {
       divide(580, 34);
   }
   /**
    * Divides dividend by divisor using the Egyptian Division-Algorithm and prints the
    * result to the console
    *
    * @param dividend
    * @param divisor
    */
   public static void divide(int dividend, int divisor) {
       List<Integer> powersOf2 = new ArrayList<>();
       List<Integer> doublings = new ArrayList<>();
       //populate the powersof2- and doublings-columns
       int line = 0;
       while ((Math.pow(2, line) * divisor) <= dividend) { //<- could also be done with a for-loop
           int powerOf2 = (int) Math.pow(2, line);
           powersOf2.add(powerOf2);
           doublings.add(powerOf2 * divisor);
           line++;
       }
       int answer = 0;
       int accumulator = 0;
       //Consider the rows in reverse order of their construction (from back to front of the List<>s)
       for (int i = powersOf2.size() - 1; i >= 0; i--) {
           if (accumulator + doublings.get(i) <= dividend) {
               accumulator += doublings.get(i);
               answer += powersOf2.get(i);
           }
       }
       System.out.println(String.format("%d, remainder %d", answer, dividend - accumulator));
   }

}

</lang>

Output:
17, remainder 2

JavaScript

ES6

<lang JavaScript>(() => {

   'use strict';
   // EGYPTIAN DIVISION --------------------------------
   // eqyptianQuotRem :: Int -> Int -> (Int, Int)
   const eqyptianQuotRem = (m, n) => {
       const expansion = ([i, x]) =>
           x > m ? (
               Nothing()
           ) : Just([
               [i, x],
               [i + i, x + x]
           ]);
       const collapse = ([i, x], [q, r]) =>
           x < r ? (
               [q + i, r - x]
           ) : [q, r];
       return foldr(
           collapse,
           [0, m],
           unfoldr(expansion, [1, n])
       );
   };
   // TEST ---------------------------------------------
   // main :: IO ()
   const main = () =>
       showLog(
           eqyptianQuotRem(580, 34)
       );
       // -> [17, 2]


   // GENERIC FUNCTIONS --------------------------------
   // Just :: a -> Maybe a
   const Just = x => ({
       type: 'Maybe',
       Nothing: false,
       Just: x
   });
   // Nothing :: Maybe a
   const Nothing = () => ({
       type: 'Maybe',
       Nothing: true,
   });
   // flip :: (a -> b -> c) -> b -> a -> c
   const flip = f =>
       1 < f.length ? (
           (a, b) => f(b, a)
       ) : (x => y => f(y)(x));


   // foldr :: (a -> b -> b) -> b -> [a] -> b
   const foldr = (f, a, xs) => xs.reduceRight(flip(f), a);


   // unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
   const unfoldr = (f, v) => {
       let
           xr = [v, v],
           xs = [];
       while (true) {
           const mb = f(xr[1]);
           if (mb.Nothing) {
               return xs
           } else {
               xr = mb.Just;
               xs.push(xr[0])
           }
       }
   };
   // showLog :: a -> IO ()
   const showLog = (...args) =>
       console.log(
           args
           .map(JSON.stringify)
           .join(' -> ')
       );
   // MAIN ---
   return main();

})();</lang>

Output:
[17,2]

Julia

Works with: Julia version 0.6

<lang julia>function egyptiandivision(dividend::Int, divisor::Int)

   N         = 64
   powers    = Vector{Int}(N)
   doublings = Vector{Int}(N)
   ind = 0
   for i in 0:N-1
       powers[i+1] = 1 << i
       doublings[i+1] = divisor << i
       if doublings[i+1] > dividend ind = i-1; break end
   end
   ans = acc = 0
   for i in ind:-1:0
       if acc + doublings[i+1] ≤ dividend
           acc += doublings[i+1]
           ans += powers[i+1]
       end
   end
   return ans, dividend - acc

end

q, r = egyptiandivision(580, 34) println("580 ÷ 34 = $q (remains $r)")

using Base.Test

@testset "Equivalence to divrem builtin function" begin

   for x in rand(1:100, 100), y in rand(1:100, 10)
   @test egyptiandivision(x, y) == divrem(x, y)
   end

end</lang>

Output:
580 ÷ 34 = 17 (remains 2)
Test Summary:                          | Pass  Total
Equivalence to divrem builtin function | 1000   1000

