Average loop length

Revision as of 23:27, 25 February 2013 by rosettacode>Gerard Schildberger (→‎{{header|REXX}}: added the REXX language. -- ~~~~)

Let f be a uniformly-randomly chosen mapping from the numbers 1..N to the numbers 1..N (note: not necessarily a permutation of 1..N; the mapping could produce a number in more than one way or not at all). At some point, the sequence 1, f(1), f(f(1))... will contain a repetition, a number that occurring for the second time in the sequence.

Task
Average loop length
You are encouraged to solve this task according to the task description, using any language you may know.

Write a program or a script that estimates, for each N, the average length until the first such repetition.

Also calculate this expected length using an analytical formula, and optionally compare the simulated result with the theoretical one.

This problem comes from the end of Donald Knuth's Christmas tree lecture 2011.

Example of expected output:

 N    average    analytical    (error)
===  =========  ============  =========
  1     1.0000        1.0000  (  0.00%)
  2     1.4992        1.5000  (  0.05%)
  3     1.8784        1.8889  (  0.56%)
  4     2.2316        2.2188  (  0.58%)
  5     2.4982        2.5104  (  0.49%)
  6     2.7897        2.7747  (  0.54%)
  7     3.0153        3.0181  (  0.09%)
  8     3.2429        3.2450  (  0.07%)
  9     3.4536        3.4583  (  0.14%)
 10     3.6649        3.6602  (  0.13%)
 11     3.8091        3.8524  (  1.12%)
 12     3.9986        4.0361  (  0.93%)
 13     4.2074        4.2123  (  0.12%)
 14     4.3711        4.3820  (  0.25%)
 15     4.5275        4.5458  (  0.40%)
 16     4.6755        4.7043  (  0.61%)
 17     4.8877        4.8579  (  0.61%)
 18     4.9951        5.0071  (  0.24%)
 19     5.1312        5.1522  (  0.41%)
 20     5.2699        5.2936  (  0.45%)

Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Generic_Elementary_Functions; with Ada.Numerics.Discrete_Random; procedure Avglen is

  package IIO is new Ada.Text_IO.Integer_IO (Positive); use IIO;
  package LFIO is new Ada.Text_IO.Float_IO (Long_Float); use LFIO;
  subtype FactN is Natural range 0..20;
  TESTS : constant Natural := 1_000_000;
  function Factorial (N : FactN) return Long_Float is
     Result : Long_Float := 1.0;
  begin
     for I in 2..N loop Result := Result * Long_Float(I); end loop;
     return Result;
  end Factorial;
  function Analytical (N : FactN) return Long_Float is
     Sum : Long_Float := 0.0;
  begin
     for I in 1..N loop
        Sum := Sum + Factorial(N) / Factorial(N - I) / Long_Float(N)**I;
     end loop;
     return Sum;
  end Analytical;
  function Experimental (N : FactN) return Long_Float is
     subtype RandInt is Natural range 1..N;
     package Random is new Ada.Numerics.Discrete_Random(RandInt);
     seed : Random.Generator;
     Num : RandInt;
     count : Natural := 0;
     bits : array(RandInt'Range) of Boolean;
  begin
     Random.Reset(seed);
     for run in 1..TESTS loop
        bits := (others  => false);
        for I in RandInt'Range loop
           Num := Random.Random(seed); exit when bits(Num);
           bits(Num) := True; count := count + 1;
        end loop;
     end loop;   
     return Long_Float(count)/Long_Float(TESTS);
  end Experimental;
  A, E, err : Long_Float;

begin

  Put_Line(" N  avg    calc   %diff");
  for I in 1..20 loop
     A := Analytical(I);  E := Experimental(I); err := abs(E-A)/A*100.0;
     Put(I, Width=>2); Put(E ,Aft=>4, exp=>0); Put(A, Aft=>4, exp=>0);
     Put(err, Fore=>3, Aft=>3, exp=>0); New_line;
  end loop;

end Avglen;</lang>

Output:
 N  avg    calc   %diff
 1 1.0000 1.0000  0.000
 2 1.5000 1.5000  0.003
 3 1.8886 1.8889  0.015
 4 2.2180 2.2188  0.033
 5 2.5104 2.5104  0.000
 6 2.7745 2.7747  0.006
 7 3.0191 3.0181  0.033
 8 3.2433 3.2450  0.052
 9 3.4583 3.4583  0.001
10 3.6597 3.6602  0.015
11 3.8524 3.8524  0.001
12 4.0352 4.0361  0.022
13 4.2147 4.2123  0.055
14 4.3853 4.3820  0.075
15 4.5453 4.5458  0.011
16 4.7055 4.7043  0.027
17 4.8592 4.8579  0.028
18 5.0062 5.0071  0.017
19 5.1535 5.1522  0.025
20 5.2955 5.2936  0.035

