Balanced ternary

Revision as of 13:20, 7 July 2017 by PureFox (talk | contribs) (Added Kotlin)

Balanced ternary is a way of representing numbers. Unlike the prevailing binary representation, a balanced ternary integer is in base 3, and each digit can have the values 1, 0, or −1. For example, decimal 11 = 32 + 31 − 30, thus can be written as "++−", while 6 = 32 − 31 + 0 × 30, i.e., "+−0".

Task
Balanced ternary
You are encouraged to solve this task according to the task description, using any language you may know.

For this task, implement balanced ternary representation of integers with the following

Requirements

  1. Support arbitrarily large integers, both positive and negative;
  2. Provide ways to convert to and from text strings, using digits '+', '-' and '0' (unless you are already using strings to represent balanced ternary; but see requirement 5).
  3. Provide ways to convert to and from native integer type (unless, improbably, your platform's native integer type is balanced ternary). If your native integers can't support arbitrary length, overflows during conversion must be indicated.
  4. Provide ways to perform addition, negation and multiplication directly on balanced ternary integers; do not convert to native integers first.
  5. Make your implementation efficient, with a reasonable definition of "efficient" (and with a reasonable definition of "reasonable").

Test case With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-":

  • write out a, b and c in decimal notation;
  • calculate a × (bc), write out the result in both ternary and decimal notations.

Note: The pages generalised floating point addition and generalised floating point multiplication have code implementing arbitrary precision floating point balanced ternary.

ALGOL 68

See also:

Ada

Specifications (bt.ads): <lang Ada>with Ada.Finalization;

package BT is

  type Balanced_Ternary is private;
  
  -- conversions
  function To_Balanced_Ternary (Num : Integer) return Balanced_Ternary;
  function To_Balanced_Ternary (Str : String)  return Balanced_Ternary;
  function To_Integer (Num : Balanced_Ternary)  return Integer;
  function To_string (Num : Balanced_Ternary)   return String;
    
  -- Arithmetics
  -- unary minus
  function "-" (Left : in Balanced_Ternary)

return Balanced_Ternary;

  -- subtraction
  function "-" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary;

  -- addition
  function "+" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary;

  -- multiplication
  function "*" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary;

private

  -- a balanced ternary number is a unconstrained array of (1,0,-1) 
  -- dinamically allocated, least significant trit leftmost
  type Trit is range -1..1;
  type Trit_Array is array (Positive range <>) of Trit;
  pragma Pack(Trit_Array);
  
  type Trit_Access is access Trit_Array;
  
  type Balanced_Ternary is new Ada.Finalization.Controlled
    with record

Ref : Trit_access;

  end record;
  
  procedure Initialize (Object : in out Balanced_Ternary);
  procedure Adjust     (Object : in out Balanced_Ternary);
  procedure Finalize   (Object : in out Balanced_Ternary);
  

end BT;</lang>

Implementation (bt.adb): <lang Ada>with Ada.Unchecked_Deallocation;

package body BT is

  procedure Free is new Ada.Unchecked_Deallocation (Trit_Array, Trit_Access);
  -- Conversions
  -- String to BT
  function To_Balanced_Ternary (Str: String) return Balanced_Ternary is
     J : Positive := 1;
     Tmp : Trit_Access;
  begin
     Tmp := new Trit_Array (1..Str'Last);
     for I in reverse Str'Range loop

case Str(I) is when '+' => Tmp (J) := 1; when '-' => Tmp (J) := -1; when '0' => Tmp (J) := 0; when others => raise Constraint_Error; end case; J := J + 1;

     end loop;
     return (Ada.Finalization.Controlled with Ref => Tmp);
  end To_Balanced_Ternary;
  
  -- Integer to BT
  function To_Balanced_Ternary (Num: Integer) return Balanced_Ternary is
     K      : Integer := 0;
     D      : Integer;
     Value  : Integer := Num;
     Tmp    : Trit_Array(1..19); -- 19 trits is enough to contain
                                  -- a 32 bits signed integer
  begin
     loop

D := (Value mod 3**(K+1))/3**K; if D = 2 then D := -1; end if; Value := Value - D*3**K; K := K + 1; Tmp(K) := Trit(D); exit when Value = 0;

     end loop;
     return (Ada.Finalization.Controlled

with Ref => new Trit_Array'(Tmp(1..K)));

  end To_Balanced_Ternary;
  -- BT to Integer --
  -- If the BT number is too large Ada will raise CONSTRAINT ERROR
  function To_Integer (Num : Balanced_Ternary) return Integer is
     Value : Integer := 0;
     Pos : Integer := 1;
  begin
     for I in Num.Ref.all'Range loop

Value := Value + Integer(Num.Ref(I)) * Pos; Pos := Pos * 3;

     end loop;
     return Value;
  end To_Integer;
  -- BT to String --
  function To_String (Num : Balanced_Ternary) return String is
     I : constant Integer := Num.Ref.all'Last;
     Result : String (1..I);
  begin
     for J in Result'Range loop

case Num.Ref(I-J+1) is when 0 => Result(J) := '0'; when -1 => Result(J) := '-'; when 1 => Result(J) := '+'; end case;

     end loop;
     return Result;
  end To_String;
  -- unary minus --
  function "-" (Left : in Balanced_Ternary)

return Balanced_Ternary is

     Result : constant Balanced_Ternary := Left;
  begin
     for I in Result.Ref.all'Range loop

Result.Ref(I) := - Result.Ref(I);

     end loop;
     return Result;
  end "-";
  -- addition --
  Carry : Trit;
  
  function Add (Left, Right : in Trit)

return Trit is

  begin
     if Left /= Right then

Carry := 0; return Left + Right;

     else

Carry := Left; return -Right;

     end if;
  end Add;
  pragma Inline (Add);
  
  function "+" (Left, Right : in Trit_Array)

return Balanced_Ternary is

     Max_Size : constant Integer := 

Integer'Max(Left'Last, Right'Last);

     Tmp_Left, Tmp_Right : Trit_Array(1..Max_Size) := (others => 0);
     Result : Trit_Array(1..Max_Size+1) := (others => 0);
  begin
     Tmp_Left (1..Left'Last) := Left;
     Tmp_Right(1..Right'Last) := Right;
     for I in Tmp_Left'Range loop

Result(I) := Add (Result(I), Tmp_Left(I)); Result(I+1) := Carry; Result(I) := Add(Result(I), Tmp_Right(I)); Result(I+1) := Add(Result(I+1), Carry);

     end loop;
     -- remove trailing zeros
     for I in reverse Result'Range loop

if Result(I) /= 0 then return (Ada.Finalization.Controlled with Ref => new Trit_Array'(Result(1..I))); end if;

     end loop;
     return (Ada.Finalization.Controlled

with Ref => new Trit_Array'(1 => 0));

  end "+";
  
  function "+" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary is

  begin
     return Left.Ref.all + Right.Ref.all;
  end "+";
  
  -- Subtraction
  function "-" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary is

  begin
     return Left + (-Right);
  end "-";
  -- multiplication
  function "*" (Left, Right : in Balanced_Ternary)

return Balanced_Ternary is

     A, B : Trit_Access;
     Result : Balanced_Ternary;   
  begin
     if Left.Ref.all'Length > Right.Ref.all'Length then

A := Right.Ref; B := Left.Ref;

     else

B := Right.Ref; A := Left.Ref;

     end if;
     for I in A.all'Range loop

if A(I) /= 0 then declare Tmp_Result : Trit_Array (1..I+B.all'Length-1) := (others => 0); begin for J in B.all'Range loop Tmp_Result(I+J-1) := B(J) * A(I); end loop; Result := Result.Ref.all + Tmp_Result; end; end if;

     end loop;
     return Result;
  end "*";
  procedure Adjust (Object : in out Balanced_Ternary) is
  begin
     Object.Ref := new Trit_Array'(Object.Ref.all);
  end Adjust;
  procedure Finalize  (Object : in out Balanced_Ternary) is
  begin
     Free (Object.Ref);
  end Finalize;
  procedure Initialize (Object : in out Balanced_Ternary) is
  begin
     Object.Ref := new Trit_Array'(1 => 0);
  end Initialize;

end BT;</lang>

Test task requirements (testbt.adb): <lang Ada>with Ada.Text_Io; use Ada.Text_Io; with Ada.Integer_Text_Io; use Ada.Integer_Text_Io; with BT; use BT;

procedure TestBT is

  Result, A, B, C : Balanced_Ternary;

begin

  A := To_Balanced_Ternary("+-0++0+");
  B := To_Balanced_Ternary(-436);
  C := To_Balanced_Ternary("+-++-");
  
  Result := A * (B - C);
  
  Put("a = "); Put(To_integer(A), 4); New_Line;
  Put("b = "); Put(To_integer(B), 4); New_Line;
  Put("c = "); Put(To_integer(C), 4); New_Line;
  Put("a * (b - c) = "); Put(To_integer(Result), 4); 
  Put_Line (" " & To_String(Result));

end TestBT;</lang> Output:

a =  523
b = -436
c =   65
a * (b - c) = -262023 ----0+--0++0

ATS

<lang ATS> (*

    • This one is
    • translated into ATS from the Ocaml entry
  • )

(* ****** ****** *) // // How to compile: // patscc -DATS_MEMALLOC_LIBC -o bternary bternary.dats // (* ****** ****** *)

  1. include

"share/atspre_staload.hats"

(* ****** ****** *)

datatype btd = P | Z | N; typedef btern = List0(btd)

(* ****** ****** *)

fun btd2int (d: btd): int =

 (case+ d of P() => 1 | Z() => 0 | N() => ~1)

(* ****** ****** *)

fun btd2string (d:btd): string = ( case+ d of P() => "+" | Z() => "0" | N() => "-" )

(* ****** ****** *)

fun btern2string (

 ds: btern

) : string =

 strptr2string(res) where

{

 val xs = list_map_cloref (ds, lam d => btd2string(d))
 val xs = list_vt_reverse (xs)
 val res = stringlst_concat($UNSAFE.castvwtp1{List(string)}(xs))
 val () = list_vt_free<string> (xs)

}

(* ****** ****** *)

fun from_string

 (inp: string): btern = let

// fun loop{n:nat} (

 inp: string(n), ds: btern

) : btern = ( //

 if isneqz(inp)
   then let
     val c = inp.head()
     val d =
       (case- c of '+' => P | '0' => Z | '-' => N): btd
     // end of [val]
   in
     loop (inp.tail(), list_cons(d, ds))
   end // end of [then]
   else ds // end of [else]

// ) (* end of [loop] *) // in

 loop (g1ofg0(inp), list_nil)

end // end of [from_string]

(* ****** ****** *)

fun to_int (ds: btern): int = ( case+ ds of | list_nil () => 0 | list_cons (d, ds) => 3*to_int(ds) + btd2int(d) ) (* end of [to_int] *)

fun from_int (n: int): btern = ( if n = 0 then list_nil else let

 val r = n mod 3

in

 if r = 0
   then list_cons (Z, from_int (n/3))
   else if (r = 1 || r = ~2)
          then list_cons (P, from_int ((n-1)/3))
          else list_cons (N, from_int ((n+1)/3))

end // end of [else] ) (* end of [from_int] *)

(* ****** ****** *)

fun neg_btern

 (ds: btern): btern =

list_vt2t ( list_map_cloref<btd><btd>

 (ds, lam d => case+ d of P() => N() | Z() => Z() | N() => P())

) (* end of [neg_btern] *)

overload ~ with neg_btern

(* ****** ****** *) // extern fun add_btern_btern: (btern, btern) -> btern and sub_btern_btern: (btern, btern) -> btern overload + with add_btern_btern of 100 overload - with sub_btern_btern of 100 // extern fun mul_btern_btern: (btern, btern) -> btern overload * with mul_btern_btern of 110 // (* ****** ****** *)

  1. define :: list_cons

(* ****** ****** *)

local

fun aux0 (ds: btern): btern = (

 case+ ds of nil() => ds | _ => Z()::ds

)

fun succ(ds:btern) = ds+list_sing(P()) fun pred(ds:btern) = ds+list_sing(N())

in (* in-of-local *)

implement add_btern_btern

 (ds1, ds2) =

( case+ (ds1, ds2) of | (nil(), _) => ds2 | (_, nil()) => ds1 | (P()::ds1, N()::ds2) => aux0 (ds1+ds2) | (Z()::ds1, Z()::ds2) => aux0 (ds1+ds2) | (N()::ds1, P()::ds2) => aux0 (ds1+ds2) | (P()::ds1, P()::ds2) => N() :: succ(ds1 + ds2) | (N()::ds1, N()::ds2) => P() :: pred(ds1 + ds2) | (Z()::ds1, btd::ds2) => btd :: (ds1 + ds2) | (btd::ds1, Z()::ds2) => btd :: (ds1 + ds2) )

implement sub_btern_btern (ds1, ds2) = ds1 + (~ds2)

implement mul_btern_btern (ds1, ds2) = ( case+ ds2 of | nil() => nil() | Z()::ds2 => aux0 (ds1 * ds2) | P()::ds2 => aux0 (ds1 * ds2) + ds1 | N()::ds2 => aux0 (ds1 * ds2) - ds1 )

end // end of [local]

(* ****** ****** *)

typedef charptr = $extype"char*"

(* ****** ****** *)

implement main0 () = { // val a = from_string "+-0++0+" // val b = from_int (~436) val c = from_string "+-++-" // val d = a * (b - c) // val () = $extfcall (

 void

, "printf" , "a = %d\nb = %d\nc = %d\na * (b - c) = %s = %d\n" , to_int(a) , to_int(b) , to_int(c) , $UNSAFE.cast{charptr}(btern2string(d)) , to_int(d) ) (* end of [val] *) // } (* end of [main0] *) </lang> Output:

a =  523
b = -436
c =   65
a * (b - c) = -262023 ----0+--0++0

AutoHotkey

<lang AutoHotkey>BalancedTernary(n){ k = 0 if abs(n)<2 return n=1?"+":n=0?"0":"-" if n<1 negative := true, n:= -1*n while !break { d := Mod(n, 3**(k+1)) / 3**k d := d=2?-1:d n := n - (d * 3**k) r := (d=-1?"-":d=1?"+":0) . r k++ if (n = 3**k) r := "+" . r , break := true } if negative { StringReplace, r, r, -,n, all StringReplace, r, r, `+,-, all StringReplace, r, r, n,+, all } return r }</lang> Examples:<lang AutoHotkey>data = ( 523 -436 65 -262023 ) loop, Parse, data, `n result .= A_LoopField " : " BalancedTernary(A_LoopField) "`n" MsgBox % result return</lang>

Outputs:

523 	: +-0++0+
-436 	: -++-0--
65 	: +-++-
-262023	: ----0+--0++0

C++

<lang cpp>

  1. include <iostream>
  2. include <string>
  3. include <climits>

using namespace std;

class BalancedTernary { protected: // Store the value as a reversed string of +, 0 and - characters string value;

// Helper function to change a balanced ternary character to an integer int charToInt(char c) const { if (c == '0') return 0; return 44 - c; }

// Helper function to negate a string of ternary characters string negate(string s) const { for (int i = 0; i < s.length(); ++i) { if (s[i] == '+') s[i] = '-'; else if (s[i] == '-') s[i] = '+'; } return s; }

public: // Default constructor BalancedTernary() { value = "0"; }

// Construct from a string BalancedTernary(string s) { value = string(s.rbegin(), s.rend()); }

// Construct from an integer BalancedTernary(long long n) { if (n == 0) { value = "0"; return; }

bool neg = n < 0; if (neg) n = -n;

value = ""; while (n != 0) { int r = n % 3; if (r == 0) value += "0"; else if (r == 1) value += "+"; else { value += "-"; ++n; }

n /= 3; }

if (neg) value = negate(value); }

// Copy constructor BalancedTernary(const BalancedTernary &n) { value = n.value; }

// Addition operators BalancedTernary operator+(BalancedTernary n) const { n += *this; return n; }

