Combinations with repetitions/Square digit chain

Iterated digits squaring introduces RC the Project Euler Task #92. Combinations with repetitions introduce RC to the concept of generating all the combinations with repetitions of n types of things taken k at a time.

Combinations with repetitions/Square digit chain is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The purpose of this task is to combine these tasks as follows:

The collections of k items will be taken from [0,1,4,9,16,25,36,49,64,81] and must be obtained using code from Combinations with repetitions. The collection of k zeroes is excluded.
For each collection of k items determine if it translates to 1 using the rules from Iterated digits squaring
For each collection which translates to 1 determine the number of different ways, c say, in which the k items can be uniquely ordered.
Keep a running total of all the values of c obtained
Answer the Project Euler Task #92 question (k=7).
Answer the equivalent question for k=8,11,14.
Optionally answer the question for k=17. These numbers will be larger than the basic integer type for many languages, if it is not easy to use larger numbers it is not necessary for this task.

D

This example is in need of improvement:

See talk page

<lang d> // Count how many number chains for Natural Numbers < 10**K end with a value of 1. // import std.stdio, std.range;

const struct CombRep {

   immutable uint nt, nc;
   private const ulong[] combVal;

   this(in uint numType, in uint numChoice) pure nothrow @safe
   in {
       assert(0 < numType && numType + numChoice <= 64,
              "Valid only for nt + nc <= 64 (ulong bit size)");
   } body {
       nt = numType;
       nc = numChoice;
       if (nc == 0)
           return;
       ulong v  = (1UL << (nt - 1)) - 1;

       // Init to smallest number that has nt-1 bit set
       // a set bit is metaphored as a _type_ seperator.
       immutable limit = v << nc;

       ulong[] localCombVal;
       // Limit is the largest nt-1 bit set number that has nc
       // zero-bit a zero-bit means a _choice_ between _type_
       // seperators.
       while (v <= limit) {
           localCombVal ~= v;
           if (v == 0)
               break;
           // Get next nt-1 bit number.
           immutable t = (v | (v - 1)) + 1;
           v = t | ((((t & -t) / (v & -v)) >> 1) - 1);
       }
       this.combVal = localCombVal;
   }

   uint length() @property const pure nothrow @safe {
       return combVal.length;
   }

   uint[] opIndex(in uint idx) const pure nothrow @safe {
       return val2set(combVal[idx]);
   }

   int opApply(immutable int delegate(in ref uint[]) pure nothrow @safe dg)
   pure nothrow @safe {
       foreach (immutable v; combVal) {
           auto set = val2set(v);
           if (dg(set))
               break;
       }
       return 1;
   }

   private uint[] val2set(in ulong v) const pure nothrow @safe {
       // Convert bit pattern to selection set
       immutable uint bitLimit = nt + nc - 1;
       uint typeIdx = 0;
       uint[] set;
       foreach (immutable bitNum; 0 .. bitLimit)
           if (v & (1 << (bitLimit - bitNum - 1)))
               typeIdx++;
           else
               set ~= typeIdx;
       return set;
   }

}

// For finite Random Access Range. auto combRep(R)(R types, in uint numChoice) /*pure*/ nothrow @safe if (hasLength!R && isRandomAccessRange!R) {

   ElementType!R[][] result;

   foreach (const s; CombRep(types.length, numChoice)) {
       ElementType!R[] r;
       foreach (immutable i; s)
           r ~= types[i];
       result ~= r;
   }

   return result;

}

void main() {

   int K = 17;
   ulong[] F = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000];
   int[] N = [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0];
   ulong z = 0;
   foreach (const e; combRep([0,1,4,9,16,25,36,49,64,81], K)) {
     int s = 0;
     foreach (const g; e) s += g;
     if (N[s] == 0) continue;
     int [int] n;
     foreach (const g; e) n[g] += 1;

ulong gn = F[K];

     foreach (const g; n.byValue()) gn /= F[g];

z += gn;

     }
     writefln ("\n(k=%d) In the range 1 to %d\n%d translate to 1 and %d translate to 89\n", K, (cast (ulong) (10))^^K-1,z,(cast (ulong) (10))^^K-1-z);

} </lang>

Output:
//(k=7) In the range 1 to 9999999
//1418853 translate to 1 and 8581146 translate to 89

//(k=8) In the range 1 to 99999999
//14255666 translate to 1 and 85744333 translate to 89

//(k=11) In the range 1 to 99999999999
//15091199356 translate to 1 and 84908800643 translate to 89

//(k=14) In the range 1 to 99999999999999
//13770853279684 translate to 1 and 86229146720315 translate to 89

//(k=17) In the range 1 to 99999999999999999
//12024696404768024 translate to 1 and 87975303595231975 translate to 89

Ruby

<lang ruby>

  1. Count how many number chains for Natural Numbers < 10**K end with a value of 1.
  2. Nigel_Galloway
  3. August 26th., 2014.

K = 17 F = Array.new(K+1){|n| n==0?1:(1..n).inject(:*)} #Some small factorials g = -> n, gn=[n,0], res=0 { while gn[0]>0

                             gn = gn[0].divmod(10)
                             res += gn[1]**2
                           end
                           return res==89?0:res
                          }
  1. An array: N[n]==1 means that n translates to 1, 0 means that it does not.

N = (G=Array.new(K*81+1){|n| n==0? 0:(i=g.call(n))==89 ? 0:i}).collect{|n| while n>1 do n = G[n] end; n } z = 0 #Running count of numbers translating to 1 (0..9).collect{|n| n**2}.repeated_combination(K).each{|n| #Iterate over unique digit combinations

   next if N[n.inject(:+)] == 0                            #Count only ones
   nn = Hash.new{0}                                        #Determine how many numbers this digit combination corresponds to
   n.each{|n| nn[n] += 1}                                  #and
   z += nn.values.inject(F[K]){|gn,n| gn/F[n]}             #Add to the count of numbers terminating in 1

} puts "\nk=(#{K}) in the range 1 to #{10**K-1}\n#{z} numbers produce 1 and #{10**K-1-z} numbers produce 89" </lang>

Output:
#(k=7) in the range 1 to 9999999
#1418853 numbers produce 1 and 8581146 numbers produce 89

#(k=8) in the range 1 to 99999999
#14255666 numbers produce 1 and 85744333 numbers produce 89

#(k=11) in the range 1 to 99999999999
#15091199356 numbers produce 1 and 84908800643 numbers produce 89

#(k=14) in the range 1 to 99999999999999
#13770853279684 numbers produce 1 and 86229146720315 numbers produce 89

#(k=17) in the range 1 to 99999999999999999
#12024696404768024 numbers produce 1 and 87975303595231975 numbers produce 89