Bioinformatics/Global alignment: Difference between revisions

From Rosetta Code
Content added Content deleted
(Added Wren)
m (→‎{{header|Phix}}: "stable" not actually needed)
Line 181: Line 181:


=={{header|Phix}}==
=={{header|Phix}}==
<lang Phix>procedure printcounts(sequence ss)
<lang Phix>requires("0.8.4") -- (or the trivial 7/2/21 bugfix in punique.e)

procedure printcounts(sequence ss)
-- Given DNA sequence(s), report the sequence, length and base counts
-- Given DNA sequence(s), report the sequence, length and base counts
for i=1 to length(ss) do
for i=1 to length(ss) do
Line 219: Line 217:
procedure shortest_common_superstring(sequence ss)
procedure shortest_common_superstring(sequence ss)
-- Returns shortest common superstring of a vector of strings
-- Returns shortest common superstring of a vector of strings
ss = deduplicate(unique(ss,"STABLE"))
ss = deduplicate(unique(ss))
sequence shortestsuper = {join(ss,"")}
sequence shortestsuper = {join(ss,"")}
integer shortest = length(shortestsuper[1])
integer shortest = length(shortestsuper[1])
Line 269: Line 267:
{{out}}
{{out}}
<pre>
<pre>
Nucleotide counts for :TAAGAA

Base counts: Other:0, A:4, C:0, G:1, T:1, total:6

Nucleotide counts for :GAAGTA
Nucleotide counts for :GAAGTA


Line 276: Line 278:


Base counts: Other:0, A:3, C:0, G:2, T:1, total:6
Base counts: Other:0, A:3, C:0, G:2, T:1, total:6

Nucleotide counts for :TAAGAA

Base counts: Other:0, A:4, C:0, G:1, T:1, total:6


Nucleotide counts for :CATTAGGG
Nucleotide counts for :CATTAGGG

Revision as of 21:46, 7 February 2021

Bioinformatics/Global alignment is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Global alignment is designed to search for highly similar regions in two or more DNA sequences, where the sequences appear in the same order and orientation, fitting the sequences in as pieces in a puzzle.

Current DNA sequencers find the sequence for multiple small segments of DNA which have mostly randomly formed by splitting a much larger DNA molecule into shorter segments. When re-assembling such segments of DNA sequences into a larger sequence to form, for example, the DNA coding for the relevant gene, the overlaps between multiple shorter sequences are commonly used to decide how the longer sequence is to be assembled. For example, "AAGATGGA", GGAGCGCATC", and "ATCGCAATAAGGA" can be assembled into the sequence "AAGATGGAGCGCATCGCAATAAGGA" by noting that "GGA" is at the tail of the first string and head of the second string and "ATC" likewise is at the tail of the second and head of the third string.

When looking for the best global alignment in the output strings produced by DNA sequences, there are typically a large number of such overlaps among a large number of sequences. In such a case, the ordering that results in the shortest common superstring is generrally preferred.

Finding such a supersequence is an NP-hard problem, and many algorithms have been proposed to shorten calculations, especially when many very long sequences are matched.

The shortest common superstring as used in bioinfomatics here differs from the string task Shortest_common_supersequence. In that task, a supersequence may have other characters interposed as long as the characters of each subsequence appear in order, so that (abcbdab, abdcaba) -> abdcabdab. In this task, (abcbdab, abdcaba) -> abcbdabdcaba.


Task
  •   Given N non-identical strings of characters A, C, G, and T representing N DNA sequences, find the shortest DNA sequence containing all N sequences.
  •   Handle cases where two sequences are identical or one sequence is entirely contained in another.
  •   Print the resulting sequence along with its size (its base count) and a count of each base in the sequence.
  •   Find the shortest common superstring for the following four examples:
 
("TA", "AAG", "TA", "GAA", "TA")
("CATTAGGG", "ATTAG", "GGG", "TA")
("AAGAUGGA", "GGAGCGCAUC", "AUCGCAAUAAGGA")
("ATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTAT",
"GGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGT",
"CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA",
"TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
"AACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTT",
"GCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTC",
"CGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCT",
"TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
"CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGC",
"GATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATT",
"TTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
"CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA",
"TCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGA")
Related tasks




