Arithmetic/Integer: Difference between revisions

m
No edit summary
imported>Arakov
 
(396 intermediate revisions by more than 100 users not shown)
Line 1:
{{Task|Basic language learning}}[[Category:Arithmetic operations]]
[[Category:Arithmetic]]
{{basic data operation}}
[[Category:Simple]]
Get two integers from the user, and then output the sum, difference, product, integer quotient and remainder of those numbers. Don't include error handling. For quotient, indicate how it rounds (e.g. towards 0, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
{{Task|Basic language learning}}
{{basic data operation}}
;Task:
Get two integers from the user,   and then (for those two integers), display their:
::::*   sum
::::*   difference
::::*   product
::::*   integer quotient
::::*   remainder
::::*   exponentiation   (if the operator exists)
 
<br>
Don't include error handling.
 
For quotient, indicate how it rounds &nbsp; (e.g. towards zero, towards negative infinity, etc.).
 
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
<br><br>
 
Bonus: Include an example of the integer `divmod` operator. For example: as in [[#Haskell]], [[#Python]] and [[#ALGOL 68]]
 
=={{header|0815}}==
<syntaxhighlight lang="0815">
|~>|~#:end:>
<:61:x<:3d:=<:20:$==$~$=${~>%<:2c:~$<:20:~$
<:62:x<:3d:=<:20:$==$~$=${~>%<:a:~$$
<:61:x<:2b:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~+%<:a:~$
<:61:x<:2d:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~-%<:a:~$
<:61:x<:2a:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~*%<:a:~$
<:61:x<:2f:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~/%<:a:~$
<:61:x<:25:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~/=%<:a:~$
{~>>{x<:1:-^:u:
<:61:x<:5e:=<:20:$==$~$$=$<:62:x<:3D:=<:20:$==$~$=${{~%#:end:
}:u:=>{x{=>~*>{x<:2:-#:ter:
}:ml:x->{x{=>~*>{x<:1:-#:ter:^:ml:
}:ter:<:61:x<:5e:=<:20:$==$~$$=$<:62:x<:3D:=<:20:$==$~$=${{~%
</syntaxhighlight>
{{Out}}
<pre>
a = 6, b = 4
 
a + b = A
a - b = 2
a * b = 18
a / b = 1
a % b = 2
a ^^ b = 510
</pre>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">V a = Int(input())
V b = Int(input())
 
print(‘a + b = ’(a + b))
print(‘a - b = ’(a - b))
print(‘a * b = ’(a * b))
print(‘a / b = ’(a I/ b))
print(‘a % b = ’(a % b))
print(‘a ^ b = ’(a ^ b))</syntaxhighlight>
 
=={{header|360 Assembly}}==
From the principles of operation: Operands are signed and 32 bits long.
Negative quantities are held in two's-complement form.
<br>'''Multiplication:'''<br>
The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand. Both multiplier and
multiplicand are 32-bit signed integers. The product is always a 64-bit
signed integer and occupies an even/odd register pair.
<br>'''Division:'''<br>
The dividend (first operand) is divided by the divisor (second operand)
and replaced by the quotient and remainder. The dividend is a 64-bit
signed integer and occupies the even/odd pair of registers.
A 32-bit signed remainder and a 32-bit signed quotient replace the dividend
in the even-numbered and odd-numbered registers, respectively.
The sign of the quotient is determined by the rules of algebra.
The remainder has the same sign as the dividend.
<syntaxhighlight lang="360asm">* Arithmetic/Integer 04/09/2015
ARITHINT CSECT
USING ARITHINT,R12
LR R12,R15
ADD L R1,A
A R1,B r1=a+b
XDECO R1,BUF
MVI BUF,C'+'
XPRNT BUF,12
SUB L R1,A
S R1,B r1=a-b
XDECO R1,BUF
MVI BUF,C'-'
XPRNT BUF,12
MUL L R1,A
M R0,B r0r1=a*b
XDECO R1,BUF so r1 has the lower part
MVI BUF,C'*'
XPRNT BUF,12
DIV L R0,A
SRDA R0,32 to shift the sign
D R0,B r1=a/b and r0 has the remainder
XDECO R1,BUF so r1 has quotient
MVI BUF,C'/'
XPRNT BUF,12
MOD L R0,A
SRDA R0,32 to shift the sign
D R0,B r1=a/b and r0 has the remainder
XDECO R0,BUF so r0 has the remainder
MVI BUF,C'R'
XPRNT BUF,12
RETURN XR R15,R15
BR R14
CNOP 0,4
A DC F'53'
B DC F'11'
BUF DC CL12' '
YREGS
END ARITHINT</syntaxhighlight>
Inputs are in the code: a=53, b=11
{{out}}
<pre>
+ 64
- 42
* 583
/ 4
R 9
</pre>
 
=={{header|6502 Assembly}}==
Code is called as a subroutine (i.e. JSR Arithmetic). Specific OS/hardware routines for user input and printing are left unimplemented.
<syntaxhighlight lang="6502asm">Arithmetic: PHA ;push accumulator and X register onto stack
TXA
PHA
JSR GetUserInput ;routine not implemented
;two integers now in memory locations A and B
;addition
LDA A
CLC
ADC B
JSR DisplayAddition ;routine not implemented
 
;subtraction
LDA A
SEC
SBC B
JSR DisplaySubtraction ;routine not implemented
 
;multiplication - overflow not handled
LDA A
LDX B
Multiply: CLC
ADC A
DEX
BNE Multiply
JSR DisplayMultiply ;routine not implemented
 
;division - rounds up
LDA A
LDX #0
SEC
Divide: INX
SBC B
BCS Divide
TXA ;get result into accumulator
JSR DisplayDivide ;routine not implemented
 
;modulus
LDA A
SEC
Modulus: SBC B
BCS Modulus
ADC B
JSR DisplayModulus ;routine not implemented
 
PLA ;restore accumulator and X register from stack
TAX
PLA
RTS ;return from subroutine</syntaxhighlight>
The 6502 has no opcodes for multiplication, division, or modulus; the routines for multiplication, division, and modulus given above can be heavily optimized at the expense of some clarity.
=={{header|68000 Assembly}}==
<syntaxhighlight lang="68000devpac">ADD.L D0,D1 ; add two numbers
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
SUB.L D1,D0 ; subtract D1 from D0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MULU D0,D1 ; multiply two unsigned numbers. Use MULS for signed numbers
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DIVU D1,D0 ; Divide D0 by D1. Use DIVS for signed numbers. Upper two bytes of D0 are the remainder, lower two are the integer quotient.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MODULUS:
DIVU D1,D0
SWAP D0 ;swap the order of the 16-bit halves of D0.
RTS</syntaxhighlight>
 
Exponentiation doesn't exist but can be implemented in a similar fashion to multiplication on the 6502:
 
<syntaxhighlight lang="68000devpac">Exponent:
;raises D0 to the D1 power. No overflow protection.
MOVE.L D0,D2
SUBQ.L #1,D1
loop_exponent:
MULU D0,D2
DBRA D1,loop_exponent
;output is in D2
RTS</syntaxhighlight>
 
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits}}
<syntaxhighlight lang="aarch64 assembly">
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program arith64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
/***********************/
/* Initialized data */
/***********************/
.data
szMessError: .asciz " Two numbers in command line please ! \n" // message
szRetourLigne: .asciz "\n"
szMessResult: .asciz "resultat : @ \n" // message result
sMessValeur: .fill 12, 1, ' '
.asciz "\n"
szMessAddition: .asciz "Addition "
szMessSoustraction: .asciz "soustraction :"
szMessMultiplication: .asciz "multiplication :"
szMessDivision: .asciz "division :"
szMessReste: .asciz "remainder :"
/***********************/
/* No Initialized data */
/***********************/
.bss
qValeur: .skip 8 // reserve 8 bytes in memory
sZoneConv: .skip 30
.text
.global main
main:
mov fp,sp // fp <- stack address
ldr x0,[fp] // recup number of parameter in command line
cmp x0,3
blt error
ldr x0,[fp,16] // adresse of 1er number
bl conversionAtoD
mov x3,x0
ldr x0,[fp,24] // adresse of 2eme number
bl conversionAtoD
mov x4,x0
// addition
add x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessAddition
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// soustraction
sub x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessSoustraction
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// multiplication
mul x0,x3,x4
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessMultiplication
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
// division
mov x0,x3
mov x1,x4
udiv x0,x3,x4 // quotient
msub x3,x0,x4,x3 // remainder x3 = x3 - (x0*x4)
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessDivision
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
 
mov x0,x3 // remainder
ldr x1,qAdrsZoneConv // result in x0
bl conversion10S // call function with 2 parameter (x0,x1)
ldr x0,qAdrszMessReste
bl affichageMess // display message
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrsZoneConv
mov x0,0 // return code
b 100f
error:
ldr x0,qAdrszMessError
bl affichageMess // call function with 1 parameter (x0)
mov x0,1 // return code
100: // end of program
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsMessValeur: .quad sMessValeur
qAdrszMessResult: .quad szMessResult
qAdrszMessError: .quad szMessError
qAdrszMessAddition: .quad szMessAddition
qAdrszMessSoustraction: .quad szMessSoustraction
qAdrszMessMultiplication: .quad szMessMultiplication
qAdrszMessDivision: .quad szMessDivision
qAdrszMessReste: .quad szMessReste
qAdrsZoneConv: .quad sZoneConv
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
</syntaxhighlight>
{{Out}}
<PRE>
pi@debian-buster-64:~/asm64/rosetta/asm3 $ arith64 101 25
Addition resultat : +126
soustraction :resultat : +76
multiplication :resultat : +2525
division :resultat : +4
remainder :resultat : +1
</PRE>
 
=={{header|ABAP}}==
<syntaxhighlight lang="abap">report zz_arithmetic no standard page heading.
 
" Read in the two numbers from the user.
selection-screen begin of block input.
parameters: p_first type i,
p_second type i.
selection-screen end of block input.
 
" Set the text value that is displayed on input request.
at selection-screen output.
%_p_first_%_app_%-text = 'First Number: '.
%_p_second_%_app_%-text = 'Second Number: '.
 
end-of-selection.
data: lv_result type i.
lv_result = p_first + p_second.
write: / 'Addition:', lv_result.
lv_result = p_first - p_second.
write: / 'Substraction:', lv_result.
lv_result = p_first * p_second.
write: / 'Multiplication:', lv_result.
lv_result = p_first div p_second.
write: / 'Integer quotient:', lv_result. " Truncated towards zero.
lv_result = p_first mod p_second.
write: / 'Remainder:', lv_result.</syntaxhighlight>
 
=={{header|ACL2}}==
<syntaxhighlight lang="lisp">
:set-state-ok t
 
(defun get-two-nums (state)
(mv-let (_ a state)
(read-object *standard-oi* state)
(declare (ignore _))
(mv-let (_ b state)
(read-object *standard-oi* state)
(declare (ignore _))
(mv a b state))))
 
(defun integer-arithmetic (state)
(mv-let (a b state)
(get-two-nums state)
(mv state
(progn$ (cw "Sum: ~x0~%" (+ a b))
(cw "Difference: ~x0~%" (- a b))
(cw "Product: ~x0~%" (* a b))
(cw "Quotient: ~x0~%" (floor a b))
(cw "Remainder: ~x0~%" (mod a b))))))</syntaxhighlight>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">DEFINE NO_KEY="255"
DEFINE KEY_Y="43"
DEFINE KEY_N="35"
 
PROC Main()
BYTE CH=$02FC ;Internal hardware value for last key pressed
BYTE k
INT a,b
 
DO
Print("Input integer value a=")
a=InputI()
Print("Input integer value b=")
b=InputI()
 
PrintF("a+b=%I%E",a+b)
PrintF("a-b=%I%E",a-b)
PrintF("a*b=%I%E",a*b)
PrintF("a/b=%I%E",a/b)
PrintF("a MOD b=%I%E",a MOD b)
PutE()
PrintE("Again? (Y/N)")
 
CH=NO_KEY ;Flush the keyboard
DO
k=CH
UNTIL k=KEY_Y OR k=KEY_N
OD
CH=NO_KEY ;Flush the keyboard
 
IF k=KEY_N THEN
EXIT
FI
OD
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Arithmetic_Integer.png Screenshot from Atari 8-bit computer]
<pre>
Input integer value a=3251
Input integer value b=15
a+b=3266
a-b=3236
a*b=-16771
a/b=216
a MOD b=11
 
Again? (Y/N)
</pre>
 
Also include the exponentiation operator if one exists.
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Text_Io;
with Ada.Integer_Text_IO;
 
Line 20 ⟶ 460:
Put_Line("a-b = " & Integer'Image(A - B));
Put_Line("a*b = " & Integer'Image(A * B));
Put_Line("a/b = " & Integer'Image(A / B) & ", remainder " & Integer'Image(A mod B));
Put_Line("a mod b = " & Integer'Image(A mod B)); -- Sign matches B
Put_Line("remainder of a/b = " & Integer'Image(A rem B)); -- Sign matches A
Put_Line("a**b = " & Integer'Image(A ** B));
 
end Integer_Arithmetic;</langsyntaxhighlight>
 
=={{header|Aikido}}==
<langsyntaxhighlight lang="aikido">var a = 0
 
var a = 0
var b = 0
stdin -> a // read int from stdin
Line 37 ⟶ 477:
println ("a*b=" + (a * b))
println ("a/b=" + (a / b))
println ("a%b=" + (a % b))</syntaxhighlight>
 
</lang>
 
=={{header|ALGOL 68}}==
{{trans|C}}
<lang algol68>main:(
{{works with|ALGOL 68|Revision 1 - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<syntaxhighlight lang="algol68">main:(
LONG INT a=355, b=113;
printf(($"a PLUS b = a+b = "gl$, a + b));
printf(($"a MINUS b = a-b = "gl$, a - b));
printf(($"a TIMES b = a*b = a×b = "gl$, a * b));
printf(($"a DIV b = a/b = "gl$, a / b));
printf(($"a OVER b = a%b = a÷b = "gl$, a % b));
printf(($"a MOD b = a%*b = a%×b = a÷×b = a÷*b = "gl$, a %* b));
printf(($"a UP b = a**b = a↑b = "gl$, a ** b))
)</syntaxhighlight>
)</lang>Output:<lang algol68>a+b = +468
{{out}}
a-b = +242
<pre>
a*b = a×b = +40115
a PLUS b = a+b = +468
a/b = +3.141592920353982300884955752e +0
a MINUS b = a-b = +242
a TIMES b = a*b = a×b = +40115
a DIV b = a/b = +3.141592920353982300884955752e +0
a OVER b = a%b = a÷b = +3
a MOD b = a%*b = a%×b = a÷×b = a÷*b = +16
a UP b = a**b = a↑b = +1.499007808785573768814747570e+288</lang>
</pre>
[[ALGOL 68R]] has the curious (and consequently non-standard) /:= operator. This operator
[[ALGOL 68R]] has a non-standard '%:=' operator. This operator
delivers two INTs as a result. eg.
is equivalent to the OVERAB operator of the revised report, except it delivers the remainder as a result.
So a '/:=' b sets a to the quotient of a%b and returns the remainder of a%b as a result (Note "%" is the division operator in Algol 68, not the modulo operator - it can also be written as OVER).
This operator must be "stropped" i.e. enclosed in single quotes. eg.
INT quotient:=355, remainder;
remainder := quotient /%:= 113;
Giving aSets quotient ofto 3, and a remainder ofto 16.
 
=={{header|ALGOL W}}==
The Algol W integer division operator (called div) truncates towards zero.<br>
The result of the modulo operator (called rem) has the sign of the first operand when the operands have different signs.
<syntaxhighlight lang="algolw">begin
integer a, b;
write( "Enter 2 integers> " );
read( a, b );
write( "a + b: ", a + b ); % addition %
write( "a - b: ", a - b ); % subtraction %
write( "a * b: ", a * b ); % multiplication %
write( "a / b: ", a div b ); % integer division %
write( "a mod b: ", a rem b ); % modulo %
% the ** operator returns a real result even with integer operands %
% ( the right-hand operand must always be an integer, the left-hand %
% operand can be integer, real or complex ) %
write( "a ^ b: ", round( a ** b ) )
end.</syntaxhighlight>
 
=={{header|AmigaE}}==
<langsyntaxhighlight lang="amigae">PROC main()
DEF a, b, t
WriteF('A = ')
Line 78 ⟶ 544:
WriteF('A*B=\d\nA/B=\d\n', Mul(a,b), Div(a,b))
WriteF('A mod B =\d\n', Mod(a,b))
ENDPROC</langsyntaxhighlight>
 
=={{header|APL}}==
<syntaxhighlight lang="apl">∇res ← integer_arithmetic; l; r
l ← ⎕
r ← ⎕
res ← 6 2 ⍴ 'sum' (l+r) 'diff' (l-r) 'prod' (l×r) 'quot' (⌊l÷r) 'rem' (r|l) 'pow' (l*r)
∇</syntaxhighlight>
 
Quotient will round down in this version.
 
=={{header|AppleScript}}==
 
<syntaxhighlight lang="applescript">set i1 to (text returned of (display dialog "Enter an integer value" default answer "")) as integer
set i2 to (text returned of (display dialog "Enter another integer value" default answer "")) as integer
 
set sum to i1 + i2
set diff to i1 - i2
set prod to i1 * i2
set quot to i1 div i2 -- Rounds towards zero.
set remainder to i1 mod i2 -- The result's sign matches the dividend's.
set exp to i1 ^ i2 -- The result's always a real.
 
return {|integers|:{i1, i2}, difference:diff, product:prod, quotient:quot, remainder:remainder, exponientiation:exp}</syntaxhighlight>
 
{{output}}
 
<syntaxhighlight lang="applescript">{|integers|:{-57, 2}, difference:-59, product:-114, quotient:-28, remainder:-1, exponientiation:3249.0}</syntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
 
/* ARM assembly Raspberry PI */
/* program arith.s */
/* Constantes */
.equ STDOUT, 1
.equ WRITE, 4
.equ EXIT, 1
 
/***********************/
/* Initialized data */
/***********************/
.data
szMessError: .asciz " Two numbers in command line please ! \n" @ message
szRetourLigne: .asciz "\n"
szMessResult: .asciz "Resultat " @ message result
sMessValeur: .fill 12, 1, ' '
.asciz "\n"
szMessAddition: .asciz "addition :"
szMessSoustraction: .asciz "soustraction :"
szMessMultiplication: .asciz "multiplication :"
szMessDivision: .asciz "division :"
szMessReste: .asciz "reste :"
/***********************/
/* No Initialized data */
/***********************/
.bss
iValeur: .skip 4 @ reserve 4 bytes in memory
 
.text
.global main
main:
push {fp,lr} @ save des 2 registres
add fp,sp,#8 @ fp <- adresse début
ldr r0,[fp] @ recup number of parameter in command line
cmp r0,#3
blt error
ldr r0,[fp,#8] @ adresse of 1er number
bl conversionAtoD
mov r3,r0
ldr r0,[fp,#12] @ adresse of 2eme number
bl conversionAtoD
mov r4,r0
@ addition
add r0,r3,r4
ldr r1,iAdrsMessValeur @ result in r0
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessAddition
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
@ soustraction
sub r0,r3,r4
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessSoustraction
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
 
@ multiplication
mul r0,r3,r4
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessMultiplication
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
@ division
mov r0,r3
mov r1,r4
bl division
mov r0,r2 @ quotient
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessDivision
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
 
mov r0,r3 @ remainder
ldr r1,=sMessValeur
bl conversion10S @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszMessReste
bl affichageMess @ display message
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
mov r0, #0 @ return code
b 100f
error:
ldr r0,iAdrszMessError
bl affichageMess @ call function with 1 parameter (r0)
mov r0, #1 @ return code
100: /* end of program */
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrsMessValeur: .int sMessValeur
iAdrszMessResult: .int szMessResult
iAdrszMessError: .int szMessError
iAdrszMessAddition: .int szMessAddition
iAdrszMessSoustraction: .int szMessSoustraction
iAdrszMessMultiplication: .int szMessMultiplication
iAdrszMessDivision: .int szMessDivision
iAdrszMessReste: .int szMessReste
/******************************************************************/
/* affichage des messages avec calcul longueur */
/******************************************************************/
/* r0 contient l adresse du message */
affichageMess:
push {fp,lr} /* save des 2 registres */
push {r0,r1,r2,r7} /* save des autres registres */
mov r2,#0 /* compteur longueur */
1: /*calcul de la longueur */
ldrb r1,[r0,r2] /* recup octet position debut + indice */
cmp r1,#0 /* si 0 c est fini */
beq 1f
add r2,r2,#1 /* sinon on ajoute 1 */
b 1b
1: /* donc ici r2 contient la longueur du message */
mov r1,r0 /* adresse du message en r1 */
mov r0,#STDOUT /* code pour écrire sur la sortie standard Linux */
mov r7, #WRITE /* code de l appel systeme 'write' */
swi #0 /* appel systeme */
pop {r0,r1,r2,r7} /* restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* retour procedure */
/***************************************************/
/* conversion registre en décimal signé */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {fp,lr} /* save des 2 registres frame et retour */
push {r0-r5} /* save autres registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5} /*restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres frame et retour */
bx lr
 