Kotlin

<lang scala>// version 1.1.4

data class DivMod(val quotient: Int, val remainder: Int)

fun egyptianDivide(dividend: Int, divisor: Int): DivMod {

   require (dividend >= 0 && divisor > 0)
   if (dividend < divisor) return DivMod(0, dividend)
   val powersOfTwo = mutableListOf(1)
   val doublings = mutableListOf(divisor)
   var doubling = divisor
   while (true) {
      doubling *= 2
      if (doubling > dividend) break
      powersOfTwo.add(powersOfTwo[powersOfTwo.lastIndex] * 2)
      doublings.add(doubling)
   }
   var answer = 0
   var accumulator = 0
   for (i in doublings.size - 1 downTo 0) {
       if (accumulator + doublings[i] <= dividend) {
           accumulator += doublings[i]
           answer += powersOfTwo[i]
           if (accumulator == dividend) break
       }
   }
   return DivMod(answer, dividend - accumulator)

}

fun main(args: Array<String>) {

   val dividend = 580
   val divisor = 34
   val (quotient, remainder) = egyptianDivide(dividend, divisor)
   println("$dividend divided by $divisor is $quotient with remainder $remainder")

}</lang>

Output:
580 divided by 34 is 17 with remainder 2

Lua

Translation of: Python

<lang lua>function egyptian_divmod(dividend,divisor)

   local pwrs, dbls = {1}, {divisor}
   while dbls[#dbls] <= dividend do
       table.insert(pwrs, pwrs[#pwrs] * 2)
       table.insert(dbls, pwrs[#pwrs] * divisor)
   end
   local ans, accum = 0, 0
   for i=#pwrs-1,1,-1 do
       if accum + dbls[i] <= dividend then
           accum = accum + dbls[i]
           ans = ans + pwrs[i]
       end
   end
   return ans, math.abs(accum - dividend)

end

local i, j = 580, 34 local d, m = egyptian_divmod(i, j) print(i.." divided by "..j.." using the Egyptian method is "..d.." remainder "..m)</lang>

Output:
580 divided by 34 using the Egyptian method is 17 remainder 2

Modula-2

<lang modula2>MODULE EgyptianDivision; FROM FormatString IMPORT FormatString; FROM Terminal IMPORT WriteString,ReadChar;

PROCEDURE EgyptianDivision(dividend,divisor : LONGCARD; VAR remainder : LONGCARD) : LONGCARD; CONST

   SZ = 64;

VAR

   powers,doublings : ARRAY[0..SZ] OF LONGCARD;
   answer,accumulator : LONGCARD;
   i : INTEGER;

BEGIN

   FOR i:=0 TO SZ-1 DO
       powers[i] := 1 SHL i;
       doublings[i] := divisor SHL i;
       IF doublings[i] > dividend THEN
           BREAK
       END
   END;
   answer := 0;
   accumulator := 0;
   FOR i:=i-1 TO 0 BY -1 DO
       IF accumulator + doublings[i] <= dividend THEN
           accumulator := accumulator + doublings[i];
           answer := answer + powers[i]
       END
   END;
   remainder := dividend - accumulator;
   RETURN answer

END EgyptianDivision;

VAR

   buf : ARRAY[0..63] OF CHAR;
   div,rem : LONGCARD;

BEGIN

   div := EgyptianDivision(580, 34, rem);
   FormatString("580 divided by 34 is %l remainder %l\n", buf, div, rem);
   WriteString(buf);
   ReadChar