BalancedTernary& operator+=(const BalancedTernary &n) { static char *add = "0+-0+-0"; static char *carry = "--000++";

int lastNonZero = 0; char c = '0'; for (int i = 0; i < value.length() || i < n.value.length(); ++i) { char a = i < value.length() ? value[i] : '0'; char b = i < n.value.length() ? n.value[i] : '0';

int sum = charToInt(a) + charToInt(b) + charToInt(c) + 3; c = carry[sum];

if (i < value.length()) value[i] = add[sum]; else value += add[sum];

if (add[sum] != '0') lastNonZero = i; }

if (c != '0') value += c; else value = value.substr(0, lastNonZero + 1); // Chop off leading zeroes

return *this; }

// Negation operator BalancedTernary operator-() const { BalancedTernary result; result.value = negate(value); return result; }

// Subtraction operators BalancedTernary operator-(const BalancedTernary &n) const { return operator+(-n); }

BalancedTernary& operator-=(const BalancedTernary &n) { return operator+=(-n); }

// Multiplication operators BalancedTernary operator*(BalancedTernary n) const { n *= *this; return n; }

BalancedTernary& operator*=(const BalancedTernary &n) { BalancedTernary pos = *this; BalancedTernary neg = -pos; // Storing an extra copy to avoid negating repeatedly value = "0";

for (int i = 0; i < n.value.length(); ++i) { if (n.value[i] == '+') operator+=(pos); else if (n.value[i] == '-') operator+=(neg); pos.value = '0' + pos.value; neg.value = '0' + neg.value; }

return *this; }

// Stream output operator friend ostream& operator<<(ostream &out, const BalancedTernary &n) { out << n.toString(); return out; }

// Convert to string string toString() const { return string(value.rbegin(), value.rend()); }

// Convert to integer long long toInt() const { long long result = 0; for (long long i = 0, pow = 1; i < value.length(); ++i, pow *= 3) result += pow * charToInt(value[i]); return result; }

// Convert to integer if possible bool tryInt(long long &out) const { long long result = 0; bool ok = true;

for (long long i = 0, pow = 1; i < value.length() && ok; ++i, pow *= 3) { if (value[i] == '+') { ok &= LLONG_MAX - pow >= result; // Clear ok if the result overflows result += pow; } else if (value[i] == '-') { ok &= LLONG_MIN + pow <= result; // Clear ok if the result overflows result -= pow; } }

if (ok) out = result; return ok; } };

int main() { BalancedTernary a("+-0++0+"); BalancedTernary b(-436); BalancedTernary c("+-++-");

cout << "a = " << a << " = " << a.toInt() << endl; cout << "b = " << b << " = " << b.toInt() << endl; cout << "c = " << c << " = " << c.toInt() << endl;

BalancedTernary d = a * (b - c);

cout << "a * (b - c) = " << d << " = " << d.toInt() << endl;

BalancedTernary e("+++++++++++++++++++++++++++++++++++++++++");

long long n; if (e.tryInt(n)) cout << "e = " << e << " = " << n << endl; else cout << "e = " << e << " is too big to fit in a long long" << endl;

return 0; } </lang>

Output

a = +-0++0+ = 523
b = -++-0-- = -436
c = +-++- = 65
a * (b - c) = ----0+--0++0 = -262023
e = +++++++++++++++++++++++++++++++++++++++++ is too big to fit in a long long

C#

<lang csharp>using System; using System.Text; using System.Collections.Generic;

public class BalancedTernary { public static void Main() { BalancedTernary a = new BalancedTernary("+-0++0+"); System.Console.WriteLine("a: " + a + " = " + a.ToLong()); BalancedTernary b = new BalancedTernary(-436); System.Console.WriteLine("b: " + b + " = " + b.ToLong()); BalancedTernary c = new BalancedTernary("+-++-"); System.Console.WriteLine("c: " + c + " = " + c.ToLong()); BalancedTernary d = a * (b - c); System.Console.WriteLine("a * (b - c): " + d + " = " + d.ToLong()); }

private enum BalancedTernaryDigit { MINUS = -1, ZERO = 0, PLUS = 1 }

private BalancedTernaryDigit[] value;

// empty = 0 public BalancedTernary() { this.value = new BalancedTernaryDigit[0]; }

// create from String public BalancedTernary(String str) { this.value = new BalancedTernaryDigit[str.Length]; for (int i = 0; i < str.Length; ++i) { switch (str[i]) { case '-': this.value[i] = BalancedTernaryDigit.MINUS; break; case '0': this.value[i] = BalancedTernaryDigit.ZERO; break; case '+': this.value[i] = BalancedTernaryDigit.PLUS; break; default: throw new ArgumentException("Unknown Digit: " + str[i]); } } Array.Reverse(this.value); }

// convert long integer public BalancedTernary(long l) { List<BalancedTernaryDigit> value = new List<BalancedTernaryDigit>(); int sign = Math.Sign(l); l = Math.Abs(l);

while (l != 0) { byte rem = (byte)(l % 3); switch (rem) { case 0: case 1: value.Add((BalancedTernaryDigit)rem); l /= 3; break; case 2: value.Add(BalancedTernaryDigit.MINUS); l = (l + 1) / 3; break; } }

this.value = value.ToArray(); if (sign < 0) { this.Invert(); } }

// copy constructor public BalancedTernary(BalancedTernary origin) { this.value = new BalancedTernaryDigit[origin.value.Length]; Array.Copy(origin.value, this.value, origin.value.Length); }

// only for internal use private BalancedTernary(BalancedTernaryDigit[] value) { int end = value.Length - 1; while (value[end] == BalancedTernaryDigit.ZERO) --end; this.value = new BalancedTernaryDigit[end + 1]; Array.Copy(value, this.value, end + 1); }

// invert the values private void Invert() { for (int i=0; i < this.value.Length; ++i) { this.value[i] = (BalancedTernaryDigit)(-(int)this.value[i]); } }

// convert to string override public String ToString() { StringBuilder result = new StringBuilder(); for (int i = this.value.Length - 1; i >= 0; --i) { switch (this.value[i]) { case BalancedTernaryDigit.MINUS: result.Append('-'); break; case BalancedTernaryDigit.ZERO: result.Append('0'); break; case BalancedTernaryDigit.PLUS: result.Append('+'); break; } } return result.ToString(); }

// convert to long public long ToLong() { long result = 0; int digit; for (int i = 0; i < this.value.Length; ++i) { result += (long)this.value[i] * (long)Math.Pow(3.0, (double)i); } return result; }

// unary minus public static BalancedTernary operator -(BalancedTernary origin) { BalancedTernary result = new BalancedTernary(origin); result.Invert(); return result; }

// addition of digits private static BalancedTernaryDigit carry = BalancedTernaryDigit.ZERO; private static BalancedTernaryDigit Add(BalancedTernaryDigit a, BalancedTernaryDigit b) { if (a != b) { carry = BalancedTernaryDigit.ZERO; return (BalancedTernaryDigit)((int)a + (int)b); } else { carry = a; return (BalancedTernaryDigit)(-(int)b); } }

// addition of balanced ternary numbers public static BalancedTernary operator +(BalancedTernary a, BalancedTernary b) { int maxLength = Math.Max(a.value.Length, b.value.Length); BalancedTernaryDigit[] resultValue = new BalancedTernaryDigit[maxLength + 1]; for (int i=0; i < maxLength; ++i) { if (i < a.value.Length) { resultValue[i] = Add(resultValue[i], a.value[i]); resultValue[i+1] = carry; } else { carry = BalancedTernaryDigit.ZERO; }

if (i < b.value.Length) { resultValue[i] = Add(resultValue[i], b.value[i]); resultValue[i+1] = Add(resultValue[i+1], carry); } } return new BalancedTernary(resultValue); }

// subtraction of balanced ternary numbers public static BalancedTernary operator -(BalancedTernary a, BalancedTernary b) { return a + (-b); }

// multiplication of balanced ternary numbers public static BalancedTernary operator *(BalancedTernary a, BalancedTernary b) { BalancedTernaryDigit[] longValue = a.value; BalancedTernaryDigit[] shortValue = b.value; BalancedTernary result = new BalancedTernary(); if (a.value.Length < b.value.Length) { longValue = b.value; shortValue = a.value; }

for (int i = 0; i < shortValue.Length; ++i) { if (shortValue[i] != BalancedTernaryDigit.ZERO) { BalancedTernaryDigit[] temp = new BalancedTernaryDigit[i + longValue.Length]; for (int j = 0; j < longValue.Length; ++j) { temp[i+j] = (BalancedTernaryDigit)((int)shortValue[i] * (int)longValue[j]); } result = result + new BalancedTernary(temp); } } return result; } }</lang> output:

a: +-0++0+ = 523
b: -++-0-- = -436
c: +-++- = 65
a * (b - c): ----0+--0++0 = -262023

Common Lisp

<lang lisp>;;; balanced ternary

represented as a list of 0, 1 or -1s, with least significant digit first
convert ternary to integer

(defun bt-integer (b)

 (reduce (lambda (x y) (+ x (* 3 y))) b :from-end t :initial-value 0))

convert integer to ternary

(defun integer-bt (n)

 (if (zerop n) nil
   (case (mod n 3)
     (0 (cons  0 (integer-bt (/ n 3))))
     (1 (cons  1 (integer-bt (floor n 3))))
     (2 (cons -1 (integer-bt (floor (1+ n) 3)))))))

convert string to ternary

(defun string-bt (s)

 (loop with o = nil for c across s do

(setf o (cons (case c (#\+ 1) (#\- -1) (#\0 0)) o)) finally (return o)))

convert ternary to string

(defun bt-string (bt)

 (if (not bt) "0"
   (let* ((l (length bt))

(s (make-array l :element-type 'character)))

     (mapc (lambda (b)

(setf (aref s (decf l)) (case b (-1 #\-) (0 #\0) (1 #\+)))) bt)

     s)))

arithmetics

(defun bt-neg (a) (map 'list #'- a)) (defun bt-sub (a b) (bt-add a (bt-neg b)))

(let ((tbl #((0 -1) (1 -1) (-1 0) (0 0) (1 0) (-1 1) (0 1))))

 (defun bt-add-digits (a b c)
   (values-list (aref tbl (+ 3 a b c)))))

(defun bt-add (a b &optional (c 0))

 (if (not (and a b))
   (if (zerop c) (or a b)
     (bt-add (list c) (or a b)))
   (multiple-value-bind (d c)
     (bt-add-digits (if a (car a) 0) (if b (car b) 0) c)
     (let ((res (bt-add (cdr a) (cdr b) c)))

;; trim leading zeros (if (or res (not (zerop d))) (cons d res))))))

(defun bt-mul (a b)

 (if (not (and a b))
   nil
   (bt-add (case (car a)

(-1 (bt-neg b)) ( 0 nil) ( 1 b)) (cons 0 (bt-mul (cdr a) b)))))

division with quotient/remainder, for completeness

(defun bt-truncate (a b)

 (let ((n (- (length a) (length b)))

(d (car (last b))))

   (if (minusp n)
     (values nil a)
     (labels ((recur (a b x)

(multiple-value-bind (quo rem) (if (plusp x) (recur a (cons 0 b) (1- x)) (values nil a))

(loop with g = (car (last rem)) with quo = (cons 0 quo) while (= (length rem) (length b)) do (cond ((= g d) (setf rem (bt-sub rem b) quo (bt-add '(1) quo))) ((= g (- d)) (setf rem (bt-add rem b) quo (bt-add '(-1) quo)))) (setf x (car (last rem))) finally (return (values quo rem))))))

(recur a b n)))))

test case

(let* ((a (string-bt "+-0++0+"))

      (b (integer-bt -436))
      (c (string-bt "+-++-"))
      (d (bt-mul a (bt-sub b c))))
 (format t "a~5d~8t~a~%b~5d~8t~a~%c~5d~8t~a~%a × (b − c) = ~d ~a~%"

(bt-integer a) (bt-string a) (bt-integer b) (bt-string b) (bt-integer c) (bt-string c) (bt-integer d) (bt-string d)))</lang>output<lang>a 523 +-0++0+ b -436 -++-0-- c 65 +-++- a × (b − c) = -262023 ----0+--0++0</lang>

D

Translation of: Python

<lang d>import std.stdio, std.bigint, std.range, std.algorithm;

struct BalancedTernary {

   // Represented as a list of 0, 1 or -1s,
   // with least significant digit first.
   enum Dig : byte { N=-1, Z=0, P=+1 } // Digit.
   const Dig[] digits;
   // This could also be a BalancedTernary template argument.
   static immutable string dig2str = "-0+";
   immutable static Dig[dchar] str2dig; // = ['+': Dig.P, ...];
   nothrow static this() {
       str2dig = ['+': Dig.P, '-':  Dig.N, '0': Dig.Z];
   }
   immutable pure nothrow static Dig[2][] table =
       [[Dig.Z, Dig.N], [Dig.P, Dig.N], [Dig.N, Dig.Z],
        [Dig.Z, Dig.Z], [Dig.P, Dig.Z], [Dig.N, Dig.P],
        [Dig.Z, Dig.P]];
   this(in string inp) const pure {
       this.digits = inp.retro.map!(c => str2dig[c]).array;
   }
   this(in long inp) const pure nothrow {
       this.digits = _bint2ternary(inp.BigInt);
   }
   this(in BigInt inp) const pure nothrow {
       this.digits = _bint2ternary(inp);
   }
   this(in BalancedTernary inp) const pure nothrow {
       // No need to dup, they are virtually immutable.
       this.digits = inp.digits;
   }
   private this(in Dig[] inp) pure nothrow {
       this.digits = inp;
   }
   static Dig[] _bint2ternary(in BigInt n) pure nothrow {
       static py_div(T1, T2)(in T1 a, in T2 b) pure nothrow {
           if (a < 0) {
               return (b < 0) ?
                      -a / -b :
                      -(-a / b) - (-a % b != 0 ? 1 : 0);
           } else {
               return (b < 0) ?
                      -(a / -b) - (a % -b != 0 ? 1 : 0) :
                      a / b;
           }
       }
       if (n == 0) return [];
       // This final switch in D v.2.064 is fake, not enforced.
       final switch (((n % 3) + 3) % 3) { // (n % 3) is the remainder.
           case 0: return Dig.Z ~ _bint2ternary(py_div(n, 3));
           case 1: return Dig.P ~ _bint2ternary(py_div(n, 3));
           case 2: return Dig.N ~ _bint2ternary(py_div(n + 1, 3));
       }
   }
   @property BigInt toBint() const pure nothrow {
       return reduce!((y, x) => x + 3 * y)(0.BigInt, digits.retro);
   }
   string toString() const pure nothrow {
       if (digits.empty) return "0";
       return digits.retro.map!(d => dig2str[d + 1]).array;
   }
   static const(Dig)[] neg_(in Dig[] digs) pure nothrow {
       return digs.map!(a => -a).array;
   }
   BalancedTernary opUnary(string op:"-")() const pure nothrow {
       return BalancedTernary(neg_(this.digits));
   }
   static const(Dig)[] add_(in Dig[] a, in Dig[] b, in Dig c=Dig.Z)
   pure nothrow {
       const a_or_b = a.length ? a : b;
       if (a.empty || b.empty) {
           if (c == Dig.Z)
               return a_or_b;
           else
               return BalancedTernary.add_([c], a_or_b);
       } else {
           // (const d, c) = table[...];
           const dc = table[3 + (a.length ? a[0] : 0) +
                            (b.length ? b[0] : 0) + c];
           const res = add_(a[1 .. $], b[1 .. $], dc[1]);
           // Trim leading zeros.
           if (res.length || dc[0] != Dig.Z)
               return [dc[0]] ~ res;
           else
               return res;
       }
   }
   BalancedTernary opBinary(string op:"+")(in BalancedTernary b)
   const pure nothrow {
       return BalancedTernary(add_(this.digits, b.digits));
   }
   BalancedTernary opBinary(string op:"-")(in BalancedTernary b)
   const pure nothrow {
       return this + (-b);
   }
   static const(Dig)[] mul_(in Dig[] a, in Dig[] b) pure nothrow {
       if (a.empty || b.empty) {
           return [];
       } else {
           const y = Dig.Z ~ mul_(a[1 .. $], b);
           final switch (a[0]) {
               case Dig.N: return add_(neg_(b), y);
               case Dig.Z: return add_([], y);
               case Dig.P: return add_(b, y);
           }
       }
   }
   BalancedTernary opBinary(string op:"*")(in BalancedTernary b)
   const pure nothrow {
       return BalancedTernary(mul_(this.digits, b.digits));
   }