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save autres registres */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
.align 4
.Ls_magic_number_10: .word 0x66666667
/******************************************************************/
/* Conversion d une chaine en nombre stocké dans un registre */
/******************************************************************/
/* r0 contient l adresse de la zone terminée par 0 ou 0A */
conversionAtoD:
push {fp,lr} /* save des 2 registres */
push {r1-r7} /* save des autres registres */
mov r1,#0
mov r2,#10 /* facteur */
mov r3,#0 /* compteur */
mov r4,r0 /* save de l adresse dans r4 */
mov r6,#0 /* signe positif par defaut */
mov r0,#0 /* initialisation à 0 */
1: /* boucle d élimination des blancs du debut */
ldrb r5,[r4,r3] /* chargement dans r5 de l octet situé au debut + la position */
cmp r5,#0 /* fin de chaine -> fin routine */
beq 100f
cmp r5,#0x0A /* fin de chaine -> fin routine */
beq 100f
cmp r5,#' ' /* blanc au début */
bne 1f /* non on continue */
add r3,r3,#1 /* oui on boucle en avançant d un octet */
b 1b
1:
cmp r5,#'-' /* premier caracteres est - */
moveq r6,#1 /* maj du registre r6 avec 1 */
beq 3f /* puis on avance à la position suivante */
2: /* debut de boucle de traitement des chiffres */
cmp r5,#'0' /* caractere n est pas un chiffre */
blt 3f
cmp r5,#'9' /* caractere n est pas un chiffre */
bgt 3f
/* caractère est un chiffre */
sub r5,#48
ldr r1,iMaxi /*verifier le dépassement du registre */
cmp r0,r1
bgt 99f
mul r0,r2,r0 /* multiplier par facteur */
add r0,r5 /* ajout à r0 */
3:
add r3,r3,#1 /* avance à la position suivante */
ldrb r5,[r4,r3] /* chargement de l octet */
cmp r5,#0 /* fin de chaine -> fin routine */
beq 4f
cmp r5,#10 /* fin de chaine -> fin routine */
beq 4f
b 2b /* boucler */
4:
cmp r6,#1 /* test du registre r6 pour le signe */
bne 100f
mov r1,#-1
mul r0,r1,r0 /* si negatif, on multiplie par -1 */
b 100f
99: /* erreur de dépassement */
ldr r1,=szMessErrDep
bl afficheerreur
mov r0,#0 /* en cas d erreur on retourne toujours zero */
100:
pop {r1-r7} /* restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* retour procedure */
/* constante programme */
iMaxi: .int 1073741824
szMessErrDep: .asciz "Nombre trop grand : dépassement de capacite de 32 bits. :\n"
.align 4
/*=============================================*/
/* division entiere non signée */
/*============================================*/
division:
/* r0 contains N */
/* r1 contains D */
/* r2 contains Q */
/* r3 contains R */
push {r4, lr}
mov r2, #0 /* r2 ? 0 */
mov r3, #0 /* r3 ? 0 */
mov r4, #32 /* r4 ? 32 */
b 2f
1:
movs r0, r0, LSL #1 /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */
adc r3, r3, r3 /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */
cmp r3, r1 /* compute r3 - r1 and update cpsr */
subhs r3, r3, r1 /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */
adc r2, r2, r2 /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */
2:
subs r4, r4, #1 /* r4 ? r4 - 1 */
bpl 1b /* if r4 >= 0 (N=0) then branch to .Lloop1 */
pop {r4, lr}
bx lr
 
 
</syntaxhighlight>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">a: to :integer input "give me the first number : "
b: to :integer input "give me the second number : "
 
print [a "+" b "=" a+b]
print [a "-" b "=" a-b]
print [a "*" b "=" a*b]
print [a "/" b "=" a/b]
print [a "%" b "=" a%b]
print [a "^" b "=" a^b]</syntaxhighlight>
 
{{out}}
 
<pre>give me the first number : 33
give me the second number : 6
33 + 6 = 39
33 - 6 = 27
33 * 6 = 198
33 / 6 = 5
33 % 6 = 3
33 ^ 6 = 12914679699</pre>
 
 
=={{header|Asymptote}}==
<syntaxhighlight lang="asymptote">int a = -12;
int b = 7;
 
int suma = a + b;
int resta = a - b;
int producto = a * b;
real division = a / b;
int resto = a % b;
int expo = a ** b;
 
write("Siendo dos enteros a = -12 y b = 7");
write(" suma de a + b = ", suma);
write(" resta de a - b = ", resta);
write(" producto de a * b = ", producto);
write(" división de a / b = ", division);
write(" resto de a mod b = ", resto);
write("exponenciación a ^ b = ", expo);</syntaxhighlight>
 
=={{header|AutoHotkey}}==
The quotient rounds towards 0 if both inputs are integers or towards negative infinity if either input is floating point. The sign of the remainder is always the same as the sign of the first parameter (dividend).
<langsyntaxhighlight lang="autohotkey">Gui, Add, Edit, va, 5
Gui, Add, Edit, vb, -3
Gui, Add, Button, Default, Compute
Line 100 ⟶ 931:
; fallthrough
GuiClose:
ExitApp</langsyntaxhighlight>
 
=={{header|Avail}}==
<syntaxhighlight lang="avail">Method "arithmetic demo_,_" is
[
a : integer,
b : integer
|
Print: “a + b”;
Print: “a - b”;
Print: “a × b”; // or a * b
Print: “a ÷ b”; // or a / b, rounds toward negative infinity
Print: “a mod b”; // sign matches second argument
Print: “a ^ b”;
];
</syntaxhighlight>
 
=={{header|AWK}}==
<langsyntaxhighlight lang="awk">/^[ \t]*-?[0-9]*+[ \t]+-?[0-9]*/{ print ($1 +[ \t]*$2)/ {
print ("add:", $1 -+ $2)
print ("sub:", $1 *- $2)
print int("mul:", $1 /* $2)
print "div:", int($1 %/ $2) # truncates toward zero
print "mod:", $1 % $2 # same sign as first operand
exit}</lang>
print "exp:", $1 ^ $2
exit }</syntaxhighlight>
 
For division and modulus, Awk should act like C.
 
'''Exponentiation's note:''' With [[nawk]] or [[gawk]], <code>$1 ** $2</code> acts like <code>$1 ^ $2</code>. With [[mawk]], <code>$1 ** $2</code> is a syntax error. Nawk allows <code>**</code>, but its manual page only has <code>^</code>. Gawk's manual warns, ''"The POSIX standard only specifies the use of `^' for exponentiation. For maximum portability, do not use the `**' operator."''
 
=={{header|BASIC}}==
==={{header|Applesoft BASIC}}===
Same code as [[#Commodore_BASIC|Commodore BASIC]]
==={{header|BaCon}}===
<syntaxhighlight lang="freebasic">' Arthimetic/Integer
DECLARE a%, b%
INPUT "Enter integer A: ", a%
INPUT "Enter integer B: ", b%
PRINT
 
PRINT a%, " + ", b%, " is ", a% + b%
PRINT a%, " - ", b%, " is ", a% - b%
PRINT a%, " * ", b%, " is ", a% * b%
PRINT a%, " / ", b%, " is ", a% / b%, ", trucation toward zero"
PRINT "MOD(", a%, ", ", b%, ") is ", MOD(a%, b%), ", same sign as first operand"
PRINT "POW(", a%, ", ", b%, ") is ", INT(POW(a%, b%))</syntaxhighlight>
 
==={{header|Chipmunk Basic}}===
{{works with|Chipmunk Basic|3.6.4}}
<syntaxhighlight lang="qbasic">10 input "Enter two integers separated by a comma: ";a,b
20 print " Sum: ";a+b
30 print "Difference: ";a-b
40 print " Product: ";a*b
50 print " Quontent: ";int(a/b)
60 print " Remainder: ";a mod b
70 print " Power: ";a^b</syntaxhighlight>
 
==={{header|Commodore BASIC}}===
<syntaxhighlight lang="basic">10 INPUT "ENTER A NUMBER"; A%
20 INPUT "ENTER ANOTHER NUMBER"; B%
30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
60 PRINT "INTEGER DIVISION:";A%;"/";B%;"=";INT(A%/B%)
70 PRINT "REMAINDER OR MODULO:";A%;"%";B%;"=";A%-INT(A%/B%)*B%
80 PRINT "POWER:";A%;"^";B%;"=";A%^B%</syntaxhighlight>
 
==={{header|GW-BASIC}}===
{{works with|PC-BASIC|any}}
{{works with|BASICA}}
<syntaxhighlight lang="qbasic">10 INPUT "Enter two integers separated by a comma: ";A, B
20 PRINT " Sum:"; A + B
30 PRINT "Difference:"; A - B
40 PRINT " Product:"; A * B
50 PRINT " Quontent:"; A \ B
60 PRINT " Remainder:"; A MOD B
70 PRINT " Power:"; A ^ B</syntaxhighlight>
 
==={{header|Minimal BASIC}}===
<syntaxhighlight lang="qbasic">10 PRINT "ENTER A INTEGER"
20 INPUT A
30 PRINT "ENTER ANOTHER INTEGER"
40 INPUT B
50 PRINT " SUM: "; A + B
60 PRINT "DIFFERENCE: "; A - B
70 PRINT " PRODUCT: "; A * B
80 PRINT " QUONTENT: "; INT(A / B)
90 PRINT " REMAINDER: "; A - INT(A / B ) * B
100 PRINT " POWER:"; A ^ B
110 END</syntaxhighlight>
 
==={{header|MSX Basic}}===
{{works with|MSX BASIC|any}}
<syntaxhighlight lang="qbasic">10 INPUT "Enter two integers separated by a comma: ";A, B
20 PRINT " Sum:"; A + B
30 PRINT "Difference:"; A - B
40 PRINT " Product:"; A * B
50 PRINT " Quontent:"; A \ B
60 PRINT " Remainder:"; A MOD B
70 PRINT " Power:"; A ^ B</syntaxhighlight>
 
==={{header|Quite BASIC}}===
<syntaxhighlight lang="qbasic">10 INPUT "enter a integer"; A
20 INPUT "enter another integer"; B
30 PRINT " Sum: "; A + B
40 PRINT "Difference: "; A - B
50 PRINT " Product: "; A * B
60 PRINT " Quontent: "; INT(A / B)
70 PRINT " Remainder: "; A - INT(A / B ) * B</syntaxhighlight>
 
==={{Header|Tiny BASIC}}===
<syntaxhighlight lang="Tiny BASIC"> LET A = 5
LET B = 3
PRINT "A = ", A, ", B = ", B
PRINT ""
PRINT A," + ",B," = ", A+B
PRINT A," - ",B," = ", A-B
PRINT A," * ",B," = ", A*B
PRINT A," / ",B," = ", A/B
PRINT A," % ",B," = ", A-(A/B)*B
REM Exponent calculation
LET X = 1
LET E = 0
10 IF X >= B THEN GOTO 30
LET T = E
IF E < A THEN LET E = A*A
IF T < A THEN GOTO 20
IF E >= A THEN LET E = E*A
20 LET X = X+1
GOTO 10
30 PRINT A," ^ ",B," = ", E
END</syntaxhighlight>
 
==={{header|True BASIC}}===
<syntaxhighlight lang="basic">
! RosettaCode: Integer Arithmetic
! True BASIC v6.007
! Translated from BaCon example.
PROGRAM Integer_Arithmetic
INPUT PROMPT "Enter integer A: ": a
INPUT PROMPT "Enter integer B: ": b
PRINT
PRINT a;" + ";b;" is ";a+b
PRINT a;" - ";b;" is ";a-b
PRINT a;" * ";b;" is ";a*b
PRINT a;" / ";b;" is ";INT(a/b);
PRINT "MOD(";a;", ";b;") is "; MOD(a,b)
PRINT "POW(";a;", ";b;") is ";INT(a^b)
GET KEY done
END</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|QuickBasic|4.5}}
<langsyntaxhighlight lang="qbasic">function math(a!, b!)
print a + b
print a - b
Line 117 ⟶ 1,091:
print a / b
print a mod b
end function</langsyntaxhighlight>
Truncate towards: 0
 
Remainder sign matches: first operand
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "IntegerArithmetic"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
a$ = INLINE$("Enter integer A: ")
a = SLONG(a$)
b$ = INLINE$("Enter integer B: ")
b = SLONG(b$)
PRINT
PRINT " Sum:"; a + b
PRINT "Difference:"; a - b
PRINT " Product:"; a * b
PRINT " Quontent:"; a / b
PRINT " Remainder:"; a MOD b
PRINT " Power:"; a ** b
END FUNCTION
END PROGRAM</syntaxhighlight>
 
=={{header|BASIC256}}==
<syntaxhighlight lang="basic256">
input "enter a number ?", a
input "enter another number ?", b
 
print "addition " + a + " + " + b + " = " + (a + b)
print "subtraction " + a + " - " + b + " = " + (a - b)
print "multiplication " + a + " * " + b + " = " + (a * b)
print "integer division " + a + " \ " + b + " = " + (a \ b)
print "remainder or modulo " + a + " % " + b + " = " + (a % b)
print "power " + a + " ^ " + b + " = " + (a ^ b)
</syntaxhighlight>
 
=={{header|Batch File}}==
{{works with|Windows 7| or later, haven't checked earlier versions}}
<syntaxhighlight lang="dos">
set /p equation=
set /a result=%equation%
echo %result%
pause
</syntaxhighlight>
 
=={{header|BBC BASIC}}==
<syntaxhighlight lang="bbcbasic"> INPUT "Enter the first integer: " first%
INPUT "Enter the second integer: " second%
PRINT "The sum is " ; first% + second%
PRINT "The difference is " ; first% - second%
PRINT "The product is " ; first% * second%
PRINT "The integer quotient is " ; first% DIV second% " (rounds towards 0)"
PRINT "The remainder is " ; first% MOD second% " (sign matches first operand)"
PRINT "The first raised to the power of the second is " ; first% ^ second%</syntaxhighlight>
 
=={{header|bc}}==
<syntaxhighlight lang="bc">define f(a, b) {
"add: "; a + b
"sub: "; a - b
"mul: "; a * b
"div: "; a / b /* truncates toward zero */
"mod: "; a % b /* same sign as first operand */
"pow: "; a ^ b
}</syntaxhighlight>
 
=={{header|Befunge}}==
<langsyntaxhighlight lang="befunge">&&00p"=A",,:."=B ",,,00g.55+,v
v,+55.+g00:,,,,"A+B="<
>"=B-A",,,,:00g-.55+,v
v,+55.*g00:,,,,"A*B="<
>"=B/A",,,,:00g/.55+,v
@,+55.%g00,,,,"A%B="<</langsyntaxhighlight>
 
=={{header|Batch FileBQN}}==
<pre>•Out "Enter number 1: "
{{works with|Windows NT|4 or later (includes Windows XP and onward)}}
a ← •BQN •GetLine @
<lang dos>@set /P A=Enter 1st Number :
@set•Out /P B="Enter 2ndnumber Number2: :"
b ← •BQN •GetLine @
@set D=%A% + %B% & call :printC
 
@set D=%A% - %B% & call :printC
•Show a + b
@set D=%A% * %B% & call :printC
•Show a - b
@set D=%A% / %B% & call :printC
•Show a × b
@set D=%A% %% %B%
•Show a ÷ b
:printC
•Show b | a
@set /A C=%D%
@echo•Show %D%a = %C%b</langpre>
<pre>Enter number 1:
12
Enter number 2:
2
14
10
24
6
0
144</pre>
 
 
=={{header|Bracmat}}==
The remainder returned by mod is non-negative. Furthermore, <code>div$(!a.!d)*!d+mod$(!a.!d):!a</code> for all integer <code>!a</code> and <code>!d</code>, <code>!d:~0</code>.
<syntaxhighlight lang="bracmat"> ( enter
= put$"Enter two integer numbers, separated by space:"
& get':(~/#?k_~/#?m|quit:?k)
| out
$ "You must enter two integer numbers! Enter \"quit\" if you don't know how to do that."
& !enter
)
& !enter
& !k:~quit
& out$("You entered" !k and !m ". Now look:")
& out$("Sum:" !k+!m)
& out$("Difference:" !k+-1*!m)
& out$("Product:" !k*!m)
& out$("Integer division:" div$(!k.!m))
& out$("Remainder:" mod$(!k.!m))
& out$("Exponentiation:" !k^!m)
& done;
</syntaxhighlight>
 
=={{header|Brat}}==
Inspired by the second VBScript version.
<syntaxhighlight lang="brat">x = ask("First number: ").to_i
y = ask("Second number: ").to_i
 
#Division uses floating point
#Remainder uses sign of right hand side
[:+ :- :* :/ :% :^].each { op |
p "#{x} #{op} #{y} = #{x.call_method op, y}"</syntaxhighlight>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
Line 159 ⟶ 1,241:
printf("a%%b = %d\n", a%b); /* same sign as first operand (in C99) */
return 0;
}</langsyntaxhighlight>
 
=={{header|C++}}==
<lang cpp>#include <iostream>
 
int main()
{
int a, b;
std::cin >> a >> b;
std::cout << "a+b = " << a+b << "\n";
std::cout << "a-b = " << a-b << "\n";
std::cout << "a*b = " << a*b << "\n";
std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n";
return 0;
}</lang>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
 
class Program
Line 192 ⟶ 1,260:
Console.WriteLine("{0} to the power of {1} = {2}", a, b, Math.Pow(a, b));
}
}</langsyntaxhighlight>
{{out}}
Sample output:
<langpre>5 + 3 = 8
5 - 3 = 2
5 * 3 = 15
5 / 3 = 1
5 % 3 = 2
5 to the power of 3 = 125</langpre>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <iostream>
 
int main()
{
int a, b;
std::cin >> a >> b;
std::cout << "a+b = " << a+b << "\n";
std::cout << "a-b = " << a-b << "\n";
std::cout << "a*b = " << a*b << "\n";
std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n";
return 0;
}</syntaxhighlight>
 
=={{header|Chef}}==
 
<langsyntaxhighlight Cheflang="chef">Number Soup.
 
Only reads single values.
Line 238 ⟶ 1,320:
Clean 1st mixing bowl.
 
Serves 5.</langsyntaxhighlight>
 
=={{header|Clipper}}==
<syntaxhighlight lang="visualfoxpro">procedure Test( a, b )
? "a+b", a + b
? "a-b", a - b
? "a*b", a * b
// The quotient isn't integer, so we use the Int() function, which truncates it downward.
? "a/b", Int( a / b )
// Remainder:
? "a%b", a % b
// Exponentiation is also a base arithmetic operation
? "a**b", a ** b
return</syntaxhighlight>
 
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">(defn myfunc []
(println "Enter x and y")
(let [x (read), y (read)]
(doseq [op '(+ - * / Math/pow rem)]
(let [exp (list op x y)]
(printf "%s=%s\n" exp (eval exp))))))</syntaxhighlight>
 
<pre>user=> (myfunc)
Enter x and y
3
6
(+ 3 6)=9
(- 3 6)=-3
(* 3 6)=18
(/ 3 6)=1/2
(Math/pow 3 6)=729.0
(rem 3 6)=3
nil</pre>
 
=={{header|COBOL}}==
<syntaxhighlight lang="cobol"> IDENTIFICATION DIVISION.
PROGRAM-ID. Int-Arithmetic.
 
DATA DIVISION.
WORKING-STORAGE SECTION.
 