END EgyptianDivision.</lang>

Nim

<lang nim>import strformat

func egyptianDivision(dividend, divisor: int): tuple[quotient, remainder: int] =

 if dividend < 0 or divisor <= 0:
   raise newException(IOError, "Invalid argument(s)")
 if dividend < divisor:
   return (0, dividend)
 
 var powersOfTwo: array[sizeof(int) * 8, int]
 var doublings: array[sizeof(int) * 8, int]
 
 for i, _ in powersOfTwo:
   powersOfTwo[i] = 1 shl i
   doublings[i] = divisor shl i
   if doublings[i] > dividend:
     break
 
 var answer = 0
 var accumulator = 0
 for i in countdown(len(doublings) - 1, 0):
   if accumulator + doublings[i] <= dividend:
     inc accumulator, doublings[i]
     inc answer, powersOfTwo[i]
     if accumulator == dividend:
       break
 (answer, dividend - accumulator)

let dividend = 580 let divisor = 34 var (quotient, remainder) = egyptianDivision(dividend, divisor) echo fmt"{dividend} divided by {divisor} is {quotient} with remainder {remainder}"</lang>

Output:
580 divided by 34 is 17 with remainder 2

Perl

Translation of: Perl 6

<lang perl>sub egyptian_divmod {

   my($dividend, $divisor) = @_;
   die "Invalid divisor" if $divisor <= 0;
   my @table = ($divisor);
   push @table, 2*$table[-1] while $table[-1] <= $dividend;
   my $accumulator = 0;
   for my $k (reverse 0 .. $#table) {
       next unless $dividend >= $table[$k];
       $accumulator += 1 << $k;
       $dividend    -= $table[$k];
   }
   $accumulator, $dividend;

}

for ([580,34], [578,34], [7532795332300578,235117]) {

   my($n,$d) = @$_;
   printf "Egyption divmod %s %% %s = %s remainder %s\n", $n, $d, egyptian_divmod( $n, $d )

}</lang>

Output:
Egyption divmod 580 % 34 = 17 remainder 2
Egyption divmod 578 % 34 = 17 remainder 0
Egyption divmod 7532795332300578 % 235117 = 32038497141 remainder 81

Perl 6

Works with: Rakudo version 2017.07

Normal version

Only works with positive real numbers, not negative or complex. <lang perl6>sub egyptian-divmod (Real $dividend is copy where * >= 0, Real $divisor where * > 0) {

   my $accumulator = 0;
   ([1, $divisor], { [.[0] + .[0], .[1] + .[1]] } … ^ *.[1] > $dividend)
     .reverse.map: { $dividend -= .[1], $accumulator += .[0] if $dividend >= .[1] }
   $accumulator, $dividend;

}

  1. TESTING

for 580,34, 578,34, 7532795332300578,235117 -> $n, $d {

   printf "%s divmod %s = %s remainder %s\n",
       $n, $d, |egyptian-divmod( $n, $d )

}</lang>

Output:
580 divmod 34 = 17 remainder 2
578 divmod 34 = 17 remainder 0
7532795332300578 divmod 235117 = 32038497141 remainder 81

More "Egyptian" version

As a preceding version was determined to be "let's just say ... not Egyptian" we submit an alternate which is hopefully more "Egyptian". Now only handles positive Integers up to 10 million, mostly due to limitations on Egyptian notation for numbers.

Note: if the below is just a mass of "unknown glyph" boxes, try installing Googles free Noto Sans Egyptian Hieroglyphs font.

This is intended to be humorous and should not be regarded as good (or even sane) programming practice. That being said, 𓂽 & 𓂻 really are the ancient Egyptian symbols for addition and subtraction, and the Egyptian number notation is as accurate as possible. Everything else owes more to whimsy than rigor. <lang perl6>my (\𓄤, \𓄊, \𓎆, \𓄰) = (0, 1, 10, 10e7); sub infix:<𓂽> { $^𓃠 + $^𓃟 } sub infix:<𓂻> { $^𓃲 - $^𓆊 } sub infix:<𓈝> { $^𓃕 < $^𓃢 } sub 𓁶 (Int \𓆉) {

   my \𓁢 = [« 𓏺 𓏻 𓏼 𓏽 𓏾 𓏿 𓐀 𓐁 𓐂»], [« 𓎆 𓎏 𓎐 𓎑 𓎊 𓎋 𓎌 𓎍 𓎎»],
     [« 𓍢 𓍣 𓍤 𓍥 𓍦 𓍧 𓍨 𓍩 𓍪»], [« 𓆼 𓆽 𓆾 𓆿 𓇀 𓇁 𓇂 𓇃 𓇄»],
     [« 𓂭 𓂮 𓂯 𓂰 𓂱 𓂲 𓂳 𓂴 𓂵»], ['𓆐' Xx ^𓎆], ['𓁨' Xx ^𓎆];
   ([~] 𓆉.polymod( 𓎆 xx * ).map( { 𓁢[$++;$_] } ).reverse) || '𓄤'

