Arithmetic/Integer: Difference between revisions

m
m (Added comment that this example cannot be run in the Rust playpen)
imported>Arakov
 
(216 intermediate revisions by more than 100 users not shown)
Line 1:
{{Task|Basic language learning}}
[[Category:Arithmetic operations]]
[[Category:Arithmetic]]
{{basic data operation}} [[Category:Simple]]
{{Task|Basic language learning}}
Get two integers from the user, and then output the sum, difference, product, integer quotient and remainder of those numbers. Don't include error handling.
{{basic data operation}}
For quotient, indicate how it rounds (e.g. towards 0, towards negative infinity, etc.).
;Task:
Get two integers from the user,   and then (for those two integers), display their:
::::*   sum
::::*   difference
::::*   product
::::*   integer quotient
::::*   remainder
::::*   exponentiation   (if the operator exists)
 
<br>
Don't include error handling.
 
For quotient, indicate how it rounds &nbsp; (e.g. towards zero, towards negative infinity, etc.).
 
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
<br><br>
 
Bonus: Include an example of the integer `divmod` operator. For example: as in [[#Haskell]], [[#Python]] and [[#ALGOL 68]]
Also include the exponentiation operator if one exists.
 
=={{header|0815}}==
<langsyntaxhighlight lang="0815">
|~>|~#:end:>
<:61:x<:3d:=<:20:$==$~$=${~>%<:2c:~$<:20:~$
Line 24 ⟶ 38:
}:ml:x->{x{=>~*>{x<:1:-#:ter:^:ml:
}:ter:<:61:x<:5e:=<:20:$==$~$$=$<:62:x<:3D:=<:20:$==$~$=${{~%
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 35 ⟶ 49:
a % b = 2
a ^^ b = 510
</pre>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">V a = Int(input())
V b = Int(input())
 
print(‘a + b = ’(a + b))
print(‘a - b = ’(a - b))
print(‘a * b = ’(a * b))
print(‘a / b = ’(a I/ b))
print(‘a % b = ’(a % b))
print(‘a ^ b = ’(a ^ b))</syntaxhighlight>
 
=={{header|360 Assembly}}==
From the principles of operation: Operands are signed and 32 bits long.
Negative quantities are held in two's-complement form.
<br>'''Multiplication:'''<br>
The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand. Both multiplier and
multiplicand are 32-bit signed integers. The product is always a 64-bit
signed integer and occupies an even/odd register pair.
<br>'''Division:'''<br>
The dividend (first operand) is divided by the divisor (second operand)
and replaced by the quotient and remainder. The dividend is a 64-bit
signed integer and occupies the even/odd pair of registers.
A 32-bit signed remainder and a 32-bit signed quotient replace the dividend
in the even-numbered and odd-numbered registers, respectively.
The sign of the quotient is determined by the rules of algebra.
The remainder has the same sign as the dividend.
<syntaxhighlight lang="360asm">* Arithmetic/Integer 04/09/2015
ARITHINT CSECT
USING ARITHINT,R12
LR R12,R15
ADD L R1,A
A R1,B r1=a+b
XDECO R1,BUF
MVI BUF,C'+'
XPRNT BUF,12
SUB L R1,A
S R1,B r1=a-b
XDECO R1,BUF
MVI BUF,C'-'
XPRNT BUF,12
MUL L R1,A
M R0,B r0r1=a*b
XDECO R1,BUF so r1 has the lower part
MVI BUF,C'*'
XPRNT BUF,12
DIV L R0,A
SRDA R0,32 to shift the sign
D R0,B r1=a/b and r0 has the remainder
XDECO R1,BUF so r1 has quotient
MVI BUF,C'/'
XPRNT BUF,12
MOD L R0,A
SRDA R0,32 to shift the sign
D R0,B r1=a/b and r0 has the remainder
XDECO R0,BUF so r0 has the remainder
MVI BUF,C'R'
XPRNT BUF,12
RETURN XR R15,R15
BR R14
CNOP 0,4
A DC F'53'
B DC F'11'
BUF DC CL12' '
YREGS
END ARITHINT</syntaxhighlight>
Inputs are in the code: a=53, b=11
{{out}}
<pre>
+ 64
- 42
* 583
/ 4
R 9
</pre>
 
=={{header|6502 Assembly}}==
Code is called as a subroutine (i.e. JSR Arithmetic). Specific OS/hardware routines for user input and printing are left unimplemented.
<langsyntaxhighlight lang="6502asm">Arithmetic: PHA ;push accumulator and X register onto stack
TXA
PHA
Line 86 ⟶ 176:
TAX
PLA
RTS ;return from subroutine</langsyntaxhighlight>
The 6502 has no opcodes for multiplication, division, or modulus; the routines for multiplication, division, and modulus given above can be heavily optimized at the expense of some clarity.
=={{header|68000 Assembly}}==
<syntaxhighlight lang="68000devpac">ADD.L D0,D1 ; add two numbers
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
SUB.L D1,D0 ; subtract D1 from D0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MULU D0,D1 ; multiply two unsigned numbers. Use MULS for signed numbers
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DIVU D1,D0 ; Divide D0 by D1. Use DIVS for signed numbers. Upper two bytes of D0 are the remainder, lower two are the integer quotient.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MODULUS:
DIVU D1,D0
SWAP D0 ;swap the order of the 16-bit halves of D0.
RTS</syntaxhighlight>
 
Exponentiation doesn't exist but can be implemented in a similar fashion to multiplication on the 6502:
 
<syntaxhighlight lang="68000devpac">Exponent:
;raises D0 to the D1 power. No overflow protection.
MOVE.L D0,D2
SUBQ.L #1,D1
loop_exponent:
MULU D0,D2
DBRA D1,loop_exponent
;output is in D2
RTS</syntaxhighlight>
 
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits}}
<syntaxhighlight lang="aarch64 assembly">
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program arith64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
/***********************/
/* Initialized data */
/***********************/
.data
szMessError: .asciz " Two numbers in command line please ! \n" // message
szRetourLigne: .asciz "\n"
szMessResult: .asciz "resultat : @ \n" // message result
sMessValeur: .fill 12, 1, ' '
.asciz "\n"
szMessAddition: .asciz "Addition "
szMessSoustraction: .asciz "soustraction :"
szMessMultiplication: .asciz "multiplication :"
szMessDivision: .asciz "division :"
szMessReste: .asciz "remainder :"
/***********************/
/* No Initialized data */
/***********************/
.bss
qValeur: .skip 8 // reserve 8 bytes in memory
sZoneConv: .skip 30
.text
.global main
main:
mov fp,sp // fp <- stack address
ldr x0,[fp] // recup number of parameter in command line
cmp x0,3
blt error
ldr x0,[fp,16] // adresse of 1er number
bl conversionAtoD
mov x3,x0
ldr x0,[fp,24] // adresse of 2eme number
bl conversionAtoD
mov x4,x0
// addition
add x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessAddition
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// soustraction
sub x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessSoustraction
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// multiplication
mul x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessMultiplication
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// division
mov x0,x3
mov x1,x4
udiv x0,x3,x4 // quotient
msub x3,x0,x4,x3 // remainder x3 = x3 - (x0*x4)
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessDivision
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
 
mov x0,x3 // remainder
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessReste
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
mov x0,0 // return code
b 100f
error:
ldr x0,qAdrszMessError
bl affichageMess // call function with 1 parameter (x0)
mov x0,1 // return code
100: // end of program
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsMessValeur: .quad sMessValeur
qAdrszMessResult: .quad szMessResult
qAdrszMessError: .quad szMessError
qAdrszMessAddition: .quad szMessAddition
qAdrszMessSoustraction: .quad szMessSoustraction
qAdrszMessMultiplication: .quad szMessMultiplication
qAdrszMessDivision: .quad szMessDivision
qAdrszMessReste: .quad szMessReste
qAdrsZoneConv: .quad sZoneConv
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
</syntaxhighlight>
{{Out}}
<PRE>
pi@debian-buster-64:~/asm64/rosetta/asm3 $ arith64 101 25
Addition resultat : +126
soustraction :resultat : +76
multiplication :resultat : +2525
division :resultat : +4
remainder :resultat : +1
</PRE>
 
=={{header|ABAP}}==
<langsyntaxhighlight ABAPlang="abap">report zz_arithmetic no standard page heading.
 
" Read in the two numbers from the user.
Line 114 ⟶ 368:
write: / 'Integer quotient:', lv_result. " Truncated towards zero.
lv_result = p_first mod p_second.
write: / 'Remainder:', lv_result.</langsyntaxhighlight>
 
=={{header|ACL2}}==
<syntaxhighlight lang="lisp">
<lang Lisp>
:set-state-ok t
 
Line 137 ⟶ 391:
(cw "Product: ~x0~%" (* a b))
(cw "Quotient: ~x0~%" (floor a b))
(cw "Remainder: ~x0~%" (mod a b))))))</langsyntaxhighlight>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">DEFINE NO_KEY="255"
DEFINE KEY_Y="43"
DEFINE KEY_N="35"
 
PROC Main()
BYTE CH=$02FC ;Internal hardware value for last key pressed
BYTE k
INT a,b
 
DO
Print("Input integer value a=")
a=InputI()
Print("Input integer value b=")
b=InputI()
 
PrintF("a+b=%I%E",a+b)
PrintF("a-b=%I%E",a-b)
PrintF("a*b=%I%E",a*b)
PrintF("a/b=%I%E",a/b)
PrintF("a MOD b=%I%E",a MOD b)
PutE()
PrintE("Again? (Y/N)")
 
CH=NO_KEY ;Flush the keyboard
DO
k=CH
UNTIL k=KEY_Y OR k=KEY_N
OD
CH=NO_KEY ;Flush the keyboard
 
IF k=KEY_N THEN
EXIT
FI
OD
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Arithmetic_Integer.png Screenshot from Atari 8-bit computer]
<pre>
Input integer value a=3251
Input integer value b=15
a+b=3266
a-b=3236
a*b=-16771
a/b=216
a MOD b=11
 
Again? (Y/N)
</pre>
 
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Text_Io;
with Ada.Integer_Text_IO;
 
Line 154 ⟶ 460:
Put_Line("a-b = " & Integer'Image(A - B));
Put_Line("a*b = " & Integer'Image(A * B));
Put_Line("a/b = " & Integer'Image(A / B) & ", remainder " & Integer'Image(A mod B));
Put_Line("a mod b = " & Integer'Image(A mod B)); -- Sign matches B
Put_Line("remainder of a/b = " & Integer'Image(A rem B)); -- Sign matches A
Put_Line("a**b = " & Integer'Image(A ** B));
 
end Integer_Arithmetic;</langsyntaxhighlight>
 
=={{header|Aikido}}==
<langsyntaxhighlight lang="aikido">var a = 0
var b = 0
stdin -> a // read int from stdin
Line 169 ⟶ 477:
println ("a*b=" + (a * b))
println ("a/b=" + (a / b))
println ("a%b=" + (a % b))</langsyntaxhighlight>
 
=={{header|ALGOL 68}}==
Line 176 ⟶ 484:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<langsyntaxhighlight lang="algol68">main:(
LONG INT a=355, b=113;
printf(($"a PLUS b = a+b = "gl$, a + b));
printf(($"a MINUS b = a-b = "gl$, a - b));
printf(($"a TIMES b = a*b = a×b = "gl$, a * b));
printf(($"a DIV b = a/b = "gl$, a / b));
printf(($"a OVER b = a%b = a÷b = "gl$, a % b));
printf(($"a MOD b = a%*b = a%×b = a÷×b = a÷*b = "gl$, a %* b));
printf(($"a UP b = a**b = a↑b = "gl$, a ** b))
)</langsyntaxhighlight>
{{out}}
Output:
<pre>
a PLUS b = a+b = +468
a MINUS b = a-b = +242
a TIMES b = a*b = a×b = +40115
a DIV b = a/b = +3.141592920353982300884955752e +0
a OVER b = a%b = a÷b = +3
a MOD b = a%*b = a%×b = a÷×b = a÷*b = +16
a UP b = a**b = a↑b = +1.499007808785573768814747570e+288
</pre>
[[ALGOL 68R]] has the curious (and consequentlya non-standard) /'%:=' operator. This operator
is equivalent to the OVERAB operator of the revised report, except it delivers twothe INTsremainder as a result. eg.
So a '/:=' b sets a to the quotient of a%b and returns the remainder of a%b as a result (Note "%" is the division operator in Algol 68, not the modulo operator - it can also be written as OVER).
This operator must be "stropped" i.e. enclosed in single quotes. eg.
INT quotient:=355, remainder;
remainder := quotient /%:= 113;
Giving aSets quotient ofto 3, and a remainder ofto 16.
 
=={{header|ALGOL W}}==
The Algol W integer division operator (called div) truncates towards zero.<br>
The result of the modulo operator (called rem) has the sign of the first operand when the operands have different signs.
<syntaxhighlight lang="algolw">begin
integer a, b;
write( "Enter 2 integers> " );
read( a, b );
write( "a + b: ", a + b ); % addition %
write( "a - b: ", a - b ); % subtraction %
write( "a * b: ", a * b ); % multiplication %
write( "a / b: ", a div b ); % integer division %
write( "a mod b: ", a rem b ); % modulo %
% the ** operator returns a real result even with integer operands %
% ( the right-hand operand must always be an integer, the left-hand %
% operand can be integer, real or complex ) %
write( "a ^ b: ", round( a ** b ) )
end.</syntaxhighlight>
 
=={{header|AmigaE}}==
<langsyntaxhighlight lang="amigae">PROC main()
DEF a, b, t
WriteF('A = ')
Line 216 ⟶ 544:
WriteF('A*B=\d\nA/B=\d\n', Mul(a,b), Div(a,b))
WriteF('A mod B =\d\n', Mod(a,b))
ENDPROC</langsyntaxhighlight>
 
=={{header|APL}}==
<syntaxhighlight lang="apl">∇res ← integer_arithmetic; l; r
l ← ⎕
r ← ⎕
res ← 6 2 ⍴ 'sum' (l+r) 'diff' (l-r) 'prod' (l×r) 'quot' (⌊l÷r) 'rem' (r|l) 'pow' (l*r)
∇</syntaxhighlight>
 
Quotient will round down in this version.
 
=={{header|AppleScript}}==
 
<syntaxhighlight lang="applescript">set i1 to (text returned of (display dialog "Enter an integer value" default answer "")) as integer
set i2 to (text returned of (display dialog "Enter another integer value" default answer "")) as integer
 
set sum to i1 + i2
set diff to i1 - i2
set prod to i1 * i2
set quot to i1 div i2 -- Rounds towards zero.
set remainder to i1 mod i2 -- The result's sign matches the dividend's.
set exp to i1 ^ i2 -- The result's always a real.
 
return {|integers|:{i1, i2}, difference:diff, product:prod, quotient:quot, remainder:remainder, exponientiation:exp}</syntaxhighlight>
 
{{output}}
 
<syntaxhighlight lang="applescript">{|integers|:{-57, 2}, difference:-59, product:-114, quotient:-28, remainder:-1, exponientiation:3249.0}</syntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
 
/* ARM assembly Raspberry PI */
/* program arith.s */
/* Constantes */
.equ STDOUT, 1
.equ WRITE, 4
.equ EXIT, 1
 
/***********************/
/* Initialized data */
/***********************/
.data
szMessError: .asciz " Two numbers in command line please ! \n" @ message
szRetourLigne: .asciz "\n"
szMessResult: .asciz "Resultat " @ message result
sMessValeur: .fill 12, 1, ' '
.asciz "\n"
szMessAddition: .asciz "addition :"
szMessSoustraction: .asciz "soustraction :"
szMessMultiplication: .asciz "multiplication :"
szMessDivision: .asciz "division :"
szMessReste: .asciz "reste :"
/***********************/
/* No Initialized data */
/***********************/
.bss
iValeur: .skip 4 @ reserve 4 bytes in memory
 
.text
.global main
main:
push {fp,lr} @ save des 2 registres
add fp,sp,#8 @ fp <- adresse début
ldr r0,[fp] @ recup number of parameter in command line
cmp r0,#3
blt error
ldr r0,[fp,#8] @ adresse of 1er number
bl conversionAtoD
mov r3,r0
ldr r0,[fp,#12] @ adresse of 2eme number
bl conversionAtoD
mov r4,r0
@ addition
add r0,r3,r4
ldr r1,iAdrsMessValeur @ result in r0
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessAddition
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
@ soustraction
sub r0,r3,r4
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessSoustraction
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
 
@ multiplication
mul r0,r3,r4
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessMultiplication
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
@ division
mov r0,r3
mov r1,r4
bl division
mov r0,r2 @ quotient
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessDivision
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
 
mov r0,r3 @ remainder
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessReste
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
mov r0, #0 @ return code
b 100f
error:
ldr r0,iAdrszMessError
bl affichageMess @ call function with 1 parameter (r0)
mov r0, #1 @ return code
100: /* end of program */
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrsMessValeur: .int sMessValeur
iAdrszMessResult: .int szMessResult
iAdrszMessError: .int szMessError
iAdrszMessAddition: .int szMessAddition
iAdrszMessSoustraction: .int szMessSoustraction
iAdrszMessMultiplication: .int szMessMultiplication
iAdrszMessDivision: .int szMessDivision
iAdrszMessReste: .int szMessReste
/******************************************************************/
/* affichage des messages avec calcul longueur */
/******************************************************************/
/* r0 contient l adresse du message */
affichageMess:
push {fp,lr} /* save des 2 registres */
push {r0,r1,r2,r7} /* save des autres registres */
mov r2,#0 /* compteur longueur */
1: /*calcul de la longueur */
ldrb r1,[r0,r2] /* recup octet position debut + indice */
cmp r1,#0 /* si 0 c est fini */
beq 1f
add r2,r2,#1 /* sinon on ajoute 1 */
b 1b
1: /* donc ici r2 contient la longueur du message */
mov r1,r0 /* adresse du message en r1 */
mov r0,#STDOUT /* code pour écrire sur la sortie standard Linux */
mov r7, #WRITE /* code de l appel systeme 'write' */
swi #0 /* appel systeme */
pop {r0,r1,r2,r7} /* restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* retour procedure */
/***************************************************/
/* conversion registre en décimal signé */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {fp,lr} /* save des 2 registres frame et retour */
push {r0-r5} /* save autres registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5} /*restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres frame et retour */
bx lr
 
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save autres registres */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
.align 4
.Ls_magic_number_10: .word 0x66666667
/******************************************************************/
/* Conversion d une chaine en nombre stocké dans un registre */
/******************************************************************/
/* r0 contient l adresse de la zone terminée par 0 ou 0A */
conversionAtoD:
push {fp,lr} /* save des 2 registres */
push {r1-r7} /* save des autres registres */
mov r1,#0
mov r2,#10 /* facteur */
mov r3,#0 /* compteur */
mov r4,r0 /* save de l adresse dans r4 */
mov r6,#0 /* signe positif par defaut */
mov r0,#0 /* initialisation à 0 */
1: /* boucle d élimination des blancs du debut */
ldrb r5,[r4,r3] /* chargement dans r5 de l octet situé au debut + la position */
cmp r5,#0 /* fin de chaine -> fin routine */
beq 100f
cmp r5,#0x0A /* fin de chaine -> fin routine */
beq 100f
cmp r5,#' ' /* blanc au début */
bne 1f /* non on continue */
add r3,r3,#1 /* oui on boucle en avançant d un octet */
b 1b
1:
cmp r5,#'-' /* premier caracteres est - */
moveq r6,#1 /* maj du registre r6 avec 1 */
beq 3f /* puis on avance à la position suivante */
2: /* debut de boucle de traitement des chiffres */
cmp r5,#'0' /* caractere n est pas un chiffre */
blt 3f
cmp r5,#'9' /* caractere n est pas un chiffre */
bgt 3f
/* caractère est un chiffre */
sub r5,#48
ldr r1,iMaxi /*verifier le dépassement du registre */
cmp r0,r1
bgt 99f
mul r0,r2,r0 /* multiplier par facteur */
add r0,r5 /* ajout à r0 */
3:
add r3,r3,#1 /* avance à la position suivante */
ldrb r5,[r4,r3] /* chargement de l octet */
cmp r5,#0 /* fin de chaine -> fin routine */
beq 4f
cmp r5,#10 /* fin de chaine -> fin routine */
beq 4f
b 2b /* boucler */
4:
cmp r6,#1 /* test du registre r6 pour le signe */
bne 100f
mov r1,#-1
mul r0,r1,r0 /* si negatif, on multiplie par -1 */
b 100f
99: /* erreur de dépassement */
ldr r1,=szMessErrDep
bl afficheerreur
mov r0,#0 /* en cas d erreur on retourne toujours zero */
100:
pop {r1-r7} /* restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* retour procedure */
/* constante programme */
iMaxi: .int 1073741824
szMessErrDep: .asciz "Nombre trop grand : dépassement de capacite de 32 bits. :\n"
.align 4
/*=============================================*/
/* division entiere non signée */
/*============================================*/
division:
/* r0 contains N */
/* r1 contains D */
/* r2 contains Q */
/* r3 contains R */
push {r4, lr}
mov r2, #0 /* r2 ? 0 */
mov r3, #0 /* r3 ? 0 */
mov r4, #32 /* r4 ? 32 */
b 2f
1:
movs r0, r0, LSL #1 /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */
adc r3, r3, r3 /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */
cmp r3, r1 /* compute r3 - r1 and update cpsr */
subhs r3, r3, r1 /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */
adc r2, r2, r2 /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */
2:
subs r4, r4, #1 /* r4 ? r4 - 1 */
bpl 1b /* if r4 >= 0 (N=0) then branch to .Lloop1 */
pop {r4, lr}
bx lr
 