}

void main() {

   immutable a = BalancedTernary("+-0++0+");
   writeln("a: ", a.toBint, ' ', a);
   immutable b = BalancedTernary(-436);
   writeln("b: ", b.toBint, ' ', b);
   immutable c = BalancedTernary("+-++-");
   writeln("c: ", c.toBint, ' ', c);
   const /*immutable*/ r = a * (b - c);
   writeln("a * (b - c): ", r.toBint, ' ', r);

}</lang>

Output:
a: 523 +-0++0+
b: -436 -++-0--
c: 65 +-++-
a * (b - c): -262023 ----0+--0++0

Elixir

Translation of: Erlang

<lang elixir>defmodule Ternary do

 def to_string(t), do: ( for x <- t, do: to_char(x) ) |> List.to_string
 
 def from_string(s), do: ( for x <- to_char_list(s), do: from_char(x) )
 
 defp to_char(-1), do: ?-
 defp to_char(0), do: ?0
 defp to_char(1), do: ?+
 
 defp from_char(?-), do: -1
 defp from_char(?0), do: 0
 defp from_char(?+), do: 1
 
 def to_ternary(n) when n > 0, do: to_ternary(n,[])
 def to_ternary(n), do: neg(to_ternary(-n))
 
 defp to_ternary(0,acc), do: acc
 defp to_ternary(n,acc) when rem(n, 3) == 0, do: to_ternary(div(n, 3), [0|acc])
 defp to_ternary(n,acc) when rem(n, 3) == 1, do: to_ternary(div(n, 3), [1|acc])
 defp to_ternary(n,acc), do: to_ternary(div((n+1), 3), [-1|acc])
 
 def from_ternary(t), do: from_ternary(t,0)
 
 defp from_ternary([],acc), do: acc
 defp from_ternary([h|t],acc), do: from_ternary(t, acc*3 + h)
 
 def mul(a,b), do: mul(b,a,[])
 
 defp mul(_,[],acc), do: acc
 defp mul(b,[a|as],acc) do
   bp = case a do
          -1 -> neg(b)
           0 -> [0]
           1 -> b
        end
   a = add(bp, acc ++ [0])
   mul(b,as,a)
 end
 
 defp neg(t), do: ( for h <- t, do: -h )
 
 def sub(a,b), do: add(a,neg(b))
 
 def add(a,b) when length(a) < length(b),
   do: add(List.duplicate(0, length(b)-length(a)) ++ a, b)
 def add(a,b) when length(a) > length(b), do: add(b,a)
 def add(a,b), do: add(Enum.reverse(a), Enum.reverse(b), 0, [])
 
 defp add([],[],0,acc), do: acc
 defp add([],[],c,acc), do: [c|acc]
 defp add([a|as],[b|bs],c,acc) do
   [c1,d] = add_util(a+b+c)
   add(as,bs,c1,[d|acc])
 end
 
 defp add_util(-3), do: [-1,0]
 defp add_util(-2), do: [-1,1]
 defp add_util(-1), do: [0,-1]
 defp add_util(3), do: [1,0]
 defp add_util(2), do: [1,-1]
 defp add_util(1), do: [0,1]
 defp add_util(0), do: [0,0]

end

as = "+-0++0+"; at = Ternary.from_string(as); a = Ternary.from_ternary(at) b = -436; bt = Ternary.to_ternary(b); bs = Ternary.to_string(bt) cs = "+-++-"; ct = Ternary.from_string(cs); c = Ternary.from_ternary(ct) rt = Ternary.mul(at,Ternary.sub(bt,ct)) r = Ternary.from_ternary(rt) rs = Ternary.to_string(rt) IO.puts "a = #{as} -> #{a}" IO.puts "b = #{bs} -> #{b}" IO.puts "c = #{cs} -> #{c}" IO.puts "a x (b - c) = #{rs} -> #{r}"</lang>

Output:
a = +-0++0+ -> 523
b = -++-0-- -> -436
c = +-++- -> 65
a x (b - c) = 0----0+--0++0 -> -262023

Erlang

<lang erlang> -module(ternary). -compile(export_all).

test() ->

   AS = "+-0++0+", AT = from_string(AS), A = from_ternary(AT),
   B = -436, BT = to_ternary(B), BS = to_string(BT),
   CS = "+-++-", CT = from_string(CS), C = from_ternary(CT),
   RT = mul(AT,sub(BT,CT)),
   R = from_ternary(RT),
   RS = to_string(RT),
   io:fwrite("A = ~s -> ~b~n",[AS, A]),
   io:fwrite("B = ~s -> ~b~n",[BS, B]),
   io:fwrite("C = ~s -> ~b~n",[CS, C]),
   io:fwrite("A x (B - C) = ~s -> ~b~n", [RS, R]).

to_string(T) -> [to_char(X) || X <- T].

from_string(S) -> [from_char(X) || X <- S].

to_char(-1) -> $-; to_char(0) -> $0; to_char(1) -> $+.

from_char($-) -> -1; from_char($0) -> 0; from_char($+) -> 1.

to_ternary(N) when N > 0 ->

   to_ternary(N,[]);

to_ternary(N) ->

   neg(to_ternary(-N)).

to_ternary(0,Acc) ->

   Acc;

to_ternary(N,Acc) when N rem 3 == 0 ->

   to_ternary(N div 3, [0|Acc]);

to_ternary(N,Acc) when N rem 3 == 1 ->

   to_ternary(N div 3, [1|Acc]);

to_ternary(N,Acc) ->

   to_ternary((N+1) div 3, [-1|Acc]).

from_ternary(T) -> from_ternary(T,0).

from_ternary([],Acc) ->

   Acc;

from_ternary([H|T],Acc) ->

   from_ternary(T,Acc*3 + H).

mul(A,B) -> mul(B,A,[]).

mul(_,[],Acc) ->

   Acc;

mul(B,[A|As],Acc) ->

   BP = case A of
            -1 -> neg(B);
            0 ->  [0];
            1 ->  B
        end,
   A1 = Acc++[0],
   A2=add(BP,A1),
   mul(B,As,A2).


neg(T) -> [ -H || H <- T].

sub(A,B) -> add(A,neg(B)).

add(A,B) when length(A) < length(B) ->

   add(lists:duplicate(length(B)-length(A),0)++A,B);

add(A,B) when length(A) > length(B) ->

  add(B,A);

add(A,B) ->

   add(lists:reverse(A),lists:reverse(B),0,[]).

add([],[],0,Acc) ->

   Acc;

add([],[],C,Acc) ->

   [C|Acc];

add([A|As],[B|Bs],C,Acc) ->

   [C1,D] = add_util(A+B+C),
   add(As,Bs,C1,[D|Acc]).

add_util(-3) -> [-1,0]; add_util(-2) -> [-1,1]; add_util(-1) -> [0,-1]; add_util(3) -> [1,0]; add_util(2) -> [1,-1]; add_util(1) -> [0,1]; add_util(0) -> [0,0]. </lang> Output <lang erlang> 234> ternary:test(). A = +-0++0+ -> 523 B = -++-0-- -> -436 C = +-++- -> 65 A x (B - C) = 0----0+--0++0 -> -262023 ok </lang>

Glagol

ОТДЕЛ Сетунь+; 
ИСПОЛЬЗУЕТ 
  Параметр ИЗ "...\Отделы\Обмен\", 
  Текст ИЗ "...\Отделы\Числа\", 
  Вывод ИЗ "...\Отделы\Обмен\"; 

ПЕР 
  зч: РЯД 10 ИЗ ЗНАК; 
  счпоз: ЦЕЛ; 
  число: ЦЕЛ; 
  память: ДОСТУП К НАБОР
    ячейки: РЯД 20 ИЗ ЦЕЛ;
    размер: УЗКЦЕЛ;
    отрицательное: КЛЮЧ
  КОН; 

ЗАДАЧА СоздатьПамять; 
УКАЗ 
  СОЗДАТЬ(память); 
  память.размер := 0; 
  память.отрицательное := ОТКЛ 
КОН СоздатьПамять; 

ЗАДАЧА ДобавитьВПамять(что: ЦЕЛ); 
УКАЗ 
  память.ячейки[память.размер] := что; 
  УВЕЛИЧИТЬ(память.размер) 
КОН ДобавитьВПамять; 

ЗАДАЧА ОбратитьПамять; 
ПЕР 
  зчсл: ЦЕЛ; 
  сч: ЦЕЛ; 
УКАЗ 
  ОТ сч := 0 ДО память.размер ДЕЛИТЬ 2 - 1 ВЫП 
    зчсл := память.ячейки[сч]; 
    память.ячейки[сч] := память.ячейки[память.размер-сч-1]; 
    память.ячейки[память.размер-сч-1] := зчсл 
  КОН 
КОН ОбратитьПамять; 

ЗАДАЧА ВывестиПамять; 
ПЕР 
  сч: ЦЕЛ; 
УКАЗ  
  ОТ сч := 0 ДО память.размер-1 ВЫП 
    ЕСЛИ память.ячейки[сч] < 0 ТО
      Вывод.Цепь("-")
    АЕСЛИ память.ячейки[сч] > 0 ТО
      Вывод.Цепь("+")
    ИНАЧЕ Вывод.Цепь("0") КОН 
  КОН 
КОН ВывестиПамять; 

ЗАДАЧА УдалитьПамять; 
УКАЗ 
  память := ПУСТО 
КОН УдалитьПамять; 

ЗАДАЧА Перевести(число: ЦЕЛ); 
ПЕР 
  о: ЦЕЛ; 
  з: КЛЮЧ; 
  ЗАДАЧА ВПамять(что: ЦЕЛ); 
  УКАЗ 
    ЕСЛИ память.отрицательное ТО 
      ЕСЛИ что < 0 ТО ДобавитьВПамять(1)
      АЕСЛИ что > 0 ТО ДобавитьВПамять(-1)
      ИНАЧЕ ДобавитьВПамять(0) КОН 
    ИНАЧЕ 
      ДобавитьВПамять(что) 
    КОН 
  КОН ВПамять; 
УКАЗ 
  ЕСЛИ число < 0 ТО память.отрицательное := ВКЛ КОН; 
  число := МОДУЛЬ(число); 
  з := ОТКЛ; 
  ПОКА число > 0 ВЫП 
    о := число ОСТАТОК 3; 
    число := число ДЕЛИТЬ 3; 
    ЕСЛИ з ТО 
      ЕСЛИ о = 2 ТО ВПамять(0) АЕСЛИ о = 1 ТО ВПамять(-1) ИНАЧЕ ВПамять(1); з := ОТКЛ КОН 
    ИНАЧЕ 
      ЕСЛИ о = 2 ТО ВПамять(-1); з := ВКЛ ИНАЧЕ ВПамять(о) КОН 
    КОН 
  КОН; 
  ЕСЛИ з ТО ВПамять(1) КОН; 
  ОбратитьПамять; 
  ВывестиПамять(ВКЛ); 
КОН Перевести; 

ЗАДАЧА ВЧисло(): ЦЕЛ; 
ПЕР 
  сч, мн: ЦЕЛ; 
  результат: ЦЕЛ; 
УКАЗ 
  результат := 0; 
  мн := 1; 
  ОТ сч := 0 ДО память.размер-1 ВЫП 
    УВЕЛИЧИТЬ(результат, память.ячейки[память.размер-сч-1]*мн); 
    мн := мн * 3 
  КОН; 
  ВОЗВРАТ результат 
КОН ВЧисло; 

УКАЗ 
  Параметр.Текст(1, зч); счпоз := 0; 
  число := Текст.ВЦел(зч, счпоз); 
  СоздатьПамять; 
  Перевести(число); 
  Вывод.ЧЦел(" = %d.", ВЧисло(), 0, 0, 0); 
  УдалитьПамять 

КОН Сетунь.

A crude English/Pidgin Algol translation of the above Category:Glagol code. <lang algol68>PROGRAM Setun+; USES

 Parameter IS "...\Departments\Exchange\"
 Text IS "...\Departments\Numbers\"
 Output IS "...\Departments\Exchange\";

VAR

 AF: RANGE 10 IS SIGN;
 mfpos: INT;
 number: INT;
 memory ACCESS TO STRUCT
   cell: RANGE 20 IS INT;
   size: UZKEL;
   negative: BOOL
 END;

PROC Create.Memory; BEGIN

 CREATE(memory);
 memory.size := 0;
 memory.negative := FALSE

END Create.Memory;

PROC Add.Memory(that: INT) BEGIN

 memory.cells[memory.size] := that;
 ZOOM(memory.size)

END Add.Memory;

PROC Invert.Memory; VAR

 zchsl: INT;
 account: INT;

BEGIN

 FOR cq := 0 TO memory.size DIVIDE 2 - 1 DO
   zchsl := memory.cells[cq];
   memory.cells[cq] := memory.cells[memory.size-size-1];
   memory.cells[memory.size-MF-1] := zchsl
 END

END Invert.Memory;

PROC Withdraw.Memory; VAR

 account: INT;

BEGIN

 FOR cq := 0 TO memory.size-1 DO
   IF memory.cells[cq] < 0 THEN
     Output.Append("-")
   ANDIF memory.cells[cq] > 0 THEN
     Output.Append("+")
   ELSE Output.Append("0") END
 END

END Withdraw.Memory;

PROC Remove.Memory; BEGIN

 memory := Empty

END Remove.Memory;

PROC Translate(number: INT) VAR

 about: INT;
 s: BOOL;
 PROC B.Memory(that: INT)
 BEGIN
   IF memory.negative THEN
     IF that < 0 THEN Add.Memory(1)
     ANDIF that > 0 THEN Add.Memory(1)
     ELSE Add.Memory(0) END
   ELSE
     Add.Memory(that)
   END
 END B.Memory;

BEGIN

 IF number < 0 THEN memory.negative := TRUE END;
 number := UNIT(number)
 s := FALSE;
 WHILE number > 0 DO
   about := number BALANCE 3;
   number := number DIVIDE 3;
   IF s THEN
     IF about = 2 THEN B.Memory(0) ANDIF about = 1 THEN B.Memory(1) ELSE B.Memory(1) s := FALSE END
   ELSE
     IF about = 2 THEN B.Memory(-1) s := TRUE ELSE B.Memory(a) END
   END
 END;
 IF s THEN B.Memory(1) END;
 Invert.Memory;
 Withdraw.Memory(TRUE)

END Translate;

PROC InNumber(): INT; VAR

 MF, MN: INT;
 result: INT;

BEGIN

 result := 0
 pl := 1;
 FOR cq := 0 TO memory.size-1 DO
   ZOOM(result, memory.Cells[memory.size-cq-1] * mn);
   pl := pl * 3
 END;
 RETURN result;

END InNumber;

BEGIN

 Parameter.Text(1, AF); mfpos := 0;
 number := Text.Whole(AF, mfpos);
 Create.Memory;
 Translate(number);
 Output.ChTarget(" = %d.", InNumber(), 0, 0, 0);
 Remove.Memory

END Setun.</lang>

Go

<lang go>package main

import (

   "fmt"
   "strings"

)

// R1: representation is a slice of int8 digits of -1, 0, or 1. // digit at index 0 is least significant. zero value of type is // representation of the number 0. type bt []int8

// R2: string conversion:

// btString is a constructor. valid input is a string of any length // consisting of only '+', '-', and '0' characters. // leading zeros are allowed but are trimmed and not represented. // false return means input was invalid. func btString(s string) (*bt, bool) {

   s = strings.TrimLeft(s, "0")
   b := make(bt, len(s))
   for i, last := 0, len(s)-1; i < len(s); i++ {
       switch s[i] {
       case '-':
           b[last-i] = -1
       case '0':
           b[last-i] = 0
       case '+':
           b[last-i] = 1
       default:
           return nil, false
       }
   }
   return &b, true