01 A PIC S9(10).
01 B PIC S9(10).
01 Result PIC S9(10).
 
PROCEDURE DIVISION.
DISPLAY "First number: " WITH NO ADVANCING
ACCEPT A
DISPLAY "Second number: " WITH NO ADVANCING
ACCEPT B
* *> Note: The various ADD/SUBTRACT/etc. statements can be
* *> replaced with COMPUTE statements, which allow those
* *> operations to be defined similarly to other languages,
* *> e.g. COMPUTE Result = A + B
 
ADD A TO B GIVING Result
DISPLAY "A + B = " Result
 
SUBTRACT B FROM A GIVING Result
DISPLAY "A - B = " Result
 
MULTIPLY A BY B GIVING Result
DISPLAY "A * B = " Result
 
* *> Division here truncates towards zero. DIVIDE can take a
* *> ROUNDED clause, which will round the result to the nearest
* *> integer.
DIVIDE A BY B GIVING Result
DISPLAY "A / B = " Result
 
COMPUTE Result = A ^ B
DISPLAY "A ^ B = " Result
* *> Matches sign of first argument.
DISPLAY "A % B = " FUNCTION REM(A, B)
 
GOBACK
.</syntaxhighlight>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun arithmetic (&optional (a (read *query-io*)) (b (read *query-io*)))
(mapc
(lambda (op)
(format t "~a => ~a~%" (list op a b) (funcall (symbol-function op) a b)))
'(+ - * mod rem floor ceiling truncate round expt))
(values))</langsyntaxhighlight>
 
Common Lisp's integer division functions are <code>floor</code>, <code>ceiling</code>, <code>truncate</code>, and <code>round</code>. They differ in how they round their quotient.
Line 270 ⟶ 1,431:
quotient * divisor + remainder = dividend .
<code>(mod a b)</code> and <code>(rem a b)</code> return numbers equal to the secondary values of <code>(floor a b)</code> and <code>(truncate a b)</code>, respectively.
 
=={{header|Component Pascal}}==
Works with Gardens Point Component Pascal
<syntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT CPmain,Console,RTS;
 
VAR
x,y : INTEGER;
arg : ARRAY 128 OF CHAR;
status : BOOLEAN;
 
PROCEDURE Error(IN str : ARRAY OF CHAR);
BEGIN
Console.WriteString(str);Console.WriteLn;
HALT(1)
END Error;
 
 
BEGIN
IF CPmain.ArgNumber() < 2 THEN Error("Give me two integers!") END;
CPmain.GetArg(0,arg); RTS.StrToInt(arg,x,status);
IF ~status THEN Error("Can't convert '"+arg+"' to Integer") END;
CPmain.GetArg(1,arg); RTS.StrToInt(arg,y,status);
IF ~status THEN Error("Can't convert '"+arg+"' to Integer") END;
Console.WriteString("x + y >");Console.WriteInt(x + y,6);Console.WriteLn;
Console.WriteString("x - y >");Console.WriteInt(x - y,6);Console.WriteLn;
Console.WriteString("x * y >");Console.WriteInt(x * y,6);Console.WriteLn;
Console.WriteString("x / y >");Console.WriteInt(x DIV y,6);Console.WriteLn;
Console.WriteString("x MOD y >");Console.WriteInt(x MOD y,6);Console.WriteLn;
END Arithmetic.
</syntaxhighlight>
command: <i>cprun Arithmetic 12 23</i><br/>
{{out}}
<pre>
x + y > 35
x - y > -11
x * y > 276
x / y > 0
x MOD y > 12
</pre>
Works with BlackBox Component Builder
<syntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT StdLog,DevCommanders,TextMappers;
 
PROCEDURE DoArithmetic(x,y: INTEGER);
BEGIN
StdLog.String("x + y >");StdLog.Int(x + y);StdLog.Ln;
StdLog.String("x - y >");StdLog.Int(x - y);StdLog.Ln;
StdLog.String("x * y >");StdLog.Int(x * y);StdLog.Ln;
StdLog.String("x / y >");StdLog.Int(x DIV y);StdLog.Ln;
StdLog.String("x MOD y >");StdLog.Int(x MOD y);StdLog.Ln;
END DoArithmetic;
 
PROCEDURE Go*;
VAR
params: DevCommanders.Par;
s: TextMappers.Scanner;
p : ARRAY 2 OF INTEGER;
current: INTEGER;
BEGIN
current := 0;
params := DevCommanders.par;
s.ConnectTo(params.text);
s.SetPos(params.beg);
s.Scan;
WHILE(~s.rider.eot) DO
IF (s.type = TextMappers.int) THEN
p[current] := s.int; INC(current);
END;
s.Scan;
END;
IF current = 2 THEN DoArithmetic(p[0],p[1]) END;
END Go;
END Arithmetic.
</syntaxhighlight>
Command: Arithmetic.Go 12 23 ~ <br/>
{{out}}
<pre>
x + y > 35
x - y > -11
x * y > 276
x / y > 0
x MOD y > 12
</pre>
 
=={{header|Crystal}}==
<syntaxhighlight lang="crystal">a = gets.not_nil!.to_i64
b = gets.not_nil!.to_i64
 
puts "Sum: #{a + b}"
puts "Difference: #{a - b}"
puts "Product: #{a * b}"
puts "Quotient (float division): #{a / b}" # / always returns a float.
puts "Quotient (floor division): #{a // b}"
puts "Remainder: #{a % b}" # Sign of remainder matches that of the second operand (b).
puts "Power: #{a ** b}" # Integers can only be raised to a positive exponent.
</syntaxhighlight>
 
=={{header|D}}==
<syntaxhighlight lang="d">import std.stdio, std.string, std.conv;
 
void main() {
<lang d>import std.stdio, std.string;
int a = 10, b = 20;
try {
a = readln().strip().to!int();
b = readln().strip().to!int();
} catch (StdioException e) {}
writeln("a = ", a, ", b = ", b);
 
writeln("a + b = ", a + b);
void main()
writeln("a - b = ", a - b);
{
auto writeln("a * b = readln().atoi()", ba =* readln().atoi(b);
writefln writeln("a +/ b = ", a+ / b);
writefln writeln("a -% b = ", a- % b);
writefln writeln("a *^^ b = ", a* ^^ b);
}</syntaxhighlight>
writefln("a / b = ", a/b);
{{out}}
writefln("a % b = ", a%b);
<pre>a = -16, b = 5
}</lang>
a + b = -11
a - b = -21
a * b = -80
a / b = -3
a % b = -1
a ^^ b = -1048576</pre>
 
===Shorter Version===
Same output.
<syntaxhighlight lang="d">import std.stdio, std.string, std.conv, std.meta;
 
void main() {
int a = -16, b = 5;
try {
a = readln().strip().to!int();
b = readln().strip().to!int();
} catch (StdioException e) {}
writeln("a = ", a, ", b = ", b);
 
foreach (op; AliasSeq!("+", "-", "*", "/", "%", "^^"))
mixin(`writeln("a ` ~ op ~ ` b = ", a` ~ op ~ `b);`);
}</syntaxhighlight>
Division and modulus are defined as in C99.
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:io';
import 'dart:math' show pow;
 
void main() {
print('enter a integer: ');
int a = int.parse(stdin.readLineSync());
print('enter another integer: ');
int b = int.parse(stdin.readLineSync());
 
print('a + b = ${a + b}');
print('a - b = ${a - b}');
print('a * b = ${a * b}');
print('a / b = ${a ~/ b}');
print('a % b = ${a % b}');
print('a ^ b = ${pow(a, b)}');
 
//Integer division uses the '~/' operator
}</syntaxhighlight>
 
=={{header|dc}}==
<syntaxhighlight lang="dc">[Enter 2 integers on 1 line.
Use whitespace to separate. Example: 2 3
Use underscore for negative integers. Example: _10
]P ? sb sa
[add: ]P la lb + p sz
[sub: ]P la lb - p sz
[mul: ]P la lb * p sz
[div: ]P la lb / p sz [truncates toward zero]sz
[mod: ]P la lb % p sz [sign matches first operand]sz
[pow: ]P la lb ^ p sz</syntaxhighlight>
 
=={{header|DCL}}==
<syntaxhighlight lang="dcl">$ inquire a "Enter first number"
$ a = f$integer( a )
$ inquire b "Enter second number"
$ b = f$integer( b )
$ write sys$output "a + b = ", a + b
$ write sys$output "a - b = ", a - b
$ write sys$output "a * b = ", a * b
$ write sys$output "a / b = ", a / b ! truncates down</syntaxhighlight>
{{out}}
<pre>$ @arithmetic_integer
Enter first number: 2
Enter second number: 5
a + b = 7
a - b = -3
a * b = 10
a / b = 0
$ @arithmetic_integer
Enter first number: -5
Enter second number: -2
a + b = -7
a - b = -3
a * b = 10
a / b = 2</pre>
 
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">program IntegerArithmetic;
 
{$APPTYPE CONSOLE}
 
uses SysUtils, Math;
 
var
a, b: Integer;
begin
a := StrToInt(ParamStr(1));
b := StrToInt(ParamStr(2));
 
WriteLn(Format('%d + %d = %d', [a, b, a + b]));
WriteLn(Format('%d - %d = %d', [a, b, a - b]));
WriteLn(Format('%d * %d = %d', [a, b, a * b]));
WriteLn(Format('%d / %d = %d', [a, b, a div b])); // rounds towards 0
WriteLn(Format('%d %% %d = %d', [a, b, a mod b])); // matches sign of the first operand
WriteLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));
end.</syntaxhighlight>
 
=={{header|DWScript}}==
<syntaxhighlight lang="delphi">var a := StrToInt(ParamStr(0));
var b := StrToInt(ParamStr(1));
 
PrintLn(Format('%d + %d = %d', [a, b, a + b]));
PrintLn(Format('%d - %d = %d', [a, b, a - b]));
PrintLn(Format('%d * %d = %d', [a, b, a * b]));
PrintLn(Format('%d / %d = %d', [a, b, a div b]));
PrintLn(Format('%d mod %d = %d', [a, b, a mod b]));
PrintLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));</syntaxhighlight>
 
=={{header|Dyalect}}==
 
{{trans|Swift}}
 
Dyalect has no operator for exponential.
 
<syntaxhighlight lang="dyalect">let a = 6
let b = 4
print("sum = \(a+b)")
print("difference = \(a-b)")
print("product = \(a*b)")
print("Integer quotient = \(a/b)")
print("Remainder = \(a%b)")</syntaxhighlight>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def arithmetic(a :int, b :int) {
return `$\
Sum: ${a + b}
Line 294 ⟶ 1,689:
Quotient: ${a // b}
Remainder: ${a % b}$\n`
}</langsyntaxhighlight>
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="text">a = number input
b = number input
print a + b
print a - b
print a * b
print a div b
print a mod b
print pow a b</syntaxhighlight>
 
=={{header|ECL}}==
<syntaxhighlight lang="ecl">
ArithmeticDemo(INTEGER A,INTEGER B) := FUNCTION
ADDit := A + B;
SUBTRACTit := A - B;
MULTIPLYit := A * B;
INTDIVIDEit := A DIV B; //INTEGER DIVISION
DIVIDEit := A / B; //standard division
Remainder := A % B;
EXPit := POWER(A,B);
DS := DATASET([{A,B,'A PLUS B is:',ADDit},
{A,B,'A MINUS B is:',SUBTRACTit},
{A,B,'A TIMES B is:',MULTIPLYit},
{A,B,'A INT DIVIDE BY B is:',INTDIVIDEit},
{A,B,'REMAINDER is:',Remainder},
{A,B,'A DIVIDE BY B is:',DIVIDEit},
{A,B,'A RAISED TO B:',EXPit}],
{INTEGER AVal,INTEGER BVal,STRING18 valuetype,STRING val});
RETURN DS;
END;
ArithmeticDemo(1,1);
ArithmeticDemo(2,2);
ArithmeticDemo(50,5);
ArithmeticDemo(10,3);
ArithmeticDemo(-1,2);
/* NOTE:Division by zero defaults to generating a zero result (0),
rather than reporting a “divide by zero” error.
This avoids invalid or unexpected data aborting a long job.
This default behavior can be changed
*/
</syntaxhighlight>
 
=={{header|Efene}}==
 
<langsyntaxhighlight lang="efene">@public
@public
run = fn () {
 
Line 313 ⟶ 1,753:
io.format("Quotient: ~p~n", [A / B])
io.format("Remainder: ~p~n", [A % B])
}</langsyntaxhighlight>
 
=={{header|Eiffel}}==
{{works with|SmartEiffel}} version |2.4}}
 
In a file called main.e:
<langsyntaxhighlight lang="eiffel">class MAIN
creation make
feature make is
Line 347 ⟶ 1,786:
print("%N");
end
end</langsyntaxhighlight>
Note that there actually is a builtin modulo operator (\\). However, it seems impossible to use that instruction with SmartEiffel.
 
=={{header|Elena}}==
ELENA 6.x :
<syntaxhighlight lang="elena">import system'math;
import extensions;
 
public program()
{
var a := console.loadLineTo(new Integer());
var b := console.loadLineTo(new Integer());
console.printLine(a," + ",b," = ",a + b);
console.printLine(a," - ",b," = ",a - b);
console.printLine(a," * ",b," = ",a * b);
console.printLine(a," / ",b," = ",a / b); // truncates towards 0
console.printLine(a," % ",b," = ",a.mod(b)); // matches sign of first operand
console.printLine(a," ^ ",b," = ",a ^ b);
}</syntaxhighlight>
 
=={{header|Elixir}}==
{{works with|Elixir|1.4}}
<syntaxhighlight lang="elixir">defmodule Arithmetic_Integer do
# Function to remove line breaks and convert string to int
defp get_int(msg) do
IO.gets(msg) |> String.strip |> String.to_integer
end
def task do
# Get user input
a = get_int("Enter your first integer: ")
b = get_int("Enter your second integer: ")
IO.puts "Elixir Integer Arithmetic:\n"
IO.puts "Sum: #{a + b}"
IO.puts "Difference: #{a - b}"
IO.puts "Product: #{a * b}"
IO.puts "True Division: #{a / b}" # Float
IO.puts "Division: #{div(a,b)}" # Truncated Towards 0
IO.puts "Floor Division: #{Integer.floor_div(a,b)}" # floored integer division
IO.puts "Remainder: #{rem(a,b)}" # Sign from first digit
IO.puts "Modulo: #{Integer.mod(a,b)}" # modulo remainder (uses floored division)
IO.puts "Exponent: #{:math.pow(a,b)}" # Float, using Erlang's :math
end
end
 
Arithmetic_Integer.task</syntaxhighlight>
 
{{out}}
<pre style="height: 80ex; overflow: scroll">
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: 3
Elixir Integer Arithmetic:
 
Sum: 10
Difference: 4
Product: 21
True Division: 2.3333333333333335
Division: 2
Floor Division: 2
Remainder: 1
Modulo: 1
Exponent: 343.0
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: 3
Elixir Integer Arithmetic:
 
Sum: -4
Difference: -10
Product: -21
True Division: -2.3333333333333335
Division: -2
Floor Division: -3
Remainder: -1
Modulo: 2
Exponent: -343.0
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: -3
Elixir Integer Arithmetic:
 
Sum: 4
Difference: 10
Product: -21
True Division: -2.3333333333333335
Division: -2
Floor Division: -3
Remainder: 1
Modulo: -2
Exponent: 0.0029154518950437317
 
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: -3
Elixir Integer Arithmetic:
 
Sum: -10
Difference: -4
Product: 21
True Division: 2.3333333333333335
Division: 2
Floor Division: 2
Remainder: -1
Modulo: -1
Exponent: -0.0029154518950437317
</pre>
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
^|EMal has no divmod operator or built-in function,
|its interface can be easily emulated as shown below.
|The performace is worse than using / and % operators.
|^
fun divmod = Pair by int dividend, int divisor
Pair result = int%int().named("quotient", "remainder")
result.quotient = dividend / divisor
result.remainder = dividend % divisor
return result
end
fun main = int by List args
int a, b
if args.length == 2
a = int!args[0]
b = int!args[1]
else
a = ask(int, "first number: ")
b = ask(int, "second number: ")
end
writeLine("sum: " + (a + b))
writeLine("difference: " + (a - b))
writeLine("product: " + (a * b))
writeLine("integer quotient: " + (a / b)) # truncates towards 0
writeLine("remainder: " + (a % b)) # matches sign of first operand
writeLine("exponentiation: " + (a ** b))
writeLine("logarithm: " + (a // b))
writeLine("divmod: " + divmod(a, b))
return 0
end
exit main(Runtime.args)
</syntaxhighlight>
{{out}}
<pre>
emal.exe Org\RosettaCode\AritmeticInteger.emal
first number: 19
second number: 7
sum: 26
difference: 12
product: 133
integer quotient: 2
remainder: 5
exponentiation: 893871739
logarithm: 2
divmod: [2,5]
</pre>
 
=={{header|Emojicode}}==
<syntaxhighlight lang="emojicode">🏁🍇
🍺🔢🆕🔡▶️👂🏼❗ 10❗️ ➡️ x 💭 Get first number
🍺🔢🆕🔡▶️👂🏼❗ 10❗️ ➡️ y 💭 Get second number
😀 🔤Sum: 🧲x➕y🧲🔤 ❗
😀 🔤Difference: 🧲x➖y🧲🔤 ❗
😀 🔤Product: 🧲x✖️y🧲🔤 ❗
😀 🔤Quotient: 🧲x➗️y🧲🔤 ❗ 💭 Rounds towards 0
😀 🔤Remainder: 🧲x🚮️y🧲🔤 ❗ 💭 Matches sign of first operand
🍉️</syntaxhighlight>
 
=={{header|Erlang}}==
<syntaxhighlight lang="erlang">% Implemented by Arjun Sunel
-module(arith).
-export([start/0]).
start() ->
case io:fread("","~d~d") of
{ok, [A,B]} ->
io:format("Sum = ~w~n",[A+B]),
io:format("Difference = ~w~n",[A-B]),
io:format("Product = ~w~n",[A*B]),
io:format("Quotient = ~w~n",[A div B]), % truncates towards zero
io:format("Remainder= ~w~n",[A rem B]), % same sign as the first operand
halt()
end.
</syntaxhighlight>
 
=={{header|ERRE}}==
<syntaxhighlight lang="text">
PROGRAM INTEGER_ARITHMETIC
 
!
! for rosettacode.org
!
 
!$INTEGER
 
BEGIN
INPUT("Enter a number ",A)
INPUT("Enter another number ",B)
 
PRINT("Addition ";A;"+";B;"=";(A+B))
PRINT("Subtraction ";A;"-";B;"=";(A-B))
PRINT("Multiplication ";A;"*";B;"=";(A*B))
PRINT("Integer division ";A;"div";B;"=";(A DIV B))
PRINT("Remainder or modulo ";A;"mod";B;"=";(A MOD B))
PRINT("Power ";A;"^";B;"=";(A^B))
END PROGRAM
</syntaxhighlight>
{{out}}
<pre>Enter a number ? 12
Enter another number ? 5
Addition 12 + 5 = 17
Subtraction 12 - 5 = 7
Multiplication 12 * 5 = 60
Integer division 12 div 5 = 2
Remainder or modulo 12 mod 5 = 2
Power 12 ^ 5 = 248832
</pre>
Truncate towards: 0
 
Remainder sign matches: first operand
 
In C-64 ERRE version you must use <code>INT(A/B)</code> for division and <code>A-B*INT(A/B)</code> for modulus.
 
=={{header|Euphoria}}==
<syntaxhighlight lang="euphoria">include get.e
 
integer a,b
 
a = floor(prompt_number("a = ",{}))
b = floor(prompt_number("b = ",{}))
 
printf(1,"a + b = %d\n", a+b)
printf(1,"a - b = %d\n", a-b)
printf(1,"a * b = %d\n", a*b)
printf(1,"a / b = %g\n", a/b) -- does not truncate
printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand
printf(1,"power(a,b) = %g\n", power(a,b))</syntaxhighlight>
 
{{out}}
<pre>a = 2
b = 3
a + b = 5
a - b = -1
a * b = 6
a / b = 0.666667
remainder(a,b) = 2
power(a,b) = 8</pre>
 
=={{header|Excel}}==
 
If the numbers are typed into cells A1 and B1
 
For sum, type in C1
<syntaxhighlight lang="excel">
=$A1+$B1
</syntaxhighlight>
 
For difference, type in D1
<syntaxhighlight lang="excel">
=$A1-$B1
</syntaxhighlight>
 
For product, type in E1
<syntaxhighlight lang="excel">
=$A1*$B1
</syntaxhighlight>
 
For quotient, type in F1
<syntaxhighlight lang="excel">
=QUOTIENT($A1,$B1)
</syntaxhighlight>
 
For remainder, type in G1
<syntaxhighlight lang="excel">
=MOD($A1,$B1)
</syntaxhighlight>
 
For exponentiation, type in H1
<syntaxhighlight lang="excel">
=$A1^$B1
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result:
<syntaxhighlight lang="fsharp">
do
let a, b = int Sys.argv.[1], int Sys.argv.[2]
for str, f in ["+", ( + ); "-", ( - ); "*", ( * ); "/", ( / ); "%", ( % )] do
printf "%d %s %d = %d\n" a str b (f a b)
</syntaxhighlight>
For example, the output with the arguments 4 and 3 is:
<syntaxhighlight lang="fsharp">
4 + 3 = 7
4 - 3 = 1
4 * 3 = 12
4 / 3 = 1
4 % 3 = 1
</syntaxhighlight>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: combinators io kernel math math.functions math.order
math.parser prettyprint ;
 
Line 367 ⟶ 2,105:
[ gcd "gcd: " write . drop ]
[ lcm "lcm: " write . ]
} 2cleave</langsyntaxhighlight>
 
{{out}}
output:
<pre>a=8
 
<lang factor>a=8
b=12
sum: 20
Line 383 ⟶ 2,120:
minimum: 8
gcd: 4
lcm: 24</langpre>
 
This example illustrates the use of cleave and apply combinators to alleviate the usage of shuffle words in a concatenative language. bi@ applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs.
bi@ applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs.
 