 
</syntaxhighlight>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">a: to :integer input "give me the first number : "
b: to :integer input "give me the second number : "
 
print [a "+" b "=" a+b]
print [a "-" b "=" a-b]
print [a "*" b "=" a*b]
print [a "/" b "=" a/b]
print [a "%" b "=" a%b]
print [a "^" b "=" a^b]</syntaxhighlight>
 
{{out}}
 
<pre>give me the first number : 33
give me the second number : 6
33 + 6 = 39
33 - 6 = 27
33 * 6 = 198
33 / 6 = 5
33 % 6 = 3
33 ^ 6 = 12914679699</pre>
 
 
=={{header|Asymptote}}==
<syntaxhighlight lang="asymptote">int a = -12;
int b = 7;
 
int suma = a + b;
int resta = a - b;
int producto = a * b;
real division = a / b;
int resto = a % b;
int expo = a ** b;
 
write("Siendo dos enteros a = -12 y b = 7");
write(" suma de a + b = ", suma);
write(" resta de a - b = ", resta);
write(" producto de a * b = ", producto);
write(" división de a / b = ", division);
write(" resto de a mod b = ", resto);
write("exponenciación a ^ b = ", expo);</syntaxhighlight>
 
=={{header|AutoHotkey}}==
The quotient rounds towards 0 if both inputs are integers or towards negative infinity if either input is floating point. The sign of the remainder is always the same as the sign of the first parameter (dividend).
<langsyntaxhighlight lang="autohotkey">Gui, Add, Edit, va, 5
Gui, Add, Edit, vb, -3
Gui, Add, Button, Default, Compute
Line 238 ⟶ 931:
; fallthrough
GuiClose:
ExitApp</langsyntaxhighlight>
 
=={{header|Avail}}==
<syntaxhighlight lang="avail">Method "arithmetic demo_,_" is
[
a : integer,
b : integer
|
Print: “a + b”;
Print: “a - b”;
Print: “a × b”; // or a * b
Print: “a ÷ b”; // or a / b, rounds toward negative infinity
Print: “a mod b”; // sign matches second argument
Print: “a ^ b”;
];
</syntaxhighlight>
 
=={{header|AWK}}==
<langsyntaxhighlight lang="awk">/^[ \t]*-?[0-9]+[ \t]+-?[0-9]+[ \t]*$/ {
print "add:", $1 + $2
print "sub:", $1 - $2
Line 248 ⟶ 956:
print "mod:", $1 % $2 # same sign as first operand
print "exp:", $1 ^ $2
exit }</langsyntaxhighlight>
 
For division and modulus, Awk should act like C.
Line 255 ⟶ 963:
 
=={{header|BASIC}}==
==={{header|Applesoft BASIC}}===
Same code as [[#Commodore_BASIC|Commodore BASIC]]
==={{header|BaCon}}===
<syntaxhighlight lang="freebasic">' Arthimetic/Integer
DECLARE a%, b%
INPUT "Enter integer A: ", a%
INPUT "Enter integer B: ", b%
PRINT
 
PRINT a%, " + ", b%, " is ", a% + b%
PRINT a%, " - ", b%, " is ", a% - b%
PRINT a%, " * ", b%, " is ", a% * b%
PRINT a%, " / ", b%, " is ", a% / b%, ", trucation toward zero"
PRINT "MOD(", a%, ", ", b%, ") is ", MOD(a%, b%), ", same sign as first operand"
PRINT "POW(", a%, ", ", b%, ") is ", INT(POW(a%, b%))</syntaxhighlight>
 
==={{header|Chipmunk Basic}}===
{{works with|Chipmunk Basic|3.6.4}}
<syntaxhighlight lang="qbasic">10 input "Enter two integers separated by a comma: ";a,b
20 print " Sum: ";a+b
30 print "Difference: ";a-b
40 print " Product: ";a*b
50 print " Quontent: ";int(a/b)
60 print " Remainder: ";a mod b
70 print " Power: ";a^b</syntaxhighlight>
 
==={{header|Commodore BASIC}}===
<syntaxhighlight lang="basic">10 INPUT "ENTER A NUMBER"; A%
20 INPUT "ENTER ANOTHER NUMBER"; B%
30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
60 PRINT "INTEGER DIVISION:";A%;"/";B%;"=";INT(A%/B%)
70 PRINT "REMAINDER OR MODULO:";A%;"%";B%;"=";A%-INT(A%/B%)*B%
80 PRINT "POWER:";A%;"^";B%;"=";A%^B%</syntaxhighlight>
 
==={{header|GW-BASIC}}===
{{works with|PC-BASIC|any}}
{{works with|BASICA}}
<syntaxhighlight lang="qbasic">10 INPUT "Enter two integers separated by a comma: ";A, B
20 PRINT " Sum:"; A + B
30 PRINT "Difference:"; A - B
40 PRINT " Product:"; A * B
50 PRINT " Quontent:"; A \ B
60 PRINT " Remainder:"; A MOD B
70 PRINT " Power:"; A ^ B</syntaxhighlight>
 
==={{header|Minimal BASIC}}===
<syntaxhighlight lang="qbasic">10 PRINT "ENTER A INTEGER"
20 INPUT A
30 PRINT "ENTER ANOTHER INTEGER"
40 INPUT B
50 PRINT " SUM: "; A + B
60 PRINT "DIFFERENCE: "; A - B
70 PRINT " PRODUCT: "; A * B
80 PRINT " QUONTENT: "; INT(A / B)
90 PRINT " REMAINDER: "; A - INT(A / B ) * B
100 PRINT " POWER:"; A ^ B
110 END</syntaxhighlight>
 
==={{header|MSX Basic}}===
{{works with|MSX BASIC|any}}
<syntaxhighlight lang="qbasic">10 INPUT "Enter two integers separated by a comma: ";A, B
20 PRINT " Sum:"; A + B
30 PRINT "Difference:"; A - B
40 PRINT " Product:"; A * B
50 PRINT " Quontent:"; A \ B
60 PRINT " Remainder:"; A MOD B
70 PRINT " Power:"; A ^ B</syntaxhighlight>
 
==={{header|Quite BASIC}}===
<syntaxhighlight lang="qbasic">10 INPUT "enter a integer"; A
20 INPUT "enter another integer"; B
30 PRINT " Sum: "; A + B
40 PRINT "Difference: "; A - B
50 PRINT " Product: "; A * B
60 PRINT " Quontent: "; INT(A / B)
70 PRINT " Remainder: "; A - INT(A / B ) * B</syntaxhighlight>
 
==={{Header|Tiny BASIC}}===
<syntaxhighlight lang="Tiny BASIC"> LET A = 5
LET B = 3
PRINT "A = ", A, ", B = ", B
PRINT ""
PRINT A," + ",B," = ", A+B
PRINT A," - ",B," = ", A-B
PRINT A," * ",B," = ", A*B
PRINT A," / ",B," = ", A/B
PRINT A," % ",B," = ", A-(A/B)*B
REM Exponent calculation
LET X = 1
LET E = 0
10 IF X >= B THEN GOTO 30
LET T = E
IF E < A THEN LET E = A*A
IF T < A THEN GOTO 20
IF E >= A THEN LET E = E*A
20 LET X = X+1
GOTO 10
30 PRINT A," ^ ",B," = ", E
END</syntaxhighlight>
 
==={{header|True BASIC}}===
<syntaxhighlight lang="basic">
! RosettaCode: Integer Arithmetic
! True BASIC v6.007
! Translated from BaCon example.
PROGRAM Integer_Arithmetic
INPUT PROMPT "Enter integer A: ": a
INPUT PROMPT "Enter integer B: ": b
PRINT
PRINT a;" + ";b;" is ";a+b
PRINT a;" - ";b;" is ";a-b
PRINT a;" * ";b;" is ";a*b
PRINT a;" / ";b;" is ";INT(a/b);
PRINT "MOD(";a;", ";b;") is "; MOD(a,b)
PRINT "POW(";a;", ";b;") is ";INT(a^b)
GET KEY done
END</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|QuickBasic|4.5}}
<langsyntaxhighlight lang="qbasic">function math(a!, b!)
print a + b
print a - b
Line 262 ⟶ 1,091:
print a / b
print a mod b
end function</langsyntaxhighlight>
Truncate towards: 0
 
Remainder sign matches: first operand
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "IntegerArithmetic"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
a$ = INLINE$("Enter integer A: ")
a = SLONG(a$)
b$ = INLINE$("Enter integer B: ")
b = SLONG(b$)
PRINT
PRINT " Sum:"; a + b
PRINT "Difference:"; a - b
PRINT " Product:"; a * b
PRINT " Quontent:"; a / b
PRINT " Remainder:"; a MOD b
PRINT " Power:"; a ** b
END FUNCTION
END PROGRAM</syntaxhighlight>
 
=={{header|BASIC256}}==
<syntaxhighlight lang="basic256">
<lang BASIC256>
input "enter a number ?", a
input "enter another number ?", b
Line 278 ⟶ 1,129:
print "remainder or modulo " + a + " % " + b + " = " + (a % b)
print "power " + a + " ^ " + b + " = " + (a ^ b)
</syntaxhighlight>
</lang>
 
=={{header|Batch File}}==
{{works with|Windows NT7|4 or later, (includeshaven't Windowschecked XPearlier and onward)versions}}
<langsyntaxhighlight lang="dos">
set /p equation=
@echo off
set /Pa Aresult=Enter 1st Number :%equation%
echo %result%
set /P B=Enter 2nd Number :
pause
set D=%A% + %B% & call :printC
</syntaxhighlight>
set D=%A% - %B% & call :printC
set D=%A% * %B% & call :printC
set D=%A% / %B% & call :printC & rem truncates toward 0
set D=%A% %% %B% & call :printC & rem matches sign of 1st operand
exit /b
 
:printC
set /A C=%D%
echo %D% = %C%
</lang>
 
=={{header|BBC BASIC}}==
<langsyntaxhighlight lang="bbcbasic"> INPUT "Enter the first integer: " first%
INPUT "Enter the second integer: " second%
Line 307 ⟶ 1,149:
PRINT "The integer quotient is " ; first% DIV second% " (rounds towards 0)"
PRINT "The remainder is " ; first% MOD second% " (sign matches first operand)"
PRINT "The first raised to the power of the second is " ; first% ^ second%</langsyntaxhighlight>
 
=={{header|bc}}==
<langsyntaxhighlight lang="bc">define f(a, b) {
"add: "; a + b
"sub: "; a - b
Line 317 ⟶ 1,159:
"mod: "; a % b /* same sign as first operand */
"pow: "; a ^ b
}</langsyntaxhighlight>
 
=={{header|Befunge}}==
<langsyntaxhighlight lang="befunge">&&00p"=A",,:."=B ",,,00g.55+,v
v,+55.+g00:,,,,"A+B="<
>"=B-A",,,,:00g-.55+,v
v,+55.*g00:,,,,"A*B="<
>"=B/A",,,,:00g/.55+,v
@,+55.%g00,,,,"A%B="<</langsyntaxhighlight>
 
=={{header|BQN}}==
<pre>•Out "Enter number 1: "
a ← •BQN •GetLine @
•Out "Enter number 2: "
b ← •BQN •GetLine @
 
•Show a + b
•Show a - b
•Show a × b
•Show a ÷ b
•Show b | a
•Show a ⋆ b</pre>
<pre>Enter number 1:
12
Enter number 2:
2
14
10
24
6
0
144</pre>
 
 
=={{header|Bracmat}}==
The remainder returned by mod is non-negative. Furthermore, <code>div$(!a.!d)*!d+mod$(!a.!d):!a</code> for all integer <code>!a</code> and <code>!d</code>, <code>!d:~0</code>.
<langsyntaxhighlight Bracmatlang="bracmat"> ( enter
= put$"Enter two integer numbers, separated by space:"
& get':(~/#?k_~/#?m|quit:?k)
Line 346 ⟶ 1,212:
& out$("Exponentiation:" !k^!m)
& done;
</syntaxhighlight>
</lang>
 
=={{header|Brat}}==
Inspired by the second VBScript version.
<langsyntaxhighlight lang="brat">x = ask("First number: ").to_i
y = ask("Second number: ").to_i
 
Line 356 ⟶ 1,222:
#Remainder uses sign of right hand side
[:+ :- :* :/ :% :^].each { op |
p "#{x} #{op} #{y} = #{x.call_method op, y}"</langsyntaxhighlight>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
Line 375 ⟶ 1,241:
printf("a%%b = %d\n", a%b); /* same sign as first operand (in C99) */
return 0;
}</langsyntaxhighlight>
 
=={{header|C++}}==
<lang cpp>#include <iostream>
 
int main()
{
int a, b;
std::cin >> a >> b;
std::cout << "a+b = " << a+b << "\n";
std::cout << "a-b = " << a-b << "\n";
std::cout << "a*b = " << a*b << "\n";
std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n";
return 0;
}</lang>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
 
class Program
Line 408 ⟶ 1,260:
Console.WriteLine("{0} to the power of {1} = {2}", a, b, Math.Pow(a, b));
}
}</langsyntaxhighlight>
{{out}}
Sample output:
<pre>5 + 3 = 8
5 - 3 = 2
Line 416 ⟶ 1,268:
5 % 3 = 2
5 to the power of 3 = 125</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <iostream>
 
int main()
{
int a, b;
std::cin >> a >> b;
std::cout << "a+b = " << a+b << "\n";
std::cout << "a-b = " << a-b << "\n";
std::cout << "a*b = " << a*b << "\n";
std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n";
return 0;
}</syntaxhighlight>
 
=={{header|Chef}}==
 
<langsyntaxhighlight Cheflang="chef">Number Soup.
 
Only reads single values.
Line 454 ⟶ 1,320:
Clean 1st mixing bowl.
 
Serves 5.</langsyntaxhighlight>
 
=={{header|Clipper}}==
<langsyntaxhighlight lang="visualfoxpro">procedure Test( a, b )
? "a+b", a + b
? "a-b", a - b
Line 467 ⟶ 1,333:
// Exponentiation is also a base arithmetic operation
? "a**b", a ** b
return</langsyntaxhighlight>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(defn myfunc []
(println "Enter x and y")
(let [x (read), y (read)]
(doseq [op '(+ - * / Math/pow rem)]
(let [exp (list op x y)]
(printf "%s=%s\n" exp (eval exp))))))</langsyntaxhighlight>
 
<pre>user=> (myfunc)
Line 490 ⟶ 1,356:
 
=={{header|COBOL}}==
<langsyntaxhighlight lang="cobol"> IDENTIFICATION DIVISION.
PROGRAM-ID. Int-Arithmetic.
 
Line 533 ⟶ 1,399:
 
GOBACK
.</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun arithmetic (&optional (a (read *query-io*)) (b (read *query-io*)))
(mapc
(lambda (op)
(format t "~a => ~a~%" (list op a b) (funcall (symbol-function op) a b)))
'(+ - * mod rem floor ceiling truncate round expt))
(values))</langsyntaxhighlight>
 
Common Lisp's integer division functions are <code>floor</code>, <code>ceiling</code>, <code>truncate</code>, and <code>round</code>. They differ in how they round their quotient.
Line 568 ⟶ 1,434:
=={{header|Component Pascal}}==
Works with Gardens Point Component Pascal
<langsyntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT CPmain,Console,RTS;
Line 597 ⟶ 1,463:
Console.WriteString("x MOD y >");Console.WriteInt(x MOD y,6);Console.WriteLn;
END Arithmetic.
</syntaxhighlight>
</lang>
command: <i>cprun Arithmetic 12 23</i><br/>
{{out}}
output:
<pre>
x + y > 35
Line 608 ⟶ 1,474:
</pre>
Works with BlackBox Component Builder
<langsyntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT StdLog,DevCommanders,TextMappers;
Line 642 ⟶ 1,508:
END Go;
END Arithmetic.
</syntaxhighlight>
</lang>
Command: Arithmetic.Go 12 23 ~ <br/>
{{out}}
Output:
<pre>
x + y > 35
Line 652 ⟶ 1,518:
x MOD y > 12
</pre>
 
=={{header|Crystal}}==
<syntaxhighlight lang="crystal">a = gets.not_nil!.to_i64
b = gets.not_nil!.to_i64
 
puts "Sum: #{a + b}"
puts "Difference: #{a - b}"
puts "Product: #{a * b}"
puts "Quotient (float division): #{a / b}" # / always returns a float.
puts "Quotient (floor division): #{a // b}"
puts "Remainder: #{a % b}" # Sign of remainder matches that of the second operand (b).
puts "Power: #{a ** b}" # Integers can only be raised to a positive exponent.
</syntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.string, std.conv;
 
void main() {
Line 669 ⟶ 1,549:
writeln("a % b = ", a % b);
writeln("a ^^ b = ", a ^^ b);
}</langsyntaxhighlight>
{{out}}
<pre>a = -16, b = 5
Line 678 ⟶ 1,558:
a % b = -1
a ^^ b = -1048576</pre>
 
===Shorter Version===
Same output.
<langsyntaxhighlight lang="d">import std.stdio, std.string, std.conv, std.typetuplemeta;
 
void main() {
Line 690 ⟶ 1,571:
writeln("a = ", a, ", b = ", b);
 
foreach (op; TypeTupleAliasSeq!("+", "-", "*", "/", "%", "^^"))
mixin(`writeln("a ` ~ op ~ ` b = ", a` ~ op ~ `b);`);
}</langsyntaxhighlight>
Division and modulus are defined as in C99.
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:io';
import 'dart:math' show pow;
 
void main() {
print('enter a integer: ');
int a = int.parse(stdin.readLineSync());
print('enter another integer: ');
int b = int.parse(stdin.readLineSync());
 
print('a + b = ${a + b}');
print('a - b = ${a - b}');
print('a * b = ${a * b}');
print('a / b = ${a ~/ b}');
print('a % b = ${a % b}');
print('a ^ b = ${pow(a, b)}');
 
//Integer division uses the '~/' operator
}</syntaxhighlight>
 
=={{header|dc}}==
<langsyntaxhighlight lang="dc">[Enter 2 integers on 1 line.
Use whitespace to separate. Example: 2 3
Use underscore for negative integers. Example: _10
Line 705 ⟶ 1,606:
[div: ]P la lb / p sz [truncates toward zero]sz
[mod: ]P la lb % p sz [sign matches first operand]sz
[pow: ]P la lb ^ p sz</langsyntaxhighlight>
 
=={{header|DCL}}==
<syntaxhighlight lang="dcl">$ inquire a "Enter first number"
$ a = f$integer( a )
$ inquire b "Enter second number"
$ b = f$integer( b )
$ write sys$output "a + b = ", a + b
$ write sys$output "a - b = ", a - b
$ write sys$output "a * b = ", a * b
$ write sys$output "a / b = ", a / b ! truncates down</syntaxhighlight>
{{out}}
<pre>$ @arithmetic_integer
Enter first number: 2
Enter second number: 5
a + b = 7
a - b = -3
a * b = 10
a / b = 0
$ @arithmetic_integer
Enter first number: -5
Enter second number: -2
a + b = -7
a - b = -3
a * b = 10
a / b = 2</pre>
 
=={{header|Delphi}}==
<langsyntaxhighlight Delphilang="delphi">program IntegerArithmetic;
 
{$APPTYPE CONSOLE}
Line 726 ⟶ 1,652:
WriteLn(Format('%d %% %d = %d', [a, b, a mod b])); // matches sign of the first operand
WriteLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));
end.</langsyntaxhighlight>
 
=={{header|DWScript}}==
<langsyntaxhighlight lang="delphi">var a := StrToInt(ParamStr(0));
var b := StrToInt(ParamStr(1));
 
Line 737 ⟶ 1,663:
PrintLn(Format('%d / %d = %d', [a, b, a div b]));
PrintLn(Format('%d mod %d = %d', [a, b, a mod b]));
PrintLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));</langsyntaxhighlight>
 
=={{header|Dyalect}}==
 
{{trans|Swift}}
 
Dyalect has no operator for exponential.
 