}

// String method converts the other direction, returning a string of // '+', '-', and '0' characters representing the number. func (b bt) String() string {

   if len(b) == 0 {
       return "0"
   }
   last := len(b) - 1
   r := make([]byte, len(b))
   for i, d := range b {
       r[last-i] = "-0+"[d+1]
   }
   return string(r)

}

// R3: integer conversion // int chosen as "native integer"

// btInt is a constructor like btString. func btInt(i int) *bt {

   if i == 0 {
       return new(bt)
   }
   var b bt
   var btDigit func(int)
   btDigit = func(digit int) {
       m := int8(i % 3)
       i /= 3
       switch m {
       case 2:
           m = -1
           i++
       case -2:
           m = 1
           i--
       }
       if i == 0 {
           b = make(bt, digit+1)
       } else {
           btDigit(digit + 1)
       }
       b[digit] = m
   }
   btDigit(0)
   return &b

}

// Int method converts the other way, returning the value as an int type. // !ok means overflow occurred during conversion, not necessarily that the // value is not representable as an int. (Of course there are other ways // of doing it but this was chosen as "reasonable.") func (b bt) Int() (r int, ok bool) {

   pt := 1
   for _, d := range b {
       dp := int(d) * pt
       neg := r < 0
       r += dp
       if neg {
           if r > dp {
               return 0, false
           }
       } else {
           if r < dp {
               return 0, false
           }
       }
       pt *= 3
   }
   return r, true

}

// R4: negation, addition, and multiplication

func (z *bt) Neg(b *bt) *bt {

   if z != b {
       if cap(*z) < len(*b) {
           *z = make(bt, len(*b))
       } else {
           *z = (*z)[:len(*b)]
       } 
   }
   for i, d := range *b {
       (*z)[i] = -d
   }
   return z 

}

func (z *bt) Add(a, b *bt) *bt {

   if len(*a) < len(*b) {
       a, b = b, a
   }
   r := *z
   r = r[:cap(r)]
   var carry int8 
   for i, da := range *a {
       if i == len(r) {
           n := make(bt, len(*a)+4)
           copy(n, r)
           r = n
       }
       sum := da + carry
       if i < len(*b) {
           sum += (*b)[i]
       }
       carry = sum / 3
       sum %= 3
       switch {
       case sum > 1:
           sum -= 3
           carry++
       case sum < -1:
           sum += 3
           carry--
       } 
       r[i] = sum 
   }
   last := len(*a)
   if carry != 0 {
       if len(r) == last {
           n := make(bt, last+4)
           copy(n, r)
           r = n
       }
       r[last] = carry
       *z = r[:last+1]
       return z
   }
   for {
       if last == 0 {
           *z = nil
           break
       }
       last--
       if r[last] != 0 {
           *z = r[:last+1]
           break
       }
   }
   return z

}

func (z *bt) Mul(a, b *bt) *bt {

   if len(*a) < len(*b) {
       a, b = b, a
   }
   var na bt
   for _, d := range *b {
       if d == -1 {
           na.Neg(a)
           break
       }
   }
   r := make(bt, len(*a)+len(*b))
   for i := len(*b) - 1; i >= 0; i-- {
       switch (*b)[i] {
       case 1:
           p := r[i:]
           p.Add(&p, a)
       case -1:
           p := r[i:]
           p.Add(&p, &na)
       }
   }
   i := len(r)
   for i > 0 && r[i-1] == 0 {
       i--
   }
   *z = r[:i]
   return z

}

func main() {

   a, _ := btString("+-0++0+")
   b := btInt(-436)
   c, _ := btString("+-++-")
   show("a:", a) 
   show("b:", b)
   show("c:", c)
   show("a(b-c):", a.Mul(a, b.Add(b, c.Neg(c))))

}

func show(label string, b *bt) {

   fmt.Printf("%7s %12v ", label, b)
   if i, ok := b.Int(); ok {
       fmt.Printf("%7d\n", i)
   } else {
       fmt.Println("int overflow")
   }

}</lang>

Output:
     a:      +-0++0+     523
     b:      -++-0--    -436
     c:        +-++-      65
a(b-c): ----0+--0++0 -262023

Groovy

Solution: <lang groovy>enum T {

   m('-', -1), z('0', 0), p('+', 1)
   final String symbol
   final int value
   private T(String symbol, int value) {
       this.symbol = symbol
       this.value = value
   }
   static T get(Object key) {
       switch (key) {
           case [m.value, m.symbol] : return m
           case [z.value, z.symbol] : return z
           case [p.value, p.symbol] : return p
           default:                   return null
       }
   }
   T negative() {
       T.get(-this.value)
   }
   String toString() { this.symbol }

}


class BalancedTernaryInteger {

   static final MINUS = new BalancedTernaryInteger(T.m)
   static final ZERO  = new BalancedTernaryInteger(T.z)
   static final PLUS  = new BalancedTernaryInteger(T.p)
   private static final LEADING_ZEROES = /^0+/
   
   final String value
   BalancedTernaryInteger(String bt) {
       assert bt && bt.toSet().every { T.get(it) }
       value = bt ==~ LEADING_ZEROES ? T.z : bt.replaceAll(LEADING_ZEROES, );
   }
   BalancedTernaryInteger(BigInteger i) {
       this(i == 0 ? T.z.symbol : valueFromInt(i));
   }
   BalancedTernaryInteger(T...tArray) {
       this(tArray.sum{ it.symbol });
   }
   BalancedTernaryInteger(List<T> tList) {
       this(tList.sum{ it.symbol });
   }
   private static String valueFromInt(BigInteger i) {
       assert i != null
       if (i < 0) return negate(valueFromInt(-i))
       if (i == 0) return 
       int bRem = (((i % 3) - 2) ?: -3) + 2
       valueFromInt((i - bRem).intdiv(3)) + T.get(bRem)
   }
   private static String negate(String bt) {
       bt.collect{ T.get(it) }.inject() { str, t ->
           str + (-t)
       }
   }
   private static final Map INITIAL_SUM_PARTS = [carry:T.z, sum:[]]
   private static final prepValueLen = { int len, String s ->
       s.padLeft(len + 1, T.z.symbol).collect{ T.get(it) }
   }
   private static final partCarrySum = { partialSum, carry, trit ->
       [carry: carry, sum: [trit] + partialSum]
   }
   private static final partSum = { parts, trits ->
       def carrySum = partCarrySum.curry(parts.sum)
       switch ((trits + parts.carry).sort()) {
           case T.m, T.m, T.m:                  return carrySum(T.m, T.z) //-3
           case T.m, T.m, T.z:                  return carrySum(T.m, T.p) //-2
           case [[T.m, T.z, T.z], [T.m, T.m, T.p]]: return carrySum(T.z, T.m) //-1
           case [[T.z, T.z, T.z], [T.m, T.z, T.p]]: return carrySum(T.z, T.z) //+0
           case [[T.z, T.z, T.p], [T.m, T.p, T.p]]: return carrySum(T.z, T.p) //+1
           case T.z, T.p, T.p:                  return carrySum(T.p, T.m) //+2
           case T.p, T.p, T.p: default:         return carrySum(T.p, T.z) //+3
       }
   }
   BalancedTernaryInteger plus(BalancedTernaryInteger that) {
       assert that != null
       if (this == ZERO) return that
       if (that == ZERO) return this
       def prep = prepValueLen.curry([value.size(), that.value.size()].max())
       List values = [prep(value), prep(that.value)].transpose()
       new BalancedTernaryInteger(values[-1..(-values.size())].inject(INITIAL_SUM_PARTS, partSum).sum)
   }
   BalancedTernaryInteger negative() {
       !this ? this : new BalancedTernaryInteger(negate(value))
   }
   BalancedTernaryInteger minus(BalancedTernaryInteger that) {
       assert that != null
       this + -that
   }
   private static final INITIAL_PRODUCT_PARTS = [sum:ZERO, pad:]
   private static final sigTritCount = { it.value.replaceAll(T.z.symbol,).size() }
   private BalancedTernaryInteger paddedValue(String pad) {
       new BalancedTernaryInteger(value + pad)
   }
   private BalancedTernaryInteger partialProduct(T multiplier, String pad){
       switch (multiplier) {
           case T.z:          return ZERO
           case T.m:          return -paddedValue(pad)
           case T.p: default: return paddedValue(pad)
       }
   }
   BalancedTernaryInteger multiply(BalancedTernaryInteger that) {
       assert that != null
       if (that == ZERO)  return ZERO
       if (that == PLUS)  return this
       if (that == MINUS) return -this
       if (this.value.size() == 1 || sigTritCount(this) < sigTritCount(that)) {
           return that.multiply(this)
       }
       that.value.collect{ T.get(it) }[-1..(-value.size())].inject(INITIAL_PRODUCT_PARTS) { parts, multiplier ->
           [sum: parts.sum + partialProduct(multiplier, parts.pad), pad: parts.pad + T.z]
       }.sum
   }
   BigInteger asBigInteger() {
       value.collect{ T.get(it) }.inject(0) { i, trit -> i * 3 + trit.value }
   }
   def asType(Class c) {
       switch (c) {
           case Integer:              return asBigInteger() as Integer
           case Long:                 return asBigInteger() as Long
           case [BigInteger, Number]: return asBigInteger()
           case Boolean:              return this != ZERO
           case String:               return toString()
           default:                   return super.asType(c)
       }
   }
   boolean equals(Object that) {
       switch (that) {
           case BalancedTernaryInteger: return this.value == that?.value
           default:                     return super.equals(that)
       }
   }
   int hashCode() { this.value.hashCode() }
   String toString() { value }

}</lang>

Test: <lang groovy>BalancedTernaryInteger a = new BalancedTernaryInteger('+-0++0+') BalancedTernaryInteger b = new BalancedTernaryInteger(-436) BalancedTernaryInteger c = new BalancedTernaryInteger(T.p, T.m, T.p, T.p, T.m) BalancedTernaryInteger bmc = new BalancedTernaryInteger(-436 - (c as Integer)) BalancedTernaryInteger atbmc = new BalancedTernaryInteger((a as Integer) * (-436 - (c as Integer)))

printf ("%9s = %12s %8d\n", 'a', "${a}", a as Number) printf ("%9s = %12s %8d\n", 'b', "${b}", b as Number) printf ("%9s = %12s %8d\n", 'c', "${c}", c as Number) assert (b-c) == bmc printf ("%9s = %12s %8d\n", 'b-c', "${b-c}", (b-c) as Number) assert (a * (b-c)) == atbmc printf ("%9s = %12s %8d\n", 'a * (b-c)', "${a * (b-c)}", (a * (b-c)) as Number)

println "\nDemonstrate failure:" assert (a * (b-c)) == a</lang>

Output:

        a =      +-0++0+      523
        b =      -++-0--     -436
        c =        +-++-       65
      b-c =      -+0-++0     -501
a * (b-c) = ----0+--0++0  -262023

Demonstrate failure:
Caught: Assertion failed: 

assert (a * (b-c)) == a
        | |  |||   |  |
        | |  |||   |  +-0++0+
        | |  |||   false
        | |  ||+-++-
        | |  |-+0-++0
        | |  -++-0--
        | ----0+--0++0
        +-0++0+
...

Haskell

BTs are represented internally as lists of digits in integers from -1 to 1, but displayed as "+-0" strings. <lang haskell>data BalancedTernary = Bt [Int]

zeroTrim a = if null s then [0] else s where s = fst $ foldl f ([],[]) a f (x,y) 0 = (x, y++[0]) f (x,y) z = (x++y++[z], [])

btList (Bt a) = a

instance Eq BalancedTernary where (==) a b = btList a == btList b

btNormalize = listBt . _carry 0 where _carry c [] = if c == 0 then [] else [c] _carry c (a:as) = r:_carry cc as where (cc, r) = f $ (a+c) `quotRem` 3 where f (x, 2) = (x + 1, -1) f (x, -2) = (x - 1, 1) f x = x

listBt = Bt . zeroTrim

instance Show BalancedTernary where show = reverse . map (\d->case d of -1->'-'; 0->'0'; 1->'+') . btList

strBt = Bt . zeroTrim.reverse.map (\c -> case c of '-' -> -1; '0' -> 0; '+' -> 1)

intBt :: Integral a => a -> BalancedTernary intBt = fromIntegral . toInteger

btInt = foldr (\a z -> a + 3 * z) 0 . btList

listAdd a b = take (max (length a) (length b)) $ zipWith (+) (a++[0,0..]) (b++[0,0..])

-- mostly for operators, also small stuff to make GHC happy instance Num BalancedTernary where negate = Bt . map negate . btList (+) x y = btNormalize $ listAdd (btList x) (btList y) (*) x y = btNormalize $ mul_ (btList x) (btList y) where mul_ _ [] = []

               mul_ as b = foldr (\a z -> listAdd (map (a*) b) (0:z)) [] as

-- we don't need to define binary "-" by hand

signum (Bt a) = if a == [0] then 0 else Bt [last a] abs x = if signum x == Bt [-1] then negate x else x

fromInteger = btNormalize . f where f 0 = [] f x = fromInteger (rem x 3) : f (quot x 3)


main = let (a,b,c) = (strBt "+-0++0+", intBt (-436), strBt "+-++-") r = a * (b - c) in do print $ map btInt [a,b,c] print $ r print $ btInt r</lang>

Icon and Unicon

Translation of: java

Works in both languages: <lang unicon>procedure main()

   a := "+-0++0+"
   write("a = +-0++0+"," = ",cvtFromBT("+-0++0+"))
   write("b = -436 = ",b := cvtToBT(-436))
   c := "+-++-"
   write("c = +-++- = ",cvtFromBT("+-++-"))
   d := mul(a,sub(b,c))
   write("a(b-c) = ",d," = ",cvtFromBT(d))

end

procedure bTrim(s)

   return s[upto('+-',s):0] | "0"

end

procedure cvtToBT(n)

   if n=0 then return "0"
   if n<0 then return map(cvtToBT(-n),"+-","-+")
   return bTrim(case n%3 of {
       0: cvtToBT(n/3)||"0"
       1: cvtToBT(n/3)||"+"
       2: cvtToBT((n+1)/3)||"-"
       })

end

procedure cvtFromBT(n)

   sum := 0
   i := -1
   every c := !reverse(n) do {
       sum +:= case c of {
           "+" : 1
           "-" : -1
           "0" : 0
           }*(3^(i+:=1))
       }
   return sum

end

procedure neg(n)

   return map(n,"+-","-+")

end

procedure add(a,b)

   if *b > *a then a :=: b
   b := repl("0",*a-*b)||b
   c := "0"
   sum := ""
   every place := 1 to *a do {
       ds := addDigits(a[-place],b[-place],c)
       c := if *ds > 1 then c := ds[1] else "0"
       sum := ds[-1]||sum
       }
   return bTrim(c||sum)

end

procedure addDigits(a,b,c)

   sum1 := addDigit(a,b)
   sum2 := addDigit(sum1[-1],c)
   if *sum1 = 1 then return sum2
   if *sum2 = 1 then return sum1[1]||sum2
   return sum1[1]

end

procedure addDigit(a,b)

   return case(a||b) of {
               "00"|"0+"|"0-": b
               "+0"|"-0"     : a
               "++"          : "+-"
               "+-"|"-+"     : "0"
               "--"          : "-+"
               }

end

procedure sub(a,b)

   return add(a,neg(b))

end

procedure mul(a,b)

   if b[1] == "-" then {
       b := neg(b)
       negate := "yes"
       }
   b := cvtFromBT(b)
   i := "+"
   mul := "0"
   while cvtFromBT(i) <= b do {
       mul := add(mul,a)
       i := add(i,"+")
       }
   return (\negate,map(mul,"+-","-+")) | mul

end</lang>

Output:

->bt
a = +-0++0+ = 523
b = -436 = -++-0--
c = +-++- = 65
a(b-c) = ----0+--0++0 = -262023
->

J

Implementation:

<lang j>trigits=: 1+3 <.@^. 2 * 1&>.@| trinOfN=: |.@((_1 + ] #: #.&1@] + [) #&3@trigits) :. nOfTrin nOfTrin=: p.&3 :. trinOfN trinOfStr=: 0 1 _1 {~ '0+-'&i.@|. :. strOfTrin strOfTrin=: {&'0+-'@|. :. trinOfStr

carry=: +//.@:(trinOfN"0)^:_ trimLead0=: (}.~ i.&1@:~:&0)&.|.

add=: carry@(+/@,:) neg=: - mul=: trimLead0@carry@(+//.@(*/))</lang>

trinary numbers are represented as a sequence of polynomial coefficients. The coefficient values are limited to 1, 0, and -1. The polynomial's "variable" will always be 3 (which happens to illustrate an interesting absurdity in the terminology we use to describe polynomials -- one which might be an obstacle for learning, for some people).

trigits computes the number of trinary "digits" (that is, the number of polynomial coefficients) needed to represent an integer. pseudocode: 1+floor(log3(2*max(1,abs(n))). Note that floating point inaccuracies combined with comparison tolerance may lead to a [harmless] leading zero when converting incredibly large numbers.

fooOfBar converts a bar into a foo. These functions are all invertable (so we can map from one domain to another, perform an operation, and map back using J's under). This aspect is not needed for this task and the definitions could be made simpler by removing it (removing the :. obverse clauses), but it made testing and debugging easier.

carry performs carry propagation. (Intermediate results will have overflowed trinary representation and become regular integers, so we convert them back into trinary and then perform a polynomial sum, repeating until the result is the same as the argument.)

trimLead0 removes leading zeros from a sequence of polynomial coefficients.

add adds these polynomials. neg negates these polynomials. Note that it's just a name for J's - mul multiplies these polynomials.

