Doubly-linked list/Element definition: Difference between revisions

m
(add freebasic)
m (→‎{{header|Wren}}: Minor tidy)
 
(14 intermediate revisions by 9 users not shown)
Line 11:
{{Template:See also lists}}
<br><br>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">DEFINE PTR="CARD"
 
TYPE ListNode=[
BYTE data
PTR prv,nxt]</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Doubly-linked_list_element_definition.png Screenshot from Atari 8-bit computer]
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">type Link;
type Link_Access is access Link;
type Link is record
Line 19 ⟶ 28:
Prev : Link_Access := null;
Data : Integer;
end record;</langsyntaxhighlight>
Using generics, the specification might look like this:
<langsyntaxhighlight lang="ada">generic
type Element_Type is private;
package Linked_List is
Line 43 ⟶ 52:
Traversing : Boolean := False; -- True when in a traversal.
end record;
end Linked_List;</langsyntaxhighlight>
In Ada 2005 this example can be written without declaration of an access type:
<langsyntaxhighlight lang="ada">type Link is limited record
Next : not null access Link := Link'Unchecked_Access;
Prev : not null access Link := Link'Unchecked_Access;
Data : Integer;
end record;</langsyntaxhighlight>
Here the list element is created already pointing to itself, so that no further initialization is required. The type of the element is marked as ''limited'' indicating that such elements have referential semantics and cannot be copied.
 
Line 58 ⟶ 67:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-2.7 algol68g-2.7].}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d]}}
'''File: prelude/link.a68'''<langsyntaxhighlight lang="algol68"># -*- coding: utf-8 -*- #
CO REQUIRES:
MODE OBJVALUE = ~ # Mode/type of actual obj to be queued #
Line 72 ⟶ 81:
 
PROC obj link free = (REF OBJLINK free)VOID:
prev OF free := next OF free := obj queue empty # give the garbage collector a big hint #</langsyntaxhighlight>'''See also:''' [[Queue/Usage#ALGOL_68|Queue/Usage]]
 
=={{header|ALGOL W}}==
<langsyntaxhighlight lang="algolw"> % record type to hold an element of a doubly linked list of integers %
record DListIElement ( reference(DListIElement) prev
; integer iValue
; reference(DListIElement) next
);
% additional record types would be required for other element types %</langsyntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
<lang ARM Assembly>
 
/* ARM assembly Raspberry PI */
Line 97 ⟶ 106:
.struct NDlist_value + 4
NDlist_fin:
</syntaxhighlight>
</lang>
 
=={{header|AutoHotkey}}==
Line 103 ⟶ 112:
 
=={{header|Axe}}==
<langsyntaxhighlight lang="axe">Lbl LINK
r₂→{r₁}ʳ
0→{r₁+2}ʳ
Line 120 ⟶ 129:
Lbl VALUE
{r₁}ʳ
Return</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> DIM node{pPrev%, pNext%, iData%}
</syntaxhighlight>
</lang>
 
=={{header|Bracmat}}==
<langsyntaxhighlight lang="bracmat">link=(prev=) (next=) (data=)</langsyntaxhighlight>
 
=={{header|C}}==
It basically doesn't matter if we use the name link, node, Node or some other name. These are matters of taste and aesthetics. However, it is important that the C language is case-sensitive and that the namespace for structures is separate.
<langsyntaxhighlight lang="c">struct Node
{
struct Node *next;
struct Node *prev;
void *data;
};</langsyntaxhighlight>
An alternative technique is to define a pointer type by typedef as shown below. The advantage here is that you do not have to write struct everywhere - assuming that you will most often need a pointer to a struct Node, not the structure itself.
<syntaxhighlight lang="c">
<lang c>
struct Node;
typedef struct Node* Node;
Line 148 ⟶ 158:
void* data;
};
</syntaxhighlight>
</lang>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">class Link
{
public int Item { get; set; }
Line 163 ⟶ 173:
Next = next;
}
}</langsyntaxhighlight>
 
=={{header|C++}}==
C++ has doubly linked list class template in standard library. However actual list noded are treated as implementation detail and encapsulated inside list. If we were to reimplement list, then node could look like that:
<langsyntaxhighlight lang="cpp">template <typename T>
struct Node
{
Line 173 ⟶ 183:
Node* prev;
T data;
};</langsyntaxhighlight>
 
=={{header|Clojure}}==
Line 179 ⟶ 189:
This sort of mutable structure is not idiomatic in Clojure. [[../Definition#Clojure]] or a finger tree implementation would be better.
 