}

sub infix:<𓅓> (Int $𓂀 is copy where 𓄤 𓂻 𓄊 𓈝 * 𓈝 𓄰, Int \𓌳 where 𓄤 𓈝 * 𓈝 𓄰) {

   my $𓎦 = 𓄤;
   ([𓄊,𓌳], { [.[𓄤] 𓂽 .[𓄤], .[𓄊] 𓂽 .[𓄊]] } … ^$𓂀 𓈝 *.[𓄊])
     .reverse.map: { $𓂀 𓂻= .[𓄊], $𓎦 𓂽= .[𓄤] if .[𓄊] 𓈝 ($𓂀 𓂽 𓄊) }
   $𓎦, $𓂀;

}

  1. TESTING

for 580,34, 578,34, 2300578,23517 -> \𓃾, \𓆙 {

   printf "%s divmod %s = %s remainder %s =OR= %s 𓅓 %s = %s remainder %s\n",
       𓃾, 𓆙, |(𓃾 𓅓 𓆙), (𓃾, 𓆙, |(𓃾 𓅓 𓆙))».&𓁶;

}</lang>

Output:
580 divmod 34 = 17 remainder 2 =OR= 𓍦𓎍 𓅓 𓎐𓏽 = 𓎆𓐀 remainder 𓏻
578 divmod 34 = 17 remainder 0 =OR= 𓍦𓎌𓐁 𓅓 𓎐𓏽 = 𓎆𓐀 remainder 𓄤
2300578 divmod 23517 = 97 remainder 19429 =OR= 𓁨𓁨𓆐𓆐𓆐𓍦𓎌𓐁 𓅓 𓂮𓆾𓍦𓎆𓐀 = 𓎎𓐀 remainder 𓂭𓇄𓍥𓎏𓐂

Phix

<lang Phix>procedure egyptian_division(integer dividend, divisor) integer p2 = 1, dbl = divisor, ans = 0, accum = 0 sequence p2s = {}, dbls = {}, args

   while dbl<=dividend do
       p2s = append(p2s,p2)
       dbls = append(dbls,dbl)
       dbl += dbl
       p2 += p2
   end while
   for i=length(p2s) to 1 by -1 do
       if accum+dbls[i]<=dividend then
           accum += dbls[i]
           ans += p2s[i]
       end if
   end for
   args = {dividend,divisor,ans,abs(accum-dividend)}
   printf(1,"%d divided by %d is: %d remainder %d\n",args)

end procedure

egyptian_division(580,34)</lang>

Output:
580 divided by 34 is: 17 remainder 2

PicoLisp

<lang PicoLisp>(seed (in "/dev/urandom" (rd 8)))

(de divmod (Dend Disor)

  (cons (/ Dend Disor) (% Dend Disor)) )

(de egyptian (Dend Disor)

  (let
     (P 0
        D Disor
        S
        (make
           (while (>= Dend (setq @@ (+ D D)))
              (yoke
                 (cons
                    (** 2 (swap 'P (inc P)))
                    (swap 'D @@) ) ) ) )
        P (** 2 P) )
     (mapc
        '((L)
           (and
              (>= Dend (+ D (cdr L)))
              (inc 'P (car L))
              (inc 'D (cdr L)) ) )
        S )
     (cons P (abs (- Dend D))) ) )

(for N 1000

  (let (A (rand 1 1000)  B (rand 1 A))
     (test (divmod A B) (egyptian A B)) ) )

(println (egyptian 580 34))</lang>

Output:
(17 . 2)