Definitions for example:

<lang j>a=: trinOfStr '+-0++0+' b=: trinOfN -436 c=: trinOfStr '+-++-'</lang>

Required example:

<lang j> nOfTrin&> a;b;c 523 _436 65

  strOfTrin a mul b (add -) c

0+--0++0

  nOfTrin   a mul b (add -) c

_262023</lang>

Java

<lang java> /*

* Test case 
* With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-":
* Write out a, b and c in decimal notation;
* Calculate a × (b − c), write out the result in both ternary and decimal notations. 
*/

public class BalancedTernary { public static void main(String[] args) {

		BTernary a=new BTernary("+-0++0+");

BTernary b=new BTernary(-436); BTernary c=new BTernary("+-++-");

System.out.println("a="+a.intValue()); System.out.println("b="+b.intValue()); System.out.println("c="+c.intValue()); System.out.println();

//result=a*(b-c) BTernary result=a.mul(b.sub(c));

System.out.println("result= "+result+" "+result.intValue()); }


public static class BTernary { String value; public BTernary(String s) { int i=0; while(s.charAt(i)=='0') i++; this.value=s.substring(i); } public BTernary(int v) { this.value=""; this.value=convertToBT(v); }

private String convertToBT(int v) { if(v<0) return flip(convertToBT(-v)); if(v==0) return ""; int rem=mod3(v); if(rem==0) return convertToBT(v/3)+"0"; if(rem==1) return convertToBT(v/3)+"+"; if(rem==2) return convertToBT((v+1)/3)+"-"; return "You can't see me"; } private String flip(String s) { String flip=""; for(int i=0;i<s.length();i++) { if(s.charAt(i)=='+') flip+='-'; else if(s.charAt(i)=='-') flip+='+'; else flip+='0'; } return flip; } private int mod3(int v) { if(v>0) return v%3; v=v%3; return (v+3)%3; }

public int intValue() { int sum=0; String s=this.value; for(int i=0;i<s.length();i++) { char c=s.charAt(s.length()-i-1); int dig=0; if(c=='+') dig=1; else if(c=='-') dig=-1; sum+=dig*Math.pow(3, i); } return sum; }


public BTernary add(BTernary that) { String a=this.value; String b=that.value;

String longer=a.length()>b.length()?a:b; String shorter=a.length()>b.length()?b:a;

while(shorter.length()<longer.length()) shorter=0+shorter;

a=longer; b=shorter;

char carry='0'; String sum=""; for(int i=0;i<a.length();i++) { int place=a.length()-i-1; String digisum=addDigits(a.charAt(place),b.charAt(place),carry); if(digisum.length()!=1) carry=digisum.charAt(0); else carry='0'; sum=digisum.charAt(digisum.length()-1)+sum; } sum=carry+sum;

return new BTernary(sum); } private String addDigits(char a,char b,char carry) { String sum1=addDigits(a,b); String sum2=addDigits(sum1.charAt(sum1.length()-1),carry); //System.out.println(carry+" "+sum1+" "+sum2); if(sum1.length()==1) return sum2; if(sum2.length()==1) return sum1.charAt(0)+sum2; return sum1.charAt(0)+""; } private String addDigits(char a,char b) { String sum=""; if(a=='0') sum=b+""; else if (b=='0') sum=a+""; else if(a=='+') { if(b=='+') sum="+-"; else sum="0"; } else { if(b=='+') sum="0"; else sum="-+"; } return sum; }

public BTernary neg() { return new BTernary(flip(this.value)); }

public BTernary sub(BTernary that) { return this.add(that.neg()); }

public BTernary mul(BTernary that) { BTernary one=new BTernary(1); BTernary zero=new BTernary(0); BTernary mul=new BTernary(0);

int flipflag=0; if(that.compareTo(zero)==-1) { that=that.neg(); flipflag=1; } for(BTernary i=new BTernary(1);i.compareTo(that)<1;i=i.add(one)) mul=mul.add(this);

if(flipflag==1) mul=mul.neg(); return mul; }

public boolean equals(BTernary that) { return this.value.equals(that.value); } public int compareTo(BTernary that) { if(this.intValue()>that.intValue()) return 1; else if(this.equals(that)) return 0; return -1; }

public String toString() { return value; } } } </lang>

Output:

a=523
b=-436
c=65

result= ----0+--0++0 -262023

Kotlin

This is based on the Java entry. However, I've added 'BigInteger' support as this is a current requirement of the task description even though it's not actually needed to process the test case: <lang scala>// version 1.1.3

import java.math.BigInteger

val bigZero = BigInteger.ZERO val bigOne = BigInteger.ONE val bigThree = BigInteger.valueOf(3L)

class BTernary(private var value: String) : Comparable<BTernary> {

   init {
       require(value.all { it in "0+-" } ) 
       value = value.trimStart('0')
   }
   constructor(v: Int): this(BigInteger.valueOf(v.toLong()))
   constructor(v: Long): this(BigInteger.valueOf(v))
   constructor(v: BigInteger): this("") {
       value = toBT(v) 
   }
  
   private fun toBT(v: BigInteger): String {
       if (v < bigZero) return flip(toBT(-v))
       if (v == bigZero) return ""
       val rem = mod3(v)
       return when (rem) {
           bigZero -> toBT(v / bigThree) + "0"
           bigOne  -> toBT(v / bigThree) + "+"
           else    -> toBT((v + bigOne) / bigThree) + "-"
       }
   }
   private fun flip(s: String): String {
       val sb = StringBuilder()
       for (c in s) {
           sb.append(when (c) {
               '+'  -> "-"
               '-'  -> "+"
               else -> "0"
           })
       }
       return sb.toString()
   }
   private fun mod3(v: BigInteger): BigInteger {
       if (v > bigZero) return v % bigThree
       return ((v % bigThree) + bigThree) % bigThree
   }
   fun toBigInteger(): BigInteger {
       val len = value.length
       var sum = bigZero
       var pow = bigOne
       for (i in 0 until len) {
           val c = value[len - i - 1]
           val dig = when (c) {
               '+'  -> bigOne
               '-'  -> -bigOne
               else -> bigZero
           }
           if (dig != bigZero) sum += dig * pow
           pow *= bigThree
       }
       return sum
   }
   private fun addDigits(a: Char, b: Char, carry: Char): String {
       val sum1 = addDigits(a, b)
       val sum2 = addDigits(sum1.last(), carry)
       return when {
           sum1.length == 1 -> sum2
           sum2.length == 1 -> sum1.take(1) + sum2
           else             -> sum1.take(1)
       }
   }
   private fun addDigits(a: Char, b: Char): String  =
       when {
           a == '0' -> b.toString()
           b == '0' -> a.toString()
           a == '+' -> if (b == '+') "+-" else "0"
           else     -> if (b == '+') "0" else "-+"
       }
   operator fun plus(other: BTernary): BTernary {
       var a = this.value
       var b = other.value
       val longer  = if (a.length > b.length) a else b
       var shorter = if (a.length > b.length) b else a
       while (shorter.length < longer.length) shorter = "0" + shorter
       a = longer
       b = shorter
       var carry = '0'
       var sum = ""
       for (i in 0 until a.length) {
           val place = a.length - i - 1
           val digisum = addDigits(a[place], b[place], carry)
           carry = if (digisum.length != 1) digisum[0] else '0'
           sum = digisum.takeLast(1) + sum
       }
       sum = carry.toString() + sum
       return BTernary(sum)
   }
   operator fun unaryMinus() = BTernary(flip(this.value))

   operator fun minus(other: BTernary) = this + (-other)
   operator fun times(other: BTernary): BTernary {
       var that = other
       val one  = BTernary(1)
       val zero = BTernary(0)
       var mul  = zero
       var flipFlag = false
       if (that < zero) {
           that = -that
           flipFlag = true
       }
       var i = one
       while (i <= that) {
           mul += this
           i += one
       }
       if (flipFlag) mul = -mul
       return mul
   } 
   fun equals(other: BTernary) = this.compareTo(other) == 0
   override operator fun compareTo(other: BTernary) = 
       this.toBigInteger().compareTo(other.toBigInteger())
       
   override fun toString() = value      

}

fun main(args: Array<String>) {

   val a = BTernary("+-0++0+")
   val b = BTernary(-436)
   val c = BTernary("+-++-")
   println("a = ${a.toBigInteger()}")
   println("b = ${b.toBigInteger()}")
   println("c = ${c.toBigInteger()}")   
   val bResult = a * (b - c)
   val iResult = bResult.toBigInteger() 
   println("a * (b - c) = $bResult = $iResult")   

}</lang>

Output:
a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 = -262023

Liberty BASIC

<lang lb> global tt$ tt$="-0+" '-1 0 1; +2 -> 1 2 3, instr

'Test case: 'With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-": '* write out a, b and c in decimal notation; '* calculate a * (b - c), write out the result in both ternary and decimal notations.

a$="+-0++0+" a=deci(a$) print "a",a, a$

b=-436 b$=ternary$(b) print "b",b, b$

c$="+-++-" c=deci(c$) print "c",c, c$

'calculate in ternary

res$=multTernary$(a$, subTernary$(b$, c$)) print "a * (b - c)", res$ print "In decimal:",deci(res$)

print "Check:" print "a * (b - c)", a * (b - c) end

function deci(s$)

   pow = 1
   for i = len(s$) to 1 step -1
       c$ = mid$(s$,i,1)
       'select case c$ 
       '    case "+":sign= 1
       '    case "-":sign=-1
       '    case "0":sign= 0
       'end select
       sign = instr(tt$,c$)-2
       deci = deci+pow*sign
       pow = pow*3
   next

end function

function ternary$(n)

   while abs(n)>3^k/2
       k=k+1
   wend
   k=k-1
   pow = 3^k
   for i = k to 0 step -1
       sign = (n>0) - (n<0)
       sign = sign * (abs(n)>pow/2)
       ternary$ = ternary$+mid$(tt$,sign+2,1)
       n = n - sign*pow
       pow = pow/3
   next
   if  ternary$ = "" then  ternary$ ="0"

end function

function multTernary$(a$, b$)

   c$ = ""
   t$ = ""
   shift$ = ""
   for i = len(a$) to 1 step -1
       select case mid$(a$,i,1)
       case "+": t$ = b$
       case "0": t$ = "0"
       case "-": t$ = negate$(b$)
       end select
       c$ = addTernary$(c$, t$+shift$)
       shift$ = shift$ +"0"
   'print d, t$, c$ 
   next
   multTernary$ = c$

end function

function subTernary$(a$, b$)

    subTernary$ = addTernary$(a$, negate$(b$))

end function

function negate$(s$)

   negate$=""
   for i = 1 to len(s$)
       'print mid$(s$,i,1), instr(tt$, mid$(s$,i,1)), 4-instr(tt$, mid$(s$,i,1))
       negate$=negate$+mid$(tt$, 4-instr(tt$, mid$(s$,i,1)), 1)
   next

end function

function addTernary$(a$, b$) 'add a$ + b$, for now only positive

   l = max(len(a$), len(b$))
   a$=pad$(a$,l)
   b$=pad$(b$,l)
   c$ = "" 'result
   carry = 0
   for i = l to 1 step -1
       a = instr(tt$,mid$(a$,i,1))-2
       b = instr(tt$,mid$(b$,i,1))-2     '-1 0 1
       c = a+b+carry
       select case
       case abs(c)<2
           carry = 0
       case c>0
           carry =1: c=c-3
       case c<0
           carry =-1: c=c+3
       end select
       'print a, b, c
       c$ = mid$(tt$,c+2,1)+c$
   next
   if carry<>0 then c$ = mid$(tt$,carry+2,1) +c$
   'print c$
   'have to trim leading 0's
   i=0
   while mid$(c$,i+1,1)="0"
       i=i+1
   wend
   c$=mid$(c$,i+1)
   if c$="" then c$="0"
   addTernary$ = c$

end function

function pad$(a$,n) 'pad from right with 0 to length n

    pad$ = a$
    while len(pad$)<n
       pad$ = "0"+pad$
    wend

end function </lang>

Output:
a             523           +-0++0+
b             -436          -++-0--
c             65            +-++-
a * (b - c)   ----0+--0++0
In decimal:   -262023
Check:
a * (b - c)   -262023

Mathematica / Wolfram Language

<lang mathematica>frombt = FromDigits[StringCases[#, {"+" -> 1, "-" -> -1, "0" -> 0}],

   3] &;

tobt = If[Quotient[#, 3, -1] == 0,

    "", #0@Quotient[#, 3, -1]] <> (Mod[#, 
      3, -1] /. {1 -> "+", -1 -> "-", 0 -> "0"}) &;

btnegate = StringReplace[#, {"+" -> "-", "-" -> "+"}] &; btadd = StringReplace[

   StringJoin[
    Fold[Sort@{#11, 
         Sequence @@ #2} /. {{x_, x_, x_} :> {x, 
          "0" <> #12}, {"-", "+", x_} | {x_, "-", "+"} | {x_, 
           "0", "0"} :> {"0", x <> #12}, {"+", "+", "0"} -> {"+",
           "-" <> #12}, {"-", "-", "0"} -> {"-", 
          "+" <> #12}} &, {"0", ""}, 
     Reverse@Transpose@PadLeft[Characters /@ {#1, #2}] /. {0 -> 
        "0"}]], StartOfString ~~ "0" .. ~~ x__ :> x] &;

btsubtract = btadd[#1, btnegate@#2] &; btmultiply =

 btadd[Switch[StringTake[#2, -1], "0", "0", "+", #1, "-", 
    btnegate@#1], 
   If[StringLength@#2 == 1, 
    "0", #0[#1, StringDrop[#2, -1]] <> "0"]] &;</lang>

Examples: <lang mathematica>frombt[a = "+-0++0+"] b = tobt@-436 frombt[c = "+-++-"] btmultiply[a, btsubtract[b, c]]</lang> Outputs:

523

"-++-0--"

65

"----0+--0++0"

МК-61/52

Translation of: Glagol

<lang>П0 ЗН П2 0 П3 П4 1 П5 ИП0 /-/ x<0 78 ИП0 ^ ^ 3 / [x] П0 3 * - П1 ИП3 x#0 52 ИП1 x=0 36 1 ПП 86 0 П3 БП 08 ИП1 1 - x=0 47 1 /-/ ПП 86 БП 08 0 ПП 86 БП 08 ИП1 x=0 60 0 ПП 86 БП 08 ИП1 1 - x=0 70 1 ПП 86 БП 08 1 /-/ ПП 86 1 П3 БП 08 ИП3 x#0 85 1 ПП 86 ИП4 С/П ИП2 x<0 91 <-> /-/ <-> 8 + ИП5 * ИП4 + П4 ИП5 1 0 * П5 В/О</lang>

Note: the "-", "0", "+" denotes by digits, respectively, the "7", "8", "9".

