Compiler/AST interpreter

Revision as of 16:13, 5 April 2019 by PureFox (talk | contribs) (→‎{{header|C}}: Added missing nd_Or case to switch statement in interp() function.)

AST interpreter

Task
Compiler/AST interpreter
You are encouraged to solve this task according to the task description, using any language you may know.

An AST interpreter interprets an Abstract Syntax Tree (AST) produced by a Syntax Analyzer.

Take the AST output from the Syntax analyzer task, and interpret it as appropriate. Refer to the Syntax analyzer task for details of the AST.

Loading the AST from the syntax analyzer is as simple as (pseudo code)

<lang python>def load_ast()

   line = readline()
   # Each line has at least one token
   line_list = tokenize the line, respecting double quotes
   text = line_list[0] # first token is always the node type
   if text == ";"   # a terminal node
       return NULL
   node_type = text # could convert to internal form if desired
   # A line with two tokens is a leaf node
   # Leaf nodes are: Identifier, Integer, String
   # The 2nd token is the value
   if len(line_list) > 1
       return make_leaf(node_type, line_list[1])
   left = load_ast()
   right = load_ast()
   return make_node(node_type, left, right)</lang>
The interpreter algorithm is relatively simple

<lang python>interp(x)

   if x == NULL return NULL
   elif x.node_type == Integer return x.value converted to an integer
   elif x.node_type == Ident   return the current value of variable x.value
   elif x.node_type == String  return x.value
   elif x.node_type == Assign
                   globals[x.left.value] = interp(x.right)
                   return NULL
   elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
   elif x.node_type is a unary operator, return return operator interp(x.left)
   elif x.node_type ==  If
                   if (interp(x.left)) then interp(x.right.left)
                   else interp(x.right.right)
                   return NULL
   elif x.node_type == While
                   while (interp(x.left)) do interp(x.right)
                   return NULL
   elif x.node_type == Prtc
                   print interp(x.left) as a character, no newline
                   return NULL
   elif x.node_type == Prti
                   print interp(x.left) as an integer, no newline
                   return NULL
   elif x.node_type == Prts
                   print interp(x.left) as a string, respecting newlines ("\n")
                   return NULL
   elif x.node_type == Sequence
                   interp(x.left)
                   interp(x.right)
                   return NULL
   else
       error("unknown node type")</lang>

Notes:

Because of the simple nature of our tiny language, Semantic analysis is not needed.

Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.

This means, for instance, that 3 / 2 should result in 1.

For division when one of the operands is negative, the result should be truncated towards 0.

This means, for instance, that 3 / -2 should result in -1.

Test program
prime.t parse | interp

<lang c>/*

Simple prime number generator
*/

count = 1; n = 1; limit = 100; while (n < limit) {

   k=3;
   p=1;
   n=n+2;
   while ((k*k<=n) && (p)) {
       p=n/k*k!=n;
       k=k+2;
   }
   if (p) {
       print(n, " is prime\n");
       count = count + 1;
   }

} print("Total primes found: ", count, "\n"); </lang>

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples

Your solution should pass all the test cases above and the additional tests found Here.

Reference

The C and Python versions can be considered reference implementations.