Julia

<lang julia>using Combinatorics

""" Given a DNA sequence, report the sequence, length and base counts""" function printcounts(seq)

   bases = [['A', 0], ['C', 0], ['G', 0], ['T', 0]]
   for c in seq, base in bases
       if c == base[1]
           base[2] += 1
       end
   end
   println("\nNucleotide counts for $seq:\n")
   for base in bases
       println(lpad(base[1], 10), lpad(string(base[2]), 12))
   end
   println(lpad("Other", 10), lpad(string(length(seq) - sum(x[2] for x in bases)), 12))
   println("     _________________\n", lpad("Total length", 14), lpad(string(length(seq)), 8))

end

"""Return the position in s1 of the start of overlap of tail of string s1 with head of string s2""" function headtailoverlap(s1, s2, minimumoverlap=1)

   start = 1
   while true
       range = findnext(s2[1:minimumoverlap], s1, start)
       range == nothing && return 0
       start = range.start
       startswith(s2, s1[start:end]) && return length(s1) - start + 1
       start += 1
   end

end

"""Remove duplicates and strings contained within a larger string from vector of strings""" function deduplicate(svect)

   filtered = empty(svect)
   arr = unique(svect)
   for (i, s1) in enumerate(arr)
       any(p -> p[1] != i && occursin(s1, p[2]), enumerate(arr)) && continue
       push!(filtered, s1)
   end
   return filtered

end

"""Returns shortest common superstring of a vector of strings""" function shortest_common_superstring(svect)

   ss = deduplicate(svect)
   shortestsuper = prod(ss)
   for perm in permutations(ss)
       sup = first(perm)
       for i in 1:length(ss)-1
           overlap_position = headtailoverlap(perm[i], perm[i+1], 1)
           sup *= perm[i + 1][overlap_position+1:end]
       end
       if length(sup) < length(shortestsuper)
           shortestsuper = sup
       end
   end
   return shortestsuper

end

testsequences = [ ["TA", "AAG", "TA", "GAA", "TA"], ["CATTAGGG", "ATTAG", "GGG", "TA"], ["AAGAUGGA", "GGAGCGCAUC", "AUCGCAAUAAGGA"], ["ATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTAT", "GGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGT", "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA", "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "AACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTT", "GCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTC", "CGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCT", "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGC", "GATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATT", "TTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA", "TCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGA"] ]

for test in testsequences

   scs = shortest_common_superstring(test)
   printcounts(scs)

end

</lang>

Output:
Nucleotide counts for TAAGAA:

         A           4
         C           0
         G           1
         T           1
     Other           0
     _________________
  Total length       6

Nucleotide counts for CATTAGGG:

         A           2
         C           1
         G           3
         T           2
     Other           0
     _________________
  Total length       8

Nucleotide counts for AAGAUGGAGCGCAUCGCAAUAAGGA:

         A          10
         C           4
         G           8
         T           0
     Other           3
     _________________
  Total length      25

Nucleotide counts for CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA:

         A          74
         C          57
         G          75
         T          94
     Other           0
     _________________
  Total length     300

Phix

<lang Phix>procedure printcounts(sequence ss) -- Given DNA sequence(s), report the sequence, length and base counts

   for i=1 to length(ss) do
       string dna = ss[i]
       sequence acgt = repeat(0,6)
       for j=1 to length(dna) do
           acgt[find(dna[j],"ACGT")+1] += 1
       end for
       acgt[$] = sum(acgt)
       string ncf = "Nucleotide counts for :"
       printf(1,"%s%s\n",{ncf,join(split_by(dna,50),"\n"&repeat(' ',length(ncf)))})
       printf(1,"\nBase counts: Other:%d, A:%d, C:%d, G:%d, T:%d, total:%d\n\n",acgt)
   end for