OCaml

<lang ocaml>type btdigit = Pos | Zero | Neg type btern = btdigit list

let to_string n =

  String.concat ""
     (List.rev_map (function Pos -> "+" | Zero -> "0" | Neg -> "-") n)

let from_string s =

  let sl = ref [] in
  let digit = function '+' -> Pos | '-' -> Neg | '0' -> Zero
    | _ -> failwith "invalid digit" in
   String.iter (fun c -> sl := (digit c) :: !sl) s; !sl

let rec to_int = function

  | [Zero] | [] -> 0
  | Pos :: t -> 1 + 3 * to_int t
  | Neg :: t -> -1 + 3 * to_int t
  | Zero :: t -> 3 * to_int t

let rec from_int n =

  if n = 0 then [] else
  match n mod 3 with
     | 0 -> Zero :: from_int (n/3)
     | 1 | -2 -> Pos :: from_int ((n-1)/3)
     | 2 | -1 -> Neg :: from_int ((n+1)/3)

let rec (+~) n1 n2 = match (n1,n2) with

  | ([], a) | (a,[]) -> a
  | (Pos::t1, Neg::t2) | (Neg::t1, Pos::t2) | (Zero::t1, Zero::t2) ->
     let sum = t1 +~ t2 in if sum = [] then [] else Zero :: sum
  | (Pos::t1, Pos::t2) -> Neg :: t1 +~ t2 +~ [Pos]
  | (Neg::t1, Neg::t2) -> Pos :: t1 +~ t2 +~ [Neg]
  | (Zero::t1, h::t2) | (h::t1, Zero::t2) -> h :: t1 +~ t2

let neg = List.map (function Pos -> Neg | Neg -> Pos | Zero -> Zero) let (-~) a b = a +~ (neg b)

let rec ( *~) n1 = function

  | [] -> []
  | [Pos] -> n1
  | [Neg] -> neg n1
  | Pos::t -> (Zero :: t *~ n1) +~ n1
  | Neg::t -> (Zero :: t *~ n1) -~ n1
  | Zero::t -> Zero :: t *~ n1

let a = from_string "+-0++0+" let b = from_int (-436) let c = from_string "+-++-" let d = a *~ (b -~ c) let _ =

 Printf.printf "a = %d\nb = %d\nc = %d\na * (b - c) = %s = %d\n"
  (to_int a) (to_int b) (to_int c) (to_string d) (to_int d);</lang>

Output:

a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 = -262023

Perl

<lang perl>use strict; use warnings;

my @d = qw( 0 + - ); my @v = qw( 0 1 -1 );

sub to_bt {

 my $n = shift; 
 my $b = ; 
 while( $n ) { 
   my $r = $n%3; 
   $b .= $d[$r]; 
   $n -= $v[$r]; 
   $n /= 3; 
 } 
 return scalar reverse $b; 

}

sub from_bt {

 my $n = 0; 
 for( split //, shift ) { # Horner 
   $n *= 3; 
   $n += "${_}1" if $_; 
 } 
 return $n; 

}

my %addtable = (

               '-0' => [ '-',  ],
               '+0' => [ '+',  ],
               '+-' => [ '0',  ],
               '00' => [ '0',  ],
               '--' => [ '+', '-' ],
               '++' => [ '-', '+' ],
              );

sub add {

 my ($b1, $b2) = @_;
 return ($b1 or $b2 ) unless ($b1 and $b2);
 my $d = $addtable{ join , sort substr( $b1, -1, 1,  ), substr( $b2, -1, 1,  ) };
 return add( add($b1, $d->[1]), $b2 ).$d->[0];

}

sub unary_minus {

 my $b = shift;
 $b =~ tr/-+/+-/;
 return $b;

}

sub subtract {

 my ($b1, $b2) = @_;
 return add( $b1, unary_minus $b2 );

}

sub mult {

 my ($b1, $b2) = @_;
 my $r = '0';
 for( reverse split //, $b2 ){
   $r = add $r, $b1      if $_ eq '+';
   $r = subtract $r, $b1 if $_ eq '-';
   $b1 .= '0';
 }
 $r =~ s/^0+//;
 return $r;

}

my $a = "+-0++0+"; my $b = to_bt( -436 ); my $c = "+-++-"; my $d = mult( $a, subtract( $b, $c ) ); printf " a: %14s %10d\n", $a, from_bt( $a ); printf " b: %14s %10d\n", $b, from_bt( $b ); printf " c: %14s %10d\n", $c, from_bt( $c ); printf "a*(b-c): %14s %10d\n", $d, from_bt( $d ); </lang>

Output:
      a:        +-0++0+        523
      b:        -++-0--       -436
      c:          +-++-         65
a*(b-c):   ----0+--0++0    -262023

Perl 6

Works with: rakudo version 2017.01

<lang perl6>class BT {

   has @.coeff;
   my %co2bt = '-1' => '-', '0' => '0', '1' => '+';
   my %bt2co = %co2bt.invert;
   multi method new (Str $s) {

self.bless(coeff => %bt2co{$s.flip.comb});

   }
   multi method new (Int $i where $i >= 0) {

self.bless(coeff => carry $i.base(3).comb.reverse);

   }
   multi method new (Int $i where $i < 0) {

self.new(-$i).neg;

   }
   method Str () { %co2bt{@!coeff}.join.flip }
   method Int () { [+] @!coeff Z* (1,3,9...*) }
   multi method neg () {

self.new: coeff => carry self.coeff X* -1;

   }

}

sub carry (*@digits is copy) {

   loop (my $i = 0; $i < @digits; $i++) {

while @digits[$i] < -1 { @digits[$i] += 3; @digits[$i+1]--; } while @digits[$i] > 1 { @digits[$i] -= 3; @digits[$i+1]++; }

   }
   pop @digits while @digits and not @digits[*-1];
   @digits;

}

multi prefix:<-> (BT $x) { $x.neg }

multi infix:<+> (BT $x, BT $y) {

   my ($b,$a) = sort +*.coeff, ($x, $y);
   BT.new: coeff => carry ($a.coeff Z+ |$b.coeff, |(0 xx $a.coeff - $b.coeff));

}

multi infix:<-> (BT $x, BT $y) { $x + $y.neg }

multi infix:<*> (BT $x, BT $y) {

   my @x = $x.coeff;
   my @y = $y.coeff;
   my @z = 0 xx @x+@y-1;
   my @safe;
   for @x -> $xd {

@z = @z Z+ |(@y X* $xd), |(0 xx @z-@y); @safe.push: @z.shift;

   }
   BT.new: coeff => carry @safe, @z;

}

my $a = BT.new: "+-0++0+"; my $b = BT.new: -436; my $c = BT.new: "+-++-"; my $x = $a * ( $b - $c );

say 'a == ', $a.Int; say 'b == ', $b.Int; say 'c == ', $c.Int; say "a × (b − c) == ", ~$x, ' == ', $x.Int;</lang>

Output:
a == 523
b == -436
c == 65
a × (b − c) == ----0+--0++0 == -262023

Phix

Using strings to represent balanced ternary. Note that as implemented dec2bt and bt2dec are limited to Phix integers (~+/-1,000,000,000), but it would probably be pretty trivial (albeit quite a bit slower) to replace them with (say) ba2bt and bt2ba which use/yield bigatoms. <lang Phix>function bt2dec(string bt) integer res = 0

   for i=1 to length(bt) do
       res = 3*res+(bt[i]='+')-(bt[i]='-')
   end for
   return res

end function

function negate(string bt)

   for i=1 to length(bt) do
       if bt[i]!='0' then
           bt[i] = '+'+'-'-bt[i]
       end if
   end for
   return bt

end function

function dec2bt(integer n) string res = "0" integer neg, r

   if n!=0 then
       neg = n<0
       if neg then n = -n end if
       res = ""
       while n!=0 do
           r = mod(n,3)
           res = "0+-"[r+1]&res
           n = floor((n+(r=2))/3)
       end while
       if neg then res = negate(res) end if
   end if
   return res

end function

-- res,carry for a+b+carry lookup tables (not the fastest way to do it, I'm sure): constant {tadd,addres} = columnize({{"---","0-"},{"--0","+-"},{"--+","-0"},

                                   {"-0-","+-"},{"-00","-0"},{"-0+","00"},
                                   {"-+-","-0"},{"-+0","00"},{"-++","+0"},
                                   {"0--","+-"},{"0-0","-0"},{"0-+","00"},
                                   {"00-","-0"},{"000","00"},{"00+","+0"},
                                   {"0+-","00"},{"0+0","+0"},{"0++","-+"},
                                   {"+--","-0"},{"+-0","00"},{"+-+","+0"},
                                   {"+0-","00"},{"+00","+0"},{"+0+","-+"},
                                   {"++-","+0"},{"++0","-+"},{"+++","0+"}})


function bt_add(string a, string b) integer pad = length(a)-length(b) integer carry = '0'

   if pad!=0 then
       if pad<0 then
           a = repeat('0',-pad)&a
       else
           b = repeat('0',pad)&b
       end if
   end if
   for i=length(a) to 1 by -1 do
       {a[i],carry} = addres[find(a[i]&b[i]&carry,tadd)]
   end for
   if carry!='0' then
       a = carry&a
   else
       while length(a)>1 and a[1]='0' do
           a = a[2..$]
       end while
   end if
   return a

end function

function bt_mul(string a, string b) string pos = a, neg = negate(a), res = "0" integer ch

   for i=length(b) to 1 by -1 do
       ch = b[i]
       if ch='+' then
           res = bt_add(res,pos)
       elsif ch='-' then
           res = bt_add(res,neg)
       end if
       pos = pos&'0'
       neg = neg&'0'
   end for 
   return res

end function

string a = "+-0++0+", b = dec2bt(-436), c = "+-++-"

?{bt2dec(a),bt2dec(b),bt2dec(c)}

string res = bt_mul(a,bt_add(b,negate(c))) ?{res,bt2dec(res)}</lang>

Output:
{523,-436,65}
{"----0+--0++0",-262023}

Proof of arbitrary large value support is provided by calculating 1000! and 999! and using a naive subtraction loop to effect division. The limit for factorials that can be held in native integers is a mere 12, and for atoms 170, mind you, inaccurate above 22. The timings show it manages a 5000+digit multiplication and subtraction in about 0.2s, which I say is "reasonable", given that I didn't try very hard, as evidenced by that daft addition lookup table! <lang Phix>atom t0 = time() string f999 = dec2bt(1) for i=2 to 999 do

   f999 = bt_mul(f999,dec2bt(i))

end for string f1000 = bt_mul(f999,dec2bt(1000))

printf(1,"In balanced ternary, f999 has %d digits and f1000 has %d digits\n",{length(f999),length(f1000)})

integer count = 0 f999 = negate(f999) while f1000!="0" do

   f1000 = bt_add(f1000,f999)
   count += 1

end while printf(1,"It took %d subtractions to reach 0. (%3.2fs)\n",{count,time()-t0})</lang>

Output:
In balanced ternary, f999 has 5376 digits and f1000 has 5383 digits
It took 1000 subtractions to reach 0. (9.30s)

PicoLisp

<lang PicoLisp>(seed (in "/dev/urandom" (rd 8)))

(setq *G '((0 -1) (1 -1) (-1 0) (0 0) (1 0) (-1 1) (0 1)))

  1. For humans

(de negh (L)

  (mapcar
     '((I)
        (case I
           (- '+)
           (+ '-)
           (T 0) ) )
     L ) )

(de trih (X)

  (if (num? X)
     (let (S (lt0 X)  X (abs X)  R NIL)
        (if (=0 X)
           (push 'R 0)
           (until (=0 X)
              (push 'R
                 (case (% X 3)
                    (0 0)
                    (1 '+)
                    (2 (inc 'X) '-) ) )
              (setq X (/ X 3)) ) )
        (if S (pack (negh R)) (pack R)) )
     (let M 1
        (sum
           '((C)
              (prog1
                 (unless (= C "0") ((intern C) M))
                 (setq M (* 3 M)) ) )
           (flip (chop X)) ) ) ) )
              
  1. For robots

(de neg (L)

  (mapcar
     '((I)
        (case I (-1 1) (1 -1) (T 0)) )
     L ) )

(de tri (X)

  (if (num? X)
     (let (S (lt0 X)  X (abs X)  R NIL)
        (if (=0 X)
           (push 'R 0)
           (until (=0 X)
              (push 'R
                 (case (% X 3)
                    (0 0)
                    (1 1)
                    (2 (inc 'X) (- 1)) ) )
              (setq X (/ X 3)) ) )
        (flip (if S (neg R) R)) )
     (let M 1
        (sum
           '((C)
              (prog1 (* C M) (setq M (* 3 M))) )
           X ) ) ) )

(de add (D1 D2)

  (let
     (L (max (length D1) (length D2))
        D1 (need (- L) D1 0)
        D2 (need (- L) D2 0)
        C 0 )
     (mapcon
        '((L1 L2)
           (let R
              (get
                 *G 
                 (+ 4 (+ (car L1) (car L2) C)) )
              (ifn (cdr L1) 
                 R
                 (setq C (cadr R))
                 (cons (car R)) ) ) )
        D1
        D2 ) ) )

(de mul (D1 D2)

  (ifn (and D1 D2)
     0
     (add 
        (case (car D1)
           (0 0)
           (1 D2)
           (-1 (neg D2)) )
        (cons 0 (mul (cdr D1) D2) ) ) ) )

(de sub (D1 D2)

  (add D1 (neg D2)) )
  1. Random testing

(let (X 0 Y 0 C 2048)

  (do C
     (setq 
        X (rand (- C) C)
        Y (rand (- C) C) )
     (test X (trih (trih X)))
     (test X (tri (tri X)))
     (test
        (+ X Y)
        (tri (add (tri X) (tri Y))) ) 
     (test
        (- X Y)
        (tri (sub (tri X) (tri Y))) )
     (test
        (* X Y)
        (tri (mul (tri X) (tri Y))) ) ) )

(println 'A (trih 523) (trih "+-0++0+")) (println 'B (trih -436) (trih "-++-0--")) (println 'C (trih 65) (trih "+-++-")) (let R

  (tri
     (mul 
        (tri (trih "+-0++0+"))
        (sub (tri -436) (tri (trih "+-++-"))) ) )
  (println 'R (trih R) R) )

(bye)</lang>

Prolog

Works with SWI-Prolog and library clpfd written by Markus Triska.
Three modules, one for the conversion, one for the addition and one for the multiplication.

The conversion.
Library clpfd is used so that bt_convert works in both ways Decimal => Ternary and Ternary ==> Decimal. <lang Prolog>:- module('bt_convert.pl', [bt_convert/2, op(950, xfx, btconv), btconv/2]).

- use_module(library(clpfd)).
- op(950, xfx, btconv).

X btconv Y :- bt_convert(X, Y).

% bt_convert(?X, ?L) bt_convert(X, L) :- ( (nonvar(L), \+is_list(L)) ->string_to_list(L, L1); L1 = L), convert(X, L1), ( var(L) -> string_to_list(L, L1); true).

% map numbers toward digits +, - 0 plus_moins( 1, 43). plus_moins(-1, 45). plus_moins( 0, 48).


convert(X, [48| L]) :- var(X), ( L \= [] -> convert(X, L); X = 0, !).

convert(0, L) :- var(L), !, string_to_list(L, [48]).

convert(X, L) :- ( (nonvar(X), X > 0) ; (var(X), X #> 0, L = [43|_], maplist(plus_moins, L1, L))), !, convert(X, 0, [], L1), ( nonvar(X) -> maplist(plus_moins, L1, LL), string_to_list(L, LL) ; true).

convert(X, L) :- ( nonvar(X) -> Y is -X ; X #< 0, maplist(plus_moins, L2, L), maplist(mult(-1), L2, L1)), convert(Y, 0, [], L1), ( nonvar(X) -> maplist(mult(-1), L1, L2), maplist(plus_moins, L2, LL),

           string_to_list(L, LL)

; X #= -Y).

mult(X, Y, Z) :- Z #= X * Y.


convert(0, 0, L, L) :-  !.

convert(0, 1, L, [1 | L]) :- !.


convert(N, C, LC, LF) :- R #= N mod 3 + C, R #> 1 #<==> C1, N1 #= N / 3, R1 #= R - 3 * C1, % C1 #= 1, convert(N1, C1, [R1 | LC], LF). </lang>
The addition.
The same predicate is used for addition and substraction. <lang Prolog>:- module('bt_add.pl', [bt_add/3, bt_add1/3, op(900, xfx, btplus), op(900, xfx, btmoins), btplus/2, btmoins/2, strip_nombre/3 ]).