<syntaxhighlight lang="dyalect">let a = 6
let b = 4
print("sum = \(a+b)")
print("difference = \(a-b)")
print("product = \(a*b)")
print("Integer quotient = \(a/b)")
print("Remainder = \(a%b)")</syntaxhighlight>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def arithmetic(a :int, b :int) {
return `$\
Sum: ${a + b}
Line 748 ⟶ 1,689:
Quotient: ${a // b}
Remainder: ${a % b}$\n`
}</langsyntaxhighlight>
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="text">a = number input
b = number input
print a + b
print a - b
print a * b
print a div b
print a mod b
print pow a b</syntaxhighlight>
 
=={{header|ECL}}==
<syntaxhighlight lang="ecl">
<lang ECL>
ArithmeticDemo(INTEGER A,INTEGER B) := FUNCTION
ADDit := A + B;
Line 783 ⟶ 1,735:
This default behavior can be changed
*/
</syntaxhighlight>
</lang>
 
=={{header|Efene}}==
 
<langsyntaxhighlight lang="efene">@public
run = fn () {
 
Line 801 ⟶ 1,753:
io.format("Quotient: ~p~n", [A / B])
io.format("Remainder: ~p~n", [A % B])
}</langsyntaxhighlight>
 
=={{header|Eiffel}}==
{{works with|SmartEiffel|2.4}}
In a file called main.e:
<langsyntaxhighlight lang="eiffel">class MAIN
creation make
feature make is
Line 834 ⟶ 1,786:
print("%N");
end
end</langsyntaxhighlight>
Note that there actually is a builtin modulo operator (\\). However, it seems impossible to use that instruction with SmartEiffel.
 
=={{header|Elena}}==
ELENA 6.x :
<lang elena>#define system.
#define<syntaxhighlight lang="elena">import system'math.;
#defineimport extensions.;
 
public program()
// --- Program ---
{
var a := console.loadLineTo(new Integer());
var b := console.loadLineTo(new Integer());
console.printLine(a," + ",b," = ",a + b);
console.printLine(a," - ",b," = ",a - b);
console.printLine(a," * ",b," = ",a * b);
console.printLine(a," / ",b," = ",a / b); // truncates towards 0
console.printLine(a," % ",b," = ",a.mod(b)); // matches sign of first operand
console.printLine(a," ^ ",b," = ",a ^ b);
}</syntaxhighlight>
 
=={{header|Elixir}}==
#symbol program =
{{works with|Elixir|1.4}}
[
<syntaxhighlight lang="elixir">defmodule Arithmetic_Integer do
#var(type:int) a := consoleEx readLine:(Integer new) int.
# Function to remove line breaks and convert string to int
#var(type:int)b := consoleEx readLine:(Integer new) int.
defp get_int(msg) do
IO.gets(msg) |> String.strip |> String.to_integer
end
def task do
# Get user input
a = get_int("Enter your first integer: ")
b = get_int("Enter your second integer: ")
IO.puts "Elixir Integer Arithmetic:\n"
consoleEx writeLine:a:" + ": b:" = ":(a + b).
consoleExIO.puts writeLine"Sum:a:" - ": b:" = ":( #{a -+ b).}"
consoleExIO.puts writeLine"Difference:a:" * ": b:" = ":(#{a *- b).}"
consoleEx writeLine:a:" /IO.puts "Product: b:" = ":(a / b). //#{a truncates* towards 0b}"
IO.puts "True Division: #{a / b}" # Float
consoleEx writeLine:a:" %% ":b:" = ":(a mod:b). // matches sign of first operand
IO.puts "Division: #{div(a,b)}" # Truncated Towards 0
].</lang>
IO.puts "Floor Division: #{Integer.floor_div(a,b)}" # floored integer division
IO.puts "Remainder: #{rem(a,b)}" # Sign from first digit
IO.puts "Modulo: #{Integer.mod(a,b)}" # modulo remainder (uses floored division)
IO.puts "Exponent: #{:math.pow(a,b)}" # Float, using Erlang's :math
end
end
 
Arithmetic_Integer.task</syntaxhighlight>
 
{{out}}
<pre style="height: 80ex; overflow: scroll">
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: 3
Elixir Integer Arithmetic:
 
Sum: 10
Difference: 4
Product: 21
True Division: 2.3333333333333335
Division: 2
Floor Division: 2
Remainder: 1
Modulo: 1
Exponent: 343.0
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: 3
Elixir Integer Arithmetic:
 
Sum: -4
Difference: -10
Product: -21
True Division: -2.3333333333333335
Division: -2
Floor Division: -3
Remainder: -1
Modulo: 2
Exponent: -343.0
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: -3
Elixir Integer Arithmetic:
 
Sum: 4
Difference: 10
Product: -21
True Division: -2.3333333333333335
Division: -2
Floor Division: -3
Remainder: 1
Modulo: -2
Exponent: 0.0029154518950437317
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: -3
Elixir Integer Arithmetic:
 
Sum: -10
Difference: -4
Product: 21
True Division: 2.3333333333333335
Division: 2
Floor Division: 2
Remainder: -1
Modulo: -1
Exponent: -0.0029154518950437317
</pre>
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
^|EMal has no divmod operator or built-in function,
|its interface can be easily emulated as shown below.
|The performace is worse than using / and % operators.
|^
fun divmod = Pair by int dividend, int divisor
Pair result = int%int().named("quotient", "remainder")
result.quotient = dividend / divisor
result.remainder = dividend % divisor
return result
end
fun main = int by List args
int a, b
if args.length == 2
a = int!args[0]
b = int!args[1]
else
a = ask(int, "first number: ")
b = ask(int, "second number: ")
end
writeLine("sum: " + (a + b))
writeLine("difference: " + (a - b))
writeLine("product: " + (a * b))
writeLine("integer quotient: " + (a / b)) # truncates towards 0
writeLine("remainder: " + (a % b)) # matches sign of first operand
writeLine("exponentiation: " + (a ** b))
writeLine("logarithm: " + (a // b))
writeLine("divmod: " + divmod(a, b))
return 0
end
exit main(Runtime.args)
</syntaxhighlight>
{{out}}
<pre>
emal.exe Org\RosettaCode\AritmeticInteger.emal
first number: 19
second number: 7
sum: 26
difference: 12
product: 133
integer quotient: 2
remainder: 5
exponentiation: 893871739
logarithm: 2
divmod: [2,5]
</pre>
 
=={{header|Emojicode}}==
<syntaxhighlight lang="emojicode">🏁🍇
🍺🔢🆕🔡▶️👂🏼❗ 10❗️ ➡️ x 💭 Get first number
🍺🔢🆕🔡▶️👂🏼❗ 10❗️ ➡️ y 💭 Get second number
😀 🔤Sum: 🧲x➕y🧲🔤 ❗
😀 🔤Difference: 🧲x➖y🧲🔤 ❗
😀 🔤Product: 🧲x✖️y🧲🔤 ❗
😀 🔤Quotient: 🧲x➗️y🧲🔤 ❗ 💭 Rounds towards 0
😀 🔤Remainder: 🧲x🚮️y🧲🔤 ❗ 💭 Matches sign of first operand
🍉️</syntaxhighlight>
 
=={{header|Erlang}}==
<langsyntaxhighlight lang="erlang">% Implemented by Arjun Sunel
-module(arith).
-export([start/0]).
Line 871 ⟶ 1,972:
halt()
end.
</syntaxhighlight>
</lang>
 
=={{header|ERRE}}==
<syntaxhighlight lang="text">
PROGRAM INTEGER_ARITHMETIC
 
Line 894 ⟶ 1,995:
PRINT("Power ";A;"^";B;"=";(A^B))
END PROGRAM
</syntaxhighlight>
</lang>
{{out}}
<pre>Enter a number ? 12
Line 912 ⟶ 2,013:
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">include get.e
 
integer a,b
Line 924 ⟶ 2,025:
printf(1,"a / b = %g\n", a/b) -- does not truncate
printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand
printf(1,"power(a,b) = %g\n", power(a,b))</langsyntaxhighlight>
 
{{out}}
Output:
<pre>a = 2
b = 3
Line 935 ⟶ 2,036:
remainder(a,b) = 2
power(a,b) = 8</pre>
 
=={{header|Excel}}==
 
If the numbers are typed into cells A1 and B1
 
For sum, type in C1
<syntaxhighlight lang="excel">
=$A1+$B1
</syntaxhighlight>
 
For difference, type in D1
<syntaxhighlight lang="excel">
=$A1-$B1
</syntaxhighlight>
 
For product, type in E1
<syntaxhighlight lang="excel">
=$A1*$B1
</syntaxhighlight>
 
For quotient, type in F1
<syntaxhighlight lang="excel">
=QUOTIENT($A1,$B1)
</syntaxhighlight>
 
For remainder, type in G1
<syntaxhighlight lang="excel">
=MOD($A1,$B1)
</syntaxhighlight>
 
For exponentiation, type in H1
<syntaxhighlight lang="excel">
=$A1^$B1
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result:
<syntaxhighlight lang="fsharp">
do
let a, b = int Sys.argv.[1], int Sys.argv.[2]
for str, f in ["+", ( + ); "-", ( - ); "*", ( * ); "/", ( / ); "%", ( % )] do
printf "%d %s %d = %d\n" a str b (f a b)
</syntaxhighlight>
For example, the output with the arguments 4 and 3 is:
<syntaxhighlight lang="fsharp">
4 + 3 = 7
4 - 3 = 1
4 * 3 = 12
4 / 3 = 1
4 % 3 = 1
</syntaxhighlight>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: combinators io kernel math math.functions math.order
math.parser prettyprint ;
 
Line 953 ⟶ 2,105:
[ gcd "gcd: " write . drop ]
[ lcm "lcm: " write . ]
} 2cleave</langsyntaxhighlight>
 
{{out}}
output:
<pre>a=8
 
<lang factor>a=8
b=12
sum: 20
Line 969 ⟶ 2,120:
minimum: 8
gcd: 4
lcm: 24</langpre>
 
This example illustrates the use of cleave and apply combinators to alleviate the usage of shuffle words in a concatenative language. bi@ applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs.
bi@ applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs.
 
=={{header|FALSE}}==
<langsyntaxhighlight lang="false">12 7
\$@$@$@$@$@$@$@$@$@$@\ { 6 copies }
"sum = "+."
Line 981 ⟶ 2,133:
quotient = "/."
modulus = "/*-."
"</langsyntaxhighlight>
 
=={{header|Fermat}}==
Integer division rounds towards zero; remainders are always positive regardless of the signs of the numbers.
<syntaxhighlight lang="fermat">
?a;
?b;
!!('Sum: a+b=',a+b);
!!('Difference: a-b=',a-b);
!!('Product: a*b=',a*b);
!!('Integer quotient: a\b=',a\b);
!!('Remainder: a|b=',a|b);
!!('Exponentiation: a^b=',a^b);
</syntaxhighlight>
{{out}}<pre>
>a := 64
>b := -5
Sum: a+b= 59
Difference: a-b= 69
Product: a*b= -320
Integer quotient: a\b= -12
Remainder: a|b= 4
Exponentiation: a^b= 1 / 1073741824
</pre>
 
=={{header|Forth}}==
To keep the example simple, the word takes the two numbers from the stack. '''/mod''' returns two results; the stack effect is ( a b -- a%b a/b ).
<langsyntaxhighlight lang="forth">: arithmetic ( a b -- )
cr ." a=" over . ." b=" dup .
cr ." a+b=" 2dup + .
Line 991 ⟶ 2,166:
cr ." a*b=" 2dup * .
cr ." a/b=" /mod .
cr ." a mod b = " . cr ;</langsyntaxhighlight>
 
Different host systems have different native signed division behavior. ANS Forth defines two primitive double-precision signed division operations, from which the implementation may choose the most natural to implement the basic divide operations ( / , /mod , mod , */ ). This is partly due to differing specifications in the two previous standards, Forth-79 and Forth-83.
 
<langsyntaxhighlight lang="forth">FM/MOD ( d n -- mod div ) \ floored
SM/REM ( d n -- rem div ) \ symmetric
M* ( n n -- d )</langsyntaxhighlight>
 
In addition, there are unsigned variants.
 
<langsyntaxhighlight lang="forth">UM/MOD ( ud u -- umod udiv )
UM* ( u u -- ud )</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ANSI FORTRAN 77 or later:
<langsyntaxhighlight lang="fortran"> INTEGER A, B
PRINT *, 'Type in two integer numbers separated by white space',
+ ' and press ENTER'
Line 1,019 ⟶ 2,194:
+ 'exponentiation is an intrinsic op in Fortran, so...'
PRINT *, ' A ** B = ', (A ** B)
END</langsyntaxhighlight>
 
=={{header|F_Sharp|F#FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result:
<lang fsharp>
do
let a, b = int Sys.argv.[1], int Sys.argv.[2]
for str, f in ["+", ( + ); "-", ( - ); "*", ( * ); "/", ( / ); "%", ( % )] do
printf "%d %s %d = %d\n" a str b (f a b)
</lang>
For example, the output with the arguments 4 and 3 is:
<lang fsharp>
4 + 3 = 7
4 - 3 = 1
4 * 3 = 12
4 / 3 = 1
4 % 3 = 1
</lang>
 
Dim As Integer i, j
Input "Enter two integers separated by a comma"; i, j
Print i;" + "; j; " = "; i + j
Print i;" - "; j; " = "; i - j
Print i;" * "; j; " = "; i * j
Print i;" / "; j; " = "; i \ j
Print i;" % "; j; " = "; i Mod j
Print i;" ^ "; j; " = "; i ^ j
Sleep
 
' Integer division (for which FB uses the '\' operator) rounds towards zero
 
' Remainder (for which FB uses the Mod operator) will, if non-zero, match the sign
' of the first operand</syntaxhighlight>
 
Sample input and output:-
{{out}}
<pre>
Enter two integers separated by a comma? -12, 7
-12 + 7 = -5
-12 - 7 = -19
-12 * 7 = -84
-12 / 7 = -1
-12 % 7 = -5
-12 ^ 7 = -35831808
</pre>
 
=={{header|friendly interactive shell}}==
<langsyntaxhighlight lang="fishshell">
read a
read b
Line 1,049 ⟶ 2,236:
echo 'a % b =' (math "$a % $b") # Remainder
echo 'a ^ b =' (math "$a ^ $b") # Exponentation
</syntaxhighlight>
</lang>
 
=={{header|Frink}}==
This demonstrates normal division (which produces rational numbers when possible), <CODE>div</CODE>, and <CODE>mod</CODE>. <CODE>div</CODE> rounds toward negative infinity (defined as <CODE>floor[x/y]</CODE>). <CODE>mod</CODE> uses the sign of the second number (defined as <CODE>x - y * floor[x/y]</CODE>). All operators automatically produce big integers or exact rational numbers when necessary.
<langsyntaxhighlight lang="frink">
[a,b] = input["Enter numbers",["a","b"]]
ops=["+", "-", "*", "/", "div" ,"mod" ,"^"]
Line 1,061 ⟶ 2,248:
println["$str = " + eval[str]]
}
</syntaxhighlight>
</lang>
 
{{out}}
Output is:
<langsyntaxhighlight lang="frink">
10 + 20 = 30
10 - 20 = -10
Line 1,072 ⟶ 2,259:
10 mod 20 = 10
10 ^ 20 = 100000000000000000000
</syntaxhighlight>
</lang>
 
=={{header|FutureBasic}}==
Basic program
<syntaxhighlight lang="futurebasic">
window 1, @"Integer Arithmetic", ( 0, 0, 400, 300 )
 
NSInteger a = 25
NSInteger b = 53
 
print "addition "a" + "b" = " (a + b)
print "subtraction "a" - "b" = " (a - b)
print "multiplication "a" * "b" = " (a * b)
print "division "a" / "b" = " (a / b)
printf @"float division %ld / %ld = %f", a, b, (float)a / (float)b
print "modulo "a" % "b" = " (a mod b)
print "power "a" ^ "b" = " (a ^ b)
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
addition: 25 + 53 = 78
subtraction: 25 - 53 = -28
multiplication: 25 * 53 = 1325
division: 25 / 53 = 0
float division: 25 / 53 = 0.471698
modulo: 25 mod 53 = 25
power: 25 ^ 53 = 1.232595e+74
</pre>
 
Standalone Intel, M1, M2 Macintosh application with user input
<syntaxhighlight lang="futurebasic">
 
_window = 1
begin enum 1
_int1Label
_int1Field
_int2Label
_int2Field
_calcResults
_calcBtn
end enum
 
void local fn BuildWindow
CGRect r
 
r = fn CGRectMake( 0, 0, 480, 360 )
window _window, @"Integer Arithmetic", r, NSWindowStyleMaskTitled + NSWindowStyleMaskClosable + NSWindowStyleMaskMiniaturizable
 
r = fn CGRectMake( 240, 320, 150, 24 )
textlabel _int1Label, @"Enter first integer:", r, _window
ControlSetAlignment( _int1Label, NSTextAlignmentRight )
r = fn CGRectMake( 400, 322, 60, 24 )
textfield _int1Field, YES, @"25", r, _window
ControlSetAlignment( _int1Field, NSTextAlignmentCenter )
ControlSetUsesSingleLineMode( _int1Field, YES )
ControlSetFormat( _int1Field, @"0123456789-", YES, 5, NULL )
 
r = fn CGRectMake( 240, 290, 150, 24 )
textlabel _int2Label, @"Enter second integer:", r, _window
ControlSetAlignment( _int2Label, NSTextAlignmentRight )
r = fn CGRectMake( 400, 292, 60, 24 )
textfield _int2Field, YES, @"53", r, _window
ControlSetAlignment( _int2Field, NSTextAlignmentCenter )
ControlSetUsesSingleLineMode( _int2Field, YES )
ControlSetFormat( _int2Field, @"0123456789-", YES, 5, NULL )
 
r = fn CGRectMake( 50, 60, 380, 200 )
textview _calcResults, r,,, _window
TextViewSetTextContainerInset( _calcResults, fn CGSizeMake( 10, 20 ) )
TextSetFontWithName( _calcResults, @"Menlo", 13.0 )
TextViewSetEditable( _calcResults, NO )
 
r = fn CGRectMake( 370, 13, 100, 32 )
button _calcBtn,,, @"Calculate", r
end fn
 
local fn PerformCalculations
CFStringRef tempStr
 
NSInteger i1 = fn ControlIntegerValue( _int1Field )
NSInteger i2 = fn ControlIntegerValue( _int2Field )
 
CFMutableStringRef mutStr = fn MutableStringWithCapacity( 0 )
 
// Display inout integers
tempStr = fn StringWithFormat( @"Number 1: %ld\nNumber 2: %ld\n\n", i1, i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Add
tempStr = fn StringWithFormat( @"Addition: %ld + %ld = %ld\n", i1, i2, i1 + i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Subtract
tempStr = fn StringWithFormat( @"Subtraction: %ld - %ld = %ld\n", i1, i2, i1 - i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Multiply
tempStr = fn StringWithFormat( @"Multiplication: %ld * %ld = %ld\n", i1, i2, i1 * i2 )
MutableStringAppendString( mutStr, tempStr )
 
if ( i2 != 0 )
 
// Divide
tempStr = fn StringWithFormat( @"Integer Division: %ld / %ld = %ld\n", i1, i2, i1 / i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Float Divide
tempStr = fn StringWithFormat( @"Float Division: %ld / %ld = %f\n", i1, i2, (float)i1 / (float)i2 )
MutableStringAppendString( mutStr, tempStr )
 
// mod
tempStr = fn StringWithFormat( @"Modulo: %ld mod %ld = %ld remainder\n", i1, i2, i1 mod i2 )
MutableStringAppendString( mutStr, tempStr )
 
// power
tempStr = fn StringWithFormat( @"Power: %ld ^ %ld = %e\n", i1, i2, i1 ^ i2 )
MutableStringAppendString( mutStr, tempStr )
 
else
 
MutableStringAppendString( mutStr, @"Cannot divide by zero." )
 
end if
 
TextSetString( _calcResults, mutStr )
end fn
 
void local fn DoDialog( ev as long, tag as long, wnd as long )
'~'1
select ( ev )
case _btnClick
select ( tag )
case _calcBtn : fn PerformCalculations
end select
case _windowWillClose : end
end select
end fn
 
on dialog fn DoDialog
 
fn BuildWindow
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
Number 1: 25
Number 2: 53
 
Addition: 25 + 53 = 78
Subtraction: 25 - 53 = -28
Multiplication: 25 * 53 = 1325
Integer Division: 25 / 53 = 0
Float Division: 25 / 53 = 0.471698
Modulo: 25 mod 53 = 25 remainder
Power: 25 ^ 53 = 1.232595e+74
</pre>
 
=={{header|Gambas}}==
<syntaxhighlight lang="gambas">Public Sub Main()
Dim a, b As String
Dim c, d As Integer
 
Print "Enter two integer numbers, separated by space:"
Input a, b
 
c = CInt(a)
d = CInt(b)
 
Print "Sum: " & (c + d)
Print "Difference:" & (c - d)
Print "Product: " & (c * d)
Print "Integer: " & (c Div d)
Print "Remainder: " & (c Mod d)
Print "Exponentiation: " & (c ^ d)
 
End
</syntaxhighlight>
Output:
<pre>
Enter two integer numbers, separated by space:
8 1
Sum: 9
Difference:7
Product: 8
Integer: 8
Remainder: 0
Exponentiation: 8
</pre>
 
=={{header|GAP}}==
<langsyntaxhighlight lang="gap">run := function()
local a, b, f;
f := InputTextUser();
Line 1,089 ⟶ 2,468:
Display(Concatenation(String(a), " ^ ", String(b), " = ", String(a ^ b)));
CloseStream(f);
end;</langsyntaxhighlight>
 
=={{header|GDScript}}==
Requires Godot 4.
 