end procedure

function deduplicate(sequence ss) -- Remove duplicates and strings contained within a larger string from vector of strings

   sequence filtered = {}
   for i=1 to length(ss) do
       string si = ss[i]
       bool found = false
       for j=1 to length(ss) do
           if i!=j and match(si,ss[j]) then
               found = true
               exit
           end if
       end for
       if not found then
           filtered = append(filtered, si)
       end if
   end for
   return filtered

end function

procedure shortest_common_superstring(sequence ss) -- Returns shortest common superstring of a vector of strings

   ss = deduplicate(unique(ss))
   sequence shortestsuper = {join(ss,"")}
   integer shortest = length(shortestsuper[1])
   for p=1 to factorial(length(ss)) do
       sequence perm = permute(p,ss)
       string sup = perm[1]
       for i=2 to length(perm) do
           string pi = perm[i]
           for j=-min(length(pi),length(sup)) to 0 do
               string overlap = sup[j..$]
               if overlap = pi[1..length(overlap)] then
                   sup &= pi[length(overlap)+1..$]
                   pi = ""
                   exit
               end if
           end for
           if length(pi) then ?9/0 end if -- (sanity chk)
       end for
       if length(sup) < shortest then
           shortest = length(sup)
           shortestsuper = {sup}
       elsif length(sup) = shortest
         and not find(sup,shortestsuper) then
           shortestsuper = append(shortestsuper,sup)
       end if
   end for
   printcounts(shortestsuper)

end procedure

constant tests = { {"TA", "AAG", "TA", "GAA", "TA"}, {"CATTAGGG", "ATTAG", "GGG", "TA"}, {"AAGAUGGA", "GGAGCGCAUC", "AUCGCAAUAAGGA"}, {"ATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTAT", "GGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGT", "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA", "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "AACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTT", "GCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTC", "CGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCT", "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGC", "GATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATT", "TTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC", "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA", "TCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGA"} } papply(tests, shortest_common_superstring)</lang>

Output:
Nucleotide counts for :TAAGAA

Base counts: Other:0, A:4, C:0, G:1, T:1, total:6

Nucleotide counts for :GAAGTA

Base counts: Other:0, A:3, C:0, G:2, T:1, total:6

Nucleotide counts for :TAGAAG

Base counts: Other:0, A:3, C:0, G:2, T:1, total:6

Nucleotide counts for :CATTAGGG

Base counts: Other:0, A:2, C:1, G:3, T:2, total:8

Nucleotide counts for :AAGAUGGAGCGCAUCGCAAUAAGGA

Base counts: Other:3, A:10, C:4, G:8, T:0, total:25

Nucleotide counts for :CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATG
                       CTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTG
                       AGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGAT
                       GGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTT
                       CGATTCTGCTTATAACACTATGTTCTTATGAAATGGATGTTCTGAGTTGG
                       TCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA

Base counts: Other:0, A:74, C:57, G:75, T:94, total:300

Wren

Translation of: Julia
Library: Wren-fmt
Library: Wren-seq
Library: Wren-str
Library: Wren-math

<lang ecmascript>import "/fmt" for Fmt import "/seq" for Lst import "/str" for Str import "/math" for Int

/* Gets all permutations of a list of strings. */ var getPerms = Fn.new { |input|

   var perms = [input]
   var a = input.toList
   var n = a.count - 1
   for (c in 1...Int.factorial(n+1)) {
       var i = n - 1
       var j = n
       while (Str.gt(a[i], a[i+1])) i = i - 1
       while (Str.lt(a[j], a[i]))   j = j - 1
       var t = a[i]
       a[i] = a[j]
       a[j] = t
       j = n
       i = i + 1
       while (i < j) {
           t = a[i]
           a[i] = a[j]
           a[j] = t
           i = i + 1
           j = j - 1
       }
       perms.add(a.toList)
   }
   return perms