Python

Idiomatic

<lang python>from itertools import product

def egyptian_divmod(dividend, divisor):

   assert divisor != 0
   pwrs, dbls = [1], [divisor]
   while dbls[-1] <= dividend:
       pwrs.append(pwrs[-1] * 2)
       dbls.append(pwrs[-1] * divisor)
   ans, accum = 0, 0
   for pwr, dbl in zip(pwrs[-2::-1], dbls[-2::-1]):
       if accum + dbl <= dividend:
           accum += dbl
           ans += pwr
   return ans, abs(accum - dividend)

if __name__ == "__main__":

   # Test it gives the same results as the divmod built-in
   for i, j in product(range(13), range(1, 13)):
           assert egyptian_divmod(i, j) == divmod(i, j)
   # Mandated result
   i, j = 580, 34
   print(f'{i} divided by {j} using the Egyption method is %i remainder %i'
         % egyptian_divmod(i, j))</lang>

Sample output

580 divided by 34 using the Egyption method is 17 remainder 2

Functional

Expressing the summing catamorphism in terms of functools.reduce, and the preliminary expansion (by repeated addition to self) in terms of an unfoldl function, which is dual to reduce, and constructs a list from a seed value.

Multiplication and division operators are both avoided, in the spirit of the Rhind Papyrus derivations of both (*) and (/) from plain addition and subtraction.

Also in deference to the character of the Rhind methods, the (unfoldl) unfolding of the seed values to a list of progressively doubling rows is recursively defined, and mutation operations are avoided. The efficiency of the Egyptian method's exponential expansion means that there is no need here, even with larger numbers, to compress space by using an imperative translation of the higher-order unfold function.

Translation of: Haskell

<lang python>Quotient and remainder of division by the Rhind papyrus method.

from functools import reduce


  1. eqyptianQuotRem :: Int -> Int -> (Int, Int)

def eqyptianQuotRem(m):

   Quotient and remainder derived by the Eqyptian method.
   def expansion(xi):
       Doubled value, and next power of two - both by self addition.
       x, i = xi
       return Nothing() if x > m else Just(
           ((x + x, i + i), xi)
       )
   def collapse(qr, ix):
       Addition of a power of two to the quotient,
          and subtraction of a paired value from the remainder.
       i, x = ix
       q, r = qr
       return (q + i, r - x) if x < r else qr
   return lambda n: reduce(
       collapse,
       unfoldl(expansion)(
           (1, n)
       ),
       (0, m)
   )


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Test
   print(
       eqyptianQuotRem(580)(34)
   )


  1. GENERIC FUNCTIONS ---------------------------------------


  1. Just :: a -> Maybe a

def Just(x):

   Constructor for an inhabited Maybe (option type) value.
   return {'type': 'Maybe', 'Nothing': False, 'Just': x}


  1. Nothing :: Maybe a

def Nothing():

   Constructor for an empty Maybe (option type) value.
   return {'type': 'Maybe', 'Nothing': True}


  1. unfoldl :: (b -> Maybe (b, a)) -> b -> [a]

def unfoldl(f):

   Dual to reduce or foldl.
      Where a fold reduces a list to a summary value,
      unfoldl builds a list from a seed value.
      When f returns Just(a, b), a is appended to the list,
      and the residual b becomes the argument for the next
      application of f.
      When f returns Nothing, the completed list is returned.
   def go(v):
       xr = v, v
       xs = []
       while True:
           mb = f(xr[0])
           if mb.get('Nothing'):
               return xs
           else:
               xr = mb.get('Just')
               xs.insert(0, xr[1])
       return xs
   return lambda x: go(x)


  1. MAIN ----------------------------------------------------

if __name__ == '__main__':

   main()</lang>
Output:
(17, 2)

Racket

<lang racket>#lang racket

(define (quotient/remainder-egyptian dividend divisor (trace? #f))

 (define table
   (for*/list ((power_of_2 (sequence-map (curry expt 2) (in-naturals)))
               (doubling (in-value (* divisor power_of_2)))
               #:break (> doubling dividend))
     (list power_of_2 doubling)))
 (when trace?
   (displayln "Table\npow_2\tdoubling")
   (for ((row table)) (printf "~a\t~a~%" (first row) (second row))))
 
