Array Initialization: Difference between revisions

From Rosetta Code
Content added Content deleted
 
(46 intermediate revisions by 18 users not shown)
Line 1: Line 1:
{{DeprecatedTask}}
{{task|Basic language learning}}
'''Examples here should be migrated to [[Arrays]] or [[Creating an Associative Array]] and removed from here. If similar code already exists there, simply remove it from here.'''



Demonstrate how to initialize an array variable with data.
Demonstrate how to initialize an array variable with data.
Line 5: Line 7:
See [[Creating_an_Array]] for this topic.
See [[Creating_an_Array]] for this topic.


=={{header|Ada}}==
==[[Ada]]==
The array value obtained directly from data is called array aggregate. Considering these array declarations:
The array value obtained directly from data is called array aggregate. Considering these array declarations:
<lang ada>
<lang ada>
Line 24: Line 26:
</lang>
</lang>
Note that the array bounds, when unconstrained as in these examples can be either determined by the aggregate, like the initialization of X shows. Or else they can be specified as a constraint, like for example in the initialization of Y. In this case '''others''' choice can be used to specify all unmentioned elements. But in any case, the compiler verifies that all array elements are initialized by the aggregate. Single dimensional arrays of characters can be initialized by character strings, as the variable S shows. Of course, array aggregates can participate in array expressions and these expressions can be used to initialize arrays. The variable B is initialized by an aggregate inversed by the operation '''not'''.
Note that the array bounds, when unconstrained as in these examples can be either determined by the aggregate, like the initialization of X shows. Or else they can be specified as a constraint, like for example in the initialization of Y. In this case '''others''' choice can be used to specify all unmentioned elements. But in any case, the compiler verifies that all array elements are initialized by the aggregate. Single dimensional arrays of characters can be initialized by character strings, as the variable S shows. Of course, array aggregates can participate in array expressions and these expressions can be used to initialize arrays. The variable B is initialized by an aggregate inversed by the operation '''not'''.
==[[C++]]==
=={{header|ALGOL 68}}==
{{works with|ALGOL 68|Standard - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386}}
<pre>
MODE VEC = FLEX[0]INT; # VECTOR is builtin in ALGOL 68R #
MODE MAT = FLEX[0,0]INT;
# MODE STRING = FLEX[0]CHAR; builtin #
MODE BOOLS = FLEX[0]BOOL; # BITS is builtin in the standard #
</pre>
Initialization by an aggregate using positional and keyed notations:
<pre>
VEC x := (1, 4, 5);
[100]INT y; FOR i TO UPB y DO y[i]:=0 OD; FOR i FROM 5 TO 20 DO y[i]:= 2 OD; y[2]:=y[3]:= 1;
MAT e := ((1, 0), (0, 1));
[20,30]INT z; FOR i TO UPB z DO FOR j TO 2 UPB z DO z[i,j]:=0 OD OD;
STRING s := "abcd";
STRING l := " "*80;
[2]BOOL b := (TRUE, TRUE);
SKIP
</pre>

=={{header|C++}}==

Simple arrays in C++ have no bounds-checking. In order to safely modify the array's contents, you must know in advance both the number of dimensions in the array and the range for each dimension. In C++, all arrays are zero-indexed, meaning the first element in the array is at index 0.

To assign a single value to an array, one uses the [] operator.
<lang cpp>
// Assign the value 7 to the first element of myArray.
myArray[0] = 7;
</lang>
If '''myArray''' has ten elements, one can use a loop to fill it.
<lang cpp>
// Assign the sequence 1..10 to myArray
for(int i = 0; i < 10; ++i)
myArray[i] = i + 1;
</lang>
If '''myArray''' has two dimensions, you can use nested loops.
<lang cpp>
// Create a multiplication table
for(int y = 0; y < 10; ++y)
for(int x = 0; x < 10; ++x)
myArray[x][y] = (x+1) * (y+1);
</lang>



=={{header|Haskell}}==
To create any new Array of the various array types, you can use this to initialise it with all elements filled with x, and indexes ranging from n to m
<lang haskell>
newArr :: (Ix i) => i -> i -> e -> Array i e
newArr n m x = listArray (n,m) (repeat x)

-----

Prelude Data.Array> newArr 0 10 0
array (0,10) [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]

Prelude Data.Array> newArr (0,0) (5,5) 0
array ((0,0),(5,5)) [((0,0),0),((0,1),0),((0,2),0),((0,3),0),((0,4),0),((0,5),0),((1,0),0),((1,1),0),((1,2),0),((1,3),0),((1,4),0),((1,5),0),((2,0),0),((2,1),0),((2,2),0),((2,3),0),((2,4),0),((2,5),0),((3,0),0),((3,1),0),((3,2),0),((3,3),0),((3,4),0),((3,5),0),((4,0),0),((4,1),0),((4,2),0),((4,3),0),((4,4),0),((4,5),0),((5,0),0),((5,1),0),((5,2),0),((5,3),0),((5,4),0),((5,5),0)]
</lang>