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <math.h>
  3. include <time.h>
  1. define MAX_N 20
  2. define TIMES 1000000

double factorial(int n) { double f = 1; int i; for (i = 1; i <= n; i++) f *= i; return f; }

double expected(int n) { double sum = 0; int i; for (i = 1; i <= n; i++) sum += factorial(n) / pow(n, i) / factorial(n - i); return sum; }

int randint(int n) { int r, rmax = RAND_MAX / n * n; while ((r = rand()) >= rmax); return r / (RAND_MAX / n); }

int test(int n, int times) { int i, count = 0; for (i = 0; i < times; i++) { int x = 1, bits = 0; while (!(bits & x)) { count++; bits |= x; x = 1 << randint(n); } } return count; }

int main(void) { srand(time(0)); puts(" n\tavg\texp.\tdiff\n-------------------------------");

int n; for (n = 1; n <= MAX_N; n++) { int cnt = test(n, TIMES); double avg = (double)cnt / TIMES; double theory = expected(n); double diff = (avg / theory - 1) * 100; printf("%2d %8.4f %8.4f %6.3f%%\n", n, avg, theory, diff); } return 0; }</lang>

Output:
 n      avg     exp.    diff
-------------------------------
 1   1.0000   1.0000  0.000%
 2   1.4998   1.5000 -0.015%
 3   1.8879   1.8889 -0.051%
 4   2.2181   2.2188 -0.029%
 5   2.5107   2.5104  0.012%
 6   2.7741   2.7747 -0.021%
 7   3.0168   3.0181 -0.044%
 8   3.2455   3.2450  0.014%
 9   3.4591   3.4583  0.023%
10   3.6596   3.6602 -0.017%
11   3.8519   3.8524 -0.013%
12   4.0384   4.0361  0.059%
13   4.2106   4.2123 -0.042%
14   4.3840   4.3820  0.044%
15   4.5449   4.5458 -0.020%
16   4.7058   4.7043  0.033%
17   4.8549   4.8579 -0.060%
18   5.0084   5.0071  0.026%
19   5.1479   5.1522 -0.084%
20   5.2957   5.2936  0.040%

D

Translation of: Perl 6

<lang d>import std.stdio, std.random, std.math, std.algorithm, std.range;

real analytical(in int n) /*pure nothrow*/ {

   real total = 0.0;
   foreach (immutable k; 1 .. n + 1) {
       immutable x = reduce!q{a * b}(1.0L, iota(n - k + 1, n + 1))
                     * k ^^ 2;
       total += x / ((cast(real)n) ^^ (k + 1));
   }
   return total;

}

size_t loopLength(size_t maxN)(in int size, ref Xorshift rng) {

   __gshared bool[maxN + 1] seen;
   seen[0 .. size + 1] = false;
   int current = 1;
   size_t steps = 0;
   while (!seen[current]) {
       seen[current] = true;
       current = uniform(1, size + 1, rng);
       steps++;
   }
   return steps;

}

void main() {

   enum maxN  = 40;
   enum nTrials = 300_000;
   auto rng = Xorshift(unpredictableSeed);
   writeln(" n    average    analytical     (error)");
   writeln("===  =========  ============  ==========");
   foreach (immutable n; 1 .. maxN + 1) {
       long total = 0;
       foreach (immutable _; 0 .. nTrials)
           total += loopLength!maxN(n, rng);
       immutable average = total / cast(real)nTrials;
       immutable an = analytical(n);
       immutable percentError = abs(an - average) / an * 100;
       immutable errorS = format("%2.4f", percentError);
       writefln("%3d  %9.5f  %12.5f  (%7s%%)",
                n, average, an, errorS);
   }