Related Tasks

ALGOL W

<lang algolw>begin % AST interpreter %

   % parse tree nodes %
   record node( integer         type
              ; reference(node) left, right
              ; integer         iValue % nString/nIndentifier number or nInteger value %
              );
   integer     nIdentifier, nString, nInteger, nSequence, nIf,   nPrtc, nPrts
         ,     nPrti,       nWhile,  nAssign,  nNegate,   nNot,  nMultiply
         ,     nDivide,     nMod,    nAdd,     nSubtract, nLess, nLessEqual
         ,     nGreater,    nGreaterEqual,     nEqual,    nNotEqual,    nAnd, nOr
         ;
   string(14) array ndName ( 1 :: 25 );
   integer    MAX_NODE_TYPE;
   % string literals and identifiers - uses a linked list - a hash table might be better... %
   string(1)   array text ( 0 :: 4095 );
   integer     textNext, TEXT_MAX;
   record textElement ( integer start, length; reference(textElement) next );
   reference(textElement) idList, stList;
   % memory - identifiers hold indexes to locations here %
   integer array data ( 1 :: 4096 );
   % returns a new node with left and right branches %
   reference(node) procedure opNode ( integer value opType; reference(node) value opLeft, opRight ) ; begin
       node( opType, opLeft, opRight, 0 )
   end opNode ;
   % returns a new operand node %
   reference(node) procedure operandNode ( integer value opType, opValue ) ; begin
       node( opType, null, null, opValue )
   end operandNode ;
   % reports an error and stops %
   procedure rtError( string(80) value message ); begin
       integer errorPos;
       write( s_w := 0, "**** Runtime error " );
       errorPos := 0;
       while errorPos < 80 and message( errorPos // 1 ) not = "." do begin
           writeon( s_w := 0, message( errorPos // 1 ) );
           errorPos := errorPos + 1
       end while_not_at_end_of_message ;
       writeon( s_w := 0, "." );
       assert( false )
   end rtError ;
   % reads a node from standard input %
   reference(node) procedure readNode ; begin
       reference(node) resultNode;
       % parses a string from line and stores it in a string in the text array %
       % - if it is not already present in the specified textElement list.     %
       % returns the position of the string in the text array                  %
       integer procedure readString ( reference(textElement) value result txList; string(1) value terminator ) ; begin
           string(256) str;
           integer     sLen, sPos, ePos;
           logical     found;
           reference(textElement) txPos, txLastPos;
           % get the text of the string %
           str  := " ";
           sLen := 0;
           str( sLen // 1 ) := line( lPos // 1 );
           sLen := sLen + 1;
           lPos := lPos + 1;
           while lPos <= 255 and line( lPos // 1 ) not = terminator do begin
               str( sLen // 1 ) := line( lPos // 1 );
               sLen := sLen + 1;
               lPos := lPos + 1
           end while_more_string ;
           if lPos > 255 then rtError( "Unterminated String in node file." );
           % attempt to find the text in the list of strings/identifiers %
           txLastPos := txPos := txList;
           found := false;
           ePos := 0;
           while not found and txPos not = null do begin
               ePos  := ePos + 1;
               found := ( length(txPos) = sLen );
               sPos  := 0;
               while found and sPos < sLen do begin
                   found := str( sPos // 1 ) = text( start(txPos) + sPos );
                   sPos  := sPos + 1
               end while_not_found ;
               txLastPos := txPos;
               if not found then txPos := next(txPos)
           end while_string_not_found ;
           if not found then begin
               % the string/identifier is not in the list - add it %
               ePos := ePos + 1;
               if txList = null then txList := textElement( textNext, sLen, null )
                                else next(txLastPos) := textElement( textNext, sLen, null );
               if textNext + sLen > TEXT_MAX then rtError( "Text space exhausted." )
               else begin
                   for cPos := 0 until sLen - 1 do begin
                       text( textNext ) := str( cPos // 1 );
                       textNext := textNext + 1
                   end for_cPos
               end
           end if_not_found ;
           ePos
       end readString ;
       % gets an integer from the line - no checks for valid digits %
       integer procedure readInteger ; begin
           integer n;
           n := 0;
           while line( lPos // 1 ) not = " " do begin
               n    := ( n * 10 ) + ( decode( line( lPos // 1 ) ) - decode( "0" ) );
               lPos := lPos + 1
           end while_not_end_of_integer ;
           n
       end readInteger ;
       string(256) line;
       string(16)  name;
       integer     lPos, tPos, ndType;
       tPos := lPos := 0;
       readcard( line );
       % get the node type name %
       while line( lPos // 1 ) = " " do lPos := lPos + 1;
       name := "";
       while lPos < 256 and line( lPos // 1 ) not = " " do begin
           name( tPos // 1 ) := line( lPos // 1 );
           lPos := lPos + 1;
           tPos := tPos + 1
       end  while_more_name ;
       % determine the node type %
       ndType         := 1;
       resultNode     := null;
       if name not = ";" then begin
           % not a null node %
           while ndType <= MAX_NODE_TYPE and name not = ndName( ndType ) do ndType := ndType + 1;
           if ndType > MAX_NODE_TYPE then rtError( "Malformed node." );
           % handle the additional parameter for identifier/string/integer, or sub-nodes for operator nodes %
           if ndType = nInteger or ndType = nIdentifier or ndType = nString then begin
               while line( lPos // 1 ) = " " do lPos := lPos + 1;
               if      ndType = nInteger    then resultNode := operandNode( ndType, readInteger )
               else if ndType = nIdentifier then resultNode := operandNode( ndType, readString( idList, " "  ) )
               else  % ndType = nString     %    resultNode := operandNode( ndType, readString( stList, """" ) )
               end
           else begin
               % operator node %
               reference(node) leftNode;
               leftNode   := readNode;
               resultNode := opNode( ndType, leftNode, readNode )
           end
       end if_non_null_node ;
       resultNode
   end readNode ;
   % interprets the specified node and returns the value %
   integer procedure eval ( reference(node) value n ) ; begin
       integer v;
       % prints a string from text, escape sequences are interpreted %
       procedure writeOnText( reference(textElement) value txHead; integer value txNumber ) ;
       begin
           reference(textElement) txPos;
           integer                count;
           txPos := txHead;
           count := 1;
           while count < txNumber and txPos not = null do begin
               txPos := next(txPos);
               count := count + 1
           end while_text_element_not_found ;
           if txPos = null then rtError( "INTERNAL ERROR: text not found." )
           else begin
               % found the text - output it, handling escape sequences %
               integer cPos;
               cPos := 1; % start from 1 to skip over the leading " %
               while cPos < length(txPos) do begin
                   string(1) ch;
                   ch := text( start(txPos) + cPos );
                   if ch not = "\" then writeon( s_w := 0, ch )
                   else begin
                       % escaped character %
                       cPos := cPos + 1;
                       if      cPos > length(txPos) then rtError( "String terminates with ""\""." )
                       else begin
                           ch := text( start(txPos) + cPos );
                           if ch = "n" then % newline % write()
                                       else writeon( s_w := 0, ch )
                       end
                   end;
                   cPos := cPos + 1
               end while_not_end_of_string
           end
       end writeOnText ;
       % returns 1 if val is true, 0 otherwise %
       integer procedure booleanResult ( logical value val ) ; begin
           if val then 1 else 0
       end booleanResult ;
       v := 0;
       if      n = null                 then v := 0
       else if type(n) = nIdentifier    then v := data( iValue(n) )
       else if type(n) = nString        then v := iValue(n)
       else if type(n) = nInteger       then v := iValue(n)
       else if type(n) = nSequence      then begin
           % sequence - evaluate and discard the left branch and return the right branch %
           v := eval(  left(n) );
           v := eval( right(n) )
           end
       else if type(n) = nIf            then % if-else         % begin
           if eval( left(n) ) not = 0 then v := eval(  left(right(n)) )
                                      else v := eval( right(right(n)) );
           v := 0
           end
       else if type(n) = nPrtc          then % print character % writeon( s_w := 0, code( eval( left(n) ) ) )
       else if type(n) = nPrts          then % print string    % writeOnText( stList, eval( left(n) ) )
       else if type(n) = nPrti          then % print integer   % writeon( s_w := 0, i_w := 1, eval( left(n) ) )
       else if type(n) = nWhile         then % while-loop      % begin
           while eval( left(n) ) not = 0 do v := eval( right(n) );
           v := 0
           end
       else if type(n) = nAssign        then % assignment      % data( iValue(left(n)) ) := eval( right(n) )
       else if type(n) = nNegate        then % unary -         % v := - eval( left(n) )
       else if type(n) = nNot           then % unary not       % v := booleanResult( eval( left(n) ) = 0 )
       else if type(n) = nMultiply      then % multiply        % v := eval( left(n) ) * eval( right(n) )
       else if type(n) = nDivide        then % division        % begin
           integer lv, rv;
           lv := eval(  left(n) );
           rv := eval( right(n) );
           if rv = 0 then rtError( "Division by 0." )
           else v := lv div rv
           end
       else if type(n) = nMod           then % modulo          % begin
           integer lv, rv;
           lv := eval(  left(n) );
           rv := eval( right(n) );
           if rv = 0 then rtError( "Right operand of % is 0." )
           else v := lv rem rv
           end
       else if type(n) = nAdd           then % addition        % v := eval( left(n) ) + eval( right(n) )
       else if type(n) = nSubtract      then % subtraction     % v := eval( left(n) ) - eval( right(n) )
       else if type(n) = nLess          then % less-than       % v := booleanResult( eval( left(n) ) <     eval( right(n) ) )
       else if type(n) = nLessEqual     then % less or equal   % v := booleanResult( eval( left(n) ) <=    eval( right(n) ) )
       else if type(n) = nGreater       then % greater-than    % v := booleanResult( eval( left(n) ) >     eval( right(n) ) )
       else if type(n) = nGreaterEqual  then % greater or eq   % v := booleanResult( eval( left(n) ) >=    eval( right(n) ) )
       else if type(n) = nEqual         then % test equal      % v := booleanResult( eval( left(n) ) =     eval( right(n) ) )
       else if type(n) = nNotEqual      then % not-equal       % v := booleanResult( eval( left(n) ) not = eval( right(n) ) )
       else if type(n) = nAnd           then % boolean "and"   % begin
           v := eval( left(n) );
           if v not = 0 then v := eval( right(n) )
           end
       else if type(n) = nOr            then % boolean "or"    % begin
           v := eval( left(n) );
           if v = 0 then v := eval( right(n) );
           end
       else % unknown node % begin
           rtError( "Unknown node type in eval." )
       end;
       v
   end eval ;
   nIdentifier      :=  1; ndName( nIdentifier      ) := "Identifier";   nString    :=  2; ndName( nString   ) := "String";
   nInteger         :=  3; ndName( nInteger         ) := "Integer";      nSequence  :=  4; ndName( nSequence ) := "Sequence";
   nIf              :=  5; ndName( nIf              ) := "If";           nPrtc      :=  6; ndName( nPrtc     ) := "Prtc";
   nPrts            :=  7; ndName( nPrts            ) := "Prts";         nPrti      :=  8; ndName( nPrti     ) := "Prti";
   nWhile           :=  9; ndName( nWhile           ) := "While";        nAssign    := 10; ndName( nAssign   ) := "Assign";
   nNegate          := 11; ndName( nNegate          ) := "Negate";       nNot       := 12; ndName( nNot      ) := "Not";
   nMultiply        := 13; ndName( nMultiply        ) := "Multiply";     nDivide    := 14; ndName( nDivide   ) := "Divide";
   nMod             := 15; ndName( nMod             ) := "Mod";          nAdd       := 16; ndName( nAdd      ) := "Add";
   nSubtract        := 17; ndName( nSubtract        ) := "Subtract";     nLess      := 18; ndName( nLess     ) := "Less";
   nLessEqual       := 19; ndName( nLessEqual       ) := "LessEqual"  ;  nGreater   := 20; ndName( nGreater  ) := "Greater";
   nGreaterEqual    := 21; ndName( nGreaterEqual    ) := "GreaterEqual"; nEqual     := 22; ndName( nEqual    ) := "Equal";
   nNotEqual        := 23; ndName( nNotEqual        ) := "NotEqual";     nAnd       := 24; ndName( nAnd      ) := "And";
   nOr              := 25; ndName( nOr              ) := "Or";
   MAX_NODE_TYPE    := 25; TEXT_MAX := 4095; textNext := 0;
   stList := idList := null;
   % parse the output from the syntax analyser and intetrpret parse tree %
   eval( readNode )

end.</lang>

Output:
3 is prime
5 is prime
7 is prime
11 is prime
...
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

C

Tested with gcc 4.81 and later, compiles warning free with -Wall -Wextra <lang C>#include <stdlib.h>

  1. include <stdio.h>
  2. include <string.h>
  3. include <stdarg.h>
  4. include <ctype.h>
  1. define da_dim(name, type) type *name = NULL; \
                           int _qy_ ## name ## _p = 0;  \
                           int _qy_ ## name ## _max = 0
  1. define da_rewind(name) _qy_ ## name ## _p = 0
  2. define da_redim(name) do {if (_qy_ ## name ## _p >= _qy_ ## name ## _max) \
                               name = realloc(name, (_qy_ ## name ## _max += 32) * sizeof(name[0]));} while (0)
  1. define da_append(name, x) do {da_redim(name); name[_qy_ ## name ## _p++] = x;} while (0)
  2. define da_len(name) _qy_ ## name ## _p
  3. define da_add(name) do {da_redim(name); _qy_ ## name ## _p++;} while (0)

typedef enum {

   nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While,
   nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq,
   nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or