<syntaxhighlight lang="gdscript">
@tool
extends Node
 
@export var a: int:
set(value):
a = value
refresh()
 
@export var b: int:
set(value):
b = value
refresh()
 
# Output properties
@export var sum: int
@export var difference: int
@export var product: int
@export var integer_quotient: int
@export var remainder: int
@export var exponentiation: int
@export var divmod: int
 
func refresh():
sum = a + b
difference = a - b
product = a * b
integer_quotient = a / b # Rounds towards 0
remainder = a % b # Matches the sign of a
exponentiation = pow(a, b)
</syntaxhighlight>
 
=={{header|Genie}}==
Note: Using ''init:int'' and the ''return'' from the init block was introduced in release 0.43.92, February 2019.
 
<syntaxhighlight lang="genie">[indent=4]
/*
Arithmethic/Integer, in Genie
valac arithmethic-integer.gs
*/
 
init:int
a:int = 0
b:int = 0
if args.length > 2 do b = int.parse(args[2])
if args.length > 1 do a = int.parse(args[1])
 
print @"a+b: $a plus $b is $(a+b)"
print @"a-b: $a minus $b is $(a-b)"
print @"a*b: $a times $b is $(a*b)"
print @"a/b: $a by $b quotient is $(a/b) (rounded mode is TRUNCATION)"
print @"a%b: $a by $b remainder is $(a%b) (sign matches first operand)"
 
print "\nGenie does not include a raise to power operator"
 
return 0</syntaxhighlight>
 
{{out}}
<pre>prompt$ valac arithmetic-integer.gs
prompt$ ./arithmetic-integer -390 100
a+b: -390 plus 100 is -290
a-b: -390 minus 100 is -490
a*b: -390 times 100 is -39000
a/b: -390 by 100 quotient is -3 (rounded mode is TRUNCATION)
a%b: -390 by 100 remainder is -90 (sign matches first operand)
 
Genie does not include a raise to power operator</pre>
 
=={{header|GEORGE}}==
<langsyntaxhighlight GEORGElang="george">R (m) ;
R (n) ;
m n + P;
Line 1,098 ⟶ 2,548:
m n × P;
m n div P;
m n rem P;</langsyntaxhighlight>
 
=={{header|Go}}==
===int===
<lang go>package main
<syntaxhighlight lang="go">package main
 
import "fmt"
Line 1,115 ⟶ 2,566:
fmt.Printf("%d %% %d = %d\n", a, b, a%b) // same sign as first operand
// no exponentiation operator
}</langsyntaxhighlight>
{{out|Example run:}}
<pre>
enter two integers: -5 3
Line 1,125 ⟶ 2,576:
-5 % 3 = -2
</pre>
===big.Int===
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"math/big"
)
 
func main() {
var a, b, c big.Int
fmt.Print("enter two integers: ")
fmt.Scan(&a, &b)
fmt.Printf("%d + %d = %d\n", &a, &b, c.Add(&a, &b))
fmt.Printf("%d - %d = %d\n", &a, &b, c.Sub(&a, &b))
fmt.Printf("%d * %d = %d\n", &a, &b, c.Mul(&a, &b))
 
// Quo, Rem functions work like Go operators on int:
// quo truncates toward 0,
// and a non-zero rem has the same sign as the first operand.
fmt.Printf("%d quo %d = %d\n", &a, &b, c.Quo(&a, &b))
fmt.Printf("%d rem %d = %d\n", &a, &b, c.Rem(&a, &b))
 
// Div, Mod functions do Euclidean division:
// the result m = a mod b is always non-negative,
// and for d = a div b, the results d and m give d*y + m = x.
fmt.Printf("%d div %d = %d\n", &a, &b, c.Div(&a, &b))
fmt.Printf("%d mod %d = %d\n", &a, &b, c.Mod(&a, &b))
 
// as with int, no exponentiation operator
}</syntaxhighlight>
{{out|Example run}}
<pre>
enter two integers: -5 3
-5 + 3 = -2
-5 - 3 = -8
-5 * 3 = -15
-5 quo 3 = -1
-5 rem 3 = -2
-5 div 3 = -2
-5 mod 3 = 1
</pre>
 
=={{header|Golfscript}}==
Quotients round towards negative infinity. Remainders match the sign of the second operand.
<syntaxhighlight lang="golfscript">n/~~:b;~:a;a b+n a b-n a b*n a b/n a b%n a b?</syntaxhighlight>
 
=={{header|Groovy}}==
'''Solution:'''
<lang groovy>def arithmetic = { a, b ->
<syntaxhighlight lang="groovy">def arithmetic = { a, b ->
println """
a + b = ${a} + ${b} = ${a + b}
Line 1,140 ⟶ 2,637:
a ** b = ${a} ** ${b} = ${a ** b}
"""
}</langsyntaxhighlight>
 
'''Test:'''
Program:
<syntaxhighlight lang ="groovy">arithmetic(5,3)</langsyntaxhighlight>
 
{{out}}
Output:
<pre> a + b = 5 + 3 = 8
a - b = 5 - 3 = 2
Line 1,158 ⟶ 2,655:
 
=={{header|Harbour}}==
<langsyntaxhighlight lang="visualfoxpro">procedure Test( a, b )
? "a+b", a + b
? "a-b", a - b
Line 1,168 ⟶ 2,665:
// Exponentiation is also a base arithmetic operation
? "a**b", a ** b
return</langsyntaxhighlight>
 
=={{header|Haskell}}==
 
<langsyntaxhighlight lang="haskell">main = do
a <- readLn :: IO Integer
b <- readLn :: IO Integer
Line 1,186 ⟶ 2,683:
putStrLn $ "a `quot` b = " ++ show (a `quot` b) -- truncates towards 0
putStrLn $ "a `rem` b = " ++ show (a `rem` b) -- same sign as first operand
putStrLn $ "a `quotRem` b = " ++ show (a `quotRem` b)</langsyntaxhighlight>
 
=={{header|Haxe}}==
<langsyntaxhighlight lang="haxe">class BasicIntegerArithmetic {
public static function main() {
var args =Sys.args();
Line 1,201 ⟶ 2,698:
trace("a%b = " + (a%b));
}
}</langsyntaxhighlight>
 
=={{header|HicEst}}==
All numeric is 8-byte-float. Conversions are by INT, NINT, FLOOR, CEILING, or Formatted IO
<langsyntaxhighlight lang="hicest">DLG(Edit=A, Edit=B, TItle='Enter numeric A and B')
WRITE(Name) A, B
WRITE() ' A + B = ', A + B
Line 1,217 ⟶ 2,714:
WRITE() 'remainder of A / B = ', MOD(A, B) ! same sign as A
WRITE() 'A to the power of B = ', A ^ B
WRITE() 'A to the power of B = ', A ** B</langsyntaxhighlight>
<langsyntaxhighlight lang="hicest">A=5; B=-4;
A + B = 1
A - B = 9
Line 1,229 ⟶ 2,726:
remainder of A / B = 1
A to the power of B = 16E-4
A to the power of B = 16E-4 </langsyntaxhighlight>
 
=={{header|HolyC}}==
<syntaxhighlight lang="holyc">I64 *a, *b;
a = Str2I64(GetStr("Enter your first number: "));
b = Str2I64(GetStr("Enter your second number: "));
 
if (b == 0)
Print("Error: The second number must not be zero.\n");
else {
Print("a + b = %d\n", a + b);
Print("a - b = %d\n", a - b);
Print("a * b = %d\n", a * b);
Print("a / b = %d\n", a / b); /* rounds down */
Print("a % b = %d\n", a % b); /* same sign as first operand */
Print("a ` b = %d\n", a ` b);
}</syntaxhighlight>
 
=={{header|i}}==
<syntaxhighlight lang="i">main
a $= integer(in(' ')); ignore
b $= integer(in('\n')); ignore
print("Sum:" , a + b)
print("Difference:", a - b)
print("Product:" , a * b)
print("Quotient:" , a / b) // rounds towards zero
print("Modulus:" , a % b) // same sign as first operand
print("Exponent:" , a ^ b)
}</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight Iconlang="icon">procedure main()
writes("Input 1st integer a := ")
a := integer(read())
Line 1,244 ⟶ 2,770:
write(" a % b = ",a%b, " remainder sign matches a")
write(" a ^ b = ",a^b)
end</langsyntaxhighlight>
 
=={{header|Inform 7}}==
 
<langsyntaxhighlight lang="inform7">Enter Two Numbers is a room.
 
Numerically entering is an action applying to one number. Understand "[number]" as numerically entering.
Line 1,271 ⟶ 2,797:
Equation - Division Formula
Q = A / B
where Q is a number, A is a number, and B is a number.</langsyntaxhighlight>
 
This solution shows four syntaxes: mathematical operators, English operators, inline equations, and named equations. Division rounds toward zero, and the remainder has the same sign as the quotient.
 
=={{header|J}}==
<langsyntaxhighlight lang="j">calc =: + , - , * , <.@% , |~ , ^</langsyntaxhighlight>
The function <code>calc</code> constructs a list of numeric results for this task. The implementation of integer division we use here (<code><.@%.</code>) rounds down (towards negative infinity), and this is compatible with the remainder implementation we use here.
<langsyntaxhighlight lang="j"> 17 calc 3
20 14 51 5 2 4913</langsyntaxhighlight>
 
The function <code>bia</code> assembles these results, textually:
 
<langsyntaxhighlight lang="j">labels =: ];.2 'Sum: Difference: Product: Quotient: Remainder: Exponentiation: '
combine =: ,. ":@,.
bia =: labels combine calc
Line 1,293 ⟶ 2,819:
Quotient: 5
Remainder: 2
Exponentiation: 4913</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">import java.util.Scanner;
 
public class Int{
public static voidclass main(String[]IntegerArithmetic args){
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// Get the 2 numbers from command line arguments
int a = sc.nextInt();
int b = Scanner sc.nextInt = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
int sum = a + b;//integer addition is discouraged in print statements due to confusion with String concatenation
 
System.out.println("a + b = " + sum);
int sum = a + b; // The result of adding 'a' and 'b' (Note: integer addition is discouraged in print statements due to confusion with string concatenation)
System.out.println("a - b = " + (a - b));
int difference = a - b; // The result of subtracting 'b' from 'a'
System.out.println("a * b = " + (a * b));
int product = a * b; // The result of multiplying 'a' and 'b'
System.out.println("quotient of a / b = " + (a / b)); // truncates towards 0
int division = a / b; // The result of dividing 'a' by 'b' (Note: 'division' does not contain the fractional result)
System.out.println("remainder of a / b = " + (a % b)); // same sign as first operand
int remainder = a % b; // The remainder of dividing 'a' by 'b'
}
 
}</lang>
System.out.println("a + b = " + sum);
System.out.println("a - b = " + difference);
System.out.println("a * b = " + product);
System.out.println("quotient of a / b = " + division); // truncates towards 0
System.out.println("remainder of a / b = " + remainder); // same sign as first operand
}
}</syntaxhighlight>
 
=={{header|JavaScript}}==
===WScript===
{{works with|JScript}}
{{works with|SpiderMonkey}}
Note that the operators work the same in all versions of JavaScript; the requirement for specific implementations is in order to get user input.
<langsyntaxhighlight lang="javascript">var a = parseInt(get_input("Enter an integer"), 10);
var b = parseInt(get_input("Enter an integer"), 10);
 
Line 1,341 ⟶ 2,875:
print(prompt);
}
}</langsyntaxhighlight>
{{out}}
output:
<pre>Enter an integer
-147
Line 1,354 ⟶ 2,888:
quotient: a / b = -2
remainder: a % b = -21</pre>
===Node.JS===
<syntaxhighlight lang="javascript">// Invoked as node script_name.js <a> <b>. Positions 0 and 1 in the argv array contain 'node' and 'script_name.js' respectively
var a = parseInt(process.argv[2], 10);
var b = parseInt(process.argv[3], 10);
 
var sum = a + b;
var difference = a - b;
var product = a * b;
var division = a / b;
var remainder = a % b; // This produces the remainder after dividing 'b' into 'a'. The '%' operator is called the 'modulo' operator
 
console.log('a + b = %d', sum); // The %d syntax is a placeholder that is replaced by the sum
console.log('a - b = %d', difference);
console.log('a * b = %d', product);
console.log('a / b = %d', division);
console.log('a % b = %d', remainder);</syntaxhighlight>
{{out}}
<pre>$ node arith.js 10 7
a + b = 17
a - b = 3
a * b = 70
a / b = 1.4285714285714286
a % b = 3</pre>
 
=={{header|jq}}==
<langsyntaxhighlight lang="jq"># Lines which do not have two integers are skipped:
 
def arithmetic:
Line 1,373 ⟶ 2,930:
 
arithmetic
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 1,403 ⟶ 2,960:
a % b = -2
a | exp = 0.1353352832366127</pre>
 
=={{header|Jsish}}==
<syntaxhighlight lang="javascript">"use strict";
/* Arthimetic/Integer, in Jsish */
var line = console.input();
var nums = line.match(/^\s*([+-]?[0-9]+)\s+([+-]?[0-9]+)\s*/);
var a = Number(nums[1]);
var b = Number(nums[2]);
 
puts("A is ", a, ", B is ", b);
puts("Sum A + B is ", a + b);
puts("Difference A - B is ", a - b);
puts("Product A * B is ", a * b);
puts("Integer quotient A / B is ", a / b | 0, " truncates toward 0");
puts("Remainder A % B is ", a % b, " sign follows first operand");
puts("Exponentiation A to the power B is ", Math.pow(a, b));
 
/*
=!INPUTSTART!=
7 4
=!INPUTEND!=
*/
 
 
/*
=!EXPECTSTART!=
A is 7 , B is 4
Sum A + B is 11
Difference A - B is 3
Product A * B is 28
Integer quotient A / B is 1 truncates toward 0
Remainder A % B is 3 sign follows first operand
Exponentiation A to the power B is 2401
=!EXPECTEND!=
*/</syntaxhighlight>
 
{{out}}
<pre>prompt$ jsish -u arithmeticInteger.jsi
[PASS] arithmeticInteger.jsi</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight Julialang="julia">function arithmetic (a = intparse(Int, readline()), b = intparse(Int, readline()))
for op in [+,-,*,div,rem]
println("a $op b = $(op(a,b))")
end
end</langsyntaxhighlight>
{{Out}}
<pre>julia> arithmetic()
Line 1,419 ⟶ 3,015:
a div b = 0
a rem b = 4</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">
import kotlin.math.pow // not an operator but in the standard library
 
fun main() {
val r = Regex("""-?[0-9]+\s+-?[0-9]+""")
print("Enter two integers separated by space(s): ")
val input: String = readLine()!!.trim()
val index = input.lastIndexOf(' ')
val a = input.substring(0, index).trimEnd().toLong()
val b = input.substring(index + 1).toLong()
println("$a + $b = ${a + b}")
println("$a - $b = ${a - b}")
println("$a * $b = ${a * b}")
println("$a / $b = ${a / b}") // rounds towards zero
println("$a % $b = ${a % b}") // if non-zero, matches sign of first operand
println("$a ^ $b = ${a.toDouble().pow(b.toDouble())}")
}
}</syntaxhighlight>
 
{{out}}
<pre>
Enter two integers separated by space(s): 2 63
2 + 63 = 65
2 - 63 = -61
2 * 63 = 126
2 / 63 = 0
2 % 63 = 2
2 ^ 63 = 9.223372036854776E18
</pre>
 
=={{header|LabVIEW}}==
Line 1,424 ⟶ 3,051:
[[File:LabVIEW_Arithmetic_Integer.png]]
 
=={{header|Lambdatalk}}==
Translation of Racket
<syntaxhighlight lang="scheme">
{def arithmetic
{lambda {:x :y}
{S.map {{lambda {:x :y :op}
{br}applying :op on :x & :y returns {:op :x :y}} :x :y}
+ - * / % pow max min = > <}}}
-> arithmetic
 
{arithmetic 8 12}
->
applying + on 8 & 12 returns 20
applying - on 8 & 12 returns -4
applying * on 8 & 12 returns 96
applying / on 8 & 12 returns 0.6666666666666666
applying % on 8 & 12 returns 8
applying pow on 8 & 12 returns 68719476736
applying max on 8 & 12 returns 12
applying min on 8 & 12 returns 8
applying = on 8 & 12 returns false
applying > on 8 & 12 returns false
applying < on 8 & 12 returns true
</syntaxhighlight>
 
=={{header|Lasso}}==
<langsyntaxhighlight Lassolang="lasso">local(a = 6, b = 4)
#a + #b // 10
#a - #b // 2
Line 1,434 ⟶ 3,084:
#a % #b // 2
math_pow(#a,#b) // 1296
math_pow(#b,#a) // 4096</langsyntaxhighlight>
 
=={{header|LDPL}}==
<syntaxhighlight lang="ldpl">data:
x is number
y is number
result is number
 
procedure:
display "Enter x: "
accept x
display "Enter y: "
accept y
add x and y in result
display "x + y = " result lf
subtract y from x in result
display "x - y = " result lf
multiply x by y in result
display "x * y = " result lf
divide x by y in result # There is no integer division but
floor result # floor rounds toward negative infinity
display "x / y = " result lf
modulo x by y in result
display "x % y = " result lf # Returns the sign of the 2nd argument
raise x to y in result
display "x ^ y = " result lf</syntaxhighlight>
{{out}}
<pre>
Enter x: 13
Enter y: 4
x + y = 17
x - y = 9
x * y = 52
x / y = 3
x % y = 1
x ^ y = 28561
</pre>
 
=={{header|LFE}}==
 
<langsyntaxhighlight lang="lisp">
(defmodule arith
(export all))
Line 1,453 ⟶ 3,139:
; rem's result takes the same sign as the first operand
(: io format '"~p rem ~p = ~p~n" (list a b (rem a b))))))
</syntaxhighlight>
</lang>
 
Usage from the LFE REPL:
<langsyntaxhighlight lang="lisp">
> (slurp '"arith.lfe")
#(ok arith)
Line 1,468 ⟶ 3,154:
2 rem 8 = 2
ok
</syntaxhighlight>
</lang>
 
=={{header|Liberty BASIC}}==
Note that raising to a power can display very large integers without going to approximate power-of-ten notation.
<syntaxhighlight lang="lb">
<lang lb>
input "Enter the first integer: "; first
input "Enter the second integer: "; second
Line 1,482 ⟶ 3,168:
print "The remainder is " ; first MOD second; " (sign matches first operand)"
print "The first raised to the power of the second is " ; first ^second
</syntaxhighlight>
</lang>
 