=={{header|FALSE}}==
<langsyntaxhighlight lang="false">12 7
\$@$@$@$@$@$@$@$@$@$@\ { 6 copies }
"sum = "+."
Line 395 ⟶ 2,133:
quotient = "/."
modulus = "/*-."
"</langsyntaxhighlight>
 
=={{header|Fermat}}==
Integer division rounds towards zero; remainders are always positive regardless of the signs of the numbers.
<syntaxhighlight lang="fermat">
?a;
?b;
!!('Sum: a+b=',a+b);
!!('Difference: a-b=',a-b);
!!('Product: a*b=',a*b);
!!('Integer quotient: a\b=',a\b);
!!('Remainder: a|b=',a|b);
!!('Exponentiation: a^b=',a^b);
</syntaxhighlight>
{{out}}<pre>
>a := 64
>b := -5
Sum: a+b= 59
Difference: a-b= 69
Product: a*b= -320
Integer quotient: a\b= -12
Remainder: a|b= 4
Exponentiation: a^b= 1 / 1073741824
</pre>
 
=={{header|Forth}}==
To keep the example simple, the word takes the two numbers from the stack. '''/mod''' returns two results; the stack effect is ( a b -- a%b a/b ).
<langsyntaxhighlight lang="forth">: arithmetic ( a b -- )
cr ." a=" over . ." b=" dup .
cr ." a+b=" 2dup + .
Line 405 ⟶ 2,166:
cr ." a*b=" 2dup * .
cr ." a/b=" /mod .
cr ." a mod b = " . cr ;</langsyntaxhighlight>
 
Different host systems have different native signed division behavior. ANS Forth defines two primitive double-precision signed division operations, from which the implementation may choose the most natural to implement the basic divide operations ( / , /mod , mod , */ ). This is partly due to differing specifications in the two previous standards, Forth-79 and Forth-83.
 
<langsyntaxhighlight lang="forth">FM/MOD ( d n -- mod div ) \ floored
SM/REM ( d n -- rem div ) \ symmetric
M* ( n n -- d )</langsyntaxhighlight>
 
In addition, there are unsigned variants.
 
<langsyntaxhighlight lang="forth">UM/MOD ( ud u -- umod udiv )
UM* ( u u -- ud )</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ANSI FORTRAN 77 or later:
<langsyntaxhighlight lang="fortran"> INTEGER A, B
PRINT *, 'Type in two integer numbers separated by white space',
+ ' and press ENTER'
Line 433 ⟶ 2,194:
+ 'exponentiation is an intrinsic op in Fortran, so...'
PRINT *, ' A ** B = ', (A ** B)
END</langsyntaxhighlight>
 
=={{header|F_Sharp|F#FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result:
 
<lang fsharp>
Dim As Integer i, j
do
Input "Enter two integers separated by a comma"; i, j
let a, b = int Sys.argv.[1], int Sys.argv.[2]
Print for str, f in ["+i;", ( + )"; "-", ( - )j; "*", ( * );= "/", ( / ); "%",i ( % )]+ doj
Print i;" - "; printfj; "%d %s %d = %d\n"; a str b (fi a- b)j
Print i;" * "; j; " = "; i * j
</lang>
Print i;" / "; j; " = "; i \ j
For example, the output with the arguments 4 and 3 is:
Print i;" % "; j; " = "; i Mod j
<lang fsharp>
Print i;" ^ "; j; " = "; i ^ j
4 + 3 = 7
Sleep
4 - 3 = 1
 
4 * 3 = 12
' Integer division (for which FB uses the '\' operator) rounds towards zero
4 / 3 = 1
 
4 % 3 = 1
' Remainder (for which FB uses the Mod operator) will, if non-zero, match the sign
</lang>
' of the first operand</syntaxhighlight>
 
Sample input and output:-
{{out}}
<pre>
Enter two integers separated by a comma? -12, 7
-12 + 7 = -5
-12 - 7 = -19
-12 * 7 = -84
-12 / 7 = -1
-12 % 7 = -5
-12 ^ 7 = -35831808
</pre>
 
=={{header|friendly interactive shell}}==
<syntaxhighlight lang="fishshell">
read a
read b
echo 'a + b =' (math "$a + $b") # Sum
echo 'a - b =' (math "$a - $b") # Difference
echo 'a * b =' (math "$a * $b") # Product
echo 'a / b =' (math "$a / $b") # Integer quotient
echo 'a % b =' (math "$a % $b") # Remainder
echo 'a ^ b =' (math "$a ^ $b") # Exponentation
</syntaxhighlight>
 
=={{header|Frink}}==
This demonstrates normal division (which produces rational numbers when possible), <CODE>div</CODE>, and <CODE>mod</CODE>. <CODE>div</CODE> rounds toward negative infinity (defined as <CODE>floor[x/y]</CODE>). <CODE>mod</CODE> uses the sign of the second number (defined as <CODE>x - y * floor[x/y]</CODE>). All operators automatically produce big integers or exact rational numbers when necessary.
<syntaxhighlight lang="frink">
[a,b] = input["Enter numbers",["a","b"]]
ops=["+", "-", "*", "/", "div" ,"mod" ,"^"]
for op = ops
{
str = "$a $op $b"
println["$str = " + eval[str]]
}
</syntaxhighlight>
 
{{out}}
<syntaxhighlight lang="frink">
10 + 20 = 30
10 - 20 = -10
10 * 20 = 200
10 / 20 = 1/2 (exactly 0.5)
10 div 20 = 0
10 mod 20 = 10
10 ^ 20 = 100000000000000000000
</syntaxhighlight>
 
=={{header|FutureBasic}}==
Basic program
<syntaxhighlight lang="futurebasic">
window 1, @"Integer Arithmetic", ( 0, 0, 400, 300 )
 
NSInteger a = 25
NSInteger b = 53
 
print "addition "a" + "b" = " (a + b)
print "subtraction "a" - "b" = " (a - b)
print "multiplication "a" * "b" = " (a * b)
print "division "a" / "b" = " (a / b)
printf @"float division %ld / %ld = %f", a, b, (float)a / (float)b
print "modulo "a" % "b" = " (a mod b)
print "power "a" ^ "b" = " (a ^ b)
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
addition: 25 + 53 = 78
subtraction: 25 - 53 = -28
multiplication: 25 * 53 = 1325
division: 25 / 53 = 0
float division: 25 / 53 = 0.471698
modulo: 25 mod 53 = 25
power: 25 ^ 53 = 1.232595e+74
</pre>
 
Standalone Intel, M1, M2 Macintosh application with user input
<syntaxhighlight lang="futurebasic">
 
_window = 1
begin enum 1
_int1Label
_int1Field
_int2Label
_int2Field
_calcResults
_calcBtn
end enum
 
void local fn BuildWindow
CGRect r
 
r = fn CGRectMake( 0, 0, 480, 360 )
window _window, @"Integer Arithmetic", r, NSWindowStyleMaskTitled + NSWindowStyleMaskClosable + NSWindowStyleMaskMiniaturizable
 
r = fn CGRectMake( 240, 320, 150, 24 )
textlabel _int1Label, @"Enter first integer:", r, _window
ControlSetAlignment( _int1Label, NSTextAlignmentRight )
r = fn CGRectMake( 400, 322, 60, 24 )
textfield _int1Field, YES, @"25", r, _window
ControlSetAlignment( _int1Field, NSTextAlignmentCenter )
ControlSetUsesSingleLineMode( _int1Field, YES )
ControlSetFormat( _int1Field, @"0123456789-", YES, 5, NULL )
 
r = fn CGRectMake( 240, 290, 150, 24 )
textlabel _int2Label, @"Enter second integer:", r, _window
ControlSetAlignment( _int2Label, NSTextAlignmentRight )
r = fn CGRectMake( 400, 292, 60, 24 )
textfield _int2Field, YES, @"53", r, _window
ControlSetAlignment( _int2Field, NSTextAlignmentCenter )
ControlSetUsesSingleLineMode( _int2Field, YES )
ControlSetFormat( _int2Field, @"0123456789-", YES, 5, NULL )
 
r = fn CGRectMake( 50, 60, 380, 200 )
textview _calcResults, r,,, _window
TextViewSetTextContainerInset( _calcResults, fn CGSizeMake( 10, 20 ) )
TextSetFontWithName( _calcResults, @"Menlo", 13.0 )
TextViewSetEditable( _calcResults, NO )
 
r = fn CGRectMake( 370, 13, 100, 32 )
button _calcBtn,,, @"Calculate", r
end fn
 
local fn PerformCalculations
CFStringRef tempStr
 
NSInteger i1 = fn ControlIntegerValue( _int1Field )
NSInteger i2 = fn ControlIntegerValue( _int2Field )
 
CFMutableStringRef mutStr = fn MutableStringWithCapacity( 0 )
 
// Display inout integers
tempStr = fn StringWithFormat( @"Number 1: %ld\nNumber 2: %ld\n\n", i1, i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Add
tempStr = fn StringWithFormat( @"Addition: %ld + %ld = %ld\n", i1, i2, i1 + i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Subtract
tempStr = fn StringWithFormat( @"Subtraction: %ld - %ld = %ld\n", i1, i2, i1 - i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Multiply
tempStr = fn StringWithFormat( @"Multiplication: %ld * %ld = %ld\n", i1, i2, i1 * i2 )
MutableStringAppendString( mutStr, tempStr )
 
if ( i2 != 0 )
 
// Divide
tempStr = fn StringWithFormat( @"Integer Division: %ld / %ld = %ld\n", i1, i2, i1 / i2 )
MutableStringAppendString( mutStr, tempStr )
 
// Float Divide
tempStr = fn StringWithFormat( @"Float Division: %ld / %ld = %f\n", i1, i2, (float)i1 / (float)i2 )
MutableStringAppendString( mutStr, tempStr )
 
// mod
tempStr = fn StringWithFormat( @"Modulo: %ld mod %ld = %ld remainder\n", i1, i2, i1 mod i2 )
MutableStringAppendString( mutStr, tempStr )
 
// power
tempStr = fn StringWithFormat( @"Power: %ld ^ %ld = %e\n", i1, i2, i1 ^ i2 )
MutableStringAppendString( mutStr, tempStr )
 
else
 
MutableStringAppendString( mutStr, @"Cannot divide by zero." )
 
end if
 
TextSetString( _calcResults, mutStr )
end fn
 
void local fn DoDialog( ev as long, tag as long, wnd as long )
'~'1
select ( ev )
case _btnClick
select ( tag )
case _calcBtn : fn PerformCalculations
end select
case _windowWillClose : end
end select
end fn
 
on dialog fn DoDialog
 
fn BuildWindow
 
HandleEvents
</syntaxhighlight>
 
Output:
<pre>
Number 1: 25
Number 2: 53
 
Addition: 25 + 53 = 78
Subtraction: 25 - 53 = -28
Multiplication: 25 * 53 = 1325
Integer Division: 25 / 53 = 0
Float Division: 25 / 53 = 0.471698
Modulo: 25 mod 53 = 25 remainder
Power: 25 ^ 53 = 1.232595e+74
</pre>
 
=={{header|Gambas}}==
<syntaxhighlight lang="gambas">Public Sub Main()
Dim a, b As String
Dim c, d As Integer
 
Print "Enter two integer numbers, separated by space:"
Input a, b
 
c = CInt(a)
d = CInt(b)
 
Print "Sum: " & (c + d)
Print "Difference:" & (c - d)
Print "Product: " & (c * d)
Print "Integer: " & (c Div d)
Print "Remainder: " & (c Mod d)
Print "Exponentiation: " & (c ^ d)
 
End
</syntaxhighlight>
Output:
<pre>
Enter two integer numbers, separated by space:
8 1
Sum: 9
Difference:7
Product: 8
Integer: 8
Remainder: 0
Exponentiation: 8
</pre>
 
=={{header|GAP}}==
<syntaxhighlight lang="gap">run := function()
local a, b, f;
f := InputTextUser();
Print("a =\n");
a := Int(Chomp(ReadLine(f)));
Print("b =\n");
b := Int(Chomp(ReadLine(f)));
Display(Concatenation(String(a), " + ", String(b), " = ", String(a + b)));
Display(Concatenation(String(a), " - ", String(b), " = ", String(a - b)));
Display(Concatenation(String(a), " * ", String(b), " = ", String(a * b)));
Display(Concatenation(String(a), " / ", String(b), " = ", String(QuoInt(a, b)))); # toward 0
Display(Concatenation(String(a), " mod ", String(b), " = ", String(RemInt(a, b)))); # nonnegative
Display(Concatenation(String(a), " ^ ", String(b), " = ", String(a ^ b)));
CloseStream(f);
end;</syntaxhighlight>
 
=={{header|GDScript}}==
Requires Godot 4.
 
<syntaxhighlight lang="gdscript">
@tool
extends Node
 
@export var a: int:
set(value):
a = value
refresh()
 
@export var b: int:
set(value):
b = value
refresh()
 
# Output properties
@export var sum: int
@export var difference: int
@export var product: int
@export var integer_quotient: int
@export var remainder: int
@export var exponentiation: int
@export var divmod: int
 
func refresh():
sum = a + b
difference = a - b
product = a * b
integer_quotient = a / b # Rounds towards 0
remainder = a % b # Matches the sign of a
exponentiation = pow(a, b)
</syntaxhighlight>
 
=={{header|Genie}}==
Note: Using ''init:int'' and the ''return'' from the init block was introduced in release 0.43.92, February 2019.
 
<syntaxhighlight lang="genie">[indent=4]
/*
Arithmethic/Integer, in Genie
valac arithmethic-integer.gs
*/
 
init:int
a:int = 0
b:int = 0
if args.length > 2 do b = int.parse(args[2])
if args.length > 1 do a = int.parse(args[1])
 
print @"a+b: $a plus $b is $(a+b)"
print @"a-b: $a minus $b is $(a-b)"
print @"a*b: $a times $b is $(a*b)"
print @"a/b: $a by $b quotient is $(a/b) (rounded mode is TRUNCATION)"
print @"a%b: $a by $b remainder is $(a%b) (sign matches first operand)"
 
print "\nGenie does not include a raise to power operator"
 
return 0</syntaxhighlight>
 
{{out}}
<pre>prompt$ valac arithmetic-integer.gs
prompt$ ./arithmetic-integer -390 100
a+b: -390 plus 100 is -290
a-b: -390 minus 100 is -490
a*b: -390 times 100 is -39000
a/b: -390 by 100 quotient is -3 (rounded mode is TRUNCATION)
a%b: -390 by 100 remainder is -90 (sign matches first operand)
 
Genie does not include a raise to power operator</pre>
 
=={{header|GEORGE}}==
<syntaxhighlight lang="george">R (m) ;
R (n) ;
m n + P;
m n - P;
m n × P;
m n div P;
m n rem P;</syntaxhighlight>
 
=={{header|Go}}==
===int===
<lang go>import "fmt"
<syntaxhighlight lang="go">package main
func arithmetic(a int, b int) {
 
fmt.Printf("a+b = %d\n", a+b)
import "fmt"
fmt.Printf("a-b = %d\n", a-b)
 
fmt.Printf("a*b = %d\n", a*b)
func main() {
fmt.Printf("a/b = %d\n", a/b) // truncates towards 0
var a, b int
fmt.Printf("a%%b = %d\n", a%b) // same sign as first operand
fmt.Print("enter two integers: ")
}</lang>
fmt.Scanln(&a, &b)
fmt.Printf("%d + %d = %d\n", a, b, a+b)
fmt.Printf("%d - %d = %d\n", a, b, a-b)
fmt.Printf("%d * %d = %d\n", a, b, a*b)
fmt.Printf("%d / %d = %d\n", a, b, a/b) // truncates towards 0
fmt.Printf("%d %% %d = %d\n", a, b, a%b) // same sign as first operand
// no exponentiation operator
}</syntaxhighlight>
{{out|Example run}}
<pre>
enter two integers: -5 3
-5 + 3 = -2
-5 - 3 = -8
-5 * 3 = -15
-5 / 3 = -1
-5 % 3 = -2
</pre>
===big.Int===
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"math/big"
)
 
func main() {
var a, b, c big.Int
fmt.Print("enter two integers: ")
fmt.Scan(&a, &b)
fmt.Printf("%d + %d = %d\n", &a, &b, c.Add(&a, &b))
fmt.Printf("%d - %d = %d\n", &a, &b, c.Sub(&a, &b))
fmt.Printf("%d * %d = %d\n", &a, &b, c.Mul(&a, &b))
 
// Quo, Rem functions work like Go operators on int:
// quo truncates toward 0,
// and a non-zero rem has the same sign as the first operand.
fmt.Printf("%d quo %d = %d\n", &a, &b, c.Quo(&a, &b))
fmt.Printf("%d rem %d = %d\n", &a, &b, c.Rem(&a, &b))
 
// Div, Mod functions do Euclidean division:
// the result m = a mod b is always non-negative,
// and for d = a div b, the results d and m give d*y + m = x.
fmt.Printf("%d div %d = %d\n", &a, &b, c.Div(&a, &b))
fmt.Printf("%d mod %d = %d\n", &a, &b, c.Mod(&a, &b))
 
// as with int, no exponentiation operator
}</syntaxhighlight>
{{out|Example run}}
<pre>
enter two integers: -5 3
-5 + 3 = -2
-5 - 3 = -8
-5 * 3 = -15
-5 quo 3 = -1
-5 rem 3 = -2
-5 div 3 = -2
-5 mod 3 = 1
</pre>
 
=={{header|Golfscript}}==
Quotients round towards negative infinity. Remainders match the sign of the second operand.
<syntaxhighlight lang="golfscript">n/~~:b;~:a;a b+n a b-n a b*n a b/n a b%n a b?</syntaxhighlight>
 
=={{header|Groovy}}==
'''Solution:'''
<lang groovy>def arithmetic = { a, b ->
<syntaxhighlight lang="groovy">def arithmetic = { a, b ->
println """
a + b = ${a} + ${b} = ${a + b}
a - b = ${a} - ${b} = ${a - b}
a * b = ${a} * ${b} = ${a * b}
a / b = ${a} / ${b} = ${a / b} !!! Converts to floating point!
(int)(a / b) = (int)(${a} / ${b}) = ${(int)(a / b)} !!! Truncates downward after the fact
a.intdiv(b) = ${a}.intdiv(${b}) = ${a.intdiv(b)} !!! Behaves as if truncating downward, actual implementation varies
a % b = ${a} % ${b} = ${a % b}
 
Line 476 ⟶ 2,637:
a ** b = ${a} ** ${b} = ${a ** b}
"""
}</langsyntaxhighlight>
 
'''Test:'''
Program:
<syntaxhighlight lang ="groovy">arithmetic(5,3)</langsyntaxhighlight>
 
{{out}}
Output:
<pre> a + b = 5 + 3 = 8
a - b = 5 - 3 = 2
a * b = 5 * 3 = 15
a / b = 5 / 3 = 1.6666666667 !!! Converts to floating point!
(int)(a / b) = (int)(5 / 3) = 1 !!! Truncates downward after the fact
a.intdiv(b) = 5.intdiv(3) = 1 !!! Behaves as if truncating downward, actual implementation varies
a % b = 5 % 3 = 2
 
Exponentiation is also a base arithmetic operation in Groovy, so:
a ** b = 5 ** 3 = 125</pre>
 