 (define-values (answer accumulator)
   (for*/fold ((answer 0) (accumulator 0))
              ((row (reverse table))
               (acc′ (in-value (+ accumulator (second row)))))
     (when trace? (printf "row:~a\tans/acc:~a ~a\t" row answer accumulator))
     (cond
       [(<= acc′ dividend)
        (define ans′ (+ answer (first row)))
        (when trace? (printf "~a <= ~a -> ans′/acc′:~a ~a~%" acc′ dividend ans′ acc′))
        (values ans′ acc′)]
       [else
        (when trace? (printf "~a > ~a [----]~%" acc′ dividend))
        (values answer accumulator)])))
 (values answer (- dividend accumulator)))

(module+ test

 (require rackunit)
 (let-values (([q r] (quotient/remainder-egyptian 580 34)))
   (check-equal? q 17)
   (check-equal? r 2))
 (let-values (([q r] (quotient/remainder-egyptian 192 3)))
   (check-equal? q 64)
   (check-equal? r 0)))

(module+ main

 (quotient/remainder-egyptian 580 34 #t))</lang>
Output:
Table
pow_2	doubling
1	34
2	68
4	136
8	272
16	544
row:(16 544)	ans/acc:0 0	544 <= 580 -> ans′/acc′:16 544
row:(8 272)	ans/acc:16 544	816 > 580 [----]
row:(4 136)	ans/acc:16 544	680 > 580 [----]
row:(2 68)	ans/acc:16 544	612 > 580 [----]
row:(1 34)	ans/acc:16 544	578 <= 580 -> ans′/acc′:17 578
17
2

REXX

Only addition and subtraction is used in this version of the Egyptian division method. <lang rexx>/*REXX program performs division on positive integers using the Egyptian division method*/ numeric digits 1000 /*support gihugic numbers & be gung-ho.*/ parse arg n d . /*obtain optional arguments from the CL*/ if d== | d=="," then do; n= 580; d= 34 /*Not specified? Then use the defaults*/

                       end

call EgyptDiv n, d /*invoke the Egyptian Division function*/ parse var result q r /*extract the quotient & the remainder.*/ say n ' divided by ' d " is " q ' with a remainder of ' r exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ EgyptDiv: procedure; parse arg num,dem /*obtain the numerator and denominator.*/

         p= 1;                       t= dem     /*initialize the double & power values.*/
                       do #=1  until t>num      /*construct the power & doubling lists.*/
                       pow.#= p;     p= p + p   /*build power  entry; bump power value.*/
                       dbl.#= t;     t= t + t   /*  "  doubling  "  ;   " doubling val.*/
                       end   /*#*/
         acc=0;  ans=0                          /*initialize accumulator & answer to 0 */
                       do s=#   by -1   for #   /* [↓]  process the table "backwards". */
                       sum= acc + dbl.s         /*compute the sum (to be used for test)*/
                       if sum>num  then iterate /*Is sum to big?  Then ignore this step*/
                       acc= sum                 /*use the "new" sum for the accumulator*/
                       ans= ans + pow.s         /*calculate the (newer) running answer.*/
                       end   /*s*/
         return ans  num-acc                    /*return the answer and the remainder. */</lang>
output   when using the default inputs:
580  divided by  34  is  17  with a remainder of  2
output   when using the input of:     9876543210111222333444555666777888999   13579
9876543210111222333444555666777888999  divided by  13579  is  727339510281406755537562093436769  with a remainder of  2748

Ring

<lang ring> load "stdlib.ring"

table = newlist(32, 2) dividend = 580 divisor = 34

i = 1 table[i][1] = 1 table[i][2] = divisor

while table[i] [2] < dividend

     i = i + 1
     table[i][1] = table[i -1] [1] * 2
     table[i][2] = table[i -1] [2] * 2

end i = i - 1 answer = table[i][1] accumulator = table[i][2]

while i > 1

     i = i - 1
     if table[i][2]+ accumulator <= dividend 
        answer = answer + table[i][1]
        accumulator = accumulator + table[i][2]
     ok

end

see string(dividend) + " divided by " + string(divisor) + " using egytian division" + nl see " returns " + string(answer) + " mod(ulus) " + string(dividend-accumulator) </lang> Output:

580 divided by 34 using egytian division
returns 17 mod(ulus) 2

Ruby

<lang ruby>def egyptian_divmod(dividend, divisor)

 table = 1, divisor
 table << table.last.map{|e| e*2} while table.last.first * 2 <= dividend
 answer, accumulator = 0, 0
 table.reverse_each do |pow, double|
   if accumulator + double <= dividend
     accumulator += double
     answer += pow
   end
 end
 [answer, dividend - accumulator] 

end

puts "Quotient = %s Remainder = %s" % egyptian_divmod(580, 34) </lang>

Output:
Quotient = 17 Remainder = 2

Rust

<lang rust>fn egyptian_divide(dividend: u32, divisor: u32) -> (u32, u32) {

   let dividend = dividend as u64;
   let divisor = divisor as u64;
   
   let pows = (0..32).map(|p| 1 << p);
   let doublings = (0..32).map(|p| divisor << p);
   
   let (answer, sum) = doublings
       .zip(pows)
       .rev()
       .skip_while(|(i, _)| i > &dividend )
       .fold((0, 0), |(answer, sum), (double, power)| {
           if sum + double < dividend {
               (answer + power, sum + double)
           } else {
               (answer, sum)
           }
       });
   
   (answer as u32, (dividend - sum) as u32)

}

fn main() {

   let (div, rem) = egyptian_divide(580, 34);
   println!("580 divided by 34 is {} remainder {}", div, rem);

}</lang>

Output:
580 divided by 34 is 17 remainder 2

Scala

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

<lang Scala>object EgyptianDivision extends App {

 private def divide(dividend: Int, divisor: Int): Unit = {
   val powersOf2, doublings = new collection.mutable.ListBuffer[Integer]
   //populate the powersof2- and doublings-columns
   var line = 0
   while ((math.pow(2, line) * divisor) <= dividend) {
     val powerOf2 = math.pow(2, line).toInt
     powersOf2 += powerOf2
     doublings += (powerOf2 * divisor)
     line += 1
   }
   var answer, accumulator = 0
   //Consider the rows in reverse order of their construction (from back to front of the List)
   var i = powersOf2.size - 1
   for (i <- powersOf2.size - 1 to 0 by -1)
     if (accumulator + doublings(i) <= dividend) {
       accumulator += doublings(i)
       answer += powersOf2(i)
     }
   println(f"$answer%d, remainder ${dividend - accumulator}%d")
 }
 divide(580, 34)

}</lang>

Sidef

Translation of: Ruby

<lang ruby>func egyptian_divmod(dividend, divisor) {

 var table = 1, divisor
 table << table[-1].map{|e| 2*e } while (2*table[-1][0] <= dividend)
 var (answer, accumulator) = (0, 0)
 table.reverse.each { |pair|
   var (pow, double) = pair...
   if (accumulator + double <= dividend) {
     accumulator += double
     answer += pow
   }
 }
 return (answer, dividend - accumulator)

}

say ("Quotient = %s Remainder = %s" % egyptian_divmod(580, 34))</lang>

Output:
Quotient = 17 Remainder = 2

Swift

<lang swift>extension BinaryInteger {

 @inlinable
 public func egyptianDivide(by divisor: Self) -> (quo: Self, rem: Self) {
   let table =
     (0...).lazy
       .map({i -> (Self, Self) in
         let power = Self(2).power(Self(i))
         return (power, power * divisor)
       })
       .prefix(while: { $0.1 <= self })
       .reversed()
   let (answer, acc) = table.reduce((Self(0), Self(0)), {cur, row in
     let ((ans, acc), (power, doubling)) = (cur, row)
     return acc + doubling <= self ? (ans + power, doubling + acc) : cur
   })
   return (answer, Self((acc - self).magnitude))
 }
 @inlinable
 public func power(_ n: Self) -> Self {
   return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
 }