<langsyntaxhighlight Clojurelang="clojure">(defrecord Node [prev next data])
 
(defn new-node [prev next data]
(Node. (ref prev) (ref next) data))</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defstruct dlist head tail)
(defstruct dlink content prev next)</langsyntaxhighlight>
 
See the functions on the [[Doubly-Linked List]] page for the usage of these structures.
Line 193 ⟶ 203:
=={{header|D}}==
A default constructor is implicit:
<langsyntaxhighlight lang="d">struct Node(T) {
T data;
typeof(this)* prev, next;
Line 201 ⟶ 211:
alias N = Node!int;
N* n = new N(10);
}</langsyntaxhighlight>
 
=={{header|Delphi}}==
<langsyntaxhighlight lang="d">struct Node(T) {
 
type
Line 216 ⟶ 226:
end;
 
}</langsyntaxhighlight>
 
=={{header|E}}==
Line 222 ⟶ 232:
This does no type-checking, under the assumption that it is being used by a containing doubly-linked list object which enforces that invariant along with others such as that <code>element.getNext().getPrev() == element</code>. See [[Doubly-Linked List#E]] for an actual implementation (which uses slightly more elaborate nodes than this).
 
<langsyntaxhighlight lang="e">def makeElement(var value, var next, var prev) {
def element {
to setValue(v) { value := v }
Line 235 ⟶ 245:
return element
}</langsyntaxhighlight>
 
=={{header|Erlang}}==
Using the code in [[Doubly-linked_list/Definition]] the element is defined by:
<syntaxhighlight lang="erlang">
<lang Erlang>
new( Data ) -> erlang:spawn( fun() -> loop( Data, noprevious, nonext ) end ).
</syntaxhighlight>
</lang>
 
=={{header|F_Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">
type 'a DLElm = {
mutable prev: 'a DLElm option
Line 250 ⟶ 260:
mutable next: 'a DLElm option
}
</syntaxhighlight>
</lang>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">TUPLE: node data next prev ;</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 95 or later:
<langsyntaxhighlight lang="fortran">type node
real :: data
type(node), pointer :: next => null(), previous => null()
Line 264 ⟶ 274:
! . . . .
!
type( node ), target :: head</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">type node
nxt as node ptr
prv as node ptr
dat as any ptr 'points to any kind of data; user's responsibility
'to keep track of what's actually in it
end type</langsyntaxhighlight>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">type dlNode struct {
string
next, prev *dlNode
}</langsyntaxhighlight>
Or, using the [http://golang.org/pkg/container/list/#Element container/list] package:
<langsyntaxhighlight lang="go">import "container/list"
 
var node list.Element
// and using: node.Next(), node.Prev(), node.Value</langsyntaxhighlight>
 
=={{header|Haskell}}==
Line 290 ⟶ 300:
Note that unlike naive pointer manipulation which could corrupt the doubly-linked list, updateLeft and updateRight will always yield a well-formed data structure.
 
<langsyntaxhighlight lang="haskell">
data DList a = Leaf | Node (DList a) a (DList a)
 
Line 304 ⟶ 314:
where current = Node l v next
next = updateRight nr new
</syntaxhighlight>
</lang>
 
==Icon and {{header|Unicon}}==
Line 310 ⟶ 320:
Uses Unicon classes.
 