=={{header|Harbour}}==
<syntaxhighlight lang="visualfoxpro">procedure Test( a, b )
? "a+b", a + b
? "a-b", a - b
? "a*b", a * b
// The quotient isn't integer, so we use the Int() function, which truncates it downward.
? "a/b", Int( a / b )
// Remainder:
? "a%b", a % b
// Exponentiation is also a base arithmetic operation
? "a**b", a ** b
return</syntaxhighlight>
 
=={{header|Haskell}}==
 
<langsyntaxhighlight lang="haskell">main = do
a <- readLn :: IO Integer
b <- readLn :: IO Integer
Line 509 ⟶ 2,683:
putStrLn $ "a `quot` b = " ++ show (a `quot` b) -- truncates towards 0
putStrLn $ "a `rem` b = " ++ show (a `rem` b) -- same sign as first operand
putStrLn $ "a `quotRem` b = " ++ show (a `quotRem` b)</langsyntaxhighlight>
 
=={{header|haXe}}==
 
Compile on Neko with
<lang haxe>haxe -neko basic_integer_arithmetic.n -main BasicIntegerArithmetic</lang>
 
=={{header|Haxe}}==
<lang haxe>class BasicIntegerArithmetic {
<syntaxhighlight lang="haxe">class BasicIntegerArithmetic {
public static function main() {
var args = neko.Sys.args();
if (args.length < 2) return;
var a = neko.SysStd.exitparseFloat(args[0]);
var ab = Std.intparseFloat(args[01]);
var b = Std.int(args[1]);
trace("a+b = " + (a+b));
trace("a-b = " + (a-b));
Line 529 ⟶ 2,698:
trace("a%b = " + (a%b));
}
}</langsyntaxhighlight>
 
=={{header|HicEst}}==
All numeric is 8-byte-float. Conversions are by INT, NINT, FLOOR, CEILING, or Formatted IO
<langsyntaxhighlight lang="hicest">DLG(Edit=A, Edit=B, TItle='Enter numeric A and B')
WRITE(Name) A, B
WRITE() ' A + B = ', A + B
Line 545 ⟶ 2,714:
WRITE() 'remainder of A / B = ', MOD(A, B) ! same sign as A
WRITE() 'A to the power of B = ', A ^ B
WRITE() 'A to the power of B = ', A ** B</langsyntaxhighlight>
<langsyntaxhighlight lang="hicest">A=5; B=-4;
A + B = 1
A - B = 9
Line 557 ⟶ 2,726:
remainder of A / B = 1
A to the power of B = 16E-4
A to the power of B = 16E-4 </langsyntaxhighlight>
 
=={{header|HolyC}}==
<syntaxhighlight lang="holyc">I64 *a, *b;
a = Str2I64(GetStr("Enter your first number: "));
b = Str2I64(GetStr("Enter your second number: "));
 
if (b == 0)
Print("Error: The second number must not be zero.\n");
else {
Print("a + b = %d\n", a + b);
Print("a - b = %d\n", a - b);
Print("a * b = %d\n", a * b);
Print("a / b = %d\n", a / b); /* rounds down */
Print("a % b = %d\n", a % b); /* same sign as first operand */
Print("a ` b = %d\n", a ` b);
}</syntaxhighlight>
 
=={{header|i}}==
<syntaxhighlight lang="i">main
a $= integer(in(' ')); ignore
b $= integer(in('\n')); ignore
print("Sum:" , a + b)
print("Difference:", a - b)
print("Product:" , a * b)
print("Quotient:" , a / b) // rounds towards zero
print("Modulus:" , a % b) // same sign as first operand
print("Exponent:" , a ^ b)
}</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<syntaxhighlight lang="icon">procedure main()
writes("Input 1st integer a := ")
a := integer(read())
writes("Input 2nd integer b := ")
b := integer(read())
 
write(" a + b = ",a+b)
write(" a - b = ",a-b)
write(" a * b = ",a*b)
write(" a / b = ",a/b, " rounds toward 0")
write(" a % b = ",a%b, " remainder sign matches a")
write(" a ^ b = ",a^b)
end</syntaxhighlight>
 
=={{header|Inform 7}}==
 
<syntaxhighlight lang="inform7">Enter Two Numbers is a room.
 
Numerically entering is an action applying to one number. Understand "[number]" as numerically entering.
 
The first number is a number that varies.
 
After numerically entering for the first time:
now the first number is the number understood.
 
After numerically entering for the second time:
let A be the first number;
let B be the number understood;
say "[A] + [B] = [A + B]."; [operator syntax]
say "[A] - [B] = [A minus B]."; [English syntax]
let P be given by P = A * B where P is a number; [inline equation]
say "[A] * [B] = [P].";
let Q be given by the Division Formula; [named equation]
say "[A] / [B] = [Q].";
say "[A] mod [B] = [remainder after dividing A by B].";
end the story.
 
Equation - Division Formula
Q = A / B
where Q is a number, A is a number, and B is a number.</syntaxhighlight>
 
This solution shows four syntaxes: mathematical operators, English operators, inline equations, and named equations. Division rounds toward zero, and the remainder has the same sign as the quotient.
 
=={{header|J}}==
<langsyntaxhighlight lang="j">calc =: =: + , - , * , <.@% , |~ , ^</syntaxhighlight>
The function <code>calc</code> constructs a list of numeric results for this task. The implementation of integer division we use here (<code><.@%.</code>) rounds down (towards negative infinity), and this is compatible with the remainder implementation we use here.
labels =: >;.2 'Sum: Difference: Product: Quotient: Remainder: Exponentiation: '
<syntaxhighlight lang="j"> 17 calc 3
combine =: [ ,. ":@|:@,:@]
20 14 51 5 2 4913</syntaxhighlight>
bia =: labels combine calc</lang>
Note that the verb <tt>calc</tt> produces all the processing specified for this problem, and that its output is of numeric type.
<lang j> 17 calc 3
20 14 51 5 2 4913</lang>
 
The function <code>bia</code> assembles these results, textually:
Since other examples here provide textual output, <tt>bia</tt> produces like results.
 
<syntaxhighlight lang="j">labels =: ];.2 'Sum: Difference: Product: Quotient: Remainder: Exponentiation: '
<lang j> 17 bia 3
combine =: ,. ":@,.
bia =: labels combine calc
 
17 bia 3
Sum: 20
Difference: 14
Line 576 ⟶ 2,819:
Quotient: 5
Remainder: 2
Exponentiation: 4913</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">import java.util.Scanner;
 
public class IntegerArithmetic {
public static void main(String[] args){
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// Get the 2 numbers from command line arguments
int a = sc.nextInt();
int b = Scanner sc.nextInt = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
int sum = a + b;//integer addition is discouraged in print statements due to confusion with String concatenation
System.out.println("a + b = " + sum);
System.out.println("a - b = " + (a - b));
System.out.println("a * b = " + (a * b));
System.out.println("quotient of a / b = " + (a / b)); // truncates towards 0
System.out.println("remainder of a / b = " + (a % b)); // same sign as first operand
}</lang>
 
int sum = a + b; // The result of adding 'a' and 'b' (Note: integer addition is discouraged in print statements due to confusion with string concatenation)
=={{header|JavaScript}}==
int difference = a - b; // The result of subtracting 'b' from 'a'
In order to get user input, this solution {{works with|JScript}} or {{works with|SpiderMonkey}}, however the arithmetic operators are the same for any version of JavaScript.
int product = a * b; // The result of multiplying 'a' and 'b'
int division = a / b; // The result of dividing 'a' by 'b' (Note: 'division' does not contain the fractional result)
int remainder = a % b; // The remainder of dividing 'a' by 'b'
 
System.out.println("a + b = " + sum);
Note that JavaScript division returns a float, even if the operands are integers.
System.out.println("a - b = " + difference);
<lang javascript>var a = parseInt(get_input("Enter an integer"), 10);
System.out.println("a * b = " + product);
System.out.println("quotient of a / b = " + division); // truncates towards 0
System.out.println("remainder of a / b = " + remainder); // same sign as first operand
}
}</syntaxhighlight>
 
=={{header|JavaScript}}==
===WScript===
{{works with|JScript}}
{{works with|SpiderMonkey}}
Note that the operators work the same in all versions of JavaScript; the requirement for specific implementations is in order to get user input.
<syntaxhighlight lang="javascript">var a = parseInt(get_input("Enter an integer"), 10);
var b = parseInt(get_input("Enter an integer"), 10);
 
Line 606 ⟶ 2,858:
WScript.Echo("difference: a - b = " + (a - b));
WScript.Echo("product: a * b = " + (a * b));
WScript.Echo("quotient: a / b = " + (a / b | 0)); // "| 0" casts it to an integer
WScript.Echo("remainder: a % b = " + (a % b));
 
Line 623 ⟶ 2,875:
print(prompt);
}
}</langsyntaxhighlight>
{{out}}
output:
<pre>Enter an integer
-147
Line 634 ⟶ 2,886:
difference: a - b = -210
product: a * b = -9261
quotient: a / b = -2.3333333333333335
remainder: a % b = -21</pre>
===Node.JS===
<syntaxhighlight lang="javascript">// Invoked as node script_name.js <a> <b>. Positions 0 and 1 in the argv array contain 'node' and 'script_name.js' respectively
var a = parseInt(process.argv[2], 10);
var b = parseInt(process.argv[3], 10);
 
var sum = a + b;
var difference = a - b;
var product = a * b;
var division = a / b;
var remainder = a % b; // This produces the remainder after dividing 'b' into 'a'. The '%' operator is called the 'modulo' operator
 
console.log('a + b = %d', sum); // The %d syntax is a placeholder that is replaced by the sum
console.log('a - b = %d', difference);
console.log('a * b = %d', product);
console.log('a / b = %d', division);
console.log('a % b = %d', remainder);</syntaxhighlight>
{{out}}
<pre>$ node arith.js 10 7
a + b = 17
a - b = 3
a * b = 70
a / b = 1.4285714285714286
a % b = 3</pre>
 
=={{header|jq}}==
<syntaxhighlight lang="jq"># Lines which do not have two integers are skipped:
 
def arithmetic:
split(" ") | select(length > 0) | map(tonumber)
| if length > 1 then
.[0] as $a | .[1] as $b
| "For a = \($a) and b = \($b):\n" +
"a + b = \($a + $b)\n" +
"a - b = \($a - $b)\n" +
"a * b = \($a * $b)\n" +
"a/b|floor = \($a / $b | floor)\n" +
"a % b = \($a % $b)\n" +
"a | exp = \($a | exp)\n"
else empty
end ;
 
arithmetic
</syntaxhighlight>
{{Out}}
<pre>
$ jq -R -r -f arithmetic.jq
7 -2
For a = 7 and b = -2:
a + b = 5
a - b = 9
a * b = -14
a/b|floor = -4
a % b = 1
a | exp = 1096.6331584284585
 
2 -7
For a = 2 and b = -7:
a + b = -5
a - b = 9
a * b = -14
a/b|floor = -1
a % b = 2
a | exp = 7.38905609893065
 
-2 -7
For a = -2 and b = -7:
a + b = -9
a - b = 5
a * b = 14
a/b|floor = 0
a % b = -2
a | exp = 0.1353352832366127</pre>
 
=={{header|Jsish}}==
<syntaxhighlight lang="javascript">"use strict";
/* Arthimetic/Integer, in Jsish */
var line = console.input();
var nums = line.match(/^\s*([+-]?[0-9]+)\s+([+-]?[0-9]+)\s*/);
var a = Number(nums[1]);
var b = Number(nums[2]);
 
puts("A is ", a, ", B is ", b);
puts("Sum A + B is ", a + b);
puts("Difference A - B is ", a - b);
puts("Product A * B is ", a * b);
puts("Integer quotient A / B is ", a / b | 0, " truncates toward 0");
puts("Remainder A % B is ", a % b, " sign follows first operand");
puts("Exponentiation A to the power B is ", Math.pow(a, b));
 
/*
=!INPUTSTART!=
7 4
=!INPUTEND!=
*/
 
 
/*
=!EXPECTSTART!=
A is 7 , B is 4
Sum A + B is 11
Difference A - B is 3
Product A * B is 28
Integer quotient A / B is 1 truncates toward 0
Remainder A % B is 3 sign follows first operand
Exponentiation A to the power B is 2401
=!EXPECTEND!=
*/</syntaxhighlight>
 
{{out}}
<pre>prompt$ jsish -u arithmeticInteger.jsi
[PASS] arithmeticInteger.jsi</pre>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">function arithmetic (a = parse(Int, readline()), b = parse(Int, readline()))
for op in [+,-,*,div,rem]
println("a $op b = $(op(a,b))")
end
end</syntaxhighlight>
{{Out}}
<pre>julia> arithmetic()
4
5
a + b = 9
a - b = -1
a * b = 20
a div b = 0
a rem b = 4</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">
import kotlin.math.pow // not an operator but in the standard library
 
fun main() {
val r = Regex("""-?[0-9]+\s+-?[0-9]+""")
print("Enter two integers separated by space(s): ")
val input: String = readLine()!!.trim()
val index = input.lastIndexOf(' ')
val a = input.substring(0, index).trimEnd().toLong()
val b = input.substring(index + 1).toLong()
println("$a + $b = ${a + b}")
println("$a - $b = ${a - b}")
println("$a * $b = ${a * b}")
println("$a / $b = ${a / b}") // rounds towards zero
println("$a % $b = ${a % b}") // if non-zero, matches sign of first operand
println("$a ^ $b = ${a.toDouble().pow(b.toDouble())}")
}
}</syntaxhighlight>
 
{{out}}
<pre>
Enter two integers separated by space(s): 2 63
2 + 63 = 65
2 - 63 = -61
2 * 63 = 126
2 / 63 = 0
2 % 63 = 2
2 ^ 63 = 9.223372036854776E18
</pre>
 
=={{header|LabVIEW}}==
{{VI snippet}}<br/>
[[File:LabVIEW_Arithmetic_Integer.png]]
 
=={{header|Lambdatalk}}==
Translation of Racket
<syntaxhighlight lang="scheme">
{def arithmetic
{lambda {:x :y}
{S.map {{lambda {:x :y :op}
{br}applying :op on :x & :y returns {:op :x :y}} :x :y}
+ - * / % pow max min = > <}}}
-> arithmetic
 
{arithmetic 8 12}
->
applying + on 8 & 12 returns 20
applying - on 8 & 12 returns -4
applying * on 8 & 12 returns 96
applying / on 8 & 12 returns 0.6666666666666666
applying % on 8 & 12 returns 8
applying pow on 8 & 12 returns 68719476736
applying max on 8 & 12 returns 12
applying min on 8 & 12 returns 8
applying = on 8 & 12 returns false
applying > on 8 & 12 returns false
applying < on 8 & 12 returns true
</syntaxhighlight>
 
=={{header|Lasso}}==
<syntaxhighlight lang="lasso">local(a = 6, b = 4)
#a + #b // 10
#a - #b // 2
#a * #b // 24
#a / #b // 1
#a % #b // 2
math_pow(#a,#b) // 1296
math_pow(#b,#a) // 4096</syntaxhighlight>
 
=={{header|LDPL}}==
<syntaxhighlight lang="ldpl">data:
x is number
y is number
result is number
 
procedure:
display "Enter x: "
accept x
display "Enter y: "
accept y
add x and y in result
display "x + y = " result lf
subtract y from x in result
display "x - y = " result lf
multiply x by y in result
display "x * y = " result lf
divide x by y in result # There is no integer division but
floor result # floor rounds toward negative infinity
display "x / y = " result lf
modulo x by y in result
display "x % y = " result lf # Returns the sign of the 2nd argument
raise x to y in result
display "x ^ y = " result lf</syntaxhighlight>
{{out}}
<pre>
Enter x: 13
Enter y: 4
x + y = 17
x - y = 9
x * y = 52
x / y = 3
x % y = 1
x ^ y = 28561
</pre>
 
=={{header|LFE}}==
 
<syntaxhighlight lang="lisp">
(defmodule arith
(export all))
 
(defun demo-arith ()
(case (: io fread '"Please enter two integers: " '"~d~d")
((tuple 'ok (a b))
(: io format '"~p + ~p = ~p~n" (list a b (+ a b)))
(: io format '"~p - ~p = ~p~n" (list a b (- a b)))
(: io format '"~p * ~p = ~p~n" (list a b (* a b)))
(: io format '"~p^~p = ~p~n" (list a b (: math pow a b)))
; div truncates towards zero
(: io format '"~p div ~p = ~p~n" (list a b (div a b)))
; rem's result takes the same sign as the first operand
(: io format '"~p rem ~p = ~p~n" (list a b (rem a b))))))
</syntaxhighlight>
 
Usage from the LFE REPL:
<syntaxhighlight lang="lisp">
> (slurp '"arith.lfe")
#(ok arith)
> (demo-arith)
Please enter two integers: 2 8
2 + 8 = 10
2 - 8 = -6
2 * 8 = 16
2^8 = 256.0
2 div 8 = 0
2 rem 8 = 2
ok
</syntaxhighlight>
 
=={{header|Liberty BASIC}}==
Note that raising to a power can display very large integers without going to approximate power-of-ten notation.
<syntaxhighlight lang="lb">
input "Enter the first integer: "; first
input "Enter the second integer: "; second
 
print "The sum is " ; first + second
print "The difference is " ; first -second
print "The product is " ; first *second
if second <>0 then print "The integer quotient is " ; int( first /second); " (rounds towards 0)" else print "Division by zero not allowed."
print "The remainder is " ; first MOD second; " (sign matches first operand)"
print "The first raised to the power of the second is " ; first ^second
</syntaxhighlight>
 
=={{header|LIL}}==
<syntaxhighlight lang="tcl"># Arithmetic/Integer, in LIL
write "Enter two numbers separated by space: "
if {[canread]} {set line [readline]}
print
 
set a [index $line 0]
set b [index $line 1]
print "A is $a"", B is $b"
print "Sum A + B is [expr $a + $b]"
print "Difference A - B is [expr $a - $b]"
print "Product A * B is [expr $a * $b]"
print "Integer Quotient A \\ B is [expr $a \ $b], truncates toward zero"
print "Remainder A % B is [expr $a % $b], sign follows first operand"
print "LIL has no exponentiation expression operator"</syntaxhighlight>
 
{{out}}
<pre>prompt$ echo '7 4' | lil arithmeticInteger.lil
Enter two numbers separated by space:
A is 7, B is 4
Sum A + B is 11
Difference A - B is 3
Product A * B is 28
Integer Quotient A \ B is 1, truncates toward zero
Remainder A % B is 3, sign follows first operand
LIL has no exponentiation expression operator
 
prompt$ echo '-7 4' | lil arithmeticInteger.lil
Enter two numbers separated by space:
A is -7, B is 4
Sum A + B is -3
Difference A - B is -11
Product A * B is -28
Integer Quotient A \ B is -1, truncates toward zero
Remainder A % B is -3, sign follows first operand
LIL has no exponentiation expression operator</pre>
 
=={{header|Lingo}}==
<syntaxhighlight lang="lingo">-- X, Y: 2 editable field members, shown as sprites in the current GUI
x = integer(member("X").text)
y = integer(member("Y").text)
 
put "Sum: " , x + y
put "Difference: ", x - y
put "Product: " , x * y
put "Quotient: " , x / y -- Truncated towards zero
put "Remainder: " , x mod y -- Result has sign of left operand
put "Exponent: " , power(x, y)</syntaxhighlight>
 
=={{header|Little}}==
<syntaxhighlight lang="c"># Maybe you need to import the mathematical funcions
# from Tcl with:
# eval("namespace path ::tcl::mathfunc");
 
void main() {
int a, b;
puts("Enter two integers:");
a = (int)(gets(stdin));
b = (int)(gets(stdin));
puts("${a} + ${b} = ${a+b}");
puts("${a} - ${b} = ${a-b}");
puts("${a} * ${b} = ${a*b}");
puts("${a} / ${b} = ${a/b}, remainder ${a%b}");
puts("${a} to the power of ${b} = ${(int)pow(a,b)}");
}</syntaxhighlight>
 
=={{header|LiveCode}}==
<syntaxhighlight lang="livecode">ask "enter 2 numbers (comma separated)"
if it is not empty then
put item 1 of it into n1
put item 2 of it into n2
put sum(n1,n2) into ai["sum"]
put n1 * n2 into ai["product"]
put n1 div n2 into ai["quotient"] -- truncates
put n1 mod n2 into ai["remainder"]
put n1^n2 into ai["power"]
combine ai using comma and colon
put ai
end if</syntaxhighlight>
Examples<syntaxhighlight lang="text">-2,4 - power:16,product:-8,quotient:0,remainder:-2,sum:2
2,-4 - power:0.0625,product:-8,quotient:0,remainder:2,sum:-2
-2,-4 - power:0.0625,product:8,quotient:0,remainder:-2,sum:-6
2,4 - power:16,product:8,quotient:0,remainder:2,sum:6
11,4 - power:14641,product:44,quotient:2,remainder:3,sum:15</syntaxhighlight>
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to operate :a :b
(print [a =] :a)
(print [b =] :b)
Line 646 ⟶ 3,264:
(print [a / b =] int :a / :b)
(print [a mod b =] modulo :a :b)
end</langsyntaxhighlight>
 
Each infix operator also has a prefix synonym (sum, difference, product, quotient). Sum and product can also have arity greater than two when used in parentheses (sum 1 2 3). Infix operators in general have high precedence; you may need to enclose their arguments in parentheses to obtain the correct expression.
 