}

/* Given a DNA sequence, report the sequence, length and base counts. */ var printCounts = Fn.new { |seq|

   var bases = [["A", 0], ["C", 0], ["G", 0], ["T", 0]]
   for (c in seq) {
       for (base in bases) {
           if (c == base[0]) base[1] = base[1] + 1
       }
   }
   System.print("\nNucleotide counts for %(seq):\n")
   for (base in bases) Fmt.print("$10s$12d", base[0], base[1])
   var sum = bases.reduce(0) { |acc, x| acc + x[1] }
   Fmt.print("$10s$12d", "Other", seq.count - sum)
   Fmt.print("  ____________________\n$14s$8d", "Total length", seq.count)

}

/* Return the position in s1 of the start of overlap of tail of string s1 with head of string s2. */ var headTailOverlap = Fn.new { |s1, s2|

   var start = 0
   while (true) {
       start = s1.indexOf(s2[0], start)
       if (start == -1) return 0
       if (s2.startsWith(s1[start..-1])) return s1.count - start
       start = start + 1
   }

}

/* Remove duplicates and strings contained within a larger string from a list of strings. */ var deduplicate = Fn.new { |slist|

   var filtered = []
   var arr = Lst.distinct(slist)
   var i = 0
   for (s1 in arr) {
       var j = 0
       var withinLarger = false
       for (s2 in arr) {
           if (j != i && s2.contains(s1)) {
               withinLarger = true
               break
           }
           j = j + 1
       }
       if (!withinLarger) filtered.add(s1)
       i = i + 1
   }
   return filtered

}

/* Returns shortest common superstring of a list of strings. */ var shortestCommonSuperstring = Fn.new { |slist|

   var ss = deduplicate.call(slist)
   var shortestSuper = ss.join()
   for (perm in getPerms.call(ss)) {
       var sup = perm[0]
       for (i in 0...ss.count-1) {
           var overlapPos = headTailOverlap.call(perm[i], perm[i+1])
           sup = sup + perm[i+1][overlapPos..-1]
       }
       if (sup.count < shortestSuper.count) shortestSuper = sup
   }
   return shortestSuper

}

var testSequences = [

   ["TA", "AAG", "TA", "GAA", "TA"],
   ["CATTAGGG", "ATTAG", "GGG", "TA"],
   ["AAGAUGGA", "GGAGCGCAUC", "AUCGCAAUAAGGA"],
   [
       "ATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTAT",
       "GGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGT",
       "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA",
       "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
       "AACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTT",
       "GCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTC",
       "CGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCT",
       "TGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
       "CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGC",
       "GATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATT",
       "TTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATC",
       "CTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA",
       "TCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGA"
   ]

]

for (test in testSequences) {

   var scs = shortestCommonSuperstring.call(test)
   printCounts.call(scs)

}</lang>

Output:
Nucleotide counts for TAAGAA:

         A           4
         C           0
         G           1
         T           1
     Other           0
  ____________________
  Total length       6

Nucleotide counts for CATTAGGG:

         A           2
         C           1
         G           3
         T           2
     Other           0
  ____________________
  Total length       8

Nucleotide counts for AAGAUGGAGCGCAUCGCAAUAAGGA:

         A          10
         C           4
         G           8
         T           0
     Other           3
  ____________________
  Total length      25

Nucleotide counts for CGTAAAAAATTACAACGTCCTTTGGCTATCTCTTAAACTCCTGCTAAATGCTCGTGCTTTCCAATTATGTAAGCGTTCCGAGACGGGGTGGTCGATTCTGAGGACAAAGGTCAAGATGGAGCGCATCGAACGCAATAAGGATCATTTGATGGGACGTTTCGTCGACAAAGTCTTGTTTCGAGAGTAACGGCTACCGTCTTCGATTCTGCTTATAACACTATGTTCTTATGAAATGGATGTTCTGAGTTGGTCAGTCCCAATGTGCGGGGTTTCTTTTAGTACGTCGGGAGTGGTATTATA:

         A          74
         C          57
         G          75
         T          94
     Other           0
  ____________________
  Total length     300