<syntaxhighlight lang="unicon">
<lang Unicon>
class DoubleLink (value, prev_link, next_link)
initially (value, prev_link, next_link)
Line 317 ⟶ 327:
self.next_link := next_link
end
</syntaxhighlight>
</lang>
 
=={{header|J}}==
Line 327 ⟶ 337:
Nevertheless, this is doable, though it necessarily departs from the definition specified at [[Doubly-linked_list/Definition#J]].
 
<langsyntaxhighlight lang="j">coclass'DoublyLinkedListElement'
create=:3 :0
this=:coname''
'predecessor successor data'=:y
successor__predecessor=: predecessor__successor=: this
)</langsyntaxhighlight>
 
Here, when we create a new list element, we need to specify its successor node and its predecessor node and the data to be stored in the node. To start a new list we will need a node that can be the head and the tail of the list -- this will be the successor node for the last element of the list and the predecessor node for the first element of the list:
 
<langsyntaxhighlight lang="j">coclass'DoublyLinkedListHead'
create=:3 :0
predecessor=:successor=:this=: coname''
)</langsyntaxhighlight>
 
=={{header|Java}}==
{{works with|Java|1.5+}}
<langsyntaxhighlight lang="java">public class Node<T> {
private T element;
private Node<T> next, prev;
Line 384 ⟶ 394:
return prev;
}
}</langsyntaxhighlight>
 
For use with [[Java]] 1.4 and below, delete all "<T>"s and replace T's with "Object".
Line 390 ⟶ 400:
=={{header|JavaScript}}==
Inherits from LinkedList (see [[Singly-Linked_List_(element)#JavaScript]])
<langsyntaxhighlight lang="javascript">function DoublyLinkedList(value, next, prev) {
this._value = value;
this._next = next;
Line 416 ⟶ 426:
}
 
var head = createDoublyLinkedListFromArray([10,20,30,40]);</langsyntaxhighlight>
 
=={{header|Julia}}==
{{works with|Julia|0.6}}
 
<langsyntaxhighlight lang="julia">abstract type AbstractNode{T} end
 
struct EmptyNode{T} <: AbstractNode{T} end
Line 428 ⟶ 438:
pred::AbstractNode{T}
succ::AbstractNode{T}
end</langsyntaxhighlight>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.2
 
class Node<T: Number>(var data: T, var prev: Node<T>? = null, var next: Node<T>? = null) {
Line 454 ⟶ 464:
println(n2)
println(n3)
}</langsyntaxhighlight>
 
{{out}}
Line 462 ⟶ 472:
3
</pre>
 
=={{header|Lang}}==
<syntaxhighlight lang="lang">
&Node = {
$next
$prev
$data
}
</syntaxhighlight>
 
=={{header|Lua}}==
see [[Doubly-linked_list/Definition#Lua]], essentially:
<langsyntaxhighlight lang="lua">local node = { data=data, prev=nil, next=nil }</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Mathematica and the Wolfram Language have no lower-level way of handling pointers. It does have a built-in, compilable doubly-linked list data structure:
<syntaxhighlight lang="mathematica">CreateDataStructure["DoublyLinkedList"]</syntaxhighlight>
 
=={{header|Modula-2}}==
 
<langsyntaxhighlight lang="modula2">TYPE
Link = POINTER TO LinkRcd;
LinkRcd = RECORD
Prev, Next: Link;
Data: INTEGER
END;</langsyntaxhighlight>
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">type
Node[T] = ref TNode[T]
 
TNode[T] = object
next, prev: Node[T]
data: T</langsyntaxhighlight>
 
=={{header|Oberon-2}}==
<langsyntaxhighlight lang="oberon2">
MODULE Box;
TYPE
Line 505 ⟶ 528:
(* ... *)
END Collections.
</syntaxhighlight>
</lang>
 
=={{header|Objeck}}==
<langsyntaxhighlight lang="objeck">class ListNode {
@value : Base;
@next : ListNode;
Line 540 ⟶ 563:
return @previous;
}
}</langsyntaxhighlight>
 