} NodeType;

typedef struct Tree Tree; struct Tree {

   NodeType node_type;
   Tree *left;
   Tree *right;
   int value;

};

// dependency: Ordered by NodeType, must remain in same order as NodeType enum

struct {

   char       *enum_text;
   NodeType   node_type;

} atr[] = {

   {"Identifier"  , nd_Ident,  },  {"String"      , nd_String,  },
   {"Integer"     , nd_Integer,},  {"Sequence"    , nd_Sequence,},
   {"If"          , nd_If,     },  {"Prtc"        , nd_Prtc,    },
   {"Prts"        , nd_Prts,   },  {"Prti"        , nd_Prti,    },
   {"While"       , nd_While,  },  {"Assign"      , nd_Assign,  },
   {"Negate"      , nd_Negate, },  {"Not"         , nd_Not,     },
   {"Multiply"    , nd_Mul,    },  {"Divide"      , nd_Div,     },
   {"Mod"         , nd_Mod,    },  {"Add"         , nd_Add,     },
   {"Subtract"    , nd_Sub,    },  {"Less"        , nd_Lss,     },
   {"LessEqual"   , nd_Leq,    },  {"Greater"     , nd_Gtr,     },
   {"GreaterEqual", nd_Geq,    },  {"Equal"       , nd_Eql,     },
   {"NotEqual"    , nd_Neq,    },  {"And"         , nd_And,     },
   {"Or"          , nd_Or,     },

};

FILE *source_fp; da_dim(string_pool, const char *); da_dim(global_names, const char *); da_dim(global_values, int);

void error(const char *fmt, ... ) {

   va_list ap;
   char buf[1000];
   va_start(ap, fmt);
   vsprintf(buf, fmt, ap);
   printf("error: %s\n", buf);
   exit(1);

}

Tree *make_node(NodeType node_type, Tree *left, Tree *right) {

   Tree *t = calloc(sizeof(Tree), 1);
   t->node_type = node_type;
   t->left = left;
   t->right = right;
   return t;

}

Tree *make_leaf(NodeType node_type, int value) {

   Tree *t = calloc(sizeof(Tree), 1);
   t->node_type = node_type;
   t->value = value;
   return t;

}

int interp(Tree *x) { /* interpret the parse tree */

   if (!x) return 0;
   switch(x->node_type) {
       case nd_Integer:  return x->value;
       case nd_Ident:    return global_values[x->value];
       case nd_String:   return x->value;
       case nd_Assign:   return global_values[x->left->value] = interp(x->right);
       case nd_Add:      return interp(x->left) +  interp(x->right);
       case nd_Sub:      return interp(x->left) -  interp(x->right);
       case nd_Mul:      return interp(x->left) *  interp(x->right);
       case nd_Div:      return interp(x->left) /  interp(x->right);
       case nd_Mod:      return interp(x->left) %  interp(x->right);
       case nd_Lss:      return interp(x->left) <  interp(x->right);
       case nd_Gtr:      return interp(x->left) >  interp(x->right);
       case nd_Leq:      return interp(x->left) <= interp(x->right);
       case nd_Eql:      return interp(x->left) == interp(x->right);
       case nd_Neq:      return interp(x->left) != interp(x->right);
       case nd_And:      return interp(x->left) && interp(x->right);
       case nd_Or:       return interp(x->left) || interp(x->right);  
       case nd_Negate:   return -interp(x->left);
       case nd_Not:      return !interp(x->left);
       case nd_If:       if (interp(x->left))
                           interp(x->right->left);
                         else
                           interp(x->right->right);
                         return 0;
       case nd_While:    while (interp(x->left))
                           interp(x->right);
                         return 0;
       case nd_Prtc:     printf("%c", interp(x->left));
                         return 0;
       case nd_Prti:     printf("%d", interp(x->left));
                         return 0;
       case nd_Prts:     printf("%s", string_pool[interp(x->left)]);
                         return 0;
       case nd_Sequence: interp(x->left);
                         interp(x->right);
                         return 0;
       default:          error("interp: unknown tree type %d\n", x->node_type);
   }
   return 0;

}

void init_in(const char fn[]) {

   if (fn[0] == '\0')
       source_fp = stdin;
   else {
       source_fp = fopen(fn, "r");
       if (source_fp == NULL)
           error("Can't open %s\n", fn);
   }

}

NodeType get_enum_value(const char name[]) {

   for (size_t i = 0; i < sizeof(atr) / sizeof(atr[0]); i++) {
       if (strcmp(atr[i].enum_text, name) == 0) {
           return atr[i].node_type;
       }
   }
   error("Unknown token %s\n", name);
   return -1;

}

char *read_line(int *len) {

   static char *text = NULL;
   static int textmax = 0;
   for (*len = 0; ; (*len)++) {
       int ch = fgetc(source_fp);
       if (ch == EOF || ch == '\n') {
           if (*len == 0)
               return NULL;
           break;
       }
       if (*len + 1 >= textmax) {
           textmax = (textmax == 0 ? 128 : textmax * 2);
           text = realloc(text, textmax);
       }
       text[*len] = ch;
   }
   text[*len] = '\0';
   return text;

}

char *rtrim(char *text, int *len) { // remove trailing spaces

   for (; *len > 0 && isspace(text[*len - 1]); --(*len))
       ;
   text[*len] = '\0';
   return text;

}

int fetch_string_offset(char *st) {

   int len = strlen(st);
   st[len - 1] = '\0';
   ++st;
   char *p, *q;
   p = q = st;
   while ((*p++ = *q++) != '\0') {
       if (q[-1] == '\\') {
           if (q[0] == 'n') {
               p[-1] = '\n';
               ++q;
           } else if (q[0] == '\\') {
               ++q;
           }
       }
   }
   for (int i = 0; i < da_len(string_pool); ++i) {
       if (strcmp(st, string_pool[i]) == 0) {
           return i;
       }
   }
   da_add(string_pool);
   int n = da_len(string_pool) - 1;
   string_pool[n] = strdup(st);
   return da_len(string_pool) - 1;

}

int fetch_var_offset(const char *name) {

   for (int i = 0; i < da_len(global_names); ++i) {
       if (strcmp(name, global_names[i]) == 0)
           return i;
   }
   da_add(global_names);
   int n = da_len(global_names) - 1;
   global_names[n] = strdup(name);
   da_append(global_values, 0);
   return n;

}

Tree *load_ast() {

   int len;
   char *yytext = read_line(&len);
   yytext = rtrim(yytext, &len);
   // get first token
   char *tok = strtok(yytext, " ");
   if (tok[0] == ';') {
       return NULL;
   }
   NodeType node_type = get_enum_value(tok);
   // if there is extra data, get it
   char *p = tok + strlen(tok);
   if (p != &yytext[len]) {
       int n;
       for (++p; isspace(*p); ++p)
           ;
       switch (node_type) {
           case nd_Ident:      n = fetch_var_offset(p);    break;
           case nd_Integer:    n = strtol(p, NULL, 0);     break;
           case nd_String:     n = fetch_string_offset(p); break;
           default:            error("Unknown node type: %s\n", p);
       }
       return make_leaf(node_type, n);
   }
   Tree *left  = load_ast();
   Tree *right = load_ast();
   return make_node(node_type, left, right);

}

int main(int argc, char *argv[]) {

   init_in(argc > 1 ? argv[1] : "");
   Tree *x = load_ast();
   interp(x);
   return 0;

}</lang>

Output  —  prime numbers output from AST interpreter:

lex prime.t | parse | interp
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

COBOL

Code by Steve Williams. Tested with GnuCOBOL 2.2.

<lang cobol> >>SOURCE FORMAT IS FREE identification division.

  • > this code is dedicated to the public domain
  • > (GnuCOBOL) 2.3-dev.0

program-id. astinterpreter. environment division. configuration section. repository. function all intrinsic. data division. working-storage section. 01 program-name pic x(32) value spaces global. 01 input-name pic x(32) value spaces global. 01 input-status pic xx global.