=={{header|LIL}}==
<syntaxhighlight lang="tcl"># Arithmetic/Integer, in LIL
write "Enter two numbers separated by space: "
if {[canread]} {set line [readline]}
print
 
set a [index $line 0]
set b [index $line 1]
print "A is $a"", B is $b"
print "Sum A + B is [expr $a + $b]"
print "Difference A - B is [expr $a - $b]"
print "Product A * B is [expr $a * $b]"
print "Integer Quotient A \\ B is [expr $a \ $b], truncates toward zero"
print "Remainder A % B is [expr $a % $b], sign follows first operand"
print "LIL has no exponentiation expression operator"</syntaxhighlight>
 
{{out}}
<pre>prompt$ echo '7 4' | lil arithmeticInteger.lil
Enter two numbers separated by space:
A is 7, B is 4
Sum A + B is 11
Difference A - B is 3
Product A * B is 28
Integer Quotient A \ B is 1, truncates toward zero
Remainder A % B is 3, sign follows first operand
LIL has no exponentiation expression operator
 
prompt$ echo '-7 4' | lil arithmeticInteger.lil
Enter two numbers separated by space:
A is -7, B is 4
Sum A + B is -3
Difference A - B is -11
Product A * B is -28
Integer Quotient A \ B is -1, truncates toward zero
Remainder A % B is -3, sign follows first operand
LIL has no exponentiation expression operator</pre>
 
=={{header|Lingo}}==
<syntaxhighlight lang="lingo">-- X, Y: 2 editable field members, shown as sprites in the current GUI
x = integer(member("X").text)
y = integer(member("Y").text)
 
put "Sum: " , x + y
put "Difference: ", x - y
put "Product: " , x * y
put "Quotient: " , x / y -- Truncated towards zero
put "Remainder: " , x mod y -- Result has sign of left operand
put "Exponent: " , power(x, y)</syntaxhighlight>
 
=={{header|Little}}==
<syntaxhighlight lang="c"># Maybe you need to import the mathematical funcions
# from Tcl with:
# eval("namespace path ::tcl::mathfunc");
 
void main() {
int a, b;
puts("Enter two integers:");
a = (int)(gets(stdin));
b = (int)(gets(stdin));
puts("${a} + ${b} = ${a+b}");
puts("${a} - ${b} = ${a-b}");
puts("${a} * ${b} = ${a*b}");
puts("${a} / ${b} = ${a/b}, remainder ${a%b}");
puts("${a} to the power of ${b} = ${(int)pow(a,b)}");
}</syntaxhighlight>
 
=={{header|LiveCode}}==
<syntaxhighlight lang="livecode">ask "enter 2 numbers (comma separated)"
if it is not empty then
put item 1 of it into n1
put item 2 of it into n2
put sum(n1,n2) into ai["sum"]
put n1 * n2 into ai["product"]
put n1 div n2 into ai["quotient"] -- truncates
put n1 mod n2 into ai["remainder"]
put n1^n2 into ai["power"]
combine ai using comma and colon
put ai
end if</syntaxhighlight>
Examples<syntaxhighlight lang="text">-2,4 - power:16,product:-8,quotient:0,remainder:-2,sum:2
2,-4 - power:0.0625,product:-8,quotient:0,remainder:2,sum:-2
-2,-4 - power:0.0625,product:8,quotient:0,remainder:-2,sum:-6
2,4 - power:16,product:8,quotient:0,remainder:2,sum:6
11,4 - power:14641,product:44,quotient:2,remainder:3,sum:15</syntaxhighlight>
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to operate :a :b
(print [a =] :a)
(print [b =] :b)
Line 1,493 ⟶ 3,264:
(print [a / b =] int :a / :b)
(print [a mod b =] modulo :a :b)
end</langsyntaxhighlight>
 
Each infix operator also has a prefix synonym (sum, difference, product, quotient). Sum and product can also have arity greater than two when used in parentheses (sum 1 2 3). Infix operators in general have high precedence; you may need to enclose their arguments in parentheses to obtain the correct expression.
 
=={{header|LSE64}}==
<langsyntaxhighlight lang="lse64">over : 2 pick
2dup : over over
 
Line 1,507 ⟶ 3,278:
" A*B=" ,t 2dup * , nl \
" A/B=" ,t 2dup / , nl \
" A%B=" ,t % , nl</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">local x = io.read()
local y = io.read()
 
Line 1,518 ⟶ 3,289:
print ("Quotient: " , (x / y)) -- Does not truncate
print ("Remainder: " , (x % y)) -- Result has sign of right operand
print ("Exponent: " , (x ^ y))</langsyntaxhighlight>
 
=={{header|M2000 Interpreter}}==
We can use variables with %, which are double inside with no decimal part. These can have 17 digits. Also A%=1.5 make it 2, not 1. This has a tricky situation: A%=1/2 give 1 to A%. We can use FLOOR() or INT() is the same, or CEIL(), and there is a BANK() which is a Banker Round: BANK(2.5)=2 and BANK(3.5)=4.
 
 
 
 
<syntaxhighlight lang="m2000 interpreter">
MODULE LikeCommodoreBasic {
\\ ADDITION: EUCLIDEAN DIV# & MOD# AND ** FOR POWER INCLUDING ^
10 INPUT "ENTER A NUMBER:"; A%
20 INPUT "ENTER ANOTHER NUMBER:"; B%
30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
60 PRINT "INTEGER DIVISION:";A%;"DIV";B%;"=";A% DIV B%
65 PRINT "INTEGER EUCLIDEAN DIVISION:";A%;"DIV";B%;"=";A% DIV# B%
70 PRINT "REMAINDER OR MODULO:";A%;"MOD";B%;"=";A% MOD B%
75 PRINT "EUCLIDEAN REMAINDER OR MODULO:";A%;"MOD#";B%;"=";A% MOD# B%
80 PRINT "POWER:";A%;"^";B%;"=";A%^B%
90 PRINT "POWER:";A%;"**";B%;"=";A%**B%
}
LikeCommodoreBasic
 
 
Module IntegerTypes {
a=12% ' Integer 16 bit
b=12& ' Long 32 bit
c=12@' Decimal (29 digits)
Def ExpType$(x)=Type$(x)
Print ExpType$(a+1)="Double"
Print ExpType$(a+1%)="Integer"
Print ExpType$(a div 5)="Double"
Print ExpType$(a div 5%)="Double"
Print ExpType$(a mod 5)="Double"
Print ExpType$(a mod 5%)="Double"
Print ExpType$(a**2)="Double"
Print ExpType$(b+1)="Double"
Print ExpType$(b+1&)="Long"
Print ExpType$(b div 5)="Double"
Print ExpType$(b div 5&)="Double"
Print ExpType$(b mod 5)="Double"
Print ExpType$(b mod 5&)="Double"
Print ExpType$(b**2)="Double"
 
Print ExpType$(c+1)="Decimal"
Print ExpType$(c+1@)="Decimal"
Print ExpType$(c div 5)="Decimal"
Print ExpType$(c div 5@)="Decimal"
Print ExpType$(c mod 5)="Decimal"
Print ExpType$(c mod 5@)="Decimal"
Print ExpType$(c**2)="Double"
}
IntegerTypes
</syntaxhighlight>
 
=={{header|M4}}==
 
Because of the particular nature of M4, the only user-input is the code itself. Anyway the following code can be used:
<langsyntaxhighlight lang="m4">eval(A+B)
eval(A-B)
eval(A*B)
eval(A/B)
eval(A%B)</langsyntaxhighlight>
 
once saved in a file, e.g. <tt>operations.m4</tt>:
Line 1,535 ⟶ 3,362:
or using a sort of ''driver'':
 
<langsyntaxhighlight lang="m4">define(`A', 4)dnl
define(`B', 6)dnl
include(`operations.m4')</langsyntaxhighlight>
 
=={{header|Maple}}==
These operations are all built-in. As all operations are exact, there are no rounding issues involved.
<syntaxhighlight lang="maple">
<lang Maple>
DoIt := proc()
local a := readstat( "Input an integer: " ):
Line 1,552 ⟶ 3,379:
NULL # quiet return
end proc:
</syntaxhighlight>
</lang>
Here is an example of calling DoIt.
<syntaxhighlight lang="maple">
<lang Maple>
> DoIt();
Input an integer: 15;
Line 1,564 ⟶ 3,391:
Remainder = 3
>
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Mathematica has all the function built-in to handle this task. Example:
<langsyntaxhighlight Mathematicalang="mathematica">a = Input["Give me an integer please!"];
b = Input["Give me another integer please!"];
Print["You gave me ", a, " and ", b];
Line 1,574 ⟶ 3,401:
Print["difference: ", a - b];
Print["product: ", a b];
Print["integer quotient: ", IntegerPartQuotient[a/, b]];
Print["remainder: ", Mod[a, b]];
Print["exponentiation: ", a^b];</langsyntaxhighlight>
gives back for input 17 and 3:
<preMathematicapre>You gave me 17 and 3
sum: 20
difference: 14
Line 1,585 ⟶ 3,412:
remainder: 2
exponentiation: 4913</pre>
 
=={{header|Mathcad}}==
The text below (from "Task Notes" onwards) is pretty well what you will see on a Mathcad worksheet across most versions (eg, Mathcad 15, Mathcad Prime 6.0, and Mathcad Prime 6.0 Express). Mathcad's "whiteboard" interface allows the user to mix formatted text regions with formatted math regions. Text region formatting is fairly arbitrary, individual characters can have their font, font size and bold/italic/underline settings set or changed at will. Math regions use amendable styles to identify variables, functions (normally built-in functions), keywords, system words and units (Mathcad has a units-aware, SI-based quantity system). It really is a simple as 'writing' on the whiteboard.
 
----
 
'''Task Notes'''
 
''For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).''
 
There is no quotient function in Mathcad, only complex division. We emulate quotient by standard division followed by rounding using both floor, which rounds towards negative infinity, and trunc, which rounds towards zero.
 
''For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
''
We use the Mathcad function mod(x,y), which returns x modulo y, and has the same sign as x.
 
'''Instructions'''
 
Enter two integers of your choice for Int1 and Int2.
 
(type into the right hand side of the 'Int1:= ' and 'Int2:=' statements, overwriting or modifying any numbers already there)
 
'''Implementation'''
 
'''Mathcad Input and Output'''
 
Mathcad "standard" input and output takes place directly on a worksheet ("program source code").
 
'''Inputs''':
 
== ''the user types in values after := (definition) operator''
 
Integer One: ''Int1'':='''-8'''
 
Integer Two: ''Int2'':='''3'''
 
'''Results''':
 
== ''Mathcad automatically calculates and displays results after = (evaluation) operator.''
 
sum : ''Int1'' + ''Int2'' = -5
 
difference : ''Int1'' - ''Int2'' = -11
 
product : ''Int1'' · ''Int2'' = -24
 
integer quotient : floor(''Int1''÷''Int2'')=-3 trunc(Int1÷Int2)=-2
 
remainder : mod(''Int1'',''Int2'')=-2
 
exponentiation : ''Int1''<sup>''Int2''</sup>=-512
 
----
 
=={{header|MATLAB}} / {{header|Octave}}==
<langsyntaxhighlight lang="octave">disp("integer a: "); a = scanf("%d", 1);
disp("integer b: "); b = scanf("%d", 1);
a+b
Line 1,594 ⟶ 3,474:
floor(a/b)
mod(a,b)
a^b</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">block(
[a: read("a"), b: read("b")],
print(a + b),
Line 1,606 ⟶ 3,486:
print(remainder(a, b)),
a^b
);</langsyntaxhighlight>
 
=={{header|MAXScript}}==
<langsyntaxhighlight lang="maxscript">x = getKBValue prompt:"First number"
y = getKBValue prompt:"Second number:"
 
Line 1,616 ⟶ 3,496:
format "Product: %\n" (x * y)
format "Quotient: %\n" (x / y)
format "Remainder: %\n" (mod x y)</langsyntaxhighlight>
 
=={{header|Mercury}}==
<syntaxhighlight lang="text">
:- module arith_int.
:- interface.
Line 1,662 ⟶ 3,542:
io.set_exit_status(1, !IO)
).
</syntaxhighlight>
</lang>
 
=={{header|Metafont}}==
 
<langsyntaxhighlight lang="metafont">string s[];
message "input number a: ";
s1 := readstring;
Line 1,683 ⟶ 3,563:
outp("mod");
 
end</langsyntaxhighlight>
 
=={{header|min}}==
{{works with|min|0.37.0}}
<syntaxhighlight lang="min">('+ '- '* 'div 'mod)
(("Enter an integer" ask integer) 2 times) quote-map =>
("$1 -> $2" rollup concat dup -> quote prepend %) prepend
map "\n" join puts!</syntaxhighlight>
{{out}}
<pre>
Enter an integer: -3
Enter an integer: 5
(-3 5 +) -> 2
(-3 5 -) -> -8
(-3 5 *) -> -15
(-3 5 div) -> 0
(-3 5 mod) -> -3
</pre>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">П1 <-> П0
+ С/П
ИП0 ИП1 - С/П
Line 1,692 ⟶ 3,589:
ИП0 ИП1 / [x] С/П
ИП0 ^ ИП1 / [x] ИП1 * - С/П
ИП1 ИП0 x^y С/П</langsyntaxhighlight>
 
=={{header|ML/I}}==
ML/I will read two integers from 'standard input' or similar, and then output the results to 'standard output' or similar.
and then output the results to 'standard output' or similar.
 
<langsyntaxhighlight MLlang="ml/Ii">MCSKIP "WITH" NL
"" Arithmetic/Integer
"" assumes macros on input stream 1, terminal on stream 2
Line 1,711 ⟶ 3,609:
Division is truncated to the greatest integer
that does not exceed the exact result. Remainder matches
the sign of the second operand, if the signs differ.</langsyntaxhighlight>
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">MODULE ints;
 
IMPORT InOut;
Line 1,730 ⟶ 3,628:
InOut.WriteString ("a MOD b = "); InOut.WriteInt (a MOD b, 9); InOut.WriteLn;
InOut.WriteLn;
END ints.</langsyntaxhighlight>Producing:<pre>$$ ints
Enter two integer numbers : 12 7
a + b = 19
Line 1,747 ⟶ 3,645:
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">MODULE Arith EXPORTS Main;
 
IMPORT IO, Fmt;
Line 1,761 ⟶ 3,659:
IO.Put("a DIV b = " & Fmt.Int(a DIV b) & "\n");
IO.Put("a MOD b = " & Fmt.Int(a MOD b) & "\n");
END Arith.</langsyntaxhighlight>
 
=={{header|MUMPS}}==
Line 1,772 ⟶ 3,670:
find out the beauty of cyclic algebra as formulated by Niels Henrik Abel (August 5, 1802 – April 6, 1829).</p>
 
<langsyntaxhighlight MUMPSlang="mumps">Arith(first,second) ; Mathematical operators
Write "Plus",?12,first,"+",second,?25," = ",first+second,!
Write "Minus",?12,first,"-",second,?25," = ",first-second,!
Line 1,815 ⟶ 3,713:
Modulo 0#2 = 0
And 0&2 = 0
Or 0!2 = 1</langsyntaxhighlight>
 
=={{header|Nanoquery}}==
{{trans|Python}}
<syntaxhighlight lang="nanoquery">print "Number 1: "
x = int(input())
print "Number 2: "
y = int(input())
 
println format("Sum: %d", x + y)
println format("Difference: %d", x - y)
println format("Product: %d", x * y)
println format("Quotient: %f", x / y)
 
println format("Remainder: %d", x % y)
println format("Power: %d", x ^ y)</syntaxhighlight>
 
{{out}}
<pre>Number 1: 5
Number 2: 6
Sum: 11
Difference: -1
Product: 30
Quotient: 0.833333
Remainder: 5
Power: 15625</pre>
 
=={{header|Nemerle}}==
Adapted nearly verbatim from C# solution above. Note that I've used the exponentiation operator (**), but Math.Pow() as used in the C# solution would also work.
<langsyntaxhighlight Nemerlelang="nemerle">using System;
class Program
Line 1,836 ⟶ 3,758:
Console.WriteLine("{0} ** {1} = {2}", a, b, a ** b);
}
}</langsyntaxhighlight>
 
=={{header|NetRexx}}==
{{trans|REXX}}
<langsyntaxhighlight NetRexxlang="netrexx">/* NetRexx */
 
options replace format comments java crossref savelog symbols binary
 
say "enter 2 integer values separated by blanks"
Line 1,853 ⟶ 3,775:
 
return
</syntaxhighlight>
</lang>
{{out}}
;Output
<pre style="height: 15ex; overflow:scroll;">
enter 2 integer values separated by blanks
Line 1,867 ⟶ 3,789:
=={{header|NewLISP}}==
 
<langsyntaxhighlight NewLISPlang="newlisp">; integer.lsp
; oofoe 2012-01-17
 
Line 1,891 ⟶ 3,813:
 
(exit) ; NewLisp normally goes to listener after running script.
</syntaxhighlight>
</lang>
 
Sample output:
 
{{out}}
<pre>
Please type in an integer and press [enter]: 17
Line 1,909 ⟶ 3,830:
</pre>
 
=={{header|NimNial}}==
<lang nim>
import parseopt,strutils
 
Example tested with Q'Nial7.
 
Define new operator using an atlas of operators:
<syntaxhighlight lang="nial"> arithmetic is OP A B{[first,last,+,-,*,quotient,mod,power] A B}</syntaxhighlight>
 
Test new operator:
<syntaxhighlight lang="nial"> -23 arithmetic 7
-23 7 -16 -30 -161 -4 5 -3404825447</syntaxhighlight>
 
Negative divisors are not accepted for integer quotient <code>quotient</code> or remainder <code>mod</code>, and in both cases the result is an error with the message <code>?negative divisor</code>.
 
For <code>quotient</code>, if the divisor <code>B</code> is zero, the result is zero.
 
For <code>mod</code>, if the divisor <code>B</code> is zero, the result is <code>A</code>.
 
The quotient on division by a positive integer <code>B</code> is always an integer on the same side of the origin as <code>A</code>.
 
Nial definition of <code>quotient</code>:
 
<syntaxhighlight lang="nial">A quotient B =f= floor (A / B)</syntaxhighlight>
 
<code>floor</code> rounds towards negative infinity (next lower integer).
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import parseopt, strutils
var
opt: TOptParserOptParser = initOptParser()
str = opt.cmdLineRest.split
a: int = 0
b: int = 0
 
try:
a = parseInt(str[0])
b = parseInt(str[1])
except EinvalidValueValueError:
quit("Invalid params. Two integers are expected.")
 
 
echo ("a : " & $a)
echo ("b : " & $b)
echo ("a + b : " & $(a+b))
echo ("a - b : " & $(a-b))
echo ("a * b : " & $(a*b))
echo ("a div b: " & $(a div b)) # div rounds towards zero
echo ("a mod b: " & $(a mod b)) # sign(a mod b)==sign(a) if sign(a)!=sign(b)
echo("a ^ b : " & $(a ^ b))
</lang>
</syntaxhighlight>
Execute: Aritmint 10 23 <br>/
Execute: Aritmint 4 5
Output: <br/>
{{out}}
<pre>
a : 104
b : 235
a + b : 339
a - b : -131
a * b : 23020
a div b: 04
a mod b: 104
a ^ b : 1024
</pre>
 
=={{header|NSIS}}==
All Arithmetic in NSIS is handled by the [http://nsis.sourceforge.net/Docs/Chapter4.html#4.9.10.2 IntOp] instruction. It is beyond the scope of this task to implement user input (a fairly involved task), so I will be providing hard-coded values simulating the user input, with the intention of later adding the user-input piece.
<langsyntaxhighlight lang="nsis">Function Arithmetic
Push $0
Push $1
Line 1,971 ⟶ 3,918:
Pop $1
Pop $0
FunctionEnd</langsyntaxhighlight>
 
=={{header|Nu}}==
Division rounds towards -infinity. Modulus will match the sign of the first number.
 