=={{header|OCaml}}==
===Imperative===
<langsyntaxhighlight lang="ocaml">type 'a dlink = {
mutable data: 'a;
mutable next: 'a dlink option;
Line 585 ⟶ 608:
in
aux
;;</langsyntaxhighlight>
 
<langsyntaxhighlight lang="ocaml"># let dl = dlink_of_list [1;2;3;4;5] in
iter_forward_dlink (Printf.printf "%d\n") dl ;;
1
Line 594 ⟶ 617:
4
5
- : unit = ()</langsyntaxhighlight>
 
===Functional===
Line 601 ⟶ 624:
examples of this page and its task, but in regular OCaml these kind of imperative structures can be advantageously replaced by a functional equivalent, that can be use in the same area, which is to have a list of elements and be able to point to one of these. We can use this type:
 
<langsyntaxhighlight lang="ocaml">type 'a nav_list = 'a list * 'a * 'a list</langsyntaxhighlight>
 
The middle element is the pointed item, and the two lists are the
previous and the following items.
Here are the associated functions:
<langsyntaxhighlight lang="ocaml">let nav_list_of_list = function
| hd::tl -> [], hd, tl
| [] -> invalid_arg "empty list"
Line 623 ⟶ 646:
prev_tl, prev, item::next
| _ ->
failwith "begin of nav_list reached"</langsyntaxhighlight>
<langsyntaxhighlight lang="ocaml"># let nl = nav_list_of_list [1;2;3;4;5] ;;
val nl : 'a list * int * int list = ([], 1, [2; 3; 4; 5])
# let nl = next nl ;;
Line 632 ⟶ 655:
 
# current nl ;;
- : int = 3</langsyntaxhighlight>
 
=={{header|Oforth}}==
Line 638 ⟶ 661:
Complete definition is here : [[../Definition#Oforth]]
 
<langsyntaxhighlight lang="oforth">Object Class new: DNode(value, mutable prev, mutable next)</langsyntaxhighlight>
 
=={{header|Oz}}==
We show how to create a new node as a record value.
<langsyntaxhighlight lang="oz">fun {CreateNewNode Value}
node(prev:{NewCell _}
next:{NewCell _}
value:Value)
end</langsyntaxhighlight>
Note: this is for illustrative purposes only. In a real Oz program, you would use one of the existing data types.
 
=={{header|Pascal}}==
 
<langsyntaxhighlight lang="pascal">type link_ptr = ^link;
data_ptr = ^data; (* presumes that type 'data' is defined above *)
link = record
Line 657 ⟶ 680:
next: link_ptr;
data: data_ptr;
end;</langsyntaxhighlight>
 
=={{header|Perl}}==
 
<langsyntaxhighlight lang="perl">my %node = (
data => 'say what',
next => \%foo_node,
prev => \%bar_node,
);
$node{next} = \%quux_node; # mutable</langsyntaxhighlight>
 
=={{header|Phix}}==
In Phix, types are used for validation and debugging rather than specification purposes. For extensive run-time checking you could use
<!--<syntaxhighlight lang="phix">-->
<lang Phix>enum NEXT,PREV,DATA
<span style="color: #008080;">enum</span> <span style="color: #000000;">NEXT</span><span style="color: #0000FF;">,</span><span style="color: #000000;">PREV</span><span style="color: #0000FF;">,</span><span style="color: #000000;">DATA</span>
type slnode(object x)
<span style="color: #008080;">type</span> <span style="color: #000000;">slnode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">object</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
return (sequence(x) and length(x)=DATA and <i>udt</i>(x[DATA]) and integer(x[NEXT] and integer(x[PREV]))
<span style="color: #008080;">return</span> <span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">and</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">DATA</span> <span style="color: #008080;">and</span> <span style="color: #0000FF;"><</span><span style="color: #000000;">i</span><span style="color: #0000FF;">></span><span style="color: #000000;">udt</span><span style="color: #0000FF;"></</span><span style="color: #000000;">i</span><span style="color: #0000FF;">>(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">DATA</span><span style="color: #0000FF;">])</span> <span style="color: #008080;">and</span> <span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">NEXT</span><span style="color: #0000FF;">]</span> <span style="color: #008080;">and</span> <span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">PREV</span><span style="color: #0000FF;">]))</span>
end type</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">type</span>
<!--</syntaxhighlight>-->
But more often you would just use the builtin sequences. See also [[Singly-linked_list/Element_definition#Phix|Singly-linked_list/Element_definition]].
 