}</lang>

Output:
 n    average    analytical     (error)
===  =========  ============  ==========
  1    1.00000       1.00000  ( 0.0000%)
  2    1.50017       1.50000  ( 0.0111%)
  3    1.88932       1.88889  ( 0.0226%)
  4    2.21795       2.21875  ( 0.0362%)
  5    2.51159       2.51040  ( 0.0474%)
  6    2.77373       2.77469  ( 0.0345%)
  7    3.01894       3.01814  ( 0.0264%)
  8    3.24734       3.24502  ( 0.0716%)
  9    3.45876       3.45832  ( 0.0127%)
 10    3.66595       3.66022  ( 0.1567%)
 11    3.85000       3.85237  ( 0.0616%)
 12    4.03532       4.03607  ( 0.0187%)
 13    4.20879       4.21235  ( 0.0843%)
 14    4.37664       4.38203  ( 0.1230%)
 15    4.54986       4.54581  ( 0.0892%)
 16    4.70431       4.70426  ( 0.0010%)
 17    4.85640       4.85787  ( 0.0302%)
 18    5.01359       5.00706  ( 0.1303%)
 19    5.15487       5.15220  ( 0.0519%)
 20    5.29486       5.29358  ( 0.0241%)
 21    5.43276       5.43150  ( 0.0231%)
 22    5.56570       5.56620  ( 0.0088%)
 23    5.70611       5.69788  ( 0.1443%)
 24    5.82618       5.82675  ( 0.0098%)
 25    5.94846       5.95298  ( 0.0759%)
 26    6.07440       6.07672  ( 0.0381%)
 27    6.20717       6.19811  ( 0.1461%)
 28    6.31546       6.31729  ( 0.0290%)
 29    6.44201       6.43437  ( 0.1187%)
 30    6.54592       6.54946  ( 0.0540%)
 31    6.65818       6.66265  ( 0.0671%)
 32    6.77215       6.77405  ( 0.0279%)
 33    6.88381       6.88372  ( 0.0013%)
 34    6.99790       6.99175  ( 0.0880%)
 35    7.10990       7.09820  ( 0.1648%)
 36    7.20391       7.20316  ( 0.0104%)
 37    7.30085       7.30667  ( 0.0796%)
 38    7.40366       7.40880  ( 0.0693%)
 39    7.51864       7.50959  ( 0.1204%)
 40    7.60255       7.60911  ( 0.0863%)

J

First, let's consider an exact, brute force approach.

Since J array indices start at 0, we'll work with 0..N-1 instead of 1..N, dealing with the difference at the boundaries.

We can implement f as {&LIST where LIST is an arbitrary list of N numbers, each picked independently from the range 0..(N-1). We can incrementally build the described sequence using (, f@{:) - here we extend the sequence by applying f to the last element of the sequence. Since we are only concerned with the sequence up to the point of the first repeat, we can select the unique values giving us (~.@, f@{:). This routine stops changing when we reach the desired length, so we can repeatedly apply it forever. For example:

<lang J> (~.@, {&0 0@{:)^:_] 0 0

  (~.@, {&0 0@{:)^:_] 1

1 0</lang>

Once we have the sequence, we can count how many elements are in it.

<lang J> 0 0 ([: # (] ~.@, {:@] { [)^:_) 1 2</lang>

Meanwhile, we can also generate all possible values of 1..N by counting out N^N values and breaking out the result as a base N list of digits.

<lang J> (#.inv i.@^~)2 0 0 0 1 1 0 1 1</lang>

All that's left is to count the lengths of all possible sequences for all possible distinct instances of f and average the results:

<lang J> (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)1 1

  (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)2

1.5

  (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)3

1.88889

  (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)4

2.21875

  (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)5

2.5104

  (+/ % #)@,@((#.inv i.@^~) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)6

2.77469</lang>

Meanwhile the analytic solution (derived by reading the Ada implementation) looks like this:

<lang J> ana=: +/@(!@[ % !@- * ^) 1+i.

  ana"0]1 2 3 4 5 6

1 1.5 1.88889 2.21875 2.5104 2.77469</lang>

To get our simulation, we can take the exact approach and replace the part that generates all possible values for f with a random mechanism. Since the task does not specify how long to run the simulation, and to make this change easy, we'll use N*1e4 tests.

<lang J> sim=: (+/ % #)@,@((]?@$~1e4,]) ([: # (] ~.@, {:@] { [)^:_)"1 0/ i.)

  sim"0]1 2 3 4 5 6

1 1.5034 1.8825 2.22447 2.51298 2.76898</lang>

The simulation approach is noticeably slower than the analytic approach, while being less accurate.