<syntaxhighlight lang="nu">
input | parse "{a} {b}" | first | values | into int | do {|a b|
{
Sum: ($a + $b)
Difference: ($a - $b)
Product: ($a * $b)
Quotient: ($a // $b)
Remainder: ($a mod $b)
Exponent: ($a ** $b)
}
} $in.0 $in.1
</syntaxhighlight>
{{out}}
<pre>
-1 2
╭────────────┬────╮
│ Sum │ 1 │
│ Difference │ -3 │
│ Product │ -2 │
│ Quotient │ -1 │
│ Remainder │ -1 │
│ Exponent │ 1 │
╰────────────┴────╯
</pre>
 
=={{header|Nutt}}==
<syntaxhighlight lang="Nutt">
module main
imports native.io{input.hear,output.say}
 
vals a=hear(Numerable),b=hear(Numerable)
say("a+b="+(a+b))
say("a-b="+(a-b))
say("a*b="+(a*b))
say("a//b="+(a//b))
say("a%b="+(a%b))
say("a^b="+(a^b))
 
end
</syntaxhighlight>
 
=={{header|Oberon-2}}==
Oxford Oberon-2
<langsyntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT In, Out;
Line 1,988 ⟶ 3,979:
Out.String("x MOD y >");Out.Int(x MOD y,6);Out.Ln;
END Arithmetic.
</syntaxhighlight>
</lang>
{{out}}
Output:
<pre>
Give two numbers: 12 23
Line 1,998 ⟶ 3,989:
x MOD y > 12
</pre>
 
=={{header|Objeck}}==
<langsyntaxhighlight lang="objeck">bundle Default {
class Arithmetic {
function : Main(args : System.String[]) ~ Nil {
Line 2,015 ⟶ 4,007:
}
}
}</langsyntaxhighlight>
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let _ =
let a = read_int ()
and b = read_int () in
Line 2,026 ⟶ 4,018:
Printf.printf "a * b = %d\n" (a * b);
Printf.printf "a / b = %d\n" (a / b); (* truncates towards 0 *)
Printf.printf "a mod b = %d\n" (a mod b) (* same sign as first operand *)</langsyntaxhighlight>
 
=={{header|Oforth}}==
 
<syntaxhighlight lang="oforth">: integers (a b -- )
"a + b =" . a b + .cr
"a - b =" . a b - .cr
"a * b =" . a b * .cr
"a / b =" . a b / .cr
"a mod b =" . a b mod .cr
"a pow b =" . a b pow .cr
;</syntaxhighlight>
 
{{out}}
<pre>
>12 23 integers
a + b = 35
a - b = -11
a * b = 276
a / b = 0
a mod b = 12
a pow b = 6624737266949237011120128
ok
</pre>
 
=={{header|Ol}}==
 
<syntaxhighlight lang="scheme">
(define a 8)
(define b 12)
 
(print "(+ " a " " b ") => " (+ a b))
(print "(- " a " " b ") => " (- a b))
(print "(* " a " " b ") => " (* a b))
(print "(/ " a " " b ") => " (/ a b))
 
(print "(quotient " a " " b ") => " (quot a b)) ; same as (quotient a b)
(print "(remainder " a " " b ") => " (rem a b)) ; same as (remainder a b)
(print "(modulo " a " " b ") => " (mod a b)) ; same as (modulo a b)
 
(print "(expt " a " " b ") => " (expt a b))
(print "(gcd " a " " b ") => " (gcd a b))
(print "(lcm " a " " b ") => " (lcm a b))
 
; you can use more than two arguments for +,-,*,/ functions
(print (+ 1 3 5 7 9))
(print (- 1 3 5 7 9))
(print (* 1 3 5 7 9)) ; same as (1*3*5*7*9)
(print (/ 1 3 5 7 9)) ; same as (((1/3)/5)/7)/9
</syntaxhighlight>
{{out}}
<pre>
(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(expt 8 12) => 68719476736
(gcd 8 12) => 4
(lcm 8 12) => 24
25
-23
945
1/945
</pre>
 
=={{header|Onyx}}==
 
<syntaxhighlight lang="onyx"># Most of this long script is mere presentation.
# All you really need to do is push two integers onto the stack
# and then execute add, sub, mul, idiv, or pow.
 
$ClearScreen { # Using ANSI terminal control
`\e[2J\e[1;1H' print flush
} bind def
 
$Say { # string Say -
`\n' cat print flush
} bind def
 
$ShowPreamble {
`To show how integer arithmetic in done in Onyx,' Say
`we\'ll use two numbers of your choice, which' Say
`we\'ll call A and B.\n' Say
} bind def
 
$Prompt { # stack: string --
stdout exch write pop flush
} def
 
$GetInt { # stack: name -- integer
dup cvs `Enter integer ' exch cat `: ' cat
Prompt stdin readline pop cvx eval def
} bind def
 
$Template { # arithmetic_operator_name label_string Template result_string
A cvs ` ' B cvs ` ' 5 ncat over cvs ` gives ' 3 ncat exch
A B dn cvx eval cvs `.' 3 ncat Say
} bind def
 
$ShowResults {
$add `Addition: ' Template
$sub `Subtraction: ' Template
$mul `Multiplication: ' Template
$idiv `Division: ' Template
`Note that the result of integer division is rounded toward zero.' Say
$pow `Exponentiation: ' Template
`Note that the result of raising to a negative power always gives a real number.' Say
} bind def
 
ClearScreen ShowPreamble $A GetInt $B GetInt ShowResults</syntaxhighlight>
 
{{out}}
<pre>
To show how integer arithmetic in done in Onyx,
we'll use two numbers of your choice, which
we'll call A and B.
 
Enter integer A: 34
Enter integer B: 2
Addition: 34 2 add gives 36.
Subtraction: 34 2 sub gives 32.
Multiplication: 34 2 mul gives 68.
Division: 34 2 idiv gives 17.
Note that the result of integer division is rounded toward zero.
Exponentiation: 34 2 pow gives 1156.
Note that the result of raising to a negative power always gives a real number.
</pre>
 
=={{header|Openscad}}==
 
<langsyntaxhighlight lang="openscad">echo (a+b); /* Sum */
echo (a-b); /* Difference */
echo (a*b); /* Product */
echo (a/b); /* Quotient */
echo (a%b); /* Modulus */</langsyntaxhighlight>
 
=={{header|Oz}}==
<langsyntaxhighlight lang="oz">declare
StdIn = {New class $ from Open.file Open.text end init(name:stdin)}
 
Line 2,055 ⟶ 4,176:
"A^B = "#{Pow A B}
]
System.showInfo}</langsyntaxhighlight>
 
=={{header|Panda}}==
Use reflection to get all functions defined on numbers taking number and returning number.
<syntaxhighlight lang="panda">a=3 b=7 func:_bbf__number_number_number =>f.name.<b> '(' a b ')' ' => ' f(a b) nl</syntaxhighlight>
 
{{out}}
<pre>atan2 ( 3 7 ) => 0.40489178628508343
divide ( 3 7 ) => 0.42857142857142855
gt ( 3 7 ) => UNDEFINED!
gte ( 3 7 ) => UNDEFINED!
lt ( 3 7 ) => 3
lte ( 3 7 ) => 3
max ( 3 7 ) => 7
min ( 3 7 ) => 3
minus ( 3 7 ) => -4
mod ( 3 7 ) => 3
plus ( 3 7 ) => 10
pow ( 3 7 ) => 2187</pre>
 
=={{header|PARI/GP}}==
Integer division with <code>\</code> rounds to <math>-\infty</math>. There also exists the <code>\/</code> round-to-nearest (ties to <math>+\infty</math>) operator. Ordinary division <code>/</code> does not round but returns rationals if given integers with a non-integral quotient.
<langsyntaxhighlight lang="parigp">arith(a,b)={
print(a+b);
print(a-b);
Line 2,066 ⟶ 4,205:
print(a%b);
print(a^b);
};</langsyntaxhighlight>
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">program arithmetic(input, output)
 
var
Line 2,080 ⟶ 4,219:
writeln('a*b = ', a*b);
writeln('a/b = ', a div b, ', remainder ', a mod b);
writeln('a^b = ',Power(a,b):4:2); {real power}
end.</lang>
writeln('a^b = ',IntPower(a,b):4:2); {integer power}
end.</syntaxhighlight>
 
=={{header|Perl}}==
{{works with|Perl|5.x}}
<langsyntaxhighlight lang="perl">my $a = <>;
my $b = <>;
 
Line 2,094 ⟶ 4,235:
"remainder: ", $a % $b, "\n",
"exponent: ", $a ** $b, "\n"
;</langsyntaxhighlight>
 
=={{header|Perl 6Phix}}==
{{libheader|Phix/pGUI}}
{{works with|Rakudo|#21 "Seattle"}}
{{libheader|Phix/online}}
<lang perl6>my Int $a = get.floor;
You can run this online [http://phix.x10.mx/p2js/ArithInt.htm here] (layout/space is not perfected yet).
my Int $b = get.floor;
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">pGUI</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">Ihandle</span> <span style="color: #000000;">lab</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">tab</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">dlg</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">fmt</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"""
a = %d
b = %d
a + b = %d
a - b = %d
a * b = %d
a / b = %g (does not truncate)
remainder(a,b) = %d (same sign as first operand)
power(a,b) = %g
"""</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">valuechanged_cb</span><span style="color: #0000FF;">(</span><span style="color: #004080;">Ihandle</span> <span style="color: #000000;">tab</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupGetAttribute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tab</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"VALUE"</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">scanf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d %d"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fmt</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">+</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">-</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">*</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">/</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">remainder</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">),</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)})</span>
<span style="color: #7060A8;">IupSetStrAttribute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"TITLE"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupRefresh</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">IUP_DEFAULT</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupOpen</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">lab</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupLabel</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"Enter two numbers"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">tab</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupText</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"VALUECHANGED_CB"</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">Icallback</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"valuechanged_cb"</span><span style="color: #0000FF;">),</span><span style="color: #008000;">"EXPAND=HORIZONTAL"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupLabel</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"(separated by a space)\n\n\n\n\n\n\n"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"EXPAND=BOTH"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDialog</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">IupVbox</span><span style="color: #0000FF;">({</span><span style="color: #7060A8;">IupHbox</span><span style="color: #0000FF;">({</span><span style="color: #000000;">lab</span><span style="color: #0000FF;">,</span><span style="color: #000000;">tab</span><span style="color: #0000FF;">},</span><span style="color: #008000;">"GAP=10,NORMALIZESIZE=VERTICAL"</span><span style="color: #0000FF;">),</span>
<span style="color: #7060A8;">IupHbox</span><span style="color: #0000FF;">({</span><span style="color: #000000;">res</span><span style="color: #0000FF;">})},</span><span style="color: #008000;">"MARGIN=5x5"</span><span style="color: #0000FF;">),</span>
<span style="color: #008000;">`SIZE=188x112,TITLE="Arithmetic/Integer"`</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupShow</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">IupMainLoop</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupClose</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<!--</syntaxhighlight>-->
{{out}}
With an input of "2 3"
<pre>
a = 2
b = 3
a + b = 5
a - b = -1
a * b = 6
a / b = 0.666667 (does not truncate)
remainder(a,b) = 2 (same sign as first operand)
power(a,b) = 8
</pre>
 
=={{header|Phixmonti}}==
say 'sum: ', $a + $b;
<syntaxhighlight lang="phixmonti">def printOp
say 'difference: ', $a - $b;
swap print print nl
say 'product: ', $a * $b;
enddef
say 'integer quotient: ', $a div $b;
 
say 'remainder: ', $a % $b;
8 var a 3 var b
say 'exponentiation: ', $a**$b;</lang>
"a = " a printOp
"b = " b printOp
 
"a + b = " a b + printOp
Note that <code>div</code> doesn't always do integer division; it performs the operation "most appropriate to the
"a - b = " a b - printOp
operand types". [http://perlcabal.org/syn/S03.html#line_729 Synopsis 3] guarantees that <code>div</code> "on built-in integer types is equivalent to taking the floor of a real division". If you want integer division with other types, say <code>floor($a/$b)</code>.
"a * b = " a b * printOp
"int(a / b) = " a b / int printOp
"a mod b = " a b mod printOp
"a ^ b = " a b power printOp</syntaxhighlight>
 
=={{header|PHL}}==
 
<langsyntaxhighlight lang="phl">module arith;
 
extern printf;
Line 2,131 ⟶ 4,336:
return 0;
]</langsyntaxhighlight>
 
=={{header|PHP}}==
<langsyntaxhighlight lang="php"><?php
$a = fgets(STDIN);
$b = fgets(STDIN);
Line 2,144 ⟶ 4,349:
"truncating quotient: ", (int)($a / $b), "\n",
"flooring quotient: ", floor($a / $b), "\n",
"remainder: ", $a % $b, "\n";,
"power: ", $a ** $b, "\n"; // PHP 5.6+ only
?></lang>
?></syntaxhighlight>
 
=={{header|Picat}}==
<syntaxhighlight lang="picat">main =>
X = read_int(),
Y = read_int(),
foreach (Op in [+,-,*,div,rem])
R = apply(Op,X,Y),
printf("%d %w %d = %d\n", X, Op, Y, R)
end.
</syntaxhighlight>
 
{{out}}
<pre>
2 3
2 + 3 = 5
2 - 3 = -1
2 * 3 = 6
2 div 3 = 0
2 rem 3 = 2
</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(de math (A B)
(prinl "Add " (+ A B))
(prinl "Subtract " (- A B))
Line 2,155 ⟶ 4,381:
(prinl "Div/rnd " (*/ A B)) # Rounds to next integer
(prinl "Modulus " (% A B)) # Sign of the first operand
(prinl "Power " (** A B)) )</langsyntaxhighlight>
 
=={{header|Piet}}==
[[File:PietArithmaticInteger.png]]<br>
Line 2,197 ⟶ 4,424:
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
get list (a, b);
put skip list (a+b);
Line 2,204 ⟶ 4,431:
put skip list (trunc(a/b)); /* truncates towards zero. */
put skip list (mod(a, b)); /* Remainder is always positive. */
put skip list (rem(a, b)); /* Sign can be negative. */</langsyntaxhighlight>
 
=={{header|Plain English}}==
<syntaxhighlight lang="plainenglish">To run:
Start up.
Demonstrate integer arithmetic.
Wait for the escape key.
Shut down.
 
To demonstrate integer arithmetic:
Write "Enter a number: " to the console without advancing.
Read a number from the console.
Write "Enter another number: " to the console without advancing.
Read another number from the console.
Show the arithmetic operations between the number and the other number.
 
To show the arithmetic operations between a number and another number:
Write the number plus the other number then " is the sum." to the console.
Write the number minus the other number then " is the difference." to the console.
Write the number times the other number then " is the product." to the console.
Show the division of the number by the other number.
Raise the number to the other number.
Write the number then " is the power." to the console.
 
To show the division of a number by another number:
Privatize the number.
Divide the number by the other number giving a quotient [rounding toward zero] and a remainder [with the same sign as the dividend].
Write the quotient then " is the quotient." to the console.
Write the remainder then " is the remainder." to the console.</syntaxhighlight>
{{out}}
<pre>
Enter a number: 44
Enter another number: 3
47 is the sum.
41 is the difference.
132 is the product.
14 is the quotient.
2 is the remainder.
85184 is the power.
</pre>
 
=={{header|Pop11}}==
 
<langsyntaxhighlight lang="pop11">;;; Setup token reader
vars itemrep;
incharitem(charin) -> itemrep;
Line 2,218 ⟶ 4,484:
printf(a * b, 'a * b = %p\n');
printf(a div b, 'a div b = %p\n');
printf(a mod b, 'a mod b = %p\n');</langsyntaxhighlight>
 
=={{header|PostScript}}==
<langsyntaxhighlight lang="ps">/arithInteger {
/x exch def
/y exch def
Line 2,230 ⟶ 4,496:
x y mod =
x y exp =
} def</langsyntaxhighlight>
 
=={{header|PowerShell}}==
<langsyntaxhighlight lang="powershell">$a = [int] (Read-Host First Number)
$b = [int] (Read-Host Second Number)
 
Line 2,240 ⟶ 4,507:
Write-Host "Quotient: $($a / $b)"
Write-Host "Quotient, round to even: $([Math]::Round($a / $b))"
Write-Host "Remainder, sign follows first: $($a % $b)"</langsyntaxhighlight>
Numbers are automatically converted to accomodate for the result. This means not only that Int32 will be expanded to Int64 but also that a non-integer quotient will cause the result to be of a floating-point type.
 
Line 2,246 ⟶ 4,513:
 
No exponentiation operator exists, but can be worked around with the .NET BCL:
<langsyntaxhighlight lang="powershell">[Math]::Pow($a, $b)</langsyntaxhighlight>
 
=={{header|Processing}}==
<syntaxhighlight lang="processing">int a = 7, b = 5;
 
println(a + " + " + b + " = " + (a + b));
println(a + " - " + b + " = " + (a - b));
println(a + " * " + b + " = " + (a * b));
println(a + " / " + b + " = " + (a / b)); //Rounds towards zero
println(a + " % " + b + " = " + (a % b)); //Same sign as first operand</syntaxhighlight>
{{out}}
<pre>7 + 5 = 12
7 - 5 = 2
7 * 5 = 35
7 / 5 = 1
7 % 5 = 2</pre>
 
=={{header|ProDOS}}==
<langsyntaxhighlight ProDOSlang="prodos">IGNORELINE Note: This example includes the math module.
include arithmeticmodule
:a
Line 2,266 ⟶ 4,549:
editvar /newvar /value=d /title=Do you want to calculate more numbers?
if -d- /hasvalue yes goto :a else goto :end
:end</langsyntaxhighlight>
 
<langsyntaxhighlight ProDOSlang="prodos">IGNORELINE Note: This example does not use the math module.
:a
editvar /newvar /value=a /title=Enter first integer:
Line 2,282 ⟶ 4,565:
editvar /newvar /value=d /title=Do you want to calculate more numbers?
if -d- /hasvalue yes goto :a else goto :end
:end</langsyntaxhighlight>
 
=={{header|Prolog}}==
Line 2,290 ⟶ 4,573:
Remainder (`rem`) matches the sign of its first operand.
 
<langsyntaxhighlight lang="prolog">
 
print_expression_and_result(M, N, Operator) :-
Line 2,302 ⟶ 4,585:
maplist( print_expression_and_result(M, N), [+,-,*,//,rem,^] ).
 