01 ast-record global.

   03  ast-type pic x(14).
   03  ast-value pic x(48).
   03  filler redefines ast-value.
       05  asl-left pic 999.
       05  asl-right pic 999.

01 error-record pic x(64) value spaces global.

01 loadstack global.

   03  l pic 99 value 0.
   03  l-lim pic 99 value 64.
   03  load-entry occurs 64.
       05  l-node pic x(14).
       05  l-left pic 999.
       05  l-right pic 999.
       05  l-link pic 999.

01 abstract-syntax-tree global.

   03  t pic 999 value 0.
   03  t1 pic 999.
   03  n1 pic 999.
   03  t-lim pic 999 value 998.
   03  filler occurs 998.
       05  leaf.
           07  leaf-type pic x(14).
           07  leaf-value pic x(48).
       05  node redefines leaf.
           07  node-type pic x(14).
           07  node-left pic 999.
           07  node-right pic 999.


01 interpreterstack global.

   03  stack1 pic 99 value 2.
   03  stack2 pic 99 value 1.
   03  stack-lim pic 99 value 32.
   03  stack-entry occurs 32.
        05  stack-source pic 99.
        05  stack usage binary-int.

01 variables global.

   03  v pic 99.
   03  v-max pic 99 value 0.
   03  v-lim pic 99 value 16.
   03  filler occurs 16.
       05  variable-value binary-int.
       05  variable-name pic x(48).

01 strings global.

   03  s pic 99.
   03  s-max pic 99 value 0.
   03  s-lim pic 99 value 16.
   03  filler occurs 16 value spaces.
       05  string-value pic x(48).

01 string-fields global.

   03  string-length pic 99.
   03  string1 pic 99.
   03  length1 pic 99.
   03  count1 pic 99.

01 display-fields global.

   03  display-number pic -(9)9.
   03  display-pending pic x value 'n'.
   03  character-value.
       05  character-number usage binary-char.

procedure division chaining program-name. start-astinterpreter.

   call 'loadast'
   if program-name <> spaces
       call 'readinput' *> close the input-file
   end-if
   >>d perform print-ast
   call 'runast' using t
   if display-pending = 'y'
       display space
   end-if
   stop run
   .

print-ast.

   call 'printast' using t
   display 'ast:' upon syserr
   display 't=' t
   perform varying t1 from 1 by 1 until t1 > t
       if leaf-type(t1) = 'Identifier' or 'Integer' or 'String'
           display t1 space trim(leaf-type(t1)) space trim(leaf-value(t1)) upon syserr
       else
           display t1 space node-left(t1) space node-right(t1) space trim(node-type(t1)) 
               upon syserr
       end-if
   end-perform
   .

identification division. program-id. runast common recursive. data division. working-storage section. 01 word-length constant as length of binary-int. linkage section. 01 n pic 999. procedure division using n. start-runast.

   if n = 0
       exit program
   end-if
   evaluate node-type(n)
   when 'Integer'
       perform push-stack
       move numval(leaf-value(n)) to stack(stack1)
   when 'Identifier'
       perform get-variable-index
       perform push-stack
       move v to stack-source(stack1)
       move variable-value(v) to stack(stack1)
   when 'String'
       perform get-string-index
       perform push-stack
       move s to stack-source(stack1)
   when 'Assign'
       call 'runast' using node-left(n)
       call 'runast' using node-right(n)
       move stack-source(stack2) to v
       move stack(stack1) to variable-value(v)
       perform pop-stack
       perform pop-stack
   when 'If'
       call 'runast' using node-left(n)
       move node-right(n) to n1
       if stack(stack1) <> 0
           call 'runast' using node-left(n1)
       else
           call 'runast' using node-right(n1)
       end-if
       perform pop-stack
   when 'While'
       call 'runast' using node-left(n)
       perform until stack(stack1) = 0
           perform pop-stack
           call 'runast' using node-right(n)
           call 'runast' using node-left(n)
       end-perform
       perform pop-stack
   when 'Add'
       perform get-values
       add stack(stack1) to stack(stack2)
       perform pop-stack
   when 'Subtract'
       perform get-values
       subtract stack(stack1) from stack(stack2)
       perform pop-stack
   when 'Multiply'
       perform get-values
       multiply stack(stack1) by stack(stack2)
       perform pop-stack
   when 'Divide'
       perform get-values
       divide stack(stack1) into stack(stack2)
       perform pop-stack
   when 'Mod'
       perform get-values
       move mod(stack(stack2),stack(stack1)) to stack(stack2)
       perform pop-stack
   when 'Less'
       perform get-values
       if stack(stack2) < stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'Greater'
       perform get-values
       if stack(stack2) > stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'LessEqual'
       perform get-values
       if stack(stack2) <= stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'GreaterEqual'
       perform get-values
       if stack(stack2) >= stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'Equal'
       perform get-values
       if stack(stack2) = stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'NotEqual'
       perform get-values
       if stack(stack2) <> stack(stack1)
           move 1 to stack(stack2)
       else
           move 0 to stack(stack2)
       end-if
       perform pop-stack
   when 'And'
       perform get-values
       call "CBL_AND" using stack(stack1) stack(stack2) by value word-length
       perform pop-stack
   when 'Or'
       perform get-values
       call "CBL_OR" using stack(stack1) stack(stack2) by value word-length
       perform pop-stack
   when 'Not'
       call 'runast' using node-left(n)
       if stack(stack1) = 0
           move 1 to stack(stack1)
       else
           move 0 to stack(stack1)
       end-if
   when 'Negate'
       call 'runast' using node-left(n)
       compute stack(stack1) = - stack(stack1)
   when 'Prtc'
       call 'runast' using node-left(n)
       move stack(stack1) to character-number
       display character-value with no advancing
       move 'y' to display-pending
       perform pop-stack
   when 'Prti'
       call 'runast' using node-left(n)
       move stack(stack1) to display-number
       display trim(display-number) with no advancing
       move 'y' to display-pending
       perform pop-stack
   when 'Prts'
       call 'runast' using node-left(n)
       move stack-source(stack1) to s
       move length(trim(string-value(s))) to string-length
       move 2 to string1
       compute length1 = string-length - 2
       perform until string1 >= string-length
           move 0 to count1
           inspect string-value(s)(string1:length1)
               tallying count1 for characters before initial '\'   *> ' (workaround Rosetta Code highlighter problem)
           evaluate true
           when string-value(s)(string1 + count1 + 1:1) = 'n' *> \n
               display string-value(s)(string1:count1)
               move 'n' to display-pending
               compute string1 = string1 + 2 + count1
               compute length1 = length1 - 2 - count1
           when string-value(s)(string1 + count1 + 1:1) = '\' *> \\ '
               display string-value(s)(string1:count1 + 1) with no advancing
               move 'y' to display-pending
               compute string1 = string1 + 2 + count1
               compute length1 = length1 - 2 - count1
           when other
               display string-value(s)(string1:count1) with no advancing
               move 'y' to display-pending
               add count1 to string1
               subtract count1 from length1
           end-evaluate
       end-perform 
       perform pop-stack
   when 'Sequence'
       call 'runast' using node-left(n)
       call 'runast' using node-right(n)
   when other
       string 'in astinterpreter unknown node type ' node-type(n) into error-record
       call 'reporterror'
   end-evaluate
   exit program
   .

push-stack.

   if stack1 >= s-lim
       string 'in astinterpreter at ' n ' stack overflow' into error-record
       call 'reporterror'
   end-if
   add 1 to stack1 stack2
   initialize stack-entry(stack1)
   .

pop-stack.

   if stack1 < 2
       string 'in astinterpreter at ' n ' stack underflow ' into error-record
       call 'reporterror'
   end-if
   subtract 1 from stack1 stack2
   .

get-variable-index.

   perform varying v from 1 by 1 until v > v-max
   or variable-name(v) = leaf-value(n)
       continue
   end-perform
   if v > v-max
       if v-max = v-lim
           string 'in astinterpreter number of variables exceeds ' v-lim into error-record
           call 'reporterror'
       end-if
       move v to v-max
       move leaf-value(n) to variable-name(v)
       move 0 to variable-value(v)
   end-if
   .

get-string-index.