=={{header|LSE64}}==
<langsyntaxhighlight lang="lse64">over : 2 pick
2dup : over over
 
Line 660 ⟶ 3,278:
" A*B=" ,t 2dup * , nl \
" A/B=" ,t 2dup / , nl \
" A%B=" ,t % , nl</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight lang="lua">local x = io.read()
local y = io.read()
 
Line 671 ⟶ 3,289:
print ("Quotient: " , (x / y)) -- Does not truncate
print ("Remainder: " , (x % y)) -- Result has sign of right operand
print ("Exponent: " , (x ^ y))</langsyntaxhighlight>
 
=={{header|M2000 Interpreter}}==
We can use variables with %, which are double inside with no decimal part. These can have 17 digits. Also A%=1.5 make it 2, not 1. This has a tricky situation: A%=1/2 give 1 to A%. We can use FLOOR() or INT() is the same, or CEIL(), and there is a BANK() which is a Banker Round: BANK(2.5)=2 and BANK(3.5)=4.
 
 
 
 
<syntaxhighlight lang="m2000 interpreter">
MODULE LikeCommodoreBasic {
\\ ADDITION: EUCLIDEAN DIV# & MOD# AND ** FOR POWER INCLUDING ^
10 INPUT "ENTER A NUMBER:"; A%
20 INPUT "ENTER ANOTHER NUMBER:"; B%
30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
60 PRINT "INTEGER DIVISION:";A%;"DIV";B%;"=";A% DIV B%
65 PRINT "INTEGER EUCLIDEAN DIVISION:";A%;"DIV";B%;"=";A% DIV# B%
70 PRINT "REMAINDER OR MODULO:";A%;"MOD";B%;"=";A% MOD B%
75 PRINT "EUCLIDEAN REMAINDER OR MODULO:";A%;"MOD#";B%;"=";A% MOD# B%
80 PRINT "POWER:";A%;"^";B%;"=";A%^B%
90 PRINT "POWER:";A%;"**";B%;"=";A%**B%
}
LikeCommodoreBasic
 
 
Module IntegerTypes {
a=12% ' Integer 16 bit
b=12& ' Long 32 bit
c=12@' Decimal (29 digits)
Def ExpType$(x)=Type$(x)
Print ExpType$(a+1)="Double"
Print ExpType$(a+1%)="Integer"
Print ExpType$(a div 5)="Double"
Print ExpType$(a div 5%)="Double"
Print ExpType$(a mod 5)="Double"
Print ExpType$(a mod 5%)="Double"
Print ExpType$(a**2)="Double"
Print ExpType$(b+1)="Double"
Print ExpType$(b+1&)="Long"
Print ExpType$(b div 5)="Double"
Print ExpType$(b div 5&)="Double"
Print ExpType$(b mod 5)="Double"
Print ExpType$(b mod 5&)="Double"
Print ExpType$(b**2)="Double"
 
Print ExpType$(c+1)="Decimal"
Print ExpType$(c+1@)="Decimal"
Print ExpType$(c div 5)="Decimal"
Print ExpType$(c div 5@)="Decimal"
Print ExpType$(c mod 5)="Decimal"
Print ExpType$(c mod 5@)="Decimal"
Print ExpType$(c**2)="Double"
}
IntegerTypes
</syntaxhighlight>
 
=={{header|M4}}==
 
Because of the particular nature of M4, the only user-input is the code itself. Anyway the following code can be used:
<langsyntaxhighlight lang="m4">eval(A+B)
eval(A-B)
eval(A*B)
eval(A/B)
eval(A%B)</langsyntaxhighlight>
 
once saved in a file, e.g. <tt>operations.m4</tt>:
Line 688 ⟶ 3,362:
or using a sort of ''driver'':
 
<langsyntaxhighlight lang="m4">define(`A', 4)dnl
define(`B', 6)dnl
include(`operations.m4')</langsyntaxhighlight>
 
=={{header|MathematicaMaple}}==
These operations are all built-in. As all operations are exact, there are no rounding issues involved.
<syntaxhighlight lang="maple">
DoIt := proc()
local a := readstat( "Input an integer: " ):
local b := readstat( "Input another integer: " ):
printf( "Sum = %d\n", a + b ):
printf( "Difference = %d\n", a - b ):
printf( "Product = %d\n", a * b ):
printf( "Quotient = %d\n", iquo( a, b, 'c' ) ):
printf( "Remainder = %d\n", c ); # or irem( a, b )
NULL # quiet return
end proc:
</syntaxhighlight>
Here is an example of calling DoIt.
<syntaxhighlight lang="maple">
> DoIt();
Input an integer: 15;
Input another integer: 12;
Sum = 27
Difference = 3
Product = 180
Quotient = 1
Remainder = 3
>
</syntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Mathematica has all the function built-in to handle this task. Example:
<langsyntaxhighlight Mathematicalang="mathematica">a = Input["Give me an integer please!"];
b = Input["Give me another integer please!"];
Print["You gave me ", a, " and ", b];
Line 700 ⟶ 3,401:
Print["difference: ", a - b];
Print["product: ", a b];
Print["integer quotient: ", IntegerPartQuotient[a/, b]];
Print["remainder: ", Mod[a, b]];
Print["exponentiation: ", a^b];</langsyntaxhighlight>
gives back for input 17 and 3:
<lang Mathematicapre>You gave me 17 and 3
sum: 20
difference: 14
Line 710 ⟶ 3,411:
integer quotient: 5
remainder: 2
exponentiation: 4913</langpre>
 
=={{header|Mathcad}}==
The text below (from "Task Notes" onwards) is pretty well what you will see on a Mathcad worksheet across most versions (eg, Mathcad 15, Mathcad Prime 6.0, and Mathcad Prime 6.0 Express). Mathcad's "whiteboard" interface allows the user to mix formatted text regions with formatted math regions. Text region formatting is fairly arbitrary, individual characters can have their font, font size and bold/italic/underline settings set or changed at will. Math regions use amendable styles to identify variables, functions (normally built-in functions), keywords, system words and units (Mathcad has a units-aware, SI-based quantity system). It really is a simple as 'writing' on the whiteboard.
 
----
 
'''Task Notes'''
 
''For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).''
 
There is no quotient function in Mathcad, only complex division. We emulate quotient by standard division followed by rounding using both floor, which rounds towards negative infinity, and trunc, which rounds towards zero.
 
''For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
''
We use the Mathcad function mod(x,y), which returns x modulo y, and has the same sign as x.
 
'''Instructions'''
 
Enter two integers of your choice for Int1 and Int2.
 
(type into the right hand side of the 'Int1:= ' and 'Int2:=' statements, overwriting or modifying any numbers already there)
 
'''Implementation'''
 
'''Mathcad Input and Output'''
 
Mathcad "standard" input and output takes place directly on a worksheet ("program source code").
 
'''Inputs''':
 
== ''the user types in values after := (definition) operator''
 
Integer One: ''Int1'':='''-8'''
 
Integer Two: ''Int2'':='''3'''
 
'''Results''':
 
== ''Mathcad automatically calculates and displays results after = (evaluation) operator.''
 
sum : ''Int1'' + ''Int2'' = -5
 
difference : ''Int1'' - ''Int2'' = -11
 
product : ''Int1'' · ''Int2'' = -24
 
integer quotient : floor(''Int1''÷''Int2'')=-3 trunc(Int1÷Int2)=-2
 
remainder : mod(''Int1'',''Int2'')=-2
 
exponentiation : ''Int1''<sup>''Int2''</sup>=-512
 
----
 
=={{header|MATLAB}} / {{header|Octave}}==
<syntaxhighlight lang="octave">disp("integer a: "); a = scanf("%d", 1);
disp("integer b: "); b = scanf("%d", 1);
a+b
a-b
a*b
floor(a/b)
mod(a,b)
a^b</syntaxhighlight>
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">block(
[a: read("a"), b: read("b")],
print(a + b),
print(a - b),
print(a * b),
print(a / b),
print(quotient(a, b)),
print(remainder(a, b)),
a^b
);</syntaxhighlight>
 
=={{header|MAXScript}}==
<langsyntaxhighlight lang="maxscript">x = getKBValue prompt:"First number"
y = getKBValue prompt:"Second number:"
 
Line 720 ⟶ 3,496:
format "Product: %\n" (x * y)
format "Quotient: %\n" (x / y)
format "Remainder: %\n" (mod x y)</langsyntaxhighlight>
 
=={{header|Mercury}}==
<syntaxhighlight lang="text">
:- module arith_int.
:- interface.
 
:- import_module io.
:- pred main(io::di, io::uo) is det.
 
:- implementation.
:- import_module int, list, string.
 
main(!IO) :-
io.command_line_arguments(Args, !IO),
( if
Args = [AStr, BStr],
string.to_int(AStr, A),
string.to_int(BStr, B)
then
io.format("A + B = %d\n", [i(A + B)], !IO),
io.format("A - B = %d\n", [i(A - B)], !IO),
io.format("A * B = %d\n", [i(A * B)], !IO),
 
% Division: round towards zero.
%
io.format("A / B = %d\n", [i(A / B)], !IO),
 
% Division: round towards minus infinity.
%
io.format("A div B = %d\n", [i(A div B)], !IO),
% Modulus: X mod Y = X - (X div Y) * Y.
%
io.format("A mod B = %d\n", [i(A mod B)], !IO),
 
% Remainder: X rem Y = X - (X / Y) * Y.
%
io.format("A rem B = %d\n", [i(A rem B)], !IO),
 
% Exponentiation is done using the function int.pow/2.
%
io.format("A `pow` B = %d\n", [i(A `pow` B)], !IO)
else
io.set_exit_status(1, !IO)
).
</syntaxhighlight>
 
=={{header|Metafont}}==
 
<langsyntaxhighlight lang="metafont">string s[];
message "input number a: ";
s1 := readstring;
Line 741 ⟶ 3,563:
outp("mod");
 
end</langsyntaxhighlight>
 
=={{header|min}}==
{{works with|min|0.37.0}}
<syntaxhighlight lang="min">('+ '- '* 'div 'mod)
(("Enter an integer" ask integer) 2 times) quote-map =>
("$1 -> $2" rollup concat dup -> quote prepend %) prepend
map "\n" join puts!</syntaxhighlight>
{{out}}
<pre>
Enter an integer: -3
Enter an integer: 5
(-3 5 +) -> 2
(-3 5 -) -> -8
(-3 5 *) -> -15
(-3 5 div) -> 0
(-3 5 mod) -> -3
</pre>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">П1 <-> П0
+ С/П
ИП0 ИП1 - С/П
ИП0 ИП1 * С/П
ИП0 ИП1 / [x] С/П
ИП0 ^ ИП1 / [x] ИП1 * - С/П
ИП1 ИП0 x^y С/П</syntaxhighlight>
 
=={{header|ML/I}}==
ML/I will read two integers from 'standard input' or similar,
and then output the results to 'standard output' or similar.
 
<syntaxhighlight lang="ml/i">MCSKIP "WITH" NL
"" Arithmetic/Integer
"" assumes macros on input stream 1, terminal on stream 2
MCSKIP MT,<>
MCINS %.
MCDEF SL SPACES NL AS <MCSET T1=%A1.
MCSET T2=%A2.
a + b = %%T1.+%T2..
a - b = %%T1.-%T2..
a * b = %%T1.*%T2..
a / b = %%T1./%T2..
a rem b = %%T1.-%%%T1./%T2..*%T2...
Division is truncated to the greatest integer
that does not exceed the exact result. Remainder matches
the sign of the second operand, if the signs differ.</syntaxhighlight>
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE ints;
 
IMPORT InOut;
 
VAR a, b : INTEGER;
 
BEGIN
InOut.WriteString ("Enter two integer numbers : "); InOut.WriteBf;
InOut.ReadInt (a);
InOut.ReadInt (b);
InOut.WriteString ("a + b = "); InOut.WriteInt (a + b, 9); InOut.WriteLn;
InOut.WriteString ("a - b = "); InOut.WriteInt (a - b, 9); InOut.WriteLn;
InOut.WriteString ("a * b = "); InOut.WriteInt (a * b, 9); InOut.WriteLn;
InOut.WriteString ("a / b = "); InOut.WriteInt (a DIV b, 9); InOut.WriteLn;
InOut.WriteString ("a MOD b = "); InOut.WriteInt (a MOD b, 9); InOut.WriteLn;
InOut.WriteLn;
END ints.</syntaxhighlight>Producing:<pre>$$ ints
Enter two integer numbers : 12 7
a + b = 19
a - b = 5
a * b = 84
a / b = 1
a MOD b = 5
 
$$ ints
Enter two integer numbers : 123 -111
a + b = 12
a - b = 234
a * b = -13653
a / b = -1
a MOD b = 12</pre>
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">MODULE Arith EXPORTS Main;
 
IMPORT IO, Fmt;
Line 758 ⟶ 3,659:
IO.Put("a DIV b = " & Fmt.Int(a DIV b) & "\n");
IO.Put("a MOD b = " & Fmt.Int(a MOD b) & "\n");
END Arith.</langsyntaxhighlight>
 
=={{header|MUMPS}}==
Line 769 ⟶ 3,670:
find out the beauty of cyclic algebra as formulated by Niels Henrik Abel (August 5, 1802 – April 6, 1829).</p>
 
<langsyntaxhighlight MUMPSlang="mumps">Arith(first,second) ; Mathematical operators
Write "Plus",?12,first,"+",second,?25," = ",first+second,!
Write "Minus",?12,first,"-",second,?25," = ",first-second,!
Line 812 ⟶ 3,713:
Modulo 0#2 = 0
And 0&2 = 0
Or 0!2 = 1</langsyntaxhighlight>
 
=={{header|Nanoquery}}==
{{trans|Python}}
<syntaxhighlight lang="nanoquery">print "Number 1: "
x = int(input())
print "Number 2: "
y = int(input())
 
println format("Sum: %d", x + y)
println format("Difference: %d", x - y)
println format("Product: %d", x * y)
println format("Quotient: %f", x / y)
 
println format("Remainder: %d", x % y)
println format("Power: %d", x ^ y)</syntaxhighlight>
 
{{out}}
<pre>Number 1: 5
Number 2: 6
Sum: 11
Difference: -1
Product: 30
Quotient: 0.833333
Remainder: 5
Power: 15625</pre>
 
=={{header|Nemerle}}==
Adapted nearly verbatim from C# solution above. Note that I've used the exponentiation operator (**), but Math.Pow() as used in the C# solution would also work.
<syntaxhighlight lang="nemerle">using System;
class Program
{
static Main(args : array[string]) : void
{
def a = Convert.ToInt32(args[0]);
def b = Convert.ToInt32(args[1]);
Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
Console.WriteLine("{0} - {1} = {2}", a, b, a - b);
Console.WriteLine("{0} * {1} = {2}", a, b, a * b);
Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0
Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand
Console.WriteLine("{0} ** {1} = {2}", a, b, a ** b);
}
}</syntaxhighlight>
 
=={{header|NetRexx}}==
{{trans|REXX}}
<syntaxhighlight lang="netrexx">/* NetRexx */
 
options replace format comments java crossref symbols binary
 
say "enter 2 integer values separated by blanks"
parse ask a b
say a "+" b "=" a + b
say a "-" b "=" a - b
say a "*" b "=" a * b
say a "/" b "=" a % b "remaining" a // b "(sign from first operand)"
say a "^" b "=" a ** b
 
return
</syntaxhighlight>
{{out}}
<pre style="height: 15ex; overflow:scroll;">
enter 2 integer values separated by blanks
17 -4
17 + -4 = 13
17 - -4 = 21
17 * -4 = -68
17 / -4 = -4 remaining 1 (sign from first operand)
17 ^ -4 = 0.0000119730367
</pre>
 
=={{header|NewLISP}}==
 
<syntaxhighlight lang="newlisp">; integer.lsp
; oofoe 2012-01-17
 
(define (aski msg) (print msg) (int (read-line)))
(setq x (aski "Please type in an integer and press [enter]: "))
(setq y (aski "Please type in another integer : "))
 
; Note that +, -, *, / and % are all integer operations.
(println)
(println "Sum: " (+ x y))
(println "Difference: " (- x y))
(println "Product: " (* x y))
(println "Integer quotient (rounds to 0): " (/ x y))
(println "Remainder: " (setq r (% x y)))
 
(println "Remainder sign matches: "
(cond ((= (sgn r) (sgn x) (sgn y)) "both")
((= (sgn r) (sgn x)) "first")
((= (sgn r) (sgn y)) "second")))
(println)
(println "Exponentiation: " (pow x y))
 
(exit) ; NewLisp normally goes to listener after running script.
</syntaxhighlight>
 
{{out}}
<pre>
Please type in an integer and press [enter]: 17
Please type in another integer : -4
 
Sum: 13
Difference: 21
Product: -68
Integer quotient (rounds to 0): -4
Remainder: 1
Remainder sign matches: first
 
Exponentiation: 1.197303672e-005
</pre>
 
=={{header|Nial}}==
 
Example tested with Q'Nial7.
 
Define new operator using an atlas of operators:
<syntaxhighlight lang="nial"> arithmetic is OP A B{[first,last,+,-,*,quotient,mod,power] A B}</syntaxhighlight>
 
Test new operator:
<syntaxhighlight lang="nial"> -23 arithmetic 7
-23 7 -16 -30 -161 -4 5 -3404825447</syntaxhighlight>
 
Negative divisors are not accepted for integer quotient <code>quotient</code> or remainder <code>mod</code>, and in both cases the result is an error with the message <code>?negative divisor</code>.
 
For <code>quotient</code>, if the divisor <code>B</code> is zero, the result is zero.
 
For <code>mod</code>, if the divisor <code>B</code> is zero, the result is <code>A</code>.
 
The quotient on division by a positive integer <code>B</code> is always an integer on the same side of the origin as <code>A</code>.
 
Nial definition of <code>quotient</code>:
 
<syntaxhighlight lang="nial">A quotient B =f= floor (A / B)</syntaxhighlight>
 
<code>floor</code> rounds towards negative infinity (next lower integer).
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import parseopt, strutils
var
opt: OptParser = initOptParser()
str = opt.cmdLineRest.split
a: int = 0
b: int = 0
try:
a = parseInt(str[0])
b = parseInt(str[1])
except ValueError:
quit("Invalid params. Two integers are expected.")
echo("a : " & $a)
echo("b : " & $b)
echo("a + b : " & $(a+b))
echo("a - b : " & $(a-b))
echo("a * b : " & $(a*b))
echo("a div b: " & $(a div b)) # div rounds towards zero
echo("a mod b: " & $(a mod b)) # sign(a mod b)==sign(a) if sign(a)!=sign(b)
echo("a ^ b : " & $(a ^ b))
</syntaxhighlight>
Execute: Aritmint 4 5
{{out}}
<pre>
a : 4
b : 5
a + b : 9
a - b : -1
a * b : 20
a div b: 4
a mod b: 4
a ^ b : 1024
</pre>
 
=={{header|NSIS}}==
All Arithmetic in NSIS is handled by the [http://nsis.sourceforge.net/Docs/Chapter4.html#4.9.10.2 IntOp] instruction. It is beyond the scope of this task to implement user input (a fairly involved task), so I will be providing hard-coded values simulating the user input, with the intention of later adding the user-input piece.
<syntaxhighlight lang="nsis">Function Arithmetic
Push $0
Push $1
Push $2
StrCpy $0 21
StrCpy $1 -2
IntOp $2 $0 + $1
DetailPrint "$0 + $1 = $2"
IntOp $2 $0 - $1
DetailPrint "$0 - $1 = $2"
IntOp $2 $0 * $1
DetailPrint "$0 * $1 = $2"
IntOp $2 $0 / $1
DetailPrint "$0 / $1 = $2"
DetailPrint "Rounding is toward negative infinity"
IntOp $2 $0 % $1
DetailPrint "$0 % $1 = $2"
DetailPrint "Sign of remainder matches the first number"
Pop $2
Pop $1
Pop $0
FunctionEnd</syntaxhighlight>
 
=={{header|Nu}}==
Division rounds towards -infinity. Modulus will match the sign of the first number.
 