</syntaxhighlight>
</lang>
 
Use thus:
 
<langsyntaxhighlight lang="prolog">
?- arithmetic_integer.
|: 5.
Line 2,317 ⟶ 4,600:
5^7 is 78125
true.
</syntaxhighlight>
</lang>
 
=={{header|PureBasic}}==
<langsyntaxhighlight lang="purebasic">OpenConsole()
Define a, b
Line 2,336 ⟶ 4,619:
Input()
CloseConsole()</langsyntaxhighlight>
 
=={{header|Python}}==
 
<langsyntaxhighlight lang="python">x = int(raw_input("Number 1: "))
y = int(raw_input("Number 2: "))
 
Line 2,353 ⟶ 4,636:
 
## Only used to keep the display up when the program ends
raw_input( )</langsyntaxhighlight>
 
Notes: In Python3 ''raw_input()'' will be renamed to ''input()'' (the old ''input()'' built-in will go away, though one could use ''eval(input())'' to emulate the old ... and ill-advised ... behavior). Also a better program would wrap the attempted ''int()'' conversions in a ''try: ... except ValueError:...'' construct such as:
 
<langsyntaxhighlight lang="python">def getnum(prompt):
while True: # retrying ...
try:
Line 2,369 ⟶ 4,652:
x = getnum("Number1: ")
y = getnum("Number2: ")
...</langsyntaxhighlight>
 
(In general it's good practice to perform parsing of all input in exception handling blocks. This is especially true of interactive user input, but also applies to data read from configuration and other files, and marshaled from other processes via any IPC mechanism).
Line 2,378 ⟶ 4,661:
 
=== Python 3.0 compatible code ===
<langsyntaxhighlight lang="python">def arithmetic(x, y):
for op in "+ - * // % **".split():
expr = "%(x)s %(op)s %(y)s" % vars()
Line 2,385 ⟶ 4,668:
 
arithmetic(12, 8)
arithmetic(input("Number 1: "), input("Number 2: "))</langsyntaxhighlight>
{{out}}
Output:
<pre>12 + 8 => 20
12 - 8 => 4
Line 2,401 ⟶ 4,684:
20 % 4 => 0
20 ** 4 => 160000</pre>
 
== Python 3.x Long Form ==
<syntaxhighlight lang="python">input1 = 18
# input1 = input()
input2 = 7
# input2 = input()
 
qq = input1 + input2
print("Sum: " + str(qq))
ww = input1 - input2
print("Difference: " + str(ww))
ee = input1 * input2
print("Product: " + str(ee))
rr = input1 / input2
print("Integer quotient: " + str(int(rr)))
print("Float quotient: " + str(float(rr)))
tt = float(input1 / input2)
uu = (int(tt) - float(tt))*-10
#print(tt)
print("Whole Remainder: " + str(int(uu)))
print("Actual Remainder: " + str(uu))
yy = input1 ** input2
print("Exponentiation: " + str(yy))</syntaxhighlight>
 
{{Out}}
<pre>Sum: 25
Difference: 11
Product: 126
Integer quotient: 2
Float quotient: 2.5714285714285716
Whole Remainder: 5
Actual Remainder: 5.714285714285716
Exponentiation: 612220032</pre>
 
=={{header|QB64}}==
''CBTJD'': 2020/03/12
<syntaxhighlight lang="vb">START:
INPUT "Enter two integers (a,b):"; a!, b!
IF a = 0 THEN END
IF b = 0 THEN
PRINT "Second integer is zero. Zero not allowed for Quotient or Remainder."
GOTO START
END IF
PRINT
PRINT " Sum = "; a + b
PRINT " Difference = "; a - b
PRINT " Product = "; a * b
' Notice the use of the INTEGER Divisor "\" as opposed to the regular divisor "/".
PRINT "Integer Quotient = "; a \ b, , "* Rounds toward 0."
PRINT " Remainder = "; a MOD b, , "* Sign matches first operand."
PRINT " Exponentiation = "; a ^ b
PRINT
INPUT "Again? (y/N)"; a$
IF UCASE$(a$) = "Y" THEN CLS: GOTO START
CLS
END</syntaxhighlight>
 
=={{header|Quackery}}==
 
<syntaxhighlight lang="quackery "> $ "Please enter two integers separated by a space. "
input quackery
2dup say "Their sum is: " + echo cr
2dup say "Their difference is: " - echo cr
2dup say "Their product is: " " * echo cr
2dup say "Their integer quotient is: " / echo cr
2dup say "Their remainder is: " mod echo cr
say "Their exponentiation is: " ** echo cr
cr
say "Quotient rounds towards negative infinity." cr
say "Remainder matches the sign of the second argument."</syntaxhighlight>
 
{{Out}}
 
<pre>Please enter two integers separated by a space. 543 21
Their sum is: 564
Their difference is: 522
Their product is: 11403
Their integer quotient is: 25
Their remainder is: 18
Their exponentiation is: 2696475144200627485897267767746883957141292127831428752543
</pre>
 
=={{header|R}}==
<langsyntaxhighlight Rlang="r">cat("insert number ")
a <- scan(nmax=1, quiet=TRUE)
cat("insert number ")
Line 2,413 ⟶ 4,777:
print(paste('a%%b=', a%%b))
print(paste('a^b=', a^b))
</syntaxhighlight>
</lang>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket/base
 
(define (arithmetic x y)
(for ([op '(list + - * / quotient remainder modulo max min gcd lcm)])
(displaylnprintf ("~as => ~s\n" `(,(listobject-name op) ,x ,y) "(op => "x y))))
 
((eval op (make-base-namespace)) x y)))))
(arithmetic 8 12)
</syntaxhighlight>
</lang>
{{out}}
Output:
<pre>
(+ 8 12) => 20
Line 2,439 ⟶ 4,803:
(lcm 8 12) => 24
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
 
Note that <code>div</code> <b>requires</b> integer arguments. If you want integer division with other types, say <code>floor($a/$b)</code>.
<syntaxhighlight lang="raku" line>my Int $a = get.floor;
my Int $b = get.floor;
 
say 'sum: ', $a + $b;
say 'difference: ', $a - $b;
say 'product: ', $a * $b;
say 'integer quotient: ', $a div $b;
say 'remainder: ', $a % $b;
say 'exponentiation: ', $a**$b;</syntaxhighlight>
 
=={{header|Raven}}==
 
<langsyntaxhighlight lang="raven">' Number 1: ' print expect 0 prefer as x
' Number 2: ' print expect 0 prefer as y
 
Line 2,448 ⟶ 4,827:
x y * " product: %d\n" print
x y / " quotient: %d\n" print
x y % " remainder: %d\n" print</langsyntaxhighlight>
 
=={{header|REBOL}}==
<langsyntaxhighlight lang="rebol">REBOL [
Title: "Integer"
Author: oofoe
Date: 2010-09-29
URL: http://rosettacode.org/wiki/Arithmetic/Integer
]
Line 2,503 ⟶ 4,880:
]
 
print ["Exponentiation:" x ** y]</langsyntaxhighlight>
 
Sample output:
 
{{out}}
<pre>Please type in an integer, and press [enter]: 17
Please enter another integer: -4
Line 2,523 ⟶ 4,899:
Remainder sign matches: first
Exponentiation: 1.19730367213036E-5</pre>
 
=={{header|Relation}}==
There is no input, variables have to be set in code. Format is there only for output.
<syntaxhighlight lang="relation">
set a = -17
set b = 4
echo "a+b = ".format(a+b,"%1d")
echo "a-b = ".format(a-b,"%1d")
echo "a*b = ".format(a*b,"%1d")
echo "a DIV b = ".format(floor(a/b),"%1d")
echo "a MOD b = ".format(a mod b,"%1d")
echo "a^b = ".format(pow(a,b),"%1d")
</syntaxhighlight>
 
=={{header|ReScript}}==
 
<syntaxhighlight lang="rescript">let a = int_of_string(Sys.argv[2])
let b = int_of_string(Sys.argv[3])
 
let sum = a + b
let difference = a - b
let product = a * b
let division = a / b
let remainder = mod(a, b)
 
Js.log("a + b = " ++ string_of_int(sum))
Js.log("a - b = " ++ string_of_int(difference))
Js.log("a * b = " ++ string_of_int(product))
Js.log("a / b = " ++ string_of_int(division))
Js.log("a % b = " ++ string_of_int(remainder))</syntaxhighlight>
 
{{out}}
 
<pre>$ bsc arith.res > arith.bs.js
$ node arith.bs.js 10 7
a + b = 17
a - b = 3
a * b = 70
a / b = 1
a % b = 3
</pre>
 
=={{header|Retro}}==
Retro's arithmetic functions are based on those in [[Forth]]. The example is an adaption of the one from Forth.
<syntaxhighlight lang Retro="retro">: arithmetic ( ab- )
over "\na '\na_______= _%d"n putss:put
dup "\nb '\nb_______= _%d"n putss:put
2overdup-pair + "'\na na_+ b _b___= _%d"n putss:put
2overdup-pair - "'\na na_- b _b___= _%d"n putss:put
2overdup-pair * "'\na na_* b _b___= _%d"n putss:put
/mod "\na / b '\na_/_b___= _%d"n putss:put
"\na mod b '\na_mod_b_= _%dn\n" putss:put ;</langsyntaxhighlight>
 
=={{header|REXX}}==
All operators automatically produce integers where appropriate &nbsp; (up to twenty decimal digits in the program below),
<lang rexx>/*REXX pgm gets 2 integers from the C.L. or via prompt, shows some opers*/
<br>or numbers in exponential format when necessary. &nbsp; (The REXX default is &nbsp; '''9''' &nbsp; decimal digits.)
numeric digits 20 /*all numbers are rounded at ··· */
/*··· the 20th significant digit.*/
parse arg x y . /*maybe the integers are on C.L.?*/
if y=='' then do /*nope, then prompt user for 'em.*/
say "─────Enter two integer values (separated by blanks):"
parse pull x y .
end
do 2 /*show A with B, then B with A.*/
say /*show blank line for eyeballing.*/
 
For division that produces a floating point number, the result is rounded to the nearest number that can be expressed
call show 'addition' , "+", x+y
<br>within the current number of decimal digits &nbsp; (in the example program below, it is &nbsp; '''20''' &nbsp; decimal digits).
call show 'subtraction' , "-", x-y
<syntaxhighlight lang="rexx">/*REXX program obtains two integers from the C.L. (a prompt); displays some operations.*/
call show 'multiplication', "*", x*y
numeric digits 20 /*#s are round at 20th significant dig.*/
call show 'int division' , "%", x%y, ' [rounds down]'
parse arg x y . /*maybe the integers are on the C.L. */
call show 'real division' , "/", x/y
call show 'div remainder' , "//", x//y, ' [sign from 1st operand]'
call show 'power' , "**", x**y
 
do while \datatype(x,'W') | \datatype(y,'W') /*both X and Y must be integers. */
parse value x y with y x /*swap the two values & do again.*/
say "─────Enter two integer values (separated by blanks):"
end /*2*/
exit parse pull x y . /*stick aaccept forktwo inthingys it,from we'recommand doneline.*/
end /*while*/
/*──────────────────────────────────SHOW subroutine─────────────────────*/
/* [↓] perform this DO loop twice. */
show: parse arg what,oper,value,comment
do j=1 for 2 /*show A oper B, then B oper A.*/
say right(what,25)' ' x center(oper,4) y ' ───► ' value comment
call show 'addition' , "+", x+y
return</lang>
call show 'subtraction' , "-", x-y
'''output''' when using the input of: <tt> 17 -4 </tt>
call show 'multiplication' , "*", x*y
call show 'int division' , "%", x%y, ' [rounds down]'
call show 'real division' , "/", x/y
call show 'division remainder', "//", x//y, ' [sign from 1st operand]'
call show 'power' , "**", x**y
 
parse value x y with y x /*swap the two values and perform again*/
if j==1 then say copies('═', 79) /*display a fence after the 1st round. */
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: parse arg c,o,#,?; say right(c,25)' ' x center(o,4) y " ───► " # ?; return</syntaxhighlight>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> 4 &nbsp; -17 </tt>}}
<pre>
addition 174 + -417 ───► -13
subtraction 174 - -417 ───► 21
multiplication 174 * -417 ───► -68
int division 174 % -417 ───► -40 [rounds down]
real division 174 / -417 ───► -40.2523529411764705882353
divdivision remainder 174 // -417 ───► 14 [sign from 1st operand]
power 174 ** -417 ───► 05.0000119730367213036242388207660913467407227E-11
═══════════════════════════════════════════════════════════════════════════════
addition -17 + 4 ───► -13
subtraction -17 - 4 ───► -21
multiplication -17 * 4 ───► -68
int division -17 % 4 ───► -4 [rounds down]
real division -17 / 4 ───► -4.25
division remainder -17 // 4 ───► -1 [sign from 1st operand]
power -17 ** 4 ───► 83521
</pre>
 
=={{header|Ring}}==
addition -4 + 17 ───► 13
<syntaxhighlight lang="ring">
subtraction -4 - 17 ───► -21
func Test a,b
multiplication -4 * 17 ───► -68
see "a+b" + ( a + b ) + nl
int division -4 % 17 ───► 0 [rounds down]
see "a-b" + ( a - b ) + nl
real division -4 / 17 ───► -0.23529411764705882353
see "a*b" + ( a * b ) + nl
div remainder -4 // 17 ───► -4 [sign from 1st operand]
// The quotient isn't integer, so we use the Ceil() function, which truncates it downward.
power -4 ** 17 ───► -17179869184
see "a/b" + Ceil( a / b ) + nl
// Remainder:
see "a%b" + ( a % b ) + nl
see "a**b" + pow(a,b ) + nl
</syntaxhighlight>
 
=={{header|Robotic}}==
<syntaxhighlight lang="robotic">
input string "Enter number 1:"
set "a" to "input"
input string "Enter number 2:"
set "b" to "input"
 
[ "Sum: ('a' + 'b')"
[ "Difference: ('a' - 'b')"
[ "Product: ('a' * 'b')"
[ "Integer Quotient: ('a' / 'b')"
[ "Remainder: ('a' % 'b')"
[ "Exponentiation: ('a'^'b')"
</syntaxhighlight>
 
=={{header|RPL}}==
≪ → a b
≪ "a + b = " a b + →STR +
"a - b = " a b - →STR +
"a * b = " a b * →STR +
"a / b = " a b / →STR +
"a % b = " a b / LAST ROT * - →STR +
"a ^ b = " a B→R b B→R ^ R→B →STR +
≫ ≫ '<span style="color:blue">SHOWA</span>' STO
 
#14 #3 <span style="color:blue">SHOWA</span>
<pre>
6: "a + b = # 17d"
5: "a - b = # 11d"
4: "a * b = # 42d"
3: "a / b = # 4d"
2: "a % b = # 2d"
1: "a ^ b = # 2744d"
</pre>
 
=={{header|Ruby}}==
 
<langsyntaxhighlight lang="ruby">puts 'Enter x and y'
x = gets.to_i # to check errors, use x=Integer(gets)
y = gets.to_i
Line 2,594 ⟶ 5,062:
"Quotient: #{x.fdiv(y)}", # float
"Remainder: #{x%y}", # same sign as second operand
"Exponentiation: #{x**y}"</lang>,
"Quotient: %d with Remainder: %d" % x.divmod(y)</syntaxhighlight>
 
=={{header|Run BASIC}}==
<langsyntaxhighlight lang="runbasic">input "1st integer: "; i1
input "2nd integer: "; i2
Line 2,605 ⟶ 5,074:
if i2 <>0 then print " Quotent "; int( i1 / i2); else print "Cannot divide by zero."
print "Remainder"; i1 MOD i2
print "1st raised to power of 2nd"; i1 ^ i2</langsyntaxhighlight>
 
=={{header|Rust}}==
 
Note that this code cannot be run within the [http://play.rust-lang.org Rust playpen] as it does not support console input.
<langsyntaxhighlight lang="rust">use std::ioenv;
 
fn main() {
let args: Vec<_> = env::args().collect();
#![allow(unstable)] // Currently required whilst Rust 1.0 is finalised
let a: i32 = from_str(ioargs[1].parse::stdin().read_line().unwrap().trim().as_slice<i32>()).unwrap();
let b: i32 = from_str(ioargs[2].parse::stdin().read_line().unwrap().trim().as_slice<i32>()).unwrap();
 
let println!("sum: ={}", a + b);
println!("adifference: + b = {0}" , suma - b);
println!("aproduct: - b = {0}" , a -* b);
println!("a * binteger =quotient: {0}" , a */ b); // truncates towards zero
println!("quotientremainder: of a / b = {0}" , a /% b); // truncatessame sign as towardsfirst 0operand
}</syntaxhighlight>
println!("remainder of a / b = {0}" , a % b); // same sign as first operand
 
}</lang>
=={{header|Sass/SCSS}}==
 
<syntaxhighlight lang="coffeescript">
@function arithmetic($a,$b) {
@return $a + $b, $a - $b, $a * $b, ($a - ($a % $b))/$b, $a % $b;
}
</syntaxhighlight>
Which you use with:
<syntaxhighlight lang="coffeescript">
nth(arithmetic(10,3),1);
</syntaxhighlight>
Or each of the functions separately:
<syntaxhighlight lang="coffeescript">
@function sum($a,$b) {
@return $a + $b;
}
 
@function difference($a,$b) {
@return $a - $b;
}
 
@function product($a,$b) {
@return $a * $b;
}
 
@function integer-division($a,$b) {
@return ($a - ($a % $b))/$b;
}
 
@function remainder($a,$b) {
@return $a % $b;
}
 
@function float-division($a,$b) {
@return $a / $b;
}
</syntaxhighlight>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">val a = Console.readInt
val b = Console.readInt
Line 2,634 ⟶ 5,140:
println("a * b = " + (a * b))
println("quotient of a / b = " + (a / b)) // truncates towards 0
println("remainder of a / b = " + (a % b)) // same sign as first operand</langsyntaxhighlight>
 
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">(define (arithmetic x y)
(for-each (lambda (op)
(write (list op x y))
Line 2,646 ⟶ 5,152:
'(+ - * / quotient remainder modulo max min gcd lcm)))
(arithmetic 8 12)</langsyntaxhighlight>
quotient - truncates towards 0
remainder - same sign as first operand
Line 2,666 ⟶ 5,172:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: main is func
Line 2,685 ⟶ 5,191:
writeln("a mdiv b = " <& a mdiv b); # Rounds towards negative infinity
writeln("a mod b = " <& a mod b); # Sign of the second operand
end func;</langsyntaxhighlight>
 
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">ask "Enter the first number:"
put it into number1
 
ask "Enter the second number:"
put it into number2
 
put "Sum: " & number1 plus number2
put "Difference: " & number1 minus number2
put "Product: " & number1 multiplied by number2
put "Integer quotient: " & number1 div number2 -- Rounding towards 0
put "Remainder: " & number1 rem number2
put "Exponentiation: " & number1 to the power of number2</syntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">var a = Sys.scanln("First number: ").to_i;
var b = Sys.scanln("Second number: ").to_i;
 
%w'+ - * // % ** ^ | & << >>'.each { |op|
"#{a} #{op} #{b} = #{a.$op(b)}".say;
}</langsyntaxhighlight>
 
{{out}}
'''Output:'''
<pre>
First number: 1234
** Integer a: 100
Second number: 7
** Integer b: 20
1001234 + 207 = 1201241
1001234 - 207 = 801227
1001234 * 207 = 20008638
1001234 // 207 = 5176
1001234 % 207 = 02
1234 ** 7 = 4357186184021382204544
100 ** 20 = 10000000000000000000000000000000000000000
1001234 ^ 207 = 1121237
1001234 | 207 = 1161239
1001234 & 207 = 42
1001234 << 207 = 104857600157952
1001234 >> 207 = 09
</pre>
 
=={{header|Slate}}==
<langsyntaxhighlight lang="slate">[| :a :b |
inform: (a + b) printString.
inform: (a - b) printString.
Line 2,721 ⟶ 5,241:
inform: (a \\ b) printString.
 
] applyTo: {Integer readFrom: (query: 'Enter a: '). Integer readFrom: (query: 'Enter b: ')}.</langsyntaxhighlight>
 
=={{header|SmallBASIC}}==
<syntaxhighlight lang="SmallBASIC">
input "Enter first number : "; A
input "Enter second number: "; B
 
print "Sum : "; A + B
print "Difference: "; A - B
print "Product : "; A * B
print "Quotient : "; A \ B ' Integer quotient rounds towards smaller number
print "Remainder : "; A % B ' sign of remainder is given by sign of first operand
print "Power : "; A ^ B
</syntaxhighlight>
 
=={{header|Smalltalk}}==
{{works with|GNU Smalltalk}}
<langsyntaxhighlight lang="smalltalk">| a b |
'Input number a: ' display.
a := (stdin nextLine) asInteger.
Line 2,734 ⟶ 5,267:
('a*b=%1' % { a * b }) displayNl.
('a/b=%1' % { a // b }) displayNl.
('a%%b=%1' % { a \\ b }) displayNl.</langsyntaxhighlight>
 
{{works with|Smalltalk/X}} (and all other Smalltalks)
<syntaxhighlight lang="smalltalk">|a b|
a := (Dialog request:'Enter first number:') asNumber.
b := (Dialog request:'Enter second number:') asNumber.
#( + - / * // \\ quo: rem: raisedTo: **) do:[:operator |
|result|
result := a perform:operator with:b.
'%P %s %P => %P\n' printf:{a . operator . b . result} on:Transcript
].</syntaxhighlight>
/ is exact division
<br>// is truncating division (towards negative infinity)
<br>\\ is remainder from \\
<br>quo: is truncating division (towards zero)
<br>\\ is remainder from quo:
<br>** is just an alias for raisedTo:
<p>Entering 10 and 3, generates:
{{out}}
<pre>
10 + 3 => 13
10 - 3 => 7
10 / 3 => (10/3)
10 * 3 => 30
10 // 3 => 3
10 \\ 3 => 1
10 quo: 3 => 3
10 rem: 3 => 1
10 raisedTo: 3 => 1000
10 ** 3 => 1000
</pre>
Entering 10 and -3 generates:
{{out}}
<pre>
10 + -3 => 7
10 - -3 => 13
10 / -3 => (-10/3)
10 * -3 => -30
10 // -3 => -4
10 \\ -3 => -2
10 quo: -3 => -3
10 rem: -3 => 1
10 raisedTo: -3 => (1/1000)
10 ** -3 => (1/1000)
</pre>
Entering 20 and 50 generates (notice the fraction and the long integer results):
{{out}}
<pre>
20 + 50 => 70
20 - 50 => -30
20 / 50 => (2/5)
20 * 50 => 1000
20 // 50 => 0
20 \\ 50 => 20
20 quo: 50 => 0
20 rem: 50 => 20
20 raisedTo: 50 => 112589990684262400000000000000000000000000000000000000000000000000
20 ** 50 => 112589990684262400000000000000000000000000000000000000000000000000
</pre>
 
=={{header|smart BASIC}}==
<syntaxhighlight lang="qbasic">INPUT "Enter first number.":first
INPUT "Enter second number.":second
PRINT "The sum of";first;"and";second;"is ";first+second&"."
PRINT "The difference between";first;"and";second;"is ";ABS(first-second)&"."
PRINT "The product of";first;"and";second;"is ";first*second&"."
IF second THEN
PRINT "The integer quotient of";first;"and";second;"is ";INTEG(first/second)&"."
ELSE
PRINT "Division by zero not cool."
ENDIF
PRINT "The remainder being...";first%second&"."
PRINT STR$(first);"raised to the power of";second;"is ";first^second&"."</syntaxhighlight>
 
'''NOTES:''' Some curious aspects of smart BASIC to note in this code example:
<ol>
<li>In smart BASIC, The command INTEG is a true integer function providing only the value of the characteristic. The smart BASIC INT command calculates as a rounding function. This differs from some other versions of BASIC.</li>
<li>smart BASIC automatically inserts spaces ahead of and behind numbers. This can cause unexpected formatting issues when combining output from numeric variables with text. In order to suppress the trailing space, you must use the ampersand (&) to concatenate the numeric value with the following text (in this case, a period at the end of each sentence). In the case of leading spaces, you must convert the numeric value to text using the STR$ command (as with the last line of the code).
</ol>
 
=={{header|SNOBOL4}}==
<langsyntaxhighlight lang="snobol4">
output = "Enter first integer:"
first = input
Line 2,747 ⟶ 5,358:
output = "quot = " (qout = first / second)
output = "rem = " first - (qout * second)
output = "expo = " first ** second
end</lang>
end</syntaxhighlight>
 
=={{header|SNUSP}}==
Line 2,753 ⟶ 5,365:
 
''See also: [[Ethiopian Multiplication]]''
<syntaxhighlight lang="snusp">$\
<lang SNUSP>$\
,
@
Line 2,810 ⟶ 5,422:
\=@@@+@+++++#
.
#</langsyntaxhighlight>
 
=={{header|SQL}}==
{{works with|Oracle}}
<syntaxhighlight lang="sql">
-- test.sql
-- Tested in SQL*plus
 
drop table test;
 
create table test (a integer, b integer);
 
insert into test values ('&&A','&&B');
 
commit;
 
select a-b difference from test;
 
select a*b product from test;
 
select trunc(a/b) integer_quotient from test;
 
select mod(a,b) remainder from test;
 
select power(a,b) exponentiation from test;
</syntaxhighlight>
 
<pre>
SQL> @test.sql
 
Table dropped.
 