- op(900, xfx, btplus).
- op(900, xfx, btmoins).

% define operator btplus A is X btplus Y :- bt_add(X, Y, A).

% define operator btmoins % no need to define a predicate for the substraction A is X btmoins Y :-

      X is Y btplus A.


% bt_add(?X, ?Y, ?R) % R is X + Y % X, Y, R are strings % At least 2 args must be instantiated bt_add(X, Y, R) :- ( nonvar(X) -> string_to_list(X, X1); true), ( nonvar(Y) -> string_to_list(Y, Y1); true), ( nonvar(R) -> string_to_list(R, R1); true), bt_add1(X1, Y1, R1), ( var(X) -> string_to_list(X, X1); true), ( var(Y) -> string_to_list(Y, Y1); true), ( var(R) -> string_to_list(R, R1); true).


% bt_add1(?X, ?Y, ?R) % R is X + Y % X, Y, R are lists bt_add1(X, Y, R) :- % initialisation : X and Y must have the same length % we add zeros at the beginning of the shortest list ( nonvar(X) -> length(X, LX); length(R, LR)), ( nonvar(Y) -> length(Y, LY); length(R, LR)), ( var(X) -> LX is max(LY, LR) , length(X1, LX), Y1 = Y ; X1 = X), ( var(Y) -> LY is max(LX, LR) , length(Y1, LY), X1 = X ; Y1 = Y),

Delta is abs(LX - LY), ( LX < LY -> normalise(Delta, X1, X2), Y1 = Y2 ; LY < LX -> normalise(Delta, Y1, Y2), X1 = X2 ; X1 = X2, Y1 = Y2),


% if R is instancied, it must have, at least, the same length than X or Y Max is max(LX, LY), ( (nonvar(R), length(R, LR), LR < Max) -> Delta1 is Max - LR, normalise(Delta1, R, R2) ; nonvar(R) -> R = R2 ; true),

bt_add(X2, Y2, C, R2),

( C = 48 -> strip_nombre(R2, R, []), ( var(X) -> strip_nombre(X2, X, []) ; true), ( var(Y) -> strip_nombre(Y2, Y, []) ; true) ; var(R) -> strip_nombre([C|R2], R, []) ; ( select(C, [45,43], [Ca]), ( var(X) -> strip_nombre([Ca | X2], X, [])  ; strip_nombre([Ca | Y2], Y, [])))).


% here we actually compute the sum bt_add([], [], 48, []).

bt_add([H1|T1], [H2|T2], C3, [R2 | L]) :- bt_add(T1, T2, C, L), % add HH1 and H2 ternary_sum(H1, H2, R1, C1), % add first carry, ternary_sum(R1, C, R2, C2), % add second carry ternary_sum(C1, C2, C3, _).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ternary_sum % @arg1 : V1 % @arg2 : V2 % @arg3 : R is V1 + V2 % @arg4 : Carry ternary_sum(43, 43, 45, 43).

ternary_sum(43, 45, 48, 48).

ternary_sum(45, 43, 48, 48).

ternary_sum(45, 45, 43, 45).

ternary_sum(X, 48, X, 48).

ternary_sum(48, X, X, 48).


% if L has a length smaller than N, complete L with 0 (code 48) normalise(0, L, L) :- !. normalise(N, L1, L) :- N1 is N - 1, normalise(N1, [48 | L1], L).


% contrary of normalise % remove leading zeros. % special case of number 0 ! strip_nombre([48]) --> {!}, "0".

% enlève les zéros inutiles strip_nombre([48 | L]) --> strip_nombre(L).


strip_nombre(L) --> L. </lang> The multiplication.
We give a predicate euclide(?A, +B, ?Q, ?R) which computes both the multiplication and the division, but it is very inefficient.
The predicates multiplication(+B, +Q, -A) and division(+A, +B, -Q, -R) are much more efficient. <lang Prolog>:- module('bt_mult.pl', [op(850, xfx, btmult), btmult/2, multiplication/3 ]).

- use_module('bt_add.pl').
- op(850, xfx, btmult).

A is B btmult C :- multiplication(B, C, A).

neg(A, B) :- maplist(opp, A, B).

opp(48, 48). opp(45, 43). opp(43, 45).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the multiplication (efficient) % multiplication(+BIn, +QIn, -AOut) % Aout is BIn * QIn % BIn, QIn, AOut are strings multiplication(BIn, QIn, AOut) :- string_to_list(BIn, B), string_to_list(QIn, Q),

% We work with positive numbers ( B = [45 | _] -> Pos0 = false, neg(B,BP) ; BP = B, Pos0 = true), ( Q = [45 | _] -> neg(Q, QP), select(Pos0, [true, false], [Pos1]); QP = Q, Pos1 = Pos0),

multiplication_(BP, QP, [48], A), ( Pos1 = false -> neg(A, A1); A1 = A), string_to_list(AOut, A1).


multiplication_(_B, [], A, A).

multiplication_(B, [H | T], A, AF) :- multiplication_1(B, H, B1), append(A, [48], A1), bt_add1(B1, A1, A2), multiplication_(B, T, A2, AF).

% by 1 (digit '+' code 43) multiplication_1(B, 43, B).

% by 0 (digit '0' code 48) multiplication_1(_, 48, [48]).

% by -1 (digit '-' code 45) multiplication_1(B, 45, B1) :- neg(B, B1).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the division (efficient) % division(+AIn, +BIn, -QOut, -ROut) % division(AIn, BIn, QOut, ROut) :- string_to_list(AIn, A), string_to_list(BIn, B), length(B, LB), length(A, LA), Len is LA - LB, ( Len < 0 -> Q = [48], R = A ; neg(B, NegB), division_(A, B, NegB, LB, Len, [], Q, R)), string_to_list(QOut, Q), string_to_list(ROut, R).


division_(A, B, NegB, LenB, LenA, QC, QF, R) :- % if the remainder R is negative (last number A), we must decrease the quotient Q, annd add B to R ( LenA = -1 -> (A = [45 | _] -> positive(A, B, QC, QF, R) ; QF = QC, A = R) ; extract(LenA, _, A, AR, AF), length(AR, LR),

( LR >= LenB -> ( AR = [43 | _] -> bt_add1(AR, NegB, S), Q0 = [43], % special case : R has the same length than B % and his first digit is + (1) % we must do another one substraction ( (length(S, LenB), S = [43|_]) -> bt_add1(S, NegB, S1), bt_add1(QC, [43], QC1), Q00 = [45] ; S1 = S, QC1 = QC, Q00 = Q0)


 ; bt_add1(AR, B, S1), Q00 = [45], QC1 = QC), append(QC1, Q00, Q1), append(S1, AF, A1), strip_nombre(A1, A2, []), LenA1 is LenA - 1, division_(A2, B, NegB, LenB, LenA1, Q1, QF, R)

 ; append(QC, [48], Q1), LenA1 is LenA - 1, division_(A, B, NegB, LenB, LenA1, Q1, QF, R))).

% extract(+Len, ?N1, +L, -Head, -Tail) % remove last N digits from the list L % put them in Tail. extract(Len, Len, [], [], []).

extract(Len, N1, [H|T], AR1, AF1) :- extract(Len, N, T, AR, AF), N1 is N-1, ( N > 0 -> AR = AR1, AF1 = [H | AF]; AR1 = [H | AR], AF1 = AF).


positive(R, _, Q, Q, R) :- R = [43 | _].

positive(S, B, Q, QF, R ) :- bt_add1(S, B, S1), bt_add1(Q, [45], Q1), positive(S1, B, Q1, QF, R).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % "euclidian" division (inefficient) % euclide(?A, +BIn, ?Q, ?R) % A = B * Q + R euclide(A, B, Q, R) :- mult(A, B, Q, R).


mult(AIn, BIn, QIn, RIn) :- ( nonvar(AIn) -> string_to_list(AIn, A); A = AIn), ( nonvar(BIn) -> string_to_list(BIn, B); B = BIn), ( nonvar(QIn) -> string_to_list(QIn, Q); Q = QIn), ( nonvar(RIn) -> string_to_list(RIn, R); R = RIn),

% we use positive numbers ( B = [45 | _] -> Pos0 = false, neg(B,BP) ; BP = B, Pos0 = true), ( (nonvar(Q), Q = [45 | _]) -> neg(Q, QP), select(Pos0, [true, false], [Pos1]) ; nonvar(Q) -> Q = QP , Pos1 = Pos0 ; Pos1 = Pos0), ( (nonvar(A), A = [45 | _]) -> neg(A, AP) ; nonvar(A) -> AP = A ; true),

% is R instancied ? ( nonvar(R) -> R1 = R; true), % multiplication ? we add B to A and substract 1 (digit '-') to Q ( nonvar(Q) -> BC = BP, Ajout = [45], ( nonvar(R) -> bt_add1(BC, R, AP) ; AP = BC) % division ? we substract B to A and add 1 (digit '+') to Q ; neg(BP, BC), Ajout = [43], QP = [48]),

% do the real job mult_(BC, QP, AP, R1, Resultat, Ajout),

( var(QIn) -> (Pos1 = false -> neg(Resultat, QT); Resultat = QT), string_to_list(QIn, QT) ; true), ( var(AIn) -> (Pos1 = false -> neg(Resultat, AT); Resultat = AT), string_to_list(AIn, AT) ; true), ( var(RIn) -> string_to_list(RIn, R1); true).

% @arg1 : divisor % @arg2 : quotient % @arg3 : dividend % @arg4 : remainder % @arg5 : Result : receive either the dividend A % either the quotient Q mult_(B, Q, A, R, Resultat, Ajout) :- bt_add1(Q, Ajout, Q1), bt_add1(A, B, A1), ( Q1 = [48] -> Resultat = A % a multiplication ; ( A1 = [45 | _], Ajout = [43]) -> Resultat = Q, R = A  % a division ; mult_(B, Q1, A1, R, Resultat, Ajout)) .

</lang> Example of output :

 ?- A btconv "+-0++0+".
A = 523.

 ?- -436 btconv B.
B = "-++-0--".

 ?- C btconv "+-++-".
C = 65.

 ?- X is "-++-0--" btmoins "+-++-", Y is "+-0++0+" btmult X, Z btconv Y.
X = "-+0-++0",
Y = "----0+--0++0",
Z = -262023 .

Python

Translation of: CommonLisp

<lang python>class BalancedTernary:

   # Represented as a list of 0, 1 or -1s, with least significant digit first.
   str2dig = {'+': 1, '-': -1, '0': 0} # immutable
   dig2str = {1: '+', -1: '-', 0: '0'} # immutable
   table = ((0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1)) # immutable
   def __init__(self, inp):
       if isinstance(inp, str):
           self.digits = [BalancedTernary.str2dig[c] for c in reversed(inp)]
       elif isinstance(inp, int):
           self.digits = self._int2ternary(inp)
       elif isinstance(inp, BalancedTernary):
           self.digits = list(inp.digits)
       elif isinstance(inp, list):
           if all(d in (0, 1, -1) for d in inp):
               self.digits = list(inp)
           else:
               raise ValueError("BalancedTernary: Wrong input digits.")
       else:
           raise TypeError("BalancedTernary: Wrong constructor input.")
   @staticmethod
   def _int2ternary(n):
       if n == 0: return []
       if (n % 3) == 0: return [0] + BalancedTernary._int2ternary(n // 3)
       if (n % 3) == 1: return [1] + BalancedTernary._int2ternary(n // 3)
       if (n % 3) == 2: return [-1] + BalancedTernary._int2ternary((n + 1) // 3)
   def to_int(self):
       return reduce(lambda y,x: x + 3 * y, reversed(self.digits), 0)
   def __repr__(self):
       if not self.digits: return "0"
       return "".join(BalancedTernary.dig2str[d] for d in reversed(self.digits))
   @staticmethod
   def _neg(digs):
       return [-d for d in digs]
   def __neg__(self):
       return BalancedTernary(BalancedTernary._neg(self.digits))
   @staticmethod
   def _add(a, b, c=0):
       if not (a and b):
           if c == 0:
               return a or b
           else:
               return BalancedTernary._add([c], a or b)
       else:
           (d, c) = BalancedTernary.table[3 + (a[0] if a else 0) + (b[0] if b else 0) + c]
           res = BalancedTernary._add(a[1:], b[1:], c)
           # trim leading zeros
           if res or d != 0:
               return [d] + res
           else:
               return res
   def __add__(self, b):
       return BalancedTernary(BalancedTernary._add(self.digits, b.digits))
   def __sub__(self, b):
       return self + (-b)
   @staticmethod
   def _mul(a, b):
       if not (a and b):
           return []
       else:
           if   a[0] == -1: x = BalancedTernary._neg(b)
           elif a[0] ==  0: x = []
           elif a[0] ==  1: x = b
           else: assert False
           y = [0] + BalancedTernary._mul(a[1:], b)
           return BalancedTernary._add(x, y)
   def __mul__(self, b):
       return BalancedTernary(BalancedTernary._mul(self.digits, b.digits))


def main():

   a = BalancedTernary("+-0++0+")
   print "a:", a.to_int(), a
   b = BalancedTernary(-436)
   print "b:", b.to_int(), b
   c = BalancedTernary("+-++-")
   print "c:", c.to_int(), c
   r = a * (b - c)
   print "a * (b - c):", r.to_int(), r

main()</lang>

Output:
a: 523 +-0++0+
b: -436 -++-0--
c: 65 +-++-
a * (b - c): -262023 ----0+--0++0

Racket

<lang racket>#lang racket

Represent a balanced-ternary number as a list of 0's, 1's and -1's.
e.g. 11 = 3^2 + 3^1 - 3^0 ~ "++-" ~ '(-1 1 1)
6 = 3^2 - 3^1 ~ "+-0" ~ '(0 -1 1)
Note
the list-rep starts with the least signifcant tert, while
the string-rep starts with the most significsnt tert.