   perform varying s from 1 by 1 until s > s-max
   or string-value(s) = leaf-value(n)
       continue
   end-perform
   if s > s-max
       if s-max = s-lim
           string 'in astinterpreter number of strings exceeds ' s-lim into error-record
           call 'reporterror'
       end-if
       move s to s-max
       move leaf-value(n) to string-value(s)
   end-if
   .

get-values.

   call 'runast' using node-left(n)
   call 'runast' using node-right(n)
   .

end program runast.

identification division. program-id. loadast common recursive. procedure division. start-loadast.

   if l >= l-lim
       string 'in astinterpreter loadast l exceeds ' l-lim into error-record
       call 'reporterror'
   end-if
   add 1 to l
   call 'readinput'
   evaluate true
   when ast-record = ';'
   when input-status = '10'
       move 0 to return-code
   when ast-type = 'Identifier'
   when ast-type = 'Integer'
   when ast-type = 'String'
       call 'makeleaf' using ast-type ast-value
       move t to return-code
   when ast-type = 'Sequence'
       move ast-type to l-node(l)
       call 'loadast'
       move return-code to l-left(l)
       call 'loadast'
       move t to l-right(l)
       call 'makenode' using l-node(l) l-left(l) l-right(l)
       move t to return-code
   when other
       move ast-type to l-node(l)
       call 'loadast'
       move return-code to l-left(l)
       call 'loadast'
       move return-code to l-right(l)
       call 'makenode' using l-node(l) l-left(l) l-right(l)
       move t to return-code
   end-evaluate
   subtract 1 from l
   .

end program loadast.

identification division. program-id. makenode common. data division. linkage section. 01 parm-type any length. 01 parm-l-left pic 999. 01 parm-l-right pic 999. procedure division using parm-type parm-l-left parm-l-right. start-makenode.

   if t >= t-lim 
       string 'in astinterpreter makenode t exceeds ' t-lim into error-record
       call 'reporterror'
   end-if
   add 1 to t
   move parm-type to node-type(t)
   move parm-l-left to node-left(t)
   move parm-l-right to node-right(t)
   .

end program makenode.

identification division. program-id. makeleaf common. data division. linkage section. 01 parm-type any length. 01 parm-value pic x(48). procedure division using parm-type parm-value. start-makeleaf.

   add 1 to t
   if t >= t-lim 
       string 'in astinterpreter makeleaf t exceeds ' t-lim into error-record
       call 'reporterror'
   end-if
   move parm-type to leaf-type(t)
   move parm-value to leaf-value(t)
   .

end program makeleaf.

identification division. program-id. printast common recursive. data division. linkage section. 01 n pic 999. procedure division using n. start-printast.

   if n = 0
       display ';' upon syserr
       exit program
   end-if
   display leaf-type(n) upon syserr
   evaluate leaf-type(n)
   when 'Identifier'
   when 'Integer'
   when 'String'
       display leaf-type(n) space trim(leaf-value(n)) upon syserr
   when other
       display node-type(n) upon syserr
       call 'printast' using node-left(n)
       call 'printast' using node-right(n)
   end-evaluate
   .

end program printast.

identification division. program-id. readinput common. environment division. input-output section. file-control.

   select input-file assign using input-name
       status is input-status
       organization is line sequential.

data division. file section. fd input-file. 01 input-record pic x(64). procedure division. start-readinput.

   if program-name = spaces
       move '00' to input-status
       accept ast-record on exception move '10' to input-status end-accept
       exit program
   end-if
   if input-name = spaces
       string program-name delimited by space '.ast' into input-name
       open input input-file
       if input-status = '35'
           string 'in astinterpreter ' trim(input-name) ' not found' into error-record
           call 'reporterror'
       end-if
   end-if
   read input-file into ast-record
   evaluate input-status
   when '00'
       continue
   when '10'
       close input-file
   when other
       string 'in astinterpreter ' trim(input-name) ' unexpected input-status: ' input-status
           into error-record
       call 'reporterror'
   end-evaluate
   .

end program readinput.

program-id. reporterror common. procedure division. start-reporterror. report-error.

   display error-record upon syserr
   stop run with error status -1
   .

end program reporterror. end program astinterpreter.</lang>

Output  —  Primes:
prompt$ ./lexer <testcases/Primes | ./parser | ./astinterpreter 
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Forth

Tested with Gforth 0.7.3 <lang Forth>CREATE BUF 0 , \ single-character look-ahead buffer

PEEK BUF @ 0= IF KEY BUF ! THEN BUF @ ;
GETC PEEK 0 BUF ! ;
SPACE? DUP BL = SWAP 9 14 WITHIN OR ;
>SPACE BEGIN PEEK SPACE? WHILE GETC DROP REPEAT ;
DIGIT? 48 58 WITHIN ;
GETINT >SPACE 0
  BEGIN  PEEK DIGIT?
  WHILE  GETC [CHAR] 0 -  SWAP 10 * +  REPEAT ;
GETNAM >SPACE PAD 1+
  BEGIN PEEK SPACE? INVERT
  WHILE GETC OVER C! CHAR+
  REPEAT  PAD TUCK - 1-  PAD C! ;
GETSTR ( -- c-addr u)
  HERE >R 0  >SPACE GETC DROP  \ skip leading "
  BEGIN GETC DUP [CHAR] " <> WHILE C, 1+ REPEAT
  DROP R> SWAP ;
\TYPE BEGIN DUP 0> WHILE
  OVER C@ [CHAR] \ = IF
    1- >R CHAR+ R>
    OVER C@ [CHAR] n = IF CR ELSE
    OVER C@ [CHAR] \ = IF [CHAR] \ EMIT THEN THEN
  ELSE OVER C@ EMIT THEN  1- >R CHAR+ R> REPEAT
  DROP DROP ;
. S>D SWAP OVER DABS <# #S ROT SIGN #> TYPE ;
CONS ( v l -- l) HERE >R SWAP , , R> ;
HEAD ( l -- v) @ ;
TAIL ( l -- l) CELL+ @ ;

CREATE GLOBALS 0 ,

DECLARE ( c-addr -- a-addr) HERE TUCK
  OVER C@ CHAR+  DUP ALLOT CMOVE  HERE SWAP 0 ,
  GLOBALS @ CONS  GLOBALS ! ;
LOOKUP ( c-addr -- a-addr) DUP COUNT GLOBALS @ >R
  BEGIN R@ 0<>
  WHILE R@ HEAD COUNT  2OVER COMPARE 0=
    IF 2DROP DROP  R> HEAD DUP C@ CHAR+ + EXIT
    THEN  R> TAIL >R
  REPEAT
  2DROP RDROP  DECLARE ;

DEFER GETAST

>Identifier GETNAM LOOKUP 0 ;
>Integer GETINT 0 ;
>String GETSTR ;
>; 0 0 ;
NODE ( xt left right -- addr) HERE >R , , , R> ;

CREATE BUF' 12 ALLOT

PREPEND ( c-addr c -- c-addr) BUF' 1+ C!
  COUNT DUP 1+ BUF' C!  BUF' 2 + SWAP CMOVE  BUF' ;
HANDLER ( c-addr -- xt) [CHAR] $ PREPEND FIND
  0= IF ." No handler for AST node '" COUNT TYPE ." '" THEN ;
READER ( c-addr -- xt t | f)
  [CHAR] > PREPEND  FIND  DUP 0= IF NIP THEN ;
READ ( c-addr -- left right) READER
  IF EXECUTE ELSE GETAST GETAST THEN ;
(GETAST) GETNAM DUP HANDLER SWAP READ NODE ;

' (GETAST) IS GETAST

INTERP DUP 2@ ROT [ 2 CELLS ]L + @ EXECUTE ;
$; DROP DROP ;
$Identifier ( l r -- a-addr) DROP @ ;
$Integer ( l r -- n) DROP ;
$String ( l r -- c-addr u) ( noop) ;
$Prtc ( l r --) DROP INTERP EMIT ;
$Prti ( l r --) DROP INTERP . ;
$Prts ( l r --) DROP INTERP \TYPE ;
$Not ( l r --) DROP INTERP 0= ;
$Negate ( l r --) DROP INTERP NEGATE ;
$Sequence ( l r --) SWAP INTERP INTERP ;
$Assign ( l r --) SWAP CELL+ @ >R INTERP R> ! ;
$While ( l r --)
  >R BEGIN DUP INTERP WHILE R@ INTERP REPEAT  RDROP DROP ;
$If ( l r --) SWAP INTERP 0<> IF CELL+ THEN @ INTERP ;
$Subtract ( l r -- n) >R INTERP R> INTERP - ;
$Add >R INTERP R> INTERP + ;
$Mod >R INTERP R> INTERP MOD ;
$Multiply >R INTERP R> INTERP * ;
$Divide >R INTERP S>D R> INTERP SM/REM SWAP DROP ;
$Less >R INTERP R> INTERP < ;
$LessEqual >R INTERP R> INTERP <= ;
$Greater >R INTERP R> INTERP > ;
$GreaterEqual >R INTERP R> INTERP >= ;
$Equal >R INTERP R> INTERP = ;
$NotEqual >R INTERP R> INTERP <> ;
$And >R INTERP IF R> INTERP 0<> ELSE RDROP 0 THEN ;
$Or >R INTERP IF RDROP -1 ELSE R> INTERP 0<> THEN ;

GETAST INTERP </lang> Passes all tests.