 
Table created.
 
Enter value for a: 3
Enter value for b: 4
old 1: insert into test values ('&&A','&&B')
new 1: insert into test values ('3','4')
 
1 row created.
 
 
Commit complete.
 
 
DIFFERENCE
----------
-1
 
 
PRODUCT
----------
12
 
 
INTEGER_QUOTIENT
----------------
0
 
 
REMAINDER
----------
3
 
 
EXPONENTIATION
--------------
81
</pre>
 
=={{header|SSEM}}==
The only operation that the SSEM supports natively is substraction. This program uses the <tt>001 Sub.</tt> instruction to find the difference between <i>a</i> and <i>b</i>, assuming they are loaded into storage addresses 20 and 21 respectively.
<syntaxhighlight lang="ssem">00101000000000100000000000000000 0. -20 to c
10100000000001100000000000000000 1. c to 5
10100000000000100000000000000000 2. -5 to c
10101000000000010000000000000000 3. Sub. 21
00000000000001110000000000000000 4. Stop
00000000000000000000000000000000 5. 0</syntaxhighlight>
The routine is slightly more complicated than it would otherwise be, because the SSEM cannot load a value into the accumulator (<tt>c</tt> register) from storage without negating it in the process—so we have to shuffle the negation of <i>a</i> back out into storage and then negate it again before we can subtract <i>b</i> from it. This does, however, make it easy to implement addition using negation and subtraction. In this program, we first negate <i>a</i>; then subtract <i>b</i>, and store the result; and finally negate that result, thereby obtaining the sum of the two integers.
<syntaxhighlight lang="ssem">00101000000000100000000000000000 0. -20 to c
10101000000000010000000000000000 1. Sub. 21
10100000000001100000000000000000 2. c to 5
10100000000000100000000000000000 3. -5 to c
00000000000001110000000000000000 4. Stop
00000000000000000000000000000000 5. 0</syntaxhighlight>
A multiplication program will be found at [[Function definition#SSEM]], and one that performs integer division at [[Loops/For with a specified step#SSEM]].
 
=={{header|Standard ML}}==
<langsyntaxhighlight lang="sml">val () = let
val a = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
val b = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
Line 2,825 ⟶ 5,524:
print ("a rem b = " ^ Int.toString (Int.rem (a, b)) ^ "\n"); (* same sign as first operand *)
print ("~a = " ^ Int.toString (~a) ^ "\n") (* unary negation, unusual notation compared to other languages *)
end</langsyntaxhighlight>
 
=={{header|Swift}}==
<syntaxhighlight lang="swift">
let a = 6
let b = 4
 
print("sum =\(a+b)")
print("difference = \(a-b)")
print("product = \(a*b)")
print("Integer quotient = \(a/b)")
print("Remainder = (a%b)")
print("No operator for Exponential")
</syntaxhighlight>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">puts "Please enter two numbers:"
 
set x [expr {int([gets stdin])}]; # Force integer interpretation
Line 2,838 ⟶ 5,550:
puts "$x / $y = [expr {$x / $y}]"
puts "$x mod $y = [expr {$x % $y}]"
puts "$x 'to the' $y = [expr {$x ** $y}]"</langsyntaxhighlight>
 
Since Tcl doesn't really know about the "type" of a variable, the "<tt>expr</tt>" command is used to declare whatever follows as an "expression". This means there is no such thing as "integer arithmetic" and hence the kludge with <tt>int([gets&nbsp;stdin])</tt>.
Line 2,844 ⟶ 5,556:
Often, these operations would be performed in a different way from what is shown here. For example, to increase the variable "x" by the value of the variable "y", one would write
 
<syntaxhighlight lang ="tcl">incr x $y</langsyntaxhighlight>
 
Also, it's important to surround the arguments to the <code>expr</code> in braces, especially when any of the parts of the expression are not literal constants. Discussion of this is on [http://wiki.tcl.tk/10225 The Tcler's Wiki].
 
=={{header|Terraform}}==
HCL doesn't have an exponentiation operator and even integer division is contrived as shown in the code, but at least it prints the output variables alphabetically without any effort.......
<syntaxhighlight lang="terraform">
#Aamrun, 15th August 2022
 
variable "a" {
type = number
}
 
variable "b" {
type = number
}
 
output "Sum" {
value = var.a + var.b
}
 
output "Difference" {
value = var.a - var.b
}
 
output "Product" {
value = var.a * var.b
}
 
output "Quotient" {
value = floor(var.a / var.b)
}
 
output "Remainder" {
value = var.a % var.b
}
</syntaxhighlight>
The floor function rounds to the closest lowest integer. Invocation and output are as below :
{{out}}
<pre>
$ terraform apply -var="a=19" -var="b=7" -auto-approve
 
Changes to Outputs:
+ Difference = 12
+ Product = 133
+ Quotient = 2
+ Remainder = 5
+ Sum = 26
 
You can apply this plan to save these new output values to the Terraform state, without changing any real infrastructure.
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed.
 
Outputs:
 
Difference = 12
Product = 133
Quotient = 2
Remainder = 5
Sum = 26
$
</pre>
 
=={{header|TI-83 BASIC}}==
Pauses added due to TI-83's lack of screen size.
<langsyntaxhighlight lang="ti83b">
Prompt A,B
Disp "SUM"
Line 2,862 ⟶ 5,633:
Disp "REMAINDER"
Pause A-B*int(A/B)
</syntaxhighlight>
</lang>
 
=={{header|TI-89 BASIC}}==
 
<langsyntaxhighlight lang="ti89b">Local a, b
Prompt a, b
Disp "Sum: " & string(a + b)
Line 2,872 ⟶ 5,643:
Disp "Product: " & string(a * b)
Disp "Integer quotient: " & string(intDiv(a, b))
Disp "Remainder: " & string(remain(a, b))</langsyntaxhighlight>
 
=={{header|Toka}}==
 
<langsyntaxhighlight lang="toka">[ ( a b -- )
2dup ." a+b = " + . cr
2dup ." a-b = " - . cr
2dup ." a*b = " * . cr
2dup ." a/b = " / . ." remainder " mod . cr
] is mathops</langsyntaxhighlight>
 
=={{header|TUSCRIPT}}==
<langsyntaxhighlight lang="tuscript">
$$ MODE TUSCRIPT
a=5
Line 2,893 ⟶ 5,664:
c=a/b
c=a%b
</syntaxhighlight>
</lang>
{{out}}
Output:
<pre>
a=5
Line 2,916 ⟶ 5,687:
{{works with|Bourne Shell}}
{{works with|Almquist SHell}}
<langsyntaxhighlight lang="bash">#!/bin/sh
read a; read b;
echo "a+b = " `expr $a + $b`
Line 2,922 ⟶ 5,693:
echo "a*b = " `expr $a \* $b`
echo "a/b = " `expr $a / $b` # truncates towards 0
echo "a mod b = " `expr $a % $b` # same sign as first operand</langsyntaxhighlight>
 
Notes: Using the ` (backtick operators, also available in most Bourne shells via the ''$(...)'' syntax) allows us to keep the results on their labels in the most efficient and portable way. The spaces around the operators in the ''expr'' command line arguments are required and the shell requires us to quote or escape the ''*'' character has shown, to prevent any possible "globbing" --- filename expansion of the ''*'' as a wildcard character.
Line 2,931 ⟶ 5,702:
{{works with|pdksh|5.2.14}}
{{works with|Z SHell}}
<langsyntaxhighlight lang="bash">#!/bin/sh
read a; read b;
echo "a+b = $((a+b))"
Line 2,937 ⟶ 5,708:
echo "a*b = $((a*b))"
echo "a/b = $((a/b))" # truncates towards 0
echo "a mod b = $((a%b))" # same sign as first operand</langsyntaxhighlight>
 
Note: spaces inside the ''$((...))'' are optional and not required; the ''$((...))'' can be inside or outside the double quotes, but the `...` expressions from the previous example can also be inside or outside the double quotes.
 
=={{header|Ursa}}==
<syntaxhighlight lang="ursa">#
# integer arithmetic
#
 
decl int x y
out "number 1: " console
set x (in int console)
out "number 2: " console
set y (in int console)
 
out "\nsum:\t" (int (+ x y)) endl console
out "diff:\t" (int (- x y)) endl console
out "prod:\t" (int (* x y)) endl console
# quotient doesn't round at all, but the int function rounds up
out "quot:\t" (int (/ x y)) endl console
# mod takes the sign of x
out "mod:\t" (int (mod x y)) endl console</syntaxhighlight>
 
Sample session:
<pre>number 1: 15
number 2: 7
 
sum: 22
diff: 8
prod: 105
quot: 2
mod: 1</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">
<lang vb>
'Arithmetic - Integer
Sub RosettaArithmeticInt()
Line 2,960 ⟶ 5,760:
Next opr
End Sub
</syntaxhighlight>
</lang>
 
=={{header|VBScript}}==
Line 2,966 ⟶ 5,766:
 
===Implementation===
<langsyntaxhighlight lang="vb">option explicit
dim a, b
wscript.stdout.write "A? "
Line 2,982 ⟶ 5,782:
wscript.echo "a \ b=", a \ b
wscript.echo "a mod b=", a mod b
wscript.echo "a ^ b=", a ^ b</langsyntaxhighlight>
 
===Another Implementation===
Gives the same output for the same input. Inspired by Python version.
<langsyntaxhighlight lang="vb">option explicit
dim a, b
wscript.stdout.write "A? "
Line 2,999 ⟶ 5,799:
for each op in split("+ - * / \ mod ^", " ")
wscript.echo "a",op,"b=",eval( "a " & op & " b")
next</langsyntaxhighlight>
 
===Invocation===
Line 3,016 ⟶ 5,816:
 
=={{header|Vedit macro language}}==
<langsyntaxhighlight lang="vedit">#1 = Get_Num("Give number a: ")
#2 = Get_Num("Give number b: ")
Message("a + b = ") Num_Type(#1 + #2)
Line 3,022 ⟶ 5,822:
Message("a * b = ") Num_Type(#1 * #2)
Message("a / b = ") Num_Type(#1 / #2)
Message("a % b = ") Num_Type(#1 % #2)</langsyntaxhighlight>
 
 
=={{header|Verilog}}==
<syntaxhighlight lang="verilog">module main;
integer a, b;
integer suma, resta, producto;
integer division, resto, expo;
initial begin
a = -12;
b = 7;
suma = a + b;
resta = a - b;
producto = a * b;
division = a / b;
resto = a % b;
expo = a ** b;
$display("Siendo dos enteros a = -12 y b = 7");
$display(" suma de a + b = ", suma);
$display(" resta de a - b = ", resta);
$display(" producto de a * b = ", producto);
$display(" división de a / b = ", division);
$display(" resto de a mod b = ", resto);
$display("exponenciación a ^ b = ", expo);
$finish ;
end
endmodule</syntaxhighlight>
 
=={{header|Vim Script}}==
<langsyntaxhighlight lang="vim">let a = float2nr(input("Number 1: ") + 0)
let b = float2nr(input("Number 2: ") + 0)
echo "\nSum: " . (a + b)
Line 3,034 ⟶ 5,863:
" The sign of the result of the remainder operation matches the sign of
" the first operand
echo "Remainder: " . (a % b)</langsyntaxhighlight>
 
=={{header|Visual Basic .NET}}==
<langsyntaxhighlight lang="vbnet">Imports System.Console
Module Module1
Sub Main
Line 3,050 ⟶ 5,879:
WriteLine("Exponent " & a ^ b)
End Sub
End Module</langsyntaxhighlight>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="go">// Arithmetic-integer in V (Vlang)
// Tectonics: v run arithmetic-integer.v
module main
import math
import os
 
// starts here
pub fn main() {
mut a := 0
mut b := 0
 
// get numbers from console
print("Enter two integer numbers, separated by a space: ")
text := os.get_raw_line()
values := text.split(' ')
a = values[0].int()
b = values[1].int()
 
// 4 basics, remainder, no exponentiation operator
println("values: a $a, b $b")
println("sum: a + b = ${a + b}")
println("difference: a - b = ${a - b}")
println("product: a * b = ${a * b}")
println("integer quotient: a / b = ${a / b}, truncation")
println("remainder: a % b = ${a % b}, sign follows dividend")
 
println("no exponentiation operator")
println(" math.pow: pow(a,b) = ${math.pow(a,b)}")
}</syntaxhighlight>
 
{{out}}
<pre>prompt$ v run arithmetic-integer.v
Enter two integer numbers, separated by a space: -5 3
values: a -5, b 3
sum: a + b = -2
difference: a - b = -8
product: a * b = -15
integer quotient: a / b = -1, truncation
remainder: a % b = -2, sign follows dividend
no exponentiation operator
math.pow: pow(a,b) = -125</pre>
 
=={{header|Wart}}==
<langsyntaxhighlight lang="python">a <- (read)
b <- (read)
prn "sum: " a+b
Line 3,061 ⟶ 5,933:
prn "integer quotient: " (int a/b)
prn "remainder: " a%b
prn "exponent: " a^b</langsyntaxhighlight>
 
=={{header|Wren}}==
In Wren the quotient operator '/' does not round but, when the ''floor'' method is applied to the result, it rounds to the lower integer.
 
The sign of the remainder operator '%' matches the sign of the first operand.
<syntaxhighlight lang="wren">import "io" for Stdin, Stdout
System.write("first number: ")
Stdout.flush()
var a = Num.fromString(Stdin.readLine())
System.write("second number: ")
Stdout.flush()
var b = Num.fromString(Stdin.readLine())
System.print("sum: %(a + b)")
System.print("difference: %(a - b)")
System.print("product: %(a * b)")
System.print("integer quotient: %((a / b).floor)")
System.print("remainder: %(a % b)")
System.print("exponentiation: %(a.pow(b))")</syntaxhighlight>
 
{{out}}
Sample input/output:
<pre>
first number: 4
second number: 3
sum: 7
difference: 1
product: 12
integer quotient: 1
remainder: 1
exponentiation: 64
</pre>
 
=={{header|x86 Assembly}}==
Input and output would be OS-specific and are not implemented. This routine works on the 16-bit 8086, as well as on its 32-bit and 64-bit successors: it could be trivially modified to perform 32-bit or 64-bit arithmetic on machines where those are supported. The quotient is truncated towards zero; the remainder takes its sign from the first operand.
<syntaxhighlight lang="asm">arithm: mov cx, a
mov bx, b
xor dx, dx
mov ax, cx
add ax, bx
mov sum, ax
mov ax, cx
imul bx
mov product, ax
mov ax, cx
sub ax, bx
mov difference, ax
mov ax, cx
idiv bx
mov quotient, ax
mov remainder, dx
 
ret</syntaxhighlight>
 
=={{header|XLISP}}==
<syntaxhighlight lang="xlisp">(DEFUN INTEGER-ARITHMETIC ()
(DISPLAY "Enter two integers separated by a space.")
(NEWLINE)
(DISPLAY "> ")
(DEFINE A (READ))
(DEFINE B (READ))
(DISPLAY `(SUM ,(+ A B)))
(NEWLINE)
(DISPLAY `(DIFFERENCE ,(- A B)))
(NEWLINE)
(DISPLAY `(PRODUCT ,(* A B)))
(NEWLINE)
(DISPLAY `(QUOTIENT ,(QUOTIENT A B))) ; truncates towards zero
(NEWLINE)
(DISPLAY `(REMAINDER ,(REM A B))) ; takes sign of first operand
(NEWLINE)
(DISPLAY `(EXPONENTIATION ,(EXPT A B))))</syntaxhighlight>
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes;
int A, B;
[A:= IntIn(0);
Line 3,073 ⟶ 6,020:
IntOut(0, A/B); CrLf(0); \truncates toward zero
IntOut(0, rem(0)); CrLf(0); \remainder's sign matches first operand (A)
]</langsyntaxhighlight>
 
=={{header|XSLT}}==
<langsyntaxhighlight lang="xml"><xsl:template name="arithmetic">
<xsl:param name="a">5</xsl:param>
<xsl:param name="b">2</xsl:param>
Line 3,084 ⟶ 6,031:
<fo:block>a / b = <xsl:value-of select="round($a div $b)"/></fo:block>
<fo:block>a mod b = <xsl:value-of select="$a mod $b"/></fo:block>
</xsl:template></langsyntaxhighlight>
 
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">input "ingrese un numero? " a
input "ingrese otro numero? " b
 
print "suma ", a, " + ", b, " = ", (a + b)
print "resta ", a, " - ", b, " = ", (a - b)
print "producto ", a, " * ", b, " = ", (a * b)
print "division ", a, " \ ", b, " = ", int(a / b)
print "modulo ", a, " % ", b, " = ", mod(a, b)
print "potencia ", a, " ^ ", b, " = ", (a ^ b)
end</syntaxhighlight>
 
 
=={{header|Yorick}}==
<langsyntaxhighlight lang="yorick">x = y = 0;
read, x, y;
write, "x + y =", x + y;
Line 3,094 ⟶ 6,055:
write, "x / y =", x / y; // rounds toward zero
write, "x % y =", x % y; // remainder; matches sign of first operand when operands' signs differ
write, "x ^ y =", x ^ y; // exponentiation</langsyntaxhighlight>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">x,y:=ask("Two ints: ").split(" ").apply("toInt");
println("x+y = ",x + y);
println("x-y = ",x - y);
Line 3,103 ⟶ 6,064:
println("x/y = ",x / y); // rounds toward zero
println("x%y = ",x % y); // remainder; matches sign of first operand when operands' signs differ
println("x.divr(y) = ",x.divr(y)); // (x/y,remainder); sign as above</langsyntaxhighlight>
 
=={{header|zonnon}}==
<syntaxhighlight lang="zonnon">
module Main;
var
i,j: integer;
begin
write("A integer?:");readln(i);
write("another?: ");readln(j);
writeln("sum: ",i + j);
writeln("difference: ", i - j);
writeln("product: ", i * j);
writeln("quotient: ", i div j);
writeln("remainder: ", i mod j);
end Main.
</syntaxhighlight>
{{Out}}
<pre>
A integer?:2
another?: 3
sum: 5
difference: -1
product: 6
quotient: 0
remainder: 2
</pre>
 
=={{header|ZX Spectrum Basic}}==
<syntaxhighlight lang="zxbasic">5 LET a=5: LET b=3
10 PRINT a;" + ";b;" = ";a+b
20 PRINT a;" - ";b;" = ";a-b
30 PRINT a;" * ";b;" = ";a*b
40 PRINT a;" / ";b;" = ";INT (a/b)
50 PRINT a;" mod ";b;" = ";a-INT (a/b)*b
60 PRINT a;" to the power of ";b;" = ";a^b
</syntaxhighlight>
Anonymous user