<syntaxhighlight lang="nu">
input | parse "{a} {b}" | first | values | into int | do {|a b|
{
Sum: ($a + $b)
Difference: ($a - $b)
Product: ($a * $b)
Quotient: ($a // $b)
Remainder: ($a mod $b)
Exponent: ($a ** $b)
}
} $in.0 $in.1
</syntaxhighlight>
{{out}}
<pre>
-1 2
╭────────────┬────╮
│ Sum │ 1 │
│ Difference │ -3 │
│ Product │ -2 │
│ Quotient │ -1 │
│ Remainder │ -1 │
│ Exponent │ 1 │
╰────────────┴────╯
</pre>
 
=={{header|Nutt}}==
<syntaxhighlight lang="Nutt">
module main
imports native.io{input.hear,output.say}
 
vals a=hear(Numerable),b=hear(Numerable)
say("a+b="+(a+b))
say("a-b="+(a-b))
say("a*b="+(a*b))
say("a//b="+(a//b))
say("a%b="+(a%b))
say("a^b="+(a^b))
 
end
</syntaxhighlight>
 
=={{header|Oberon-2}}==
Oxford Oberon-2
<syntaxhighlight lang="oberon2">
MODULE Arithmetic;
IMPORT In, Out;
VAR
x,y:INTEGER;
BEGIN
Out.String("Give two numbers: ");In.Int(x);In.Int(y);
Out.String("x + y >");Out.Int(x + y,6);Out.Ln;
Out.String("x - y >");Out.Int(x - y,6);Out.Ln;
Out.String("x * y >");Out.Int(x * y,6);Out.Ln;
Out.String("x / y >");Out.Int(x DIV y,6);Out.Ln;
Out.String("x MOD y >");Out.Int(x MOD y,6);Out.Ln;
END Arithmetic.
</syntaxhighlight>
{{out}}
<pre>
Give two numbers: 12 23
x + y > 35
x - y > -11
x * y > 276
x / y > 0
x MOD y > 12
</pre>
 
=={{header|Objeck}}==
<syntaxhighlight lang="objeck">bundle Default {
<lang objeck>
bundle Default {
class Arithmetic {
function : Main(args : System.String[]), ~ Nil {
DoArithmetic();
}
function : native : DoArithmetic(), ~ Nil {
a := IO.Console->GetInstance()->ReadString()->ToInt();
b := IO.Console->GetInstance()->ReadString()->ToInt();
Line 832 ⟶ 4,007:
}
}
}</syntaxhighlight>
}
</lang>
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let _ =
let a = read_int ()
and b = read_int () in
Line 844 ⟶ 4,018:
Printf.printf "a * b = %d\n" (a * b);
Printf.printf "a / b = %d\n" (a / b); (* truncates towards 0 *)
Printf.printf "a mod b = %d\n" (a mod b) (* same sign as first operand *)</langsyntaxhighlight>
Printf.printf "a ** b = %d\n" (a ** b);
 
=={{header|OctaveOforth}}==
 
<lang octave>disp("integer a: "); a = scanf("%d", 1);
<syntaxhighlight lang="oforth">: integers (a b -- )
disp("integer b: "); b = scanf("%d", 1);
"a + b =" . a b + .cr
a+b
"a - b =" . a b - .cr
a-b
"a * b =" . a b * .cr
a*b
"a / b =" . a b / .cr
floor(a/b)
"a mod b =" . a b mod .cr
mod(a,b)</lang>
"a pow b =" . a b pow .cr
;</syntaxhighlight>
 
{{out}}
<pre>
>12 23 integers
a + b = 35
a - b = -11
a * b = 276
a / b = 0
a mod b = 12
a pow b = 6624737266949237011120128
ok
</pre>
 
=={{header|Ol}}==
 
<syntaxhighlight lang="scheme">
(define a 8)
(define b 12)
 
(print "(+ " a " " b ") => " (+ a b))
(print "(- " a " " b ") => " (- a b))
(print "(* " a " " b ") => " (* a b))
(print "(/ " a " " b ") => " (/ a b))
 
(print "(quotient " a " " b ") => " (quot a b)) ; same as (quotient a b)
(print "(remainder " a " " b ") => " (rem a b)) ; same as (remainder a b)
(print "(modulo " a " " b ") => " (mod a b)) ; same as (modulo a b)
 
(print "(expt " a " " b ") => " (expt a b))
(print "(gcd " a " " b ") => " (gcd a b))
(print "(lcm " a " " b ") => " (lcm a b))
 
; you can use more than two arguments for +,-,*,/ functions
(print (+ 1 3 5 7 9))
(print (- 1 3 5 7 9))
(print (* 1 3 5 7 9)) ; same as (1*3*5*7*9)
(print (/ 1 3 5 7 9)) ; same as (((1/3)/5)/7)/9
</syntaxhighlight>
{{out}}
<pre>
(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(expt 8 12) => 68719476736
(gcd 8 12) => 4
(lcm 8 12) => 24
25
-23
945
1/945
</pre>
 
=={{header|Onyx}}==
 
<syntaxhighlight lang="onyx"># Most of this long script is mere presentation.
# All you really need to do is push two integers onto the stack
# and then execute add, sub, mul, idiv, or pow.
 
$ClearScreen { # Using ANSI terminal control
`\e[2J\e[1;1H' print flush
} bind def
 
$Say { # string Say -
`\n' cat print flush
} bind def
 
$ShowPreamble {
`To show how integer arithmetic in done in Onyx,' Say
`we\'ll use two numbers of your choice, which' Say
`we\'ll call A and B.\n' Say
} bind def
 
$Prompt { # stack: string --
stdout exch write pop flush
} def
 
$GetInt { # stack: name -- integer
dup cvs `Enter integer ' exch cat `: ' cat
Prompt stdin readline pop cvx eval def
} bind def
 
$Template { # arithmetic_operator_name label_string Template result_string
A cvs ` ' B cvs ` ' 5 ncat over cvs ` gives ' 3 ncat exch
A B dn cvx eval cvs `.' 3 ncat Say
} bind def
 
$ShowResults {
$add `Addition: ' Template
$sub `Subtraction: ' Template
$mul `Multiplication: ' Template
$idiv `Division: ' Template
`Note that the result of integer division is rounded toward zero.' Say
$pow `Exponentiation: ' Template
`Note that the result of raising to a negative power always gives a real number.' Say
} bind def
 
ClearScreen ShowPreamble $A GetInt $B GetInt ShowResults</syntaxhighlight>
 
{{out}}
<pre>
To show how integer arithmetic in done in Onyx,
we'll use two numbers of your choice, which
we'll call A and B.
 
Enter integer A: 34
Enter integer B: 2
Addition: 34 2 add gives 36.
Subtraction: 34 2 sub gives 32.
Multiplication: 34 2 mul gives 68.
Division: 34 2 idiv gives 17.
Note that the result of integer division is rounded toward zero.
Exponentiation: 34 2 pow gives 1156.
Note that the result of raising to a negative power always gives a real number.
</pre>
 
=={{header|Openscad}}==
 
<syntaxhighlight lang="openscad">echo (a+b); /* Sum */
echo (a-b); /* Difference */
echo (a*b); /* Product */
echo (a/b); /* Quotient */
echo (a%b); /* Modulus */</syntaxhighlight>
 
=={{header|Oz}}==
<langsyntaxhighlight lang="oz">declare
StdIn = {New class $ from Open.file Open.text end init(name:stdin)}
 
Line 875 ⟶ 4,176:
"A^B = "#{Pow A B}
]
System.showInfo}</langsyntaxhighlight>
 
=={{header|Panda}}==
Use reflection to get all functions defined on numbers taking number and returning number.
<syntaxhighlight lang="panda">a=3 b=7 func:_bbf__number_number_number =>f.name.<b> '(' a b ')' ' => ' f(a b) nl</syntaxhighlight>
 
{{out}}
<pre>atan2 ( 3 7 ) => 0.40489178628508343
divide ( 3 7 ) => 0.42857142857142855
gt ( 3 7 ) => UNDEFINED!
gte ( 3 7 ) => UNDEFINED!
lt ( 3 7 ) => 3
lte ( 3 7 ) => 3
max ( 3 7 ) => 7
min ( 3 7 ) => 3
minus ( 3 7 ) => -4
mod ( 3 7 ) => 3
plus ( 3 7 ) => 10
pow ( 3 7 ) => 2187</pre>
 
=={{header|PARI/GP}}==
Integer division with <code>\</code> rounds to <math>-\infty</math>. There also exists the <code>\/</code> round-to-nearest (ties to <math>+\infty</math>) operator. Ordinary division <code>/</code> does not round but returns rationals if given integers with a non-integral quotient.
<syntaxhighlight lang="parigp">arith(a,b)={
print(a+b);
print(a-b);
print(a*b);
print(a\b);
print(a%b);
print(a^b);
};</syntaxhighlight>
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">program arithmetic(input, output)
 
var
Line 888 ⟶ 4,218:
writeln('a-b = ', a-b);
writeln('a*b = ', a*b);
writeln('a/b = ', a div b, ', remainder "', a mod b);
writeln('a^b = ',Power(a,b):4:2); {real power}
end.</lang>
writeln('a^b = ',IntPower(a,b):4:2); {integer power}
end.</syntaxhighlight>
 
=={{header|Perl}}==
{{works with|Perl|5.x}}
<langsyntaxhighlight lang="perl">my $a = <>;
my $b = <>;
 
Line 903 ⟶ 4,235:
"remainder: ", $a % $b, "\n",
"exponent: ", $a ** $b, "\n"
;</langsyntaxhighlight>
 
=={{header|Perl 6Phix}}==
{{libheader|Phix/pGUI}}
{{works with|Rakudo|#21 "Seattle"}}
{{libheader|Phix/online}}
You can run this online [http://phix.x10.mx/p2js/ArithInt.htm here] (layout/space is not perfected yet).
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">pGUI</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">Ihandle</span> <span style="color: #000000;">lab</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">tab</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">dlg</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">fmt</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"""
a = %d
b = %d
a + b = %d
a - b = %d
a * b = %d
a / b = %g (does not truncate)
remainder(a,b) = %d (same sign as first operand)
power(a,b) = %g
"""</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">valuechanged_cb</span><span style="color: #0000FF;">(</span><span style="color: #004080;">Ihandle</span> <span style="color: #000000;">tab</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupGetAttribute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tab</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"VALUE"</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">scanf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d %d"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fmt</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">+</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">-</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">*</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">/</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">remainder</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">),</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)})</span>
<span style="color: #7060A8;">IupSetStrAttribute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"TITLE"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupRefresh</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">IUP_DEFAULT</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupOpen</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">lab</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupLabel</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"Enter two numbers"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">tab</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupText</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"VALUECHANGED_CB"</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">Icallback</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"valuechanged_cb"</span><span style="color: #0000FF;">),</span><span style="color: #008000;">"EXPAND=HORIZONTAL"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupLabel</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"(separated by a space)\n\n\n\n\n\n\n"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"EXPAND=BOTH"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDialog</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">IupVbox</span><span style="color: #0000FF;">({</span><span style="color: #7060A8;">IupHbox</span><span style="color: #0000FF;">({</span><span style="color: #000000;">lab</span><span style="color: #0000FF;">,</span><span style="color: #000000;">tab</span><span style="color: #0000FF;">},</span><span style="color: #008000;">"GAP=10,NORMALIZESIZE=VERTICAL"</span><span style="color: #0000FF;">),</span>
<span style="color: #7060A8;">IupHbox</span><span style="color: #0000FF;">({</span><span style="color: #000000;">res</span><span style="color: #0000FF;">})},</span><span style="color: #008000;">"MARGIN=5x5"</span><span style="color: #0000FF;">),</span>
<span style="color: #008000;">`SIZE=188x112,TITLE="Arithmetic/Integer"`</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupShow</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">IupMainLoop</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupClose</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<!--</syntaxhighlight>-->
{{out}}
With an input of "2 3"
<pre>
a = 2
b = 3
a + b = 5
a - b = -1
a * b = 6
a / b = 0.666667 (does not truncate)
remainder(a,b) = 2 (same sign as first operand)
power(a,b) = 8
</pre>
 
=={{header|Phixmonti}}==
<lang perl6>my Int $a = floor $*IN.get;
<syntaxhighlight lang="phixmonti">def printOp
my Int $b = floor $*IN.get;
swap print print nl
enddef
 
8 var a 3 var b
say 'sum: ', $a + $b;
"a = " a printOp
say 'difference: ', $a - $b;
"b = " b printOp
say 'product: ', $a * $b;
say 'integer quotient: ', $a div $b;
say 'remainder: ', $a % $b;
say 'exponentiation: ', $a**$b;</lang>
 
"a + b = " a b + printOp
Note that <code>div</code> doesn't always do integer division; it performs the operation "most appropriate to the
"a - b = " a b - printOp
operand types". [http://perlcabal.org/syn/S03.html#line_729 Synopsis 3] guarantees that <code>div</code> "on built-in integer types is equivalent to taking the floor of a real division". If you want integer division with other types, say <code>floor($a/$b)</code>.
"a * b = " a b * printOp
"int(a / b) = " a b / int printOp
"a mod b = " a b mod printOp
"a ^ b = " a b power printOp</syntaxhighlight>
 
=={{header|PHL}}==
 
<syntaxhighlight lang="phl">module arith;
 
extern printf;
extern scanf;
 
@Integer main [
@Pointer<@Integer> a = alloc(4);
@Pointer<@Integer> b = alloc(4);
scanf("%i %i", a, b);
printf("a + b = %i\n", a::get + b::get);
printf("a - b = %i\n", a::get - b::get);
printf("a * b = %i\n", a::get * b::get);
printf("a / b = %i\n", a::get / b::get);
printf("a % b = %i\n", a::get % b::get);
printf("a ** b = %i\n", a::get ** b::get);
return 0;
]</syntaxhighlight>
 
=={{header|PHP}}==
<langsyntaxhighlight lang="php"><?php
$a = fgets(STDIN);
$b = fgets(STDIN);
Line 932 ⟶ 4,349:
"truncating quotient: ", (int)($a / $b), "\n",
"flooring quotient: ", floor($a / $b), "\n",
"remainder: ", $a % $b, "\n";,
"power: ", $a ** $b, "\n"; // PHP 5.6+ only
?></lang>
?></syntaxhighlight>
 
=={{header|Picat}}==
<syntaxhighlight lang="picat">main =>
X = read_int(),
Y = read_int(),
foreach (Op in [+,-,*,div,rem])
R = apply(Op,X,Y),
printf("%d %w %d = %d\n", X, Op, Y, R)
end.
</syntaxhighlight>
 
{{out}}
<pre>
2 3
2 + 3 = 5
2 - 3 = -1
2 * 3 = 6
2 div 3 = 0
2 rem 3 = 2
</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(de math (A B)
(prinl "Add " (+ A B))
(prinl "Subtract " (- A B))
Line 943 ⟶ 4,381:
(prinl "Div/rnd " (*/ A B)) # Rounds to next integer
(prinl "Modulus " (% A B)) # Sign of the first operand
(prinl "Power " (** A B)) )</langsyntaxhighlight>
 
=={{header|Piet}}==
[[File:PietArithmaticInteger.png]]<br>
<code>
command stack
in(int) A
duplicate AA
duplicate AAA
duplicate AAAA
duplicate AAAAA
in(int) BAAAAA
duplicate BBAAAAA
duplicate BBBAAAAA
duplicate BBBBAAAAA
duplicate BBBBBAAAAA
push 9 9BBBBBAAAAA
push 1 19BBBBBAAAAA
roll BBBBAAAABA
push 7 7BBBBAAAABA
push 1 17BBBBAAAABA
roll BBBAAABABA
push 5 5BBBAAABABA
push 1 15BBBAAABABA
roll BBAABABABA
push 3 3BBAABABABA
push 1 13BBAABABABA
roll BABABABABA
add (A+B)BABABABA
out(int) BABABABA
sub (A-B)BABABA
out(int) BABABA
mult (A*B)BABA
out(int) BABA
divide (A/B)BA
out(int) BA
mod (A%B)
out(int) NULL
push 1 1
exit</code>
How rounding is handled is up to the interpreter, but I believe the intent was round towards 0.
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
get list (a, b);
put skip list (a+b);
put skip list (a-b);
put skip list (a*b);
put skip list (trunc(a/b)); /* truncates towards zero. */
put skip list (mod(a, b)); /* Remainder is always positive. */
put skip list (rem(a, b)); /* Sign can be negative. */</syntaxhighlight>
 
</lang>
=={{header|Plain English}}==
<syntaxhighlight lang="plainenglish">To run:
Start up.
Demonstrate integer arithmetic.
Wait for the escape key.
Shut down.
 
To demonstrate integer arithmetic:
Write "Enter a number: " to the console without advancing.
Read a number from the console.
Write "Enter another number: " to the console without advancing.
Read another number from the console.
Show the arithmetic operations between the number and the other number.
 
To show the arithmetic operations between a number and another number:
Write the number plus the other number then " is the sum." to the console.
Write the number minus the other number then " is the difference." to the console.
Write the number times the other number then " is the product." to the console.
Show the division of the number by the other number.
Raise the number to the other number.
Write the number then " is the power." to the console.
 
To show the division of a number by another number:
Privatize the number.
Divide the number by the other number giving a quotient [rounding toward zero] and a remainder [with the same sign as the dividend].
Write the quotient then " is the quotient." to the console.
Write the remainder then " is the remainder." to the console.</syntaxhighlight>
{{out}}
<pre>
Enter a number: 44
Enter another number: 3
47 is the sum.
41 is the difference.
132 is the product.
14 is the quotient.
2 is the remainder.
85184 is the power.
</pre>
 
=={{header|Pop11}}==
 
<langsyntaxhighlight lang="pop11">;;; Setup token reader
vars itemrep;
incharitem(charin) -> itemrep;
Line 968 ⟶ 4,484:
printf(a * b, 'a * b = %p\n');
printf(a div b, 'a div b = %p\n');
printf(a mod b, 'a mod b = %p\n');</langsyntaxhighlight>
 
=={{header|PostScript}}==
<syntaxhighlight lang="ps">/arithInteger {
/x exch def
/y exch def
x y add =
x y sub =
x y mul =
x y idiv =
x y mod =
x y exp =
} def</syntaxhighlight>
 
=={{header|PowerShell}}==
<langsyntaxhighlight lang="powershell">$a = [int] (Read-Host First Number)
$b = [int] (Read-Host Second Number)
 
Line 978 ⟶ 4,506:
Write-Host "Product: $($a * $b)"
Write-Host "Quotient: $($a / $b)"
Write-Host "Quotient, explicitlyround roundedto even: $([Math]::Round($a / $b))"
Write-Host "Remainder: , sign follows first: $($a % $b)"</langsyntaxhighlight>
Numbers are automatically converted to accomodate for the result. This means not only that Int32 will be expanded to Int64 but also that a non-integer quotient will cause the result to be of a floating-point type.
 
Line 985 ⟶ 4,513:
 
No exponentiation operator exists, but can be worked around with the .NET BCL:
<langsyntaxhighlight lang="powershell">[Math]::powPow($a, $b)</langsyntaxhighlight>
 
=={{header|PureBasicProcessing}}==
<syntaxhighlight lang="processing">int a = 7, b = 5;
 
println(a + " + " + b + " = " + (a + b));
<lang purebasic>OpenConsole()
println(a + " - " + b + " = " + (a - b));
println(a + " * " + b + " = " + (a * b));
println(a + " / " + b + " = " + (a / b)); //Rounds towards zero
println(a + " % " + b + " = " + (a % b)); //Same sign as first operand</syntaxhighlight>
{{out}}
<pre>7 + 5 = 12
7 - 5 = 2
7 * 5 = 35
7 / 5 = 1
7 % 5 = 2</pre>
 
=={{header|ProDOS}}==
<syntaxhighlight lang="prodos">IGNORELINE Note: This example includes the math module.
include arithmeticmodule
:a
editvar /newvar /value=a /title=Enter first integer:
editvar /newvar /value=b /title=Enter second integer:
editvar /newvar /value=c
do add -a-,-b-=-c-
printline -c-
do subtract a,b
printline -c-
do multiply a,b
printline -c-
do divide a,b
printline -c-
do modulus a,b
printline -c-
editvar /newvar /value=d /title=Do you want to calculate more numbers?
if -d- /hasvalue yes goto :a else goto :end
:end</syntaxhighlight>
 
<syntaxhighlight lang="prodos">IGNORELINE Note: This example does not use the math module.
:a
editvar /newvar /value=a /title=Enter first integer:
editvar /newvar /value=b /title=Enter second integer:
editvar /newvar /value=-a-+-b-=-c-
printline -c-
editvar /newvar /value=a*b=c
printline -c-
editvar /newvar /value=a/b=c
printline -c-
editvar /newvar /value=a %% b=c
printline -c-
editvar /newvar /value=d /title=Do you want to calculate more numbers?
if -d- /hasvalue yes goto :a else goto :end
:end</syntaxhighlight>
 
=={{header|Prolog}}==
 
Integer quotient (`//`) rounds towards 0.
 