Julia

<lang julia>struct Anode

   node_type::String
   left::Union{Nothing, Anode}
   right::Union{Nothing, Anode}
   value::Union{Nothing, String}

end

make_leaf(t, v) = Anode(t, nothing, nothing, v) make_node(t, l, r) = Anode(t, l, r, nothing)

const OP2 = Dict("Multiply" => "*", "Divide" => "/", "Mod" => "%", "Add" => "+", "Subtract" => "-",

                "Less" => "<", "Greater" => ">", "LessEqual" => "<=", "GreaterEqual" => ">=", 
                "Equal" => "==", "NotEqual" => "!=", "And" => "&&", "Or" => "||")

const OP1 = Dict("Not" => "!", "Minus" => "-")

tobool(i::Bool) = i tobool(i::Int) = (i != 0) tobool(s::String) = eval(Symbol(s)) != 0

const stac = Vector{Any}()

function call2(op, x, y)

   if op in ["And", "Or"]
       x, y = tobool(x), tobool(y)
   end
   eval(Meta.parse("push!(stac, $(x) $(OP2[op]) $(y))"))
   return Int(floor(pop!(stac)))

end

call1(op, x) = (if op in ["Not"] x = tobool(x) end; eval(Meta.parse("$(OP1[op]) $(x)"))) evalpn(op, x, y = nothing) = (haskey(OP2, op) ? call2(op, x, y) : call1(op, x))

function load_ast(io)

   line = strip(readline(io))
   line_list = filter(x -> x != nothing, match(r"(?:(\w+)\s+(\d+|\w+|\".*\")|(\w+|;))", line).captures)
   text = line_list[1]
   if text == ";"
       return nothing
   end
   node_type = text
   if length(line_list) > 1
       return make_leaf(line_list[1], line_list[2])
   end
   left = load_ast(io)
   right = load_ast(io)
   return make_node(line_list[1], left, right)

end

function interp(x)

   if x == nothing return nothing
   elseif x.node_type == "Integer" return parse(Int, x.value)
   elseif x.node_type == "Identifier" return "_" * x.value
   elseif x.node_type == "String" return replace(replace(x.value, "\"" => ""), "\\n" => "\n")
   elseif x.node_type == "Assign" s = "$(interp(x.left)) = $(interp(x.right))"; eval(Meta.parse(s)); return nothing
   elseif x.node_type in keys(OP2) return evalpn(x.node_type, interp(x.left), interp(x.right))
   elseif x.node_type in keys(OP1) return evalpn(x.node_type, interp(x.left))
   elseif x.node_type ==  "If" tobool(eval(interp(x.left))) ? interp(x.right.left) : interp(x.right.right); return nothing
   elseif x.node_type == "While" while tobool(eval(interp(x.left))) interp(x.right) end; return nothing
   elseif x.node_type == "Prtc" print(Char(eval(interp(x.left)))); return nothing
   elseif x.node_type == "Prti" s = interp(x.left); print((i = tryparse(Int, s)) == nothing ? eval(Symbol(s)) : i); return nothing
   elseif x.node_type == "Prts" print(eval(interp(x.left))); return nothing
   elseif x.node_type == "Sequence" interp(x.left); interp(x.right); return nothing
   else
       throw("unknown node type: $x")
   end

end

const testparsed = """ Sequence Sequence Sequence Sequence Sequence

Assign Identifier count Integer 1 Assign Identifier n Integer 1 Assign Identifier limit Integer 100 While Less Identifier n Identifier limit Sequence Sequence Sequence Sequence Sequence

Assign Identifier k Integer 3 Assign Identifier p Integer 1 Assign Identifier n Add Identifier n Integer 2 While And LessEqual Multiply Identifier k Identifier k Identifier n Identifier p Sequence Sequence

Assign Identifier p NotEqual Multiply Divide Identifier n Identifier k Identifier k Identifier n Assign Identifier k Add Identifier k Integer 2 If Identifier p If Sequence Sequence

Sequence Sequence

Prti Identifier n

Prts String \" is prime\\n\"

Assign Identifier count Add Identifier count Integer 1

Sequence Sequence Sequence

Prts String \"Total primes found: \"

Prti Identifier count

Prts String \"\\n\"

"""

const lio = IOBuffer(testparsed)

interp(load_ast(lio))

</lang>

Output:

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26


Perl

Tested with perl v5.26.1

<lang Perl>#!/usr/bin/perl

use strict; # interpreter.pl - execute a flatAST use warnings; # http://www.rosettacode.org/wiki/Compiler/AST_interpreter use integer;

my %variables;

tree()->run;

sub tree

 {
 my $line = <> // die "incomplete tree\n";
 (local $_, my $arg) = $line =~ /^(\w+|;)\s+(.*)/ or die "bad input $line";
 /String/ ? bless [$arg =~ tr/""//dr =~ s/\\(.)/$1 eq 'n' ? "\n" : $1/ger], $_ :
   /Identifier|Integer/ ? bless [ $arg ], $_ :
   /;/ ? bless [], 'Null' :
   bless [ tree(), tree() ], $_;
 }

sub Add::run { $_[0][0]->run + $_[0][1]->run } sub And::run { $_[0][0]->run && $_[0][1]->run } sub Assign::run { $variables{$_[0][0][0]} = $_[0][1]->run } sub Divide::run { $_[0][0]->run / $_[0][1]->run } sub Equal::run { $_[0][0]->run == $_[0][1]->run ? 1 : 0 } sub Greater::run { $_[0][0]->run > $_[0][1]->run ? 1 : 0 } sub GreaterEqual::run { $_[0][0]->run >= $_[0][1]->run ? 1 : 0 } sub Identifier::run { $variables{$_[0][0]} // 0 } sub If::run { $_[0][0]->run ? $_[0][1][0]->run : $_[0][1][1]->run } sub Integer::run { $_[0][0] } sub Less::run { $_[0][0]->run < $_[0][1]->run ? 1 : 0 } sub LessEqual::run { $_[0][0]->run <= $_[0][1]->run ? 1 : 0 } sub Mod::run { $_[0][0]->run % $_[0][1]->run } sub Multiply::run { $_[0][0]->run * $_[0][1]->run } sub Negate::run { - $_[0][0]->run } sub Not::run { $_[0][0]->run ? 0 : 1 } sub NotEqual::run { $_[0][0]->run != $_[0][1]->run ? 1 : 0 } sub Null::run {} sub Or::run { $_[0][0]->run || $_[0][1]->run } sub Prtc::run { print chr $_[0][0]->run } sub Prti::run { print $_[0][0]->run } sub Prts::run { print $_[0][0][0] } sub Sequence::run { $_->run for $_[0]->@* } sub Subtract::run { $_[0][0]->run - $_[0][1]->run } sub While::run { $_[0][1]->run while $_[0][0]->run }</lang> Passes all tests.