(define (bt->integer t)

 (if (null? t) 
     0
     (+ (first t) (* 3 (bt->integer (rest t))))))

(define (integer->bt n)

 (letrec ([recur (λ (b r) (cons b (convert (floor (/ r 3)))))]
          [convert (λ (n) (if (zero? n) null
                              (case (modulo n 3)
                                [(0) (recur 0 n)]
                                [(1) (recur 1 n)]
                                [(2) (recur -1 (add1 n))])))])
   (convert n)))

(define (bt->string t)

 (define (strip-leading-zeroes a)
   (if (or (null? a) (not (= (first a) 0))) a (strip-leading-zeroes (rest a))))
 (string-join (map (λ (u) 
                     (case u 
                       [(1) "+"] 
                       [(-1) "-"] 
                       [(0) "0"])) 
                   (strip-leading-zeroes (reverse t))) ""))

(define (string->bt s)

 (reverse
  (map (λ (c) 
         (case c 
           [(#\+) 1] 
           [(#\-) -1] 
           [(#\0) 0])) 
       (string->list s))))

(define (bt-negate t)

 (map (λ (u) (- u)) t))

(define (bt-add a b [c 0])

 (cond [(and (null? a) (null? b)) (if (zero? c) null (list c))]
       [(null? b) (if (zero? c) a (bt-add a (list c)))]
       [(null? a) (bt-add b a c)]
       [else (let* ([t (+ (first a) (first b) c)]
                    [carry (if (> (abs t) 1) (sgn t) 0)]
                    [v (case (abs t)
                         [(3) 0]
                         [(2) (- (sgn t))]
                         [else t])])
               (cons v (bt-add (rest a) (rest b) carry)))]))

(define (bt-multiply a b)

 (cond [(null? a) null]
       [(null? b) null]
       [else (bt-add (case (first a)
                       [(-1) (bt-negate b)]
                       [(0) null]
                       [(1) b])
                     (cons 0 (bt-multiply (rest a) b)))]))

test case

(let* ([a (string->bt "+-0++0+")]

      [b (integer->bt -436)]
      [c (string->bt "+-++-")]
      [d (bt-multiply a (bt-add b (bt-negate c)))])
 (for ([bt (list a b c d)]
       [description (list 'a 'b 'c "a×(b−c)")])
   (printf "~a = ~a or ~a\n" description (bt->integer bt) (bt->string bt))))

</lang>

Output:
a = 523 or +-0++0+
b = -436 or -++-0--
c = 65 or +-++-
a×(b−c) = -262023 or ----0+--0++0

REXX

The REXX program could be optimized by using   (procedure) with   expose   and having the   $.   and   @.   variables set only once. <lang rexx>/*REXX pgm converts decimal ◄───► balanced ternary; also performs arithmetic.*/ numeric digits 10000 /*be able to handle gihugic numbers. */ Ao = '+-0++0+'  ; Abt = Ao /* [↓] 2 literals used by subroutine*/ Bo = '-436'  ; Bbt = d2bt(Bo)  ; @ = '(decimal)' Co = '+-++-'  ; Cbt = Co  ; @@ = 'balanced ternary ='

               call btShow  '[a]',        Abt
               call btShow  '[b]',        Bbt
               call btShow  '[c]',        Cbt
               say;                       $bt = btMul(Abt,btSub(Bbt,Cbt))
               call btShow '[a*(b-c)]',   $bt

exit /*stick a fork in it, we're all done. */ /*────────────────────────────────────────────────────────────────────────────*/ d2bt: procedure; parse arg x 1; p=0; $.='-'; $.1='+'; $.0=0; #=

     x=x/1
                  do  until x==0;       _=(x//(3**(p+1)))%3**p
                  if _==  2  then _= -1
                  if _== -2  then _=  1
                                        x=x-_*(3**p);   p=p+1;     #=$._ || #
                  end   /*until ···*/
     return #

/*────────────────────────────────────────────────────────────────────────────*/ bt2d: procedure; parse arg x; r=reverse(x); #=0; $.=-1; $.0=0; _='+'; $._=1

                  do j=1  for length(x); _=substr(r,j,1); #=#+$._*3**(j-1); end
     return #

/*────────────────────────────────────────────────────────────────────────────*/ btAdd: procedure; parse arg x,y; rx=reverse(x); ry=reverse(y); carry=0

      @.=0  ;   _='-';    @._=-1;   _="+";    @._=1
      $.='-';   $.0=0;    $.1='+'
      #=;                          do j=1  for max(length(x),length(y))
                                   x_=substr(rx,j,1);            xn=@.x_
                                   y_=substr(ry,j,1);            yn=@.y_
                                   s=xn+yn+carry    ;         carry= 0
                                   if s== 2  then do;  s=-1;  carry= 1;   end
                                   if s== 3  then do;  s= 0;  carry= 1;   end
                                   if s==-2  then do;  s= 1;  carry=-1;   end
                                   #=$.s || #
                                   end   /*j*/
      if carry\==0  then #=$.carry||#;                  return btNorm(#)

/*────────────────────────────────────────────────────────────────────────────*/ btMul: procedure; parse arg x 1 x1 2, y 1 y1 2; if x==0 | y==0 then return 0 S=1; x=btNorm(x); y=btNorm(y) /*handle: 0-xxx values.*/ if x1=='-' then do; x=btNeg(x); S=-S; end /*positate.*/ if y1=='-' then do; y=btNeg(y); S=-S; end /* " */ if length(y)>length(x) then parse value x y with y x /*optimize.*/ P=0

                                   do   until  y==0   /*keep adding 'til done*/
                                   P=btAdd(P,x)       /*multiple the hard way*/
                                   y=btSub(y,'+')     /*subtract  1  from  Y.*/
                                   end   /*until*/

if S==-1 then P=btNeg(P) /*adjust product sign. */ return P /*return the product P.*/ /*────────────────────────────────────────────────────────────────────────────*/ btNeg: return translate(arg(1), '-+', "+-") /*negate the bal_tern #*/ btNorm: _=strip(arg(1),'L',0); if _== then _=0; return _ /*normalize a #*/ btSub: return btAdd(arg(1), btNeg(arg(2))) /*subtract two BT args.*/ btShow: say center(arg(1),9) right(arg(2),20) @@ right(bt2d(arg(2)),9) @; return</lang> output   when using the default inputs:

   [a]                 +-0++0+ balanced ternary =       523 (decimal)
   [b]                 -++-0-- balanced ternary =      -436 (decimal)
   [c]                   +-++- balanced ternary =        65 (decimal)

[a*(b-c)]         ----0+--0++0 balanced ternary =   -262023 (decimal)

Ruby

<lang ruby>class BalancedTernary

 include Comparable
 def initialize(str = "")
   if str =~ /[^-+0]+/
     raise ArgumentError, "invalid BalancedTernary number: #{str}"
   end
   @digits = trim0(str)
 end
  
 I2BT = {0 => ["0",0], 1 => ["+",0], 2 => ["-",1]}
 def self.from_int(value)
   n = value.to_i
   digits = ""
   while n != 0
     quo, rem = n.divmod(3)
     bt, carry = I2BT[rem]
     digits = bt + digits
     n = quo + carry
   end
   new(digits)
 end
 
 BT2I = {"-" => -1, "0" => 0, "+" => 1}
 def to_int
   @digits.chars.inject(0) do |sum, char|
     sum = 3 * sum + BT2I[char]
   end
 end
 alias :to_i :to_int
 
 def to_s
   @digits.dup                 # String is mutable
 end
 alias :inspect :to_s
 
 def <=>(other)
   to_i <=> other.to_i
 end
 
 ADDITION_TABLE = {
   "---" => ["-","0"], "--0" => ["-","+"], "--+" => ["0","-"],
   "-0-" => ["-","+"], "-00" => ["0","-"], "-0+" => ["0","0"],
   "-+-" => ["0","-"], "-+0" => ["0","0"], "-++" => ["0","+"],
   "0--" => ["-","+"], "0-0" => ["0","-"], "0-+" => ["0","0"],
   "00-" => ["0","-"], "000" => ["0","0"], "00+" => ["0","+"],
   "0+-" => ["0","0"], "0+0" => ["0","+"], "0++" => ["+","-"],
   "+--" => ["0","-"], "+-0" => ["0","0"], "+-+" => ["0","+"],
   "+0-" => ["0","0"], "+00" => ["0","+"], "+0+" => ["+","-"],
   "++-" => ["0","+"], "++0" => ["+","-"], "+++" => ["+","0"],
 }
 
 def +(other)
   maxl = [to_s.length, other.to_s.length].max
   a = pad0_reverse(to_s, maxl)
   b = pad0_reverse(other.to_s, maxl)
   carry = "0"
   sum = a.zip( b ).inject("") do |sum, (c1, c2)|
     carry, digit = ADDITION_TABLE[carry + c1 + c2]
     sum = digit + sum
   end
   self.class.new(carry + sum)
 end
 
 MULTIPLICATION_TABLE = {
   "-" => "+0-",
   "0" => "000",
   "+" => "-0+",
 }
 
 def *(other)
   product = self.class.new
   other.to_s.each_char do |bdigit|
     row = to_s.tr("-0+", MULTIPLICATION_TABLE[bdigit])
     product += self.class.new(row)
     product << 1
   end
   product >> 1
 end
 
 # negation
 def -@()
   self.class.new(@digits.tr('-+','+-'))
 end

 # subtraction
 def -(other)
   self + (-other)
 end
 
 # shift left
 def <<(count)
   @digits = trim0(@digits + "0"*count)
   self
 end
 
 # shift right
 def >>(count)
   @digits[-count..-1] = "" if count > 0
   @digits = trim0(@digits)
   self
 end
 
 private
 
 def trim0(str)
   str = str.sub(/^0+/, "")
   str = "0" if str.empty?
   str
 end
 
 def pad0_reverse(str, len)
   str.rjust(len, "0").reverse.chars
 end

end

a = BalancedTernary.new("+-0++0+") b = BalancedTernary.from_int(-436) c = BalancedTernary.new("+-++-")

%w[a b c a*(b-c)].each do |exp|

 val = eval(exp)
 puts "%8s :%13s,%8d" % [exp, val, val.to_i]

end</lang>

Output:
       a :      +-0++0+,     523
       b :      -++-0--,    -436
       c :        +-++-,      65
 a*(b-c) : ----0+--0++0, -262023

Scala

This implementation represents ternaries as a reversed list of bits. Also, there are plenty of implicit convertors <lang scala> object TernaryBit {

   val P = TernaryBit(+1)
   val M = TernaryBit(-1)
   val Z = TernaryBit( 0)
   
 implicit def asChar(t: TernaryBit): Char = t.charValue 
 implicit def valueOf(c: Char): TernaryBit = {
   c match {
     case '0' => 0
     case '+' => 1
     case '-' => -1
     case nc => throw new IllegalArgumentException("Illegal ternary symbol " + nc)
   }
 }
 implicit def asInt(t: TernaryBit): Int = t.intValue
 implicit def valueOf(i: Int): TernaryBit = TernaryBit(i)

}

case class TernaryBit(val intValue: Int) {

   def inverse: TernaryBit = TernaryBit(-intValue)
   
   def charValue = intValue match {
     case  0 => '0'
     case  1 => '+'
     case -1 => '-'
   }

}

class Ternary(val bits: List[TernaryBit]) {

 def + (b: Ternary) = {
   val sumBits: List[Int] = bits.map(_.intValue).zipAll(b.bits.map(_.intValue), 0, 0).map(p => p._1 + p._2)
   
   // normalize
   val iv: Tuple2[List[Int], Int] = (List(), 0)
   val (revBits, carry) = sumBits.foldLeft(iv)((accu: Tuple2[List[Int], Int], e: Int) => {
     val s = e + accu._2
     (((s + 1 + 3 * 100) % 3 - 1) :: accu._1 , (s + 1 + 3 * 100) / 3 - 100)
   })
   
   new Ternary(( TernaryBit(carry) :: revBits.map(TernaryBit(_))).reverse )
 }
 
 def - (b: Ternary) = {this + (-b)}
 def <<<(a: Int): Ternary = { List.fill(a)(TernaryBit.Z) ++ bits}
 def >>>(a: Int): Ternary = { bits.drop(a) }
 def unary_- = { bits.map(_.inverse) }
 def ** (b: TernaryBit): Ternary = { 
   b match {
     case TernaryBit.P => this
     case TernaryBit.M => - this
     case TernaryBit.Z => 0
   }
 }
 
 def * (mul: Ternary): Ternary = {
   // might be done more efficiently - perform normalize only once
   mul.bits.reverse.foldLeft(new Ternary(Nil))((a: Ternary, b: TernaryBit) => (a <<< 1) + (this ** b))
 }
 
 def intValue = bits.foldRight(0)((c, a) => a*3 + c.intValue)
 
 override def toString = new String(bits.reverse.map(_.charValue).toArray) 

}

object Ternary {

 implicit def asString(t: Ternary): String = t.toString()
 implicit def valueOf(s: String): Ternary = new Ternary(s.toList.reverse.map(TernaryBit.valueOf(_)))
 
 implicit def asBits(t: Ternary): List[TernaryBit] = t.bits
 implicit def valueOf(l: List[TernaryBit]): Ternary = new Ternary(l)
 
 implicit def asInt(t: Ternary): BigInt = t.intValue
 // XXX not tail recursive
 implicit def valueOf(i: BigInt): Ternary = {
   if (i < 0) -valueOf(-i)
   else if (i == 0) new Ternary(List())
   else if (i % 3 == 0) TernaryBit.Z :: valueOf(i / 3)
   else if (i % 3 == 1) TernaryBit.P :: valueOf(i / 3)
   else /*(i % 3 == 2)*/ TernaryBit.M :: valueOf((i + 1)  / 3)
 }
 implicit def intToTernary(i: Int): Ternary = valueOf(i)

} </scala>

Then these classes can be used in the following way: <lang scala> object Main {

 def main(args: Array[String]): Unit = {
   val a: Ternary = "+-0++0+"
   val b: Ternary = -436
   val c: Ternary = "+-++-"
   println(a.toString + " " + a.intValue)
   println(b.toString + " " + b.intValue)
   println(c.toString + " " + c.intValue)
   val res = a * (b - c)
   println(res.toString + " " + res.intValue)
 }

} </lang>

Output:
+-0++0+ 523
-++-0-- -436
+-++- 65
00000000----0+--0++0 -262023

Besides, we can easily check, that the code works for any input. This can be achieved with ScalaCheck: <lang scala> object TernarySpecification extends Properties("Ternary") {

 property("sum") = forAll { (a: Int, b: Int) =>
   val at: Ternary = a
   val bt: Ternary = b
   (at+bt).intValue == (at.intValue + bt.intValue)
 }
 
 property("multiply") = forAll { (a: Int, b: Int) =>
   val at: Ternary = a
   val bt: Ternary = b
   (at*bt).intValue == (at.intValue * bt.intValue)
 }

} </lang>

Output:
+ Ternary.sum: OK, passed 100 tests.

+ Ternary.multiply: OK, passed 100 tests.

Tcl

This directly uses the printable representation of the balanced ternary numbers, as Tcl's string operations are reasonably efficient. <lang tcl>package require Tcl 8.5

proc bt-int b {

   set n 0
   foreach c [split $b ""] {

set n [expr {$n * 3}] switch -- $c { + { incr n 1 } - { incr n -1 } }

   }
   return $n

} proc int-bt n {

   if {$n == 0} {

return "0"

   }
   while {$n != 0} {

lappend result [lindex {0 + -} [expr {$n % 3}]] set n [expr {$n / 3 + ($n%3 == 2)}]

   }
   return [join [lreverse $result] ""]

}

proc bt-neg b {

   string map {+ - - +} $b

} proc bt-sub {a b} {

   bt-add $a [bt-neg $b]

} proc bt-add-digits {a b c} {

   if {$a eq ""} {set a 0}
   if {$b eq ""} {set b 0}
   if {$a ne 0} {append a 1}
   if {$b ne 0} {append b 1}
   lindex {{0 -1} {+ -1} {- 0} {0 0} {+ 0} {- 1} {0 1}} [expr {$a+$b+$c+3}]

} proc bt-add {a b} {

   set c 0
   set result {}
   foreach ca [lreverse [split $a ""]] cb [lreverse [split $b ""]] {

lassign [bt-add-digits $ca $cb $c] d c lappend result $d

   }
   if {$c ne "0"} {lappend result [lindex {0 + -} $c]}
   if {![llength $result]} {return "0"}
   string trimleft [join [lreverse $result] ""] 0

} proc bt-mul {a b} {

   if {$a eq "0" || $a eq "" || $b eq "0"} {return "0"}
   set sub [bt-mul [string range $a 0 end-1] $b]0
   switch -- [string index $a end] {

0 { return $sub } + { return [bt-add $sub $b] } - { return [bt-sub $sub $b] }

   }

}</lang> Demonstration code: <lang tcl>for {set i 0} {$i<=10} {incr i} {puts "$i = [int-bt $i]"} puts "'+-+'+'+--' = [bt-add +-+ +--] = [bt-int [bt-add +-+ +--]]" puts "'++'*'++' = [bt-mul ++ ++] = [bt-int [bt-mul ++ ++]]"

set a "+-0++0+" set b [int-bt -436] set c "+-++-" puts "a = [bt-int $a], b = [bt-int $b], c = [bt-int $c]" set abc [bt-mul $a [bt-sub $b $c]] puts "a*(b-c) = $abc (== [bt-int $abc])"</lang> Output:

0 = 0
1 = +
2 = +-
3 = +0
4 = ++
5 = +--
6 = +-0
7 = +-+
8 = +0-
9 = +00
10 = +0+
'+-+'+'+--' = ++0 = 12
'++'*'++' = +--+ = 16
a = 523, b = -436, c = 65
a*(b-c) = ----0+--0++0 (== -262023)