Memory is automatically reclaimed the moment items are no longer needed.
 
Note that automatic typechecking does not occur under pwa/p2js, that is desktop/Phix only (for the debugging stage) but you can invoke a type such as the above explicitly.
 
=={{header|PicoLisp}}==
Line 691 ⟶ 718:
With that, 'cddr' can be used to access the next, and 'cadr' to access the
previous element.
<langsyntaxhighlight PicoLisplang="picolisp">(de 2tail (X DLst)
(let L (cdr DLst)
(con DLst (cons X L NIL))
Line 706 ⟶ 733:
 
# We prepend 'not' to the list in the previous example
(2head 'not *DLst)</langsyntaxhighlight>
For output of the example data, see [[Doubly-linked list/Traversal#PicoLisp]].
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
define structure
1 Node,
Line 725 ⟶ 752:
...
P = P => back_pointer; /* P now points at the previous node. */
</syntaxhighlight>
</lang>
 
=={{header|Plain English}}==
When you define a <code>thing</code>, you are defining a record as a doubly-linked list element. <code>next</code> and <code>previous</code> fields are implicitly added to the record that can be used to build and traverse a list.
<langsyntaxhighlight lang="plainenglish">An element is a thing with a number.</langsyntaxhighlight>
 
=={{header|Pop11}}==
 
<langsyntaxhighlight lang="pop11">uses objectclass;
define :class Link;
slot next = [];
slot prev = [];
slot data = [];
enddefine;</langsyntaxhighlight>
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">Structure node
*prev.node
*next.node
value.i
EndStructure</langsyntaxhighlight>
 
=={{header|Python}}==
 
<langsyntaxhighlight lang="python">class Node(object):
def __init__(self, data = None, prev = None, next = None):
self.prev = prev
Line 767 ⟶ 794:
while c != None:
yield c
c = c.prev</langsyntaxhighlight>
 
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">
(define-struct dlist (head tail) #:mutable)
(define-struct dlink (content prev next) #:mutable)
</syntaxhighlight>
</lang>
 
See the functions on the [[Doubly-Linked List]] page for the usage of these structures.
Line 781 ⟶ 808:
(formerly Perl 6)
 
<syntaxhighlight lang="raku" perl6line>role DLElem[::T] {
has DLElem[T] $.prev is rw;
has DLElem[T] $.next is rw;
Line 811 ⟶ 838:
$!prev.next = $!next; # conveniently returns next element
}
}</langsyntaxhighlight>
 
=={{header|REXX}}==
Line 838 ⟶ 865:
║ @del k,m ─── deletes the M items starting with item K. ║
╚═════════════════════════════════════════════════════════════════════════╝
<langsyntaxhighlight lang="rexx">/*REXX program implements various List Manager functions (see the documentation above).*/
call sy 'initializing the list.' ; call @init
call sy 'building list: Was it a cat I saw' ; call @put "Was it a cat I saw"
Line 881 ⟶ 908:
/*──────────────────────────────────────────────────────────────────────────────────────*/
@show: procedure expose $.; parse arg k,m,dir; if dir==-1 & k=='' then k=$.#
m=p(m $.#); call @parms 'kmd'; say @get(k,m, dir); return</langsyntaxhighlight>
'''output'''
<pre>
Line 921 ⟶ 948:
=={{header|Ruby}}==
Extending [[Singly-Linked List (element)#Ruby]]
<langsyntaxhighlight lang="ruby">class DListNode < ListNode
attr_accessor :prev
# accessors :succ and :value are inherited
Line 940 ⟶ 967:
end
 
list = DListNode.from_values 1,2,3,4</langsyntaxhighlight>
 
=={{header|Rust}}==
Line 946 ⟶ 973:
 