Phix

Reusing parse.e from the Syntax Analyzer task <lang Phix>-- -- demo\rosetta\Compiler\interp.exw -- ================================

include parse.e

sequence vars = {},

        vals = {}

function var_idx(sequence inode)

   if inode[1]!=tk_Identifier then ?9/0 end if
   string ident = inode[2]
   integer n = find(ident,vars)
   if n=0 then
       vars = append(vars,ident)
       vals = append(vals,0)
       n = length(vars)
   end if
   return n

end function

function interp(object t)

   if t!=NULL then
       integer ntype = t[1]
       object t2 = t[2], 
              t3 = iff(length(t)=3?t[3]:0)
       switch ntype do
           case tk_Sequence:       {} = interp(t2) {} = interp(t3)
           case tk_assign:         vals[var_idx(t2)] = interp(t3)
           case tk_Identifier:     return vals[var_idx(t)]
           case tk_Integer:        return t2
           case tk_String:         return t2
           case tk_lt:             return interp(t2) < interp(t3)
           case tk_add:            return interp(t2) + interp(t3)
           case tk_sub:            return interp(t2) - interp(t3)
           case tk_while:          while interp(t2) do {} = interp(t3) end while
           case tk_Prints:         puts(1,interp(t2))
           case tk_Printi:         printf(1,"%d",interp(t2))
           case tk_putc:           printf(1,"%c",interp(t2))
           case tk_and:            return interp(t2) and interp(t3)
           case tk_or:             return interp(t2) or interp(t3)
           case tk_le:             return interp(t2) <= interp(t3)
           case tk_ge:             return interp(t2) >= interp(t3)
           case tk_ne:             return interp(t2) != interp(t3)
           case tk_gt:             return interp(t2) > interp(t3)
           case tk_mul:            return interp(t2) * interp(t3)
           case tk_div:            return trunc(interp(t2)/interp(t3))
           case tk_mod:            return remainder(interp(t2),interp(t3))
           case tk_if:             {} = interp(t3[iff(interp(t2)?2:3)])
           case tk_not:            return not interp(t2)
           case tk_neg:            return - interp(t2)
           else
               error("unknown node type")
       end switch
   end if
   return NULL

end function

procedure main(sequence cl)

   open_files(cl)
   toks = lex()
   object t = parse()
   {} = interp(t)
   close_files()

end procedure

--main(command_line()) main({0,0,"primes.c"})</lang>

Output:
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Python

Tested with Python 2.7 and 3.x <lang Python>from __future__ import print_function import sys, shlex, operator

nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While, \ nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq, \ nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or = range(25)

all_syms = {

   "Identifier"  : nd_Ident,    "String"      : nd_String,
   "Integer"     : nd_Integer,  "Sequence"    : nd_Sequence,
   "If"          : nd_If,       "Prtc"        : nd_Prtc,
   "Prts"        : nd_Prts,     "Prti"        : nd_Prti,
   "While"       : nd_While,    "Assign"      : nd_Assign,
   "Negate"      : nd_Negate,   "Not"         : nd_Not,
   "Multiply"    : nd_Mul,      "Divide"      : nd_Div,
   "Mod"         : nd_Mod,      "Add"         : nd_Add,
   "Subtract"    : nd_Sub,      "Less"        : nd_Lss,
   "LessEqual"   : nd_Leq,      "Greater"     : nd_Gtr,
   "GreaterEqual": nd_Geq,      "Equal"       : nd_Eql,
   "NotEqual"    : nd_Neq,      "And"         : nd_And,
   "Or"          : nd_Or}

input_file = None globals = {}

        • show error and exit

def error(msg):

   print("%s" % (msg))
   exit(1)

class Node:

   def __init__(self, node_type, left = None, right = None, value = None):
       self.node_type  = node_type
       self.left  = left
       self.right = right
       self.value = value

def make_node(oper, left, right = None):

   return Node(oper, left, right)

def make_leaf(oper, n):

   return Node(oper, value = n)

def fetch_var(var_name):

   n = globals.get(var_name, None)
   if n == None:
       globals[var_name] = n = 0
   return n

def interp(x):

   global globals
   if x == None: return None
   elif x.node_type == nd_Integer: return int(x.value)
   elif x.node_type == nd_Ident:   return fetch_var(x.value)
   elif x.node_type == nd_String:  return x.value
   elif x.node_type == nd_Assign:
                   globals[x.left.value] = interp(x.right)
                   return None
   elif x.node_type == nd_Add:     return interp(x.left) +   interp(x.right)
   elif x.node_type == nd_Sub:     return interp(x.left) -   interp(x.right)
   elif x.node_type == nd_Mul:     return interp(x.left) *   interp(x.right)
   # use C like division semantics
   # another way: abs(x) / abs(y) * cmp(x, 0) * cmp(y, 0)
   elif x.node_type == nd_Div:     return int(float(interp(x.left)) / interp(x.right))
   elif x.node_type == nd_Mod:     return int(float(interp(x.left)) % interp(x.right))
   elif x.node_type == nd_Lss:     return interp(x.left) <   interp(x.right)
   elif x.node_type == nd_Gtr:     return interp(x.left) >   interp(x.right)
   elif x.node_type == nd_Leq:     return interp(x.left) <=  interp(x.right)
   elif x.node_type == nd_Geq:     return interp(x.left) >=  interp(x.right)
   elif x.node_type == nd_Eql:     return interp(x.left) ==  interp(x.right)
   elif x.node_type == nd_Neq:     return interp(x.left) !=  interp(x.right)
   elif x.node_type == nd_And:     return interp(x.left) and interp(x.right)
   elif x.node_type == nd_Or:      return interp(x.left) or  interp(x.right)
   elif x.node_type == nd_Negate:  return -interp(x.left)
   elif x.node_type == nd_Not:     return not interp(x.left)
   elif x.node_type ==  nd_If:
                   if (interp(x.left)):
                       interp(x.right.left)
                   else:
                       interp(x.right.right)
                   return None
   elif x.node_type == nd_While:
                   while (interp(x.left)):
                       interp(x.right)
                   return None
   elif x.node_type == nd_Prtc:
                   print("%c" % (interp(x.left)), end=)
                   return None
   elif x.node_type == nd_Prti:
                   print("%d" % (interp(x.left)), end=)
                   return None
   elif x.node_type == nd_Prts:
                   print(interp(x.left), end=)
                   return None
   elif x.node_type == nd_Sequence:
                   interp(x.left)
                   interp(x.right)
                   return None
   else:
       error("error in code generator - found %d, expecting operator" % (x.node_type))

def str_trans(srce):

   dest = ""
   i = 0
   srce = srce[1:-1]
   while i < len(srce):
       if srce[i] == '\\' and i + 1 < len(srce):
           if srce[i + 1] == 'n':
               dest += '\n'
               i += 2
           elif srce[i + 1] == '\\':
               dest += '\\'
               i += 2
       else:
           dest += srce[i]
           i += 1
   return dest

def load_ast():

   line = input_file.readline()
   line_list = shlex.split(line, False, False)
   text = line_list[0]
   value = None
   if len(line_list) > 1:
       value = line_list[1]
       if value.isdigit():
           value = int(value)
   if text == ";":
       return None
   node_type = all_syms[text]
   if value != None:
       if node_type == nd_String:
           value = str_trans(value)
       return make_leaf(node_type, value)
   left = load_ast()
   right = load_ast()
   return make_node(node_type, left, right)
        • main driver

input_file = sys.stdin if len(sys.argv) > 1:

   try:
       input_file = open(sys.argv[1], "r", 4096)
   except IOError as e:
       error(0, 0, "Can't open %s" % sys.argv[1])

n = load_ast() interp(n)</lang>

Output  —  prime numbers output from AST interpreter:

lex prime.t | parse | interp
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

Scheme

<lang scheme> (import (scheme base)

       (scheme file)
       (scheme process-context)
       (scheme write)
       (only (srfi 13) string-delete string-index string-trim))
Mappings from operation symbols to internal procedures.
We define operations appropriate to virtual machine
e.g. division must return an int, not a rational
boolean values are treated as numbers
0 is false, other is true

(define *unary-ops*

 (list (cons 'Negate (lambda (a) (- a)))
       (cons 'Not (lambda (a) (if (zero? a) 1 0)))))