=={{header|Modula-3}}==
The usual module and import code is omitted.
<lang modula3>VAR arr := ARRAY [1..10] OF INTEGER {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
VAR arr1 := ARRAY [1..10] OF INTEGER {1, ..} (* Initialize all elements to 1. *)</lang>
Array initialization doesn't have to be used in the array declaration.
<lang modula3>TYPE Vector: ARRAY OF INTEGER;
VAR arr: Vector;
arr := Vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};</lang>

== {{header|Python}} ==

Python lists are dynamically resizeable. A simple, single dimensional, array can be initialized thus:

<lang python>
myArray = [0] * size
</lang>

However this will not work as intended if one tries to generalize from the syntax:

<lang python>
myArray = [[0]* width] * height] # DOES NOT WORK AS INTENDED!!!
</lang>

This creates a list of "height" number of references to one list object ... which is a list of width instances of the number zero. Due to the differing semantics of mutables (strings, numbers) and immutables (dictionaries, lists), a change to any one of the "rows" will affect the values in all of them. Thus we need to ensure that we initialize each row with a newly generated list.

To initialize a list of lists one could use a pair of nested list comprehensions like so:

<lang python>
myArray = [[0 for x in range(width)] for y in range(height)]
</lang>

That is equivalent to:

<lang python>
myArray = list()
for x in range(height):
myArray.append([0] * width)
</lang>

===STL===
===STL===
{{libheader|STL}}STL provides '''std::vector''', which behaves as a dynamically-resizable array. When an element is added, its value must be set immediately.
{{libheader|STL}}STL provides '''std::vector''', which behaves as a dynamically-resizable array. When an element is added, its value must be set immediately.
Line 166: Line 68:
std::vector v4 = v3; // v4 is a copy of v3
std::vector v4 = v3; // v4 is a copy of v3
</lang>
</lang>

==[[F_Sharp|F#]]==
let a = [| 1; 3; 5; 7; 9 |] // array of integers
let b = [| 1 .. 10 |] // initialize with range of integers
let c = [| for n = 1 to 10 do yield n |] // lazy array
let d = [| "hello"; "world" |] // array of strings

==[[Haskell]]==
To create any new Array of the various array types, you can use this to initialise it with all elements filled with x, and indexes ranging from n to m
<lang haskell>
newArr :: (Ix i) => i -> i -> e -> Array i e
newArr n m x = listArray (n,m) (repeat x)

-----

Prelude Data.Array> newArr 0 10 0
array (0,10) [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]

Prelude Data.Array> newArr (0,0) (5,5) 0
array ((0,0),(5,5)) [((0,0),0),((0,1),0),((0,2),0),((0,3),0),((0,4),0),((0,5),0),((1,0),0),((1,1),0),((1,2),0),((1,3),0),((1,4),0),((1,5),0),((2,0),0),((2,1),0),((2,2),0),((2,3),0),((2,4),0),((2,5),0),((3,0),0),((3,1),0),((3,2),0),((3,3),0),((3,4),0),((3,5),0),((4,0),0),((4,1),0),((4,2),0),((4,3),0),((4,4),0),((4,5),0),((5,0),0),((5,1),0),((5,2),0),((5,3),0),((5,4),0),((5,5),0)]
</lang>
=={{header|Scala}}==
<lang Scala>// immutable maps
var map = Map(1 -> 2, 3 -> 4, 5 -> 6)
map(3) // 4
map = map + (44 -> 99) // maps are immutable, so we have to assign the result of adding elements
map.isDefinedAt(33) // false
map.isDefinedAt(44) // true</lang>

<lang scala>// mutable maps (HashSets)
import scala.collection.mutable.HashMap
val hash = new HashMap[Int, Int]
hash(1) = 2
hash += (1 -> 2) // same as hash(1) = 2
hash += (3 -> 4, 5 -> 6, 44 -> 99)
hash(44) // 99
hash.contains(33) // false
hash.isDefinedAt(33) // same as contains
hash.contains(44) // true</lang>

<lang scala>// iterate over key/value
hash.foreach {e => println("key "+e._1+" value "+e._2)} // e is a 2 element Tuple
// same with for syntax
for((k,v) <- hash) println("key " + k + " value " + v)</lang>

<lang scala>// items in map where the key is greater than 3
map.filter {k => k._1 > 3} // Map(5 -> 6, 44 -> 99)
// same with for syntax
for((k, v) <- map; if k > 3) yield (k,v)</lang>

Latest revision as of 17:45, 26 June 2018

Array Initialization was a programming task. It has been deprecated for reasons that are discussed in its talk page.

Examples here should be migrated to Arrays or Creating an Associative Array and removed from here. If similar code already exists there, simply remove it from here.


Demonstrate how to initialize an array variable with data.

See Creating_an_Array for this topic.