}

let dividend = 580 let divisor = 34 let (quo, rem) = dividend.egyptianDivide(by: divisor)

print("\(dividend) divided by \(divisor) = \(quo) rem \(rem)") </lang>

Output:
580 divided by 34 = 17 rem 2

VBA

<lang vb>Option Explicit

Private Type MyTable

   powers_of_2 As Long
   doublings As Long

End Type

Private Type Assemble

   answer As Long
   accumulator As Long

End Type

Private Type Division

   Quotient As Long
   Remainder As Long

End Type

Private Type DivEgyp

   Dividend As Long
   Divisor As Long

End Type

Private Deg As DivEgyp

Sub Main() Dim d As Division

   Deg.Dividend = 580
   Deg.Divisor = 34
   d = Divise(CreateTable)
   Debug.Print "Quotient = " & d.Quotient & " Remainder = " & d.Remainder

End Sub

Private Function CreateTable() As MyTable() Dim t() As MyTable, i As Long

   Do
       i = i + 1
       ReDim Preserve t(i)
       t(i).powers_of_2 = 2 ^ (i - 1)
       t(i).doublings = Deg.Divisor * t(i).powers_of_2
   Loop While 2 * t(i).doublings <= Deg.Dividend
   CreateTable = t

End Function

Private Function Divise(t() As MyTable) As Division Dim a As Assemble, i As Long

   a.accumulator = 0
   a.answer = 0
   For i = UBound(t) To LBound(t) Step -1
       If a.accumulator + t(i).doublings <= Deg.Dividend Then
           a.accumulator = a.accumulator + t(i).doublings
           a.answer = a.answer + t(i).powers_of_2
       End If
   Next
   Divise.Quotient = a.answer
   Divise.Remainder = Deg.Dividend - a.accumulator

End Function</lang>

Output:
Quotient = 17 Remainder = 2

Visual Basic .NET

Translation of: D

<lang vbnet>Module Module1

   Function EgyptianDivision(dividend As ULong, divisor As ULong, ByRef remainder As ULong) As ULong
       Const SIZE = 64
       Dim powers(SIZE) As ULong
       Dim doublings(SIZE) As ULong
       Dim i = 0
       While i < SIZE
           powers(i) = 1 << i
           doublings(i) = divisor << i
           If doublings(i) > dividend Then
               Exit While
           End If
           i = i + 1
       End While
       Dim answer As ULong = 0
       Dim accumulator As ULong = 0
       i = i - 1
       While i >= 0
           If accumulator + doublings(i) <= dividend Then
               accumulator += doublings(i)
               answer += powers(i)
           End If
           i = i - 1
       End While
       remainder = dividend - accumulator
       Return answer
   End Function
   Sub Main(args As String())
       If args.Length < 2 Then
           Dim name = Reflection.Assembly.GetEntryAssembly().Location
           Console.Error.WriteLine("Usage: {0} dividend divisor", IO.Path.GetFileNameWithoutExtension(name))
           Return
       End If
       Dim dividend = CULng(args(0))
       Dim divisor = CULng(args(1))
       Dim remainder As ULong
       Dim ans = EgyptianDivision(dividend, divisor, remainder)
       Console.WriteLine("{0} / {1} = {2} rem {3}", dividend, divisor, ans, remainder)
   End Sub

End Module</lang>

Output:
580 / 34 = 17 rem 2

zkl

<lang zkl>fcn egyptianDivmod(dividend,divisor){

  table:=[0..].pump(List, 'wrap(n){	// (2^n,divisor*2^n)
     r:=T( p:=(2).pow(n), s:=divisor*p); (s<=dividend) and r or Void.Stop });
  accumulator:=0;
  foreach p2,d in (table.reverse()){ 
     if(dividend>=d){ accumulator+=p2; dividend-=d; }
  }
  return(accumulator,dividend);

}</lang> <lang zkl>foreach dividend,divisor in (T(T(580,34), T(580,17), T(578,34), T(7532795332300578,235117))){

 println("%d %% %d = %s".fmt(dividend,divisor,egyptianDivmod(dividend,divisor)));

}</lang>

Output:
580 % 34 = L(17,2)
580 % 17 = L(34,2)
578 % 34 = L(17,0)
7532795332300578 % 235117 = L(32038497141,81)