(define *binary-ops*

 (let ((number-comp (lambda (op) (lambda (a b) (if (op a b) 1 0)))))
   (list (cons 'Add +)
         (cons 'Subtract -)
         (cons 'Multiply *)
         (cons 'Divide (lambda (a b) (truncate (/ a b)))) ; int division
         (cons 'Mod modulo)
         (cons 'Less (number-comp <))
         (cons 'Greater (number-comp >))
         (cons 'LessEqual (number-comp <=))
         (cons 'GreaterEqual (number-comp >=))
         (cons 'Equal (lambda (a b) (if (= a b) 1 0)))
         (cons 'NotEqual (lambda (a b) (if (= a b) 0 1)))
         (cons 'And (lambda (a b) ; make "and" work on numbers
                      (if (and (not (zero? a)) (not (zero? b))) 1 0)))
         (cons 'Or (lambda (a b) ; make "or" work on numbers
                     (if (or (not (zero? a)) (not (zero? b))) 1 0))))))
Read AST from given filename
- return as an s-expression

(define (read-code filename)

 (define (read-expr)
   (let ((line (string-trim (read-line))))
     (if (string=? line ";")
       '()
       (let ((space (string-index line #\space)))
         (if space
           (list (string->symbol (string-trim (substring line 0 space)))
                 (string-trim (substring line space (string-length line))))
           (list (string->symbol line) (read-expr) (read-expr)))))))
 ;
 (with-input-from-file
   filename
   (lambda ()
     (read-expr))))
interpret AST provided as an s-expression

(define run-program

 (let ((env '())) ; env is an association list for variable names
   (lambda (expr)
     (define (tidy-string str)   
       (string-delete ; remove any quote marks
         #\" ; " (to appease Rosetta code's syntax highlighter)
         (list->string 
           (let loop ((chars (string->list str))) ; replace newlines, obeying \\n
             (cond ((< (length chars) 2) ; finished list
                    chars)
                   ((and (>= (length chars) 3) ; preserve \\n
                         (char=? #\\ (car chars))
                         (char=? #\\ (cadr chars))
                         (char=? #\n (cadr (cdr chars))))
                    (cons (car chars)
                          (cons (cadr chars)
                                (cons (cadr (cdr chars))
                                      (loop (cdr (cdr (cdr chars))))))))
                   ((and (char=? #\\ (car chars)) ; replace \n with newline
                         (char=? #\n (cadr chars)))
                    (cons #\newline (loop (cdr (cdr chars)))))
                   (else ; keep char and look further
                     (cons (car chars) (loop (cdr chars)))))))))
     ; define some more meaningful names for fields
     (define left cadr)
     (define right (lambda (x) (cadr (cdr x))))
     ;
     (if (null? expr)
       '()
       (case (car expr) ; interpret AST from the head node
         ((Integer)
          (string->number (left expr)))
         ((Identifier)
          (let ((val (assq (string->symbol (left expr)) env)))
            (if val
              (cdr val)
              (error "Variable not in environment"))))
         ((String)
          (left expr))
         ((Assign)
          (set! env (cons (cons (string->symbol (left (left expr)))
                                (run-program (right expr)))
                          env)))
         ((Add Subtract Multiply Divide Mod 
               Less Greater LessEqual GreaterEqual Equal NotEqual
               And Or)
          (let ((binop (assq (car expr) *binary-ops*)))
            (if binop
              ((cdr binop) (run-program (left expr)) 
                           (run-program (right expr)))
              (error "Could not find binary operator"))))
         ((Negate Not) 
          (let ((unaryop (assq (car expr) *unary-ops*)))
            (if unaryop
              ((cdr unaryop) (run-program (left expr)))
              (error "Could not find unary operator"))))
         ((If)
          (if (not (zero? (run-program (left expr)))) ; 0 means false
            (run-program (left (right expr)))
            (run-program (right (right expr))))
          '())
         ((While)
          (let loop ()
            (unless (zero? (run-program (left expr)))
              (run-program (right expr))
              (loop)))
          '())
         ((Prtc)
          (display (integer->char (run-program (left expr))))
          '())
         ((Prti)
          (display (run-program (left expr)))
          '())
         ((Prts)
          (display (tidy-string (run-program (left expr))))
          '())
         ((Sequence)
          (run-program (left expr))
          (run-program (right expr))
          '())
         (else
           (error "Unknown node type")))))))
read AST from file and interpret, from filename passed on command line

(if (= 2 (length (command-line)))

 (run-program (read-code (cadr (command-line))))
 (display "Error: pass an ast filename\n"))

</lang>

Output:

Output for primes program from above. Also tested on programs in Compiler/Sample programs.

3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26

zkl

<lang zkl>const{ var _n=-1; var[proxy]N=fcn{ _n+=1 }; } // enumerator const FETCH=N, STORE=N, PUSH=N, ADD=N, SUB=N, MUL=N, DIV=N, MOD=N,

     LT=N,    GT=N,    LE=N,   GE=N,   EQ=N,   NE=N, 
     AND=N,   OR=N,    NEG=N,  NOT=N,
     JMP=N,   JZ=N,    PRTC=N, PRTS=N, PRTI=N, HALT=N;

const nd_String=N, nd_Sequence=N, nd_If=N, nd_While=N; var [const]

  all_syms=Dictionary(
     "Identifier"  ,FETCH,       "String"      ,nd_String,
     "Integer"     ,PUSH,        "Sequence"    ,nd_Sequence,
     "If"          ,nd_If,       "Prtc"        ,PRTC,
     "Prts"        ,PRTS,        "Prti"        ,PRTI,
     "While"       ,nd_While,    "Assign"      ,STORE,
     "Negate"      ,NEG,         "Not"         ,NOT,
     "Multiply"    ,MUL,         "Divide"      ,DIV,
     "Mod"         ,MOD,         "Add"         ,ADD,
     "Subtract"    ,SUB,         "Less"        ,LT,
     "LessEqual"   ,LE,          "Greater"     ,GT,
     "GreaterEqual",GE,          "Equal"       ,EQ,
     "NotEqual"    ,NE,          "And"         ,AND,
     "Or"          ,OR,	  "halt"	,HALT),
  bops=Dictionary(ADD,'+, SUB,'-, MUL,'*, DIV,'/, MOD,'%, 

LT,'<, GT,'>, LE,'<=, GE,'>=, NE,'!=, EQ,'==, NE,'!=);

class Node{

  fcn init(_node_type, _value, _left=Void, _right=Void){
     var type=_node_type, left=_left, right=_right, value=_value;
  }

}

fcn runNode(node){

  var vars=Dictionary();  // fcn local static var
  if(Void==node) return();
  switch(node.type){
     case(PUSH,nd_String){ return(node.value) }
     case(FETCH){ return(vars[node.value]) }
     case(STORE){ vars[node.left.value]=runNode(node.right); return(Void); }
     case(nd_If){
        if(runNode(node.left)) runNode(node.right.left);

else runNode(node.right.right);

     }
     case(nd_While)
        { while(runNode(node.left)){ runNode(node.right) } return(Void) }
     case(nd_Sequence){ runNode(node.left); runNode(node.right); return(Void) }
     case(PRTC)       { print(runNode(node.left).toAsc()) }
     case(PRTI,PRTS)  { print(runNode(node.left)) }
     case(NEG)        { return(-runNode(node.left)) }
     case(NOT)        { return(not runNode(node.left)) }
     case(AND)        { return(runNode(node.left) and runNode(node.right)) }
     case(OR)         { return(runNode(node.left) or  runNode(node.right)) }
     else{

if(op:=bops.find(node.type)) return(op(runNode(node.left),runNode(node.right))); else throw(Exception.AssertionError( "Unknown node type: %d".fmt(node.type)))

     } 
  }
  Void

}</lang> <lang zkl>fcn load_ast(file){

  line:=file.readln().strip();		// one or two tokens
  if(line[0]==";") return(Void);
  parts,type,value := line.split(),parts[0],parts[1,*].concat(" ");
  type=all_syms[type];
  if(value){
     try{ value=value.toInt() }catch{}
     if(type==nd_String) value=value[1,-1].replace("\\n","\n");
     return(Node(type,value));
  } 
  left,right := load_ast(file),load_ast(file);
  Node(type,Void,left,right)

}</lang> <lang zkl>ast:=load_ast(File(vm.nthArg(0))); runNode(ast);</lang>

Output:
$ zkl runAST.zkl primeAST.txt 
3 is prime
5 is prime
7 is prime
11 is prime
...
89 is prime
97 is prime
101 is prime
Total primes found: 26