Ada

The array value obtained directly from data is called array aggregate. Considering these array declarations: <lang ada> type Vector is array (Integer range <>) of Integer; type Matrix is array (Integer range <>, Integer range <>) of Integer; type String is array (Integer range <>) of Character; type Bits is array (Integer range <>) of Boolean; </lang> Initialization by an aggregate using positional and keyed notations: <lang ada> X : Vector := (1, 4, 5); Y : Vector (1..100) := (2|3 => 1, 5..20 => 2, others => 0); E : Matrix := ((1, 0), (0, 1)); Z : Matrix (1..20, 1..30) := (others => (others => 0)); S : String := "ABCD"; L : String (1..80) := (others => ' '); B : Bits := not (1..2 => False); -- Same as (1..2 => True) </lang> Note that the array bounds, when unconstrained as in these examples can be either determined by the aggregate, like the initialization of X shows. Or else they can be specified as a constraint, like for example in the initialization of Y. In this case others choice can be used to specify all unmentioned elements. But in any case, the compiler verifies that all array elements are initialized by the aggregate. Single dimensional arrays of characters can be initialized by character strings, as the variable S shows. Of course, array aggregates can participate in array expressions and these expressions can be used to initialize arrays. The variable B is initialized by an aggregate inversed by the operation not.

C++

STL

Library: STL

STL provides std::vector, which behaves as a dynamically-resizable array. When an element is added, its value must be set immediately.

<lang cpp> myVector.push_back(value); </lang> Like simple arrays, std::vector allows the use of the [] operator, and once an element has been added, it can be changed the same way a simple array can. <lang cpp> myVector[0] = value; </lang> Unlike simple arrays, std::vector allows you to determing the size of the array. You can use this set all of the values in the array: <lang cpp> // Create a list of numbers from 1 to the size of the vector. size_t size = myVector.size(); for(int i = 0; i < size; ++i)

 myVector[i] = i + 1;

</lang> std::vector also provides iterators, allowing you to iterate through a vector's elements the same way you might any other STL container class.

 // Create a list of numbers from 1 to the size of the vector.

<lang cpp> std::vector<int> myVector; int val = 0; for(std::vector<int>::iterator it = myVector.begin();

   it != myVector.end();
   ++it)
 *it = ++val;

</lang> A vector can also explicitly be resized: <lang cpp> std::vector<int> myVector; myVector.resize(10); // now the vector contains 10 elements, all of which are 0 myVector.resize(15, 3); // now the vector contains 15 elements, the 5 new got the value 3 myVector.resize(12); // the last three elements got removed </lang> Also note that a vector can already be filled at construction time: <lang cpp> std::vector v1(10); // a vector of 10 ints, all initialized with 0 std::vector v2(5, 7); // a vector containing 5 ints, all inizialized with 7 int a[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 }; std::vector v3(a, a+10); // a vector containing 10 ints, initialized with the elements of a (i.e. v3[0]==a[0] etc.) std::vector v4 = v3; // v4 is a copy of v3 </lang>

F#

let a = [| 1; 3; 5; 7; 9 |] // array of integers
let b = [| 1 .. 10 |] // initialize with range of integers
let c = [| for n = 1 to 10 do yield n |] // lazy array
let d = [| "hello"; "world" |] // array of strings

Haskell

To create any new Array of the various array types, you can use this to initialise it with all elements filled with x, and indexes ranging from n to m <lang haskell> newArr :: (Ix i) => i -> i -> e -> Array i e newArr n m x = listArray (n,m) (repeat x)


Prelude Data.Array> newArr 0 10 0 array (0,10) [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]

Prelude Data.Array> newArr (0,0) (5,5) 0 array ((0,0),(5,5)) [((0,0),0),((0,1),0),((0,2),0),((0,3),0),((0,4),0),((0,5),0),((1,0),0),((1,1),0),((1,2),0),((1,3),0),((1,4),0),((1,5),0),((2,0),0),((2,1),0),((2,2),0),((2,3),0),((2,4),0),((2,5),0),((3,0),0),((3,1),0),((3,2),0),((3,3),0),((3,4),0),((3,5),0),((4,0),0),((4,1),0),((4,2),0),((4,3),0),((4,4),0),((4,5),0),((5,0),0),((5,1),0),((5,2),0),((5,3),0),((5,4),0),((5,5),0)] </lang>

Scala

<lang Scala>// immutable maps var map = Map(1 -> 2, 3 -> 4, 5 -> 6) map(3) // 4 map = map + (44 -> 99) // maps are immutable, so we have to assign the result of adding elements map.isDefinedAt(33) // false map.isDefinedAt(44) // true</lang>

<lang scala>// mutable maps (HashSets) import scala.collection.mutable.HashMap val hash = new HashMap[Int, Int] hash(1) = 2 hash += (1 -> 2) // same as hash(1) = 2 hash += (3 -> 4, 5 -> 6, 44 -> 99) hash(44) // 99 hash.contains(33) // false hash.isDefinedAt(33) // same as contains hash.contains(44) // true</lang>

<lang scala>// iterate over key/value hash.foreach {e => println("key "+e._1+" value "+e._2)} // e is a 2 element Tuple // same with for syntax for((k,v) <- hash) println("key " + k + " value " + v)</lang>

<lang scala>// items in map where the key is greater than 3 map.filter {k => k._1 > 3} // Map(5 -> 6, 44 -> 99) // same with for syntax for((k, v) <- map; if k > 3) yield (k,v)</lang>