=== Simply using the standard library ===
<langsyntaxhighlight lang="rust">use std::collections::LinkedList;
fn main() {
// Doubly linked list containing 32-bit integers
let list = LinkedList::<i32>::new();
}</langsyntaxhighlight>
 
=== The behind-the-scenes implementation ===
Line 957 ⟶ 984:
The standard library uses the (currently) unstable `Shared<T>` type which indicates that the ownership of its contained type has shared ownership. It is guaranteed not to be null, is variant over <code>T</code> (meaning that an <code>&Shared<&'static T></code> may be used where a <code>&Shared<&'a T></code> is expected, indicates to the compiler that it may own a <code>T</code>) and may be dereferenced to a mutable pointer (<code>*mut T</code>). All of the above may be accomplished in standard stable Rust, except for the non-null guarantee which allows the compiler to make a few extra optimizations.
 
<langsyntaxhighlight lang="rust">pub struct LinkedList<T> {
head: Option<Shared<Node<T>>>,
tail: Option<Shared<Node<T>>>,
Line 968 ⟶ 995:
prev: Option<Shared<Node<T>>>,
element: T,
}</langsyntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">var node = Hash.new(
data => 'say what',
next => foo_node,
Line 977 ⟶ 1,004:
);
 
node{:next} = quux_node; # mutable</langsyntaxhighlight>
 
=={{header|Swift}}==
 
<syntaxhighlight lang="swift">typealias NodePtr<T> = UnsafeMutablePointer<Node<T>>
 
class Node<T> {
var value: T
fileprivate var prev: NodePtr<T>?
fileprivate var next: NodePtr<T>?
 
init(value: T, prev: NodePtr<T>? = nil, next: NodePtr<T>? = nil) {
self.value = value
self.prev = prev
self.next = next
}
}
</syntaxhighlight>
 
=={{header|Tcl}}==
{{eff note|Tcl|list}}
{{works with|Tcl|8.6}} or {{libheader|TclOO}}
<langsyntaxhighlight lang="tcl">oo::class create List {
variable content next prev
constructor {value {list ""}} {
Line 1,001 ⟶ 1,045:
set prev {*}$args
}
}</langsyntaxhighlight>
 
=={{header|Visual Basic .NET}}==
 
<langsyntaxhighlight lang="vbnet">Public Class Node(Of T)
Public Value As T
Public [Next] As Node(Of T)
Public Previous As Node(Of T)
End Class</langsyntaxhighlight>
 
=={{header|Wren}}==
{{libheader|Wren-llist}}
The DNode class in the above module is the element type for the DLinkedList class which is a generic doubly-linked list. The latter is implemented in such a way that the user does not need to deal directly with DNode though for the purposes of the task we show below how instances of it can be created and manipulated.
<langsyntaxhighlight ecmascriptlang="wren">import "./llist" for DNode
 
var dn1 = DNode.new(1)
Line 1,023 ⟶ 1,067:
dn2.next = null
System.print(["node 1", "data = %(dn1.data)", "prev = %(dn1.prev)", "next = %(dn1.next)"])
System.print(["node 2", "data = %(dn2.data)", "prev = %(dn2.prev)", "next = %(dn2.next)"])</langsyntaxhighlight>
 
{{out}}
Line 1,030 ⟶ 1,074:
[node 2, data = 2, prev = 1, next = null]
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang "XPL0">
def \Node\ Prev, Data, Next; \Element (Node) definition
</syntaxhighlight>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">class Node{
fcn init(_value,_prev=Void,_next=Void)
{ var value=_value, prev=_prev, next=_next; }
fcn toString{ value.toString() }
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">a,b:=Node(1),Node("three");
a.next=b; b.prev=a;
println(a.next," ",b.prev);</langsyntaxhighlight>
{{out}}
<pre>
9,476

edits