Finally, we can generate our desired results:

<lang J> (;:'N average analytic error'),:,.each(;ana"0 ([;];-|@%[) sim"0)1+i.20 +--+-------+--------+-----------+ |N |average|analytic|error | +--+-------+--------+-----------+ | 1| 1| 1 | 0| | 2| 1.5|1.49955 | 0.0003| | 3|1.88889| 1.8928 | 0.00207059| | 4|2.21875|2.23082 | 0.00544225| | 5| 2.5104|2.52146 | 0.00440567| | 6|2.77469|2.78147 | 0.00244182| | 7|3.01814| 3.0101 | 0.00266346| | 8|3.24502|3.25931 | 0.00440506| | 9|3.45832|3.45314 | 0.00149532| |10|3.66022| 3.6708 | 0.00289172| |11|3.85237|3.84139 | 0.00285049| |12|4.03607|4.03252 |0.000881304| |13|4.21235|4.18358 | 0.00682833| |14|4.38203|4.38791 | 0.00134132| |15|4.54581|4.54443 |0.000302246| |16|4.70426|4.71351 | 0.00196721| |17|4.85787|4.85838 |0.000104089| |18|5.00706|5.00889 |0.000365752| |19| 5.1522|5.14785 |0.000843052| |20|5.29358|5.28587 | 0.00145829| +--+-------+--------+-----------+</lang>

Here, error is the difference between the two values divided by the analytic value.

Mathematica

<lang mathematica>Grid@Prepend[

 Table[{n, #1, #2, 
     Row[{Round[10000 Abs[#1 - #2]/#2]/100., "%"}]} &@
   N[{Mean[Array[
       Length@NestWhileList[#, 1, UnsameQ[##] &, All] - 1 &[# /. 
           MapIndexed[#21 -> #1 &, 
            RandomInteger[{1, n}, n]] &] &, 10000]], 
     Sum[n! n^(n - k - 1)/(n - k)!, {k, n}]/n^(n - 1)}, 5], {n, 1, 
   20}], {"N", "average", "analytical", "error"}]</lang>
Output:
N	average	analytical	error
1	1.0000	1.0000		0.%
2	1.5017	1.5000		0.11%
3	1.8910	1.8889		0.11%
4	2.2334	2.2188		0.66%
5	2.5090	2.5104		0.06%
6	2.8092	2.7747		1.24%
7	3.0468	3.0181		0.95%
8	3.2253	3.2450		0.61%
9	3.4695	3.4583		0.32%
10	3.6661	3.6602		0.16%
11	3.8662	3.8524		0.36%
12	4.0393	4.0361		0.08%
13	4.2232	4.2123		0.26%
14	4.3496	4.3820		0.74%
15	4.5706	4.5458		0.55%
16	4.6963	4.7043		0.17%
17	4.8548	4.8579		0.06%
18	5.0671	5.0071		1.2%
19	5.1702	5.1522		0.35%
20	5.2264	5.2936		1.27%

Perl 6

Runs on Rakudo Warszawa (2012.12).

<lang perl6>constant MAX_N = 20; constant TRIALS = 100;

for 1 .. MAX_N -> $N {

   my $empiric = TRIALS R/ [+] find-loop(random-mapping($N)).elems xx TRIALS;
   my $theoric = [+]
       map -> $k { $N ** ($k + 1) R/ [*] $k**2, $N - $k + 1 .. $N }, 1 .. $N;

   FIRST say " N    empiric      theoric      (error)";
   FIRST say "===  =========  ============  =========";

   printf "%3d  %9.4f  %12.4f    (%4.2f%%)\n",
           $N,  $empiric,
                       $theoric, 100 * abs($theoric - $empiric) / $theoric;

}

sub random-mapping { hash .list Z=> .roll given ^$^size } sub find-loop { 0, %^mapping{*} ...^ { (state %){$_}++ } }</lang>

Example:

 N    empiric      theoric      (error)
===  =========  ============  =========
  1     1.0000        1.0000    (0.00%)
  2     1.5600        1.5000    (4.00%)
  3     1.7800        1.8889    (5.76%)
  4     2.1800        2.2188    (1.75%)
  5     2.6200        2.5104    (4.37%)
  6     2.8300        2.7747    (1.99%)
  7     3.1200        3.0181    (3.37%)
  8     3.1400        3.2450    (3.24%)
  9     3.4500        3.4583    (0.24%)
 10     3.6700        3.6602    (0.27%)
 11     3.8300        3.8524    (0.58%)
 12     4.3600        4.0361    (8.03%)
 13     3.9000        4.2123    (7.42%)
 14     4.4900        4.3820    (2.46%)
 15     4.9500        4.5458    (8.89%)
 16     4.9800        4.7043    (5.86%)
 17     4.9100        4.8579    (1.07%)
 18     4.9700        5.0071    (0.74%)
 19     5.1000        5.1522    (1.01%)
 20     5.2300        5.2936    (1.20%)

Python

Translation of: C

<lang python>from __future__ import division # Only necessary for Python 2.X from math import factorial from random import randrange

MAX_N = 20 TIMES = 1000000

def analytical(n): return sum(factorial(n) / pow(n, i) / factorial(n -i) for i in range(1, n+1))

def test(n, times):

   count = 0
   for i in range(times):
       x, bits = 1, 0
       while not (bits & x):
           count += 1
           bits |= x
           x = 1 << randrange(n)
   return count / times

if __name__ == '__main__':

   print(" n\tavg\texp.\tdiff\n-------------------------------")
   for n in range(1, MAX_N+1):
       avg = test(n, TIMES)
       theory = analytical(n)
       diff = (avg / theory - 1) * 100
       print("%2d %8.4f %8.4f %6.3f%%" % (n, avg, theory, diff))</lang>
Output:
 n	avg	exp.	diff
-------------------------------
 1   1.0000   1.0000  0.000%
 2   1.5006   1.5000  0.037%
 3   1.8887   1.8889 -0.012%
 4   2.2190   2.2188  0.011%
 5   2.5101   2.5104 -0.012%
 6   2.7750   2.7747  0.012%
 7   3.0158   3.0181 -0.076%
 8   3.2447   3.2450 -0.009%
 9   3.4586   3.4583  0.009%
10   3.6598   3.6602 -0.010%
11   3.8510   3.8524 -0.036%
12   4.0368   4.0361  0.017%
13   4.2099   4.2123 -0.058%
14   4.3784   4.3820 -0.083%
15   4.5484   4.5458  0.058%
16   4.7045   4.7043  0.006%
17   4.8611   4.8579  0.067%
18   5.0074   5.0071  0.007%
19   5.1534   5.1522  0.024%
20   5.2927   5.2936 -0.017%

REXX

<lang rexx>/*REXX program to read a config file and assign VARs as found within. */ numeric digits 10000 /*be able to calculate  !(runs). */ parse arg runs tests seed . if runs ==',' | runs == then runs = 40 /*num of runs. */ if tests ==',' | tests == then tests = 1000000 /*num of trials.*/ if seed\==',' & seed\== then call random ,,seed /*repeatability?*/ numeric digits max(9,length(!(runs))) /*set NUMERIC digits for !(runs).*/ say right( runs, 24) 'runs' /*display # of runs we're using*/ say right( tests, 24) 'tests' /* " " " tests " " */ say right( digits(), 24) 'digits' /* " " " digits " " */ say say ' N average exact  % error' /*headers & pad.*/ h= ' ─── ───────── ───────── ─────────'; say h; pad=left(,3)

     do #=1  for runs;  ##=right(#,9) /*## is used for indenting output*/
       a= format(exact(#)       ,,4)  /*use 4 digits past decimal point*/
       e= format(exper(#)       ,,4)  /* "  "    "     "     "      "  */
     err= format(abs(e-a)*100/a ,,4)  /* "  "    "     "     "      "  */
     if err=0  then err=err/1         /*present a clean & concise zero.*/
     say ##  pad  e  pad  a  pad  err /*display a line of statistics.  */
     end   /*#*/

say h /*display the final header bar. */ exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────! subroutine────────────────────────*/ !: procedure; !=1; do j=2 to arg(1);  !=!*j; end; return ! /*──────────────────────────────────EXACT subroutine────────────────────*/ exact: parse arg x; s=0; do j=1 for x; s=s+!(x)/!(x-j)/x**j; end; return s /*──────────────────────────────────EXPER subroutine────────────────────*/ exper: parse arg n k=0; do tests;  !.=0 /*repeat TESTS times, reset found*/

                   !.=0               /*stemmed array: expected results*/
                       do n;     r=random(1,n);        if !.r  then leave
                       !.r=1;    k=k+1                 /*bump the ctr. */
                       end   /*n*/
                   end       /*tests*/

return k/tests </lang> output when using the default input

                      40 runs
                 1000000 tests
                      48 digits

         N    average     exact     % error
        ───  ─────────  ─────────  ─────────
         1     1.0000     1.0000     0
         2     1.4964     1.5000     0.2400
         3     1.8876     1.8889     0.0688
         4     2.2222     2.2188     0.1532
         5     2.5104     2.5104     0
         6     2.7758     2.7747     0.0396
         7     3.0194     3.0181     0.0431
         8     3.2608     3.2450     0.4869
         9     3.4565     3.4583     0.0520
        10     3.6583     3.6602     0.0519
        11     3.8513     3.8524     0.0286
        12     4.0401     4.0361     0.0991
        13     4.2133     4.2123     0.0237
        14     4.3835     4.3820     0.0342
        15     4.5445     4.5458     0.0286
        16     4.6672     4.7043     0.7886
        17     4.8575     4.8579     0.0082
        18     5.0105     5.0071     0.0679
        19     5.1517     5.1522     0.0097
        20     5.2903     5.2936     0.0623
        21     5.4328     5.4315     0.0239
        22     5.5674     5.5662     0.0216
        23     5.6990     5.6979     0.0193
        24     5.8353     5.8268     0.1459
        25     5.9536     5.9530     0.0101
        26     6.0801     6.0767     0.0560
        27     6.1997     6.1981     0.0258
        28     6.3197     6.3173     0.0380
        29     6.4328     6.4344     0.0249
        30     6.5485     6.5495     0.0153
        31     6.6615     6.6627     0.0180
        32     6.7102     6.7740     0.9418
        33     6.8826     6.8837     0.0160
        34     6.9878     6.9917     0.0558
        35     7.0996     7.0982     0.0197
        36     7.2054     7.2032     0.0305
        37     7.3073     7.3067     0.0082
        38     7.4089     7.4088     0.0013
        39     7.5052     7.5096     0.0586
        40     7.6151     7.6091     0.0789
        ───  ─────────  ─────────  ─────────

Unicon

Translation of: C

<lang unicon> link printf, factors

$define MAX_N 20 $define TIMES 1000000 $define RAND_MAX 2147483647

procedure expected(n)

   local sum := 0
   every i := 1 to n do
       sum +:= factorial(n) / (n ^ i) / factorial(n - i)
   return sum

end

procedure test(n, times)

   local i, count := 0, x, bits
   every i := 0 to times-1 do {

x := 1 bits := 0 while iand(bits, x)=0 do {

           count +:= 1
           bits := ior(bits, x)
           x := ishift(1 , ?n-1)
       }
   }
   return count

end

procedure main(void)

   local n, cnt, avg, theory, diff
   write(" n\tavg\texp.\tdiff\n", repl("-",29))
   every n := 1 to MAX_N do {
       cnt := test(n, TIMES)
       avg := real(cnt) / TIMES
       theory := expected(n)
       diff := (avg / theory - 1) * 100
       printf("%2d %8.4r %8.4r %6.3r%%\n", n, avg, theory, diff)
   }
   return 0

end</lang>

Output:
 n      avg     exp.    diff                                                    
-----------------------------                                                   
 1   1.0000   1.0000  0.000%                                                    
 2   1.5008   1.5000  0.056%                                                    
 3   1.8879   1.8889 -0.051%                                                    
 4   2.2208   2.2188  0.091%                                                    
 5   2.5127   2.5104  0.093%                                                    
 6   2.7759   2.7747  0.044%                                                    
 7   3.0175   3.0181 -0.023%                                                    
 8   3.2425   3.2450 -0.079%                                                    
 9   3.4571   3.4583 -0.034%                                                    
10   3.6613   3.6602  0.029%                                                    
11   3.8493   3.8524 -0.081%                                                    
12   4.0384   4.0361  0.058%                                                    
13   4.2133   4.2123  0.023%                                                    
14   4.3804   4.3820 -0.037%                                                    
15   4.5475   4.5458  0.038%                                                    
16   4.7049   4.7043  0.014%                                                    
17   4.8575   4.8579 -0.008%
18   5.0088   5.0071  0.035%
19   5.1533   5.1522  0.021%
20   5.2893   5.2936 -0.081%