Remainder (`rem`) matches the sign of its first operand.
 
<syntaxhighlight lang="prolog">
 
print_expression_and_result(M, N, Operator) :-
Expression =.. [Operator, M, N],
Result is Expression,
format('~w ~8|is ~d~n', [Expression, Result]).
 
arithmetic_integer :-
read(M),
read(N),
maplist( print_expression_and_result(M, N), [+,-,*,//,rem,^] ).
 
</syntaxhighlight>
 
Use thus:
 
<syntaxhighlight lang="prolog">
?- arithmetic_integer.
|: 5.
|: 7.
5+7 is 12
5-7 is -2
5*7 is 35
5//7 is 0
5 rem 7 is 5
5^7 is 78125
true.
</syntaxhighlight>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">OpenConsole()
Define a, b
Line 1,005 ⟶ 4,619:
Input()
CloseConsole()</langsyntaxhighlight>
 
=={{header|Python}}==
 
<langsyntaxhighlight lang="python">x = int(raw_input("Number 1: "))
y = int(raw_input("Number 2: "))
 
Line 1,019 ⟶ 4,633:
print "Remainder: %d" % (x % y) # same sign as second operand
print "Quotient: %d with Remainder: %d" % divmod(x, y)
print "Power: %d" % x**y
 
## Only used to keep the display up when the program ends
raw_input( )</langsyntaxhighlight>
 
Notes: In Python3 ''raw_input()'' will be renamed to ''input()'' (the old ''input()'' built-in will go away, though one could use ''eval(input())'' to emulate the old ... and ill-advised ... behavior). Also a better program would wrap the attempted ''int()'' conversions in a ''try: ... except ValueError:...'' construct such as:
 
<langsyntaxhighlight lang="python">def getnum(prompt):
while True: # retrying ...
try:
Line 1,037 ⟶ 4,652:
x = getnum("Number1: ")
y = getnum("Number2: ")
...</langsyntaxhighlight>
 
(In general it's good practice to perform parsing of all input in exception handling blocks. This is especially true of interactive user input, but also applies to data read from configuration and other files, and marshaled from other processes via any IPC mechanism).
Line 1,046 ⟶ 4,661:
 
=== Python 3.0 compatible code ===
<langsyntaxhighlight lang="python">def arithmetic(x, y):
for op in "+ - * // % **".split():
expr = "%(x)s %(op)s %(y)s" % vars()
print("%s\t=> %s" % (expr, eval(expr)))
Line 1,053 ⟶ 4,668:
 
arithmetic(12, 8)
arithmetic(input("Number 1: "), input("Number 2: "))</langsyntaxhighlight>
{{out}}
Output:
<pre>12 + 8 => 20
12 - 8 => 4
Line 1,060 ⟶ 4,675:
12 // 8 => 1
12 % 8 => 4
12 ** 8 => 429981696
Number 1: 20
Number 2: 4
Line 1,066 ⟶ 4,682:
20 * 4 => 80
20 // 4 => 5
20 % 4 => 0</pre>
20 ** 4 => 160000</pre>
 
== Python 3.x Long Form ==
<syntaxhighlight lang="python">input1 = 18
# input1 = input()
input2 = 7
# input2 = input()
 
qq = input1 + input2
print("Sum: " + str(qq))
ww = input1 - input2
print("Difference: " + str(ww))
ee = input1 * input2
print("Product: " + str(ee))
rr = input1 / input2
print("Integer quotient: " + str(int(rr)))
print("Float quotient: " + str(float(rr)))
tt = float(input1 / input2)
uu = (int(tt) - float(tt))*-10
#print(tt)
print("Whole Remainder: " + str(int(uu)))
print("Actual Remainder: " + str(uu))
yy = input1 ** input2
print("Exponentiation: " + str(yy))</syntaxhighlight>
 
{{Out}}
<pre>Sum: 25
Difference: 11
Product: 126
Integer quotient: 2
Float quotient: 2.5714285714285716
Whole Remainder: 5
Actual Remainder: 5.714285714285716
Exponentiation: 612220032</pre>
 
=={{header|QB64}}==
''CBTJD'': 2020/03/12
<syntaxhighlight lang="vb">START:
INPUT "Enter two integers (a,b):"; a!, b!
IF a = 0 THEN END
IF b = 0 THEN
PRINT "Second integer is zero. Zero not allowed for Quotient or Remainder."
GOTO START
END IF
PRINT
PRINT " Sum = "; a + b
PRINT " Difference = "; a - b
PRINT " Product = "; a * b
' Notice the use of the INTEGER Divisor "\" as opposed to the regular divisor "/".
PRINT "Integer Quotient = "; a \ b, , "* Rounds toward 0."
PRINT " Remainder = "; a MOD b, , "* Sign matches first operand."
PRINT " Exponentiation = "; a ^ b
PRINT
INPUT "Again? (y/N)"; a$
IF UCASE$(a$) = "Y" THEN CLS: GOTO START
CLS
END</syntaxhighlight>
 
=={{header|Quackery}}==
 
<syntaxhighlight lang="quackery "> $ "Please enter two integers separated by a space. "
input quackery
2dup say "Their sum is: " + echo cr
2dup say "Their difference is: " - echo cr
2dup say "Their product is: " " * echo cr
2dup say "Their integer quotient is: " / echo cr
2dup say "Their remainder is: " mod echo cr
say "Their exponentiation is: " ** echo cr
cr
say "Quotient rounds towards negative infinity." cr
say "Remainder matches the sign of the second argument."</syntaxhighlight>
 
{{Out}}
 
<pre>Please enter two integers separated by a space. 543 21
Their sum is: 564
Their difference is: 522
Their product is: 11403
Their integer quotient is: 25
Their remainder is: 18
Their exponentiation is: 2696475144200627485897267767746883957141292127831428752543
</pre>
 
=={{header|R}}==
<langsyntaxhighlight Rlang="r">cat("insert number ")
a <- scan(nmax=1, quiet=TRUE)
cat("insert number ")
b <- scan(nmax=1, quiet=TRUE)
print(paste('a+b=', a+b))
print(paste('a-b=', a-b))
print(paste('a*b=', a*b))
print(floorpaste('a%/%b=', a%/%b))
print(paste('a%%b=', a%%b))</lang>
print(paste('a^b=', a^b))
</syntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">
#lang racket/base
 
(define (arithmetic x y)
(for ([op (list + - * / quotient remainder modulo max min gcd lcm)])
(printf "~s => ~s\n" `(,(object-name op) ,x ,y) (op x y))))
 
(arithmetic 8 12)
</syntaxhighlight>
{{out}}
<pre>
(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(max 8 12) => 12
(min 8 12) => 8
(gcd 8 12) => 4
(lcm 8 12) => 24
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
 
Note that <code>div</code> <b>requires</b> integer arguments. If you want integer division with other types, say <code>floor($a/$b)</code>.
<syntaxhighlight lang="raku" line>my Int $a = get.floor;
my Int $b = get.floor;
 
say 'sum: ', $a + $b;
say 'difference: ', $a - $b;
say 'product: ', $a * $b;
say 'integer quotient: ', $a div $b;
say 'remainder: ', $a % $b;
say 'exponentiation: ', $a**$b;</syntaxhighlight>
 
=={{header|Raven}}==
 
<langsyntaxhighlight lang="raven">' Number 1: ' print expect 0 prefer as x
' Number 2: ' print expect 0 prefer as y
 
Line 1,088 ⟶ 4,827:
x y * " product: %d\n" print
x y / " quotient: %d\n" print
x y % " remainder: %d\n" print</langsyntaxhighlight>
 
=={{header|REBOL}}==
<syntaxhighlight lang="rebol">REBOL [
Title: "Integer"
URL: http://rosettacode.org/wiki/Arithmetic/Integer
]
 
x: to-integer ask "Please type in an integer, and press [enter]: "
y: to-integer ask "Please enter another integer: "
print ""
 
print ["Sum:" x + y]
print ["Difference:" x - y]
print ["Product:" x * y]
 
print ["Integer quotient (coercion) :" to-integer x / y]
print ["Integer quotient (away from zero) :" round x / y]
print ["Integer quotient (halves round towards even digits) :" round/even x / y]
print ["Integer quotient (halves round towards zero) :" round/half-down x / y]
print ["Integer quotient (round in negative direction) :" round/floor x / y]
print ["Integer quotient (round in positive direction) :" round/ceiling x / y]
print ["Integer quotient (halves round in positive direction):" round/half-ceiling x / y]
 
print ["Remainder:" r: x // y]
 
; REBOL evaluates infix expressions from left to right. There are no
; precedence rules -- whatever is first gets evaluated. Therefore when
; performing this comparison, I put parens around the first term
; ("sign? a") of the expression so that the value of /a/ isn't
; compared to the sign of /b/. To make up for it, notice that I don't
; have to use a specific return keyword. The final value in the
; function is returned automatically.
 
match?: func [a b][(sign? a) = sign? b]
 
result: copy []
if match? r x [append result "first"]
if match? r y [append result "second"]
 
; You can evaluate arbitrary expressions in the middle of a print, so
; I use a "switch" to provide a more readable result based on the
; length of the /results/ list.
 
print [
"Remainder sign matches:"
switch length? result [
0 ["neither"]
1 [result/1]
2 ["both"]
]
]
 
print ["Exponentiation:" x ** y]</syntaxhighlight>
 
{{out}}
<pre>Please type in an integer, and press [enter]: 17
Please enter another integer: -4
 
Sum: 13
Difference: 21
Product: -68
Integer quotient (coercion) : -4
Integer quotient (away from zero) : -4
Integer quotient (halves round towards even digits) : -4
Integer quotient (halves round towards zero) : -4
Integer quotient (round in negative direction) : -5
Integer quotient (round in positive direction) : -4
Integer quotient (halves round in positive direction): -4
Remainder: 1
Remainder sign matches: first
Exponentiation: 1.19730367213036E-5</pre>
 
=={{header|Relation}}==
There is no input, variables have to be set in code. Format is there only for output.
<syntaxhighlight lang="relation">
set a = -17
set b = 4
echo "a+b = ".format(a+b,"%1d")
echo "a-b = ".format(a-b,"%1d")
echo "a*b = ".format(a*b,"%1d")
echo "a DIV b = ".format(floor(a/b),"%1d")
echo "a MOD b = ".format(a mod b,"%1d")
echo "a^b = ".format(pow(a,b),"%1d")
</syntaxhighlight>
 
=={{header|ReScript}}==
 
<syntaxhighlight lang="rescript">let a = int_of_string(Sys.argv[2])
let b = int_of_string(Sys.argv[3])
 
let sum = a + b
let difference = a - b
let product = a * b
let division = a / b
let remainder = mod(a, b)
 
Js.log("a + b = " ++ string_of_int(sum))
Js.log("a - b = " ++ string_of_int(difference))
Js.log("a * b = " ++ string_of_int(product))
Js.log("a / b = " ++ string_of_int(division))
Js.log("a % b = " ++ string_of_int(remainder))</syntaxhighlight>
 
{{out}}
 
<pre>$ bsc arith.res > arith.bs.js
$ node arith.bs.js 10 7
a + b = 17
a - b = 3
a * b = 70
a / b = 1
a % b = 3
</pre>
 
=={{header|Retro}}==
Retro's arithmetic functions are based on those in [[Forth]]. The example is an adaption of the one from Forth.
<syntaxhighlight lang="retro">:arithmetic (ab-)
over '\na_______=_%n s:put
dup '\nb_______=_%n s:put
dup-pair + '\na_+_b___=_%n s:put
dup-pair - '\na_-_b___=_%n s:put
dup-pair * '\na_*_b___=_%n s:put
/mod '\na_/_b___=_%n s:put
'\na_mod_b_=_%n\n" s:put ;</syntaxhighlight>
 
=={{header|REXX}}==
All operators automatically produce integers where appropriate &nbsp; (up to twenty decimal digits in the program below),
<lang rexx>say "enter 2 integer values separated by blanks"
<br>or numbers in exponential format when necessary. &nbsp; (The REXX default is &nbsp; '''9''' &nbsp; decimal digits.)
parse pull a b
 
say a "+" b "=" a+b
For division that produces a floating point number, the result is rounded to the nearest number that can be expressed
say a "-" b "=" a-b
<br>within the current number of decimal digits &nbsp; (in the example program below, it is &nbsp; '''20''' &nbsp; decimal digits).
say a "*" b "=" a*b
<syntaxhighlight lang="rexx">/*REXX program obtains two integers from the C.L. (a prompt); displays some operations.*/
say a "/" b "=" a%b "remaining" a//b "(sign from first operand)"
numeric digits 20 /*#s are round at 20th significant dig.*/
say a "^" b "=" a**b</lang>
parse arg x y . /*maybe the integers are on the C.L. */
sample output:
 
<pre>enter 2 integer values separated by blanks
do while \datatype(x,'W') | \datatype(y,'W') /*both X and Y must be integers. */
17 -4
say "─────Enter two integer values (separated by blanks):"
17 + -4 = 13
parse pull x y . /*accept two thingys from command line.*/
17 - -4 = 21
end /*while*/
17 * -4 = -68
/* [↓] perform this DO loop twice. */
17 / -4 = -4 remaining 1 (sign from first operand)
do j=1 for 2 /*show A oper B, then B oper A.*/
17 ^ -4 = 0.0000119730367</pre>
call show 'addition' , "+", x+y
call show 'subtraction' , "-", x-y
call show 'multiplication' , "*", x*y
call show 'int division' , "%", x%y, ' [rounds down]'
call show 'real division' , "/", x/y
call show 'division remainder', "//", x//y, ' [sign from 1st operand]'
call show 'power' , "**", x**y
 
parse value x y with y x /*swap the two values and perform again*/
if j==1 then say copies('═', 79) /*display a fence after the 1st round. */
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: parse arg c,o,#,?; say right(c,25)' ' x center(o,4) y " ───► " # ?; return</syntaxhighlight>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> 4 &nbsp; -17 </tt>}}
<pre>
addition 4 + -17 ───► -13
subtraction 4 - -17 ───► 21
multiplication 4 * -17 ───► -68
int division 4 % -17 ───► 0 [rounds down]
real division 4 / -17 ───► -0.23529411764705882353
division remainder 4 // -17 ───► 4 [sign from 1st operand]
power 4 ** -17 ───► 5.8207660913467407227E-11
═══════════════════════════════════════════════════════════════════════════════
addition -17 + 4 ───► -13
subtraction -17 - 4 ───► -21
multiplication -17 * 4 ───► -68
int division -17 % 4 ───► -4 [rounds down]
real division -17 / 4 ───► -4.25
division remainder -17 // 4 ───► -1 [sign from 1st operand]
power -17 ** 4 ───► 83521
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
func Test a,b
see "a+b" + ( a + b ) + nl
see "a-b" + ( a - b ) + nl
see "a*b" + ( a * b ) + nl
// The quotient isn't integer, so we use the Ceil() function, which truncates it downward.
see "a/b" + Ceil( a / b ) + nl
// Remainder:
see "a%b" + ( a % b ) + nl
see "a**b" + pow(a,b ) + nl
</syntaxhighlight>
 
=={{header|Robotic}}==
<syntaxhighlight lang="robotic">
input string "Enter number 1:"
set "a" to "input"
input string "Enter number 2:"
set "b" to "input"
 
[ "Sum: ('a' + 'b')"
[ "Difference: ('a' - 'b')"
[ "Product: ('a' * 'b')"
[ "Integer Quotient: ('a' / 'b')"
[ "Remainder: ('a' % 'b')"
[ "Exponentiation: ('a'^'b')"
</syntaxhighlight>
 
=={{header|RPL}}==
≪ → a b
≪ "a + b = " a b + →STR +
"a - b = " a b - →STR +
"a * b = " a b * →STR +
"a / b = " a b / →STR +
"a % b = " a b / LAST ROT * - →STR +
"a ^ b = " a B→R b B→R ^ R→B →STR +
≫ ≫ '<span style="color:blue">SHOWA</span>' STO
 
#14 #3 <span style="color:blue">SHOWA</span>
<pre>
6: "a + b = # 17d"
5: "a - b = # 11d"
4: "a * b = # 42d"
3: "a / b = # 4d"
2: "a % b = # 2d"
1: "a ^ b = # 2744d"
</pre>
 
=={{header|Ruby}}==
 
<langsyntaxhighlight lang="ruby">puts 'Enter x and y'
x = gets.to_i # to check errors, use x=Integer(gets)
y = gets.to_i
 
puts "Sum: #{x+y}",
"Difference: #{x-y}",
"Product: #{x*y}",
"Quotient: #{x/y}", # truncates towards negative infinity
"RemainderQuotient: #{x%.fdiv(y)}", # same sign as second operand</lang>float
"Remainder: #{x%y}", # same sign as second operand
"Exponentiation: #{x**y}",
"Quotient: %d with Remainder: %d" % x.divmod(y)</syntaxhighlight>
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">input "1st integer: "; i1
input "2nd integer: "; i2
print " Sum"; i1 + i2
print " Diff"; i1 - i2
print " Product"; i1 * i2
if i2 <>0 then print " Quotent "; int( i1 / i2); else print "Cannot divide by zero."
print "Remainder"; i1 MOD i2
print "1st raised to power of 2nd"; i1 ^ i2</syntaxhighlight>
 
=={{header|Rust}}==
 
Note that this code cannot be run within the [http://play.rust-lang.org Rust playpen] as it does not support console input.
<syntaxhighlight lang="rust">use std::env;
 
fn main() {
let args: Vec<_> = env::args().collect();
let a = args[1].parse::<i32>().unwrap();
let b = args[2].parse::<i32>().unwrap();
 
println!("sum: {}", a + b);
println!("difference: {}", a - b);
println!("product: {}", a * b);
println!("integer quotient: {}", a / b); // truncates towards zero
println!("remainder: {}", a % b); // same sign as first operand
}</syntaxhighlight>
 
=={{header|Sass/SCSS}}==
 
<syntaxhighlight lang="coffeescript">
@function arithmetic($a,$b) {
@return $a + $b, $a - $b, $a * $b, ($a - ($a % $b))/$b, $a % $b;
}
</syntaxhighlight>
Which you use with:
<syntaxhighlight lang="coffeescript">
nth(arithmetic(10,3),1);
</syntaxhighlight>
Or each of the functions separately:
<syntaxhighlight lang="coffeescript">
@function sum($a,$b) {
@return $a + $b;
}
 
@function difference($a,$b) {
@return $a - $b;
}
 
@function product($a,$b) {
@return $a * $b;
}
 
@function integer-division($a,$b) {
@return ($a - ($a % $b))/$b;
}
 
@function remainder($a,$b) {
@return $a % $b;
}
 
@function float-division($a,$b) {
@return $a / $b;
}
</syntaxhighlight>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">val a = Console.readInt
val b = Console.readInt
val sum = a + b; //integer addition is discouraged in print statements due to confusion with String concatenation
println("a + b = " + sum);
println("a - b = " + (a - b));
println("a * b = " + (a * b));
println("quotient of a / b = " + (a / b)); // truncates towards 0
println("remainder of a / b = " + (a % b)); // same sign as first operand</syntaxhighlight>
</lang>
 
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">(define (arithmetic x y)
(for-each (lambda (op)
(write (list op x y))
(display " => ")
(write ((eval op) x y))
(write-char #\newline))
'(+ - * / quotient remainder modulo max min gcd lcm)))
(arithmetic 8 12)</langsyntaxhighlight>
quotient - truncates towards 0
remainder - same sign as first operand
Line 1,159 ⟶ 5,170:
(gcd 8 12) => 4
(lcm 8 12) => 24
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: main is func
local
var integer: a is 0;
var integer: b is 0;
begin
write("a = ");
readln(a);
write("b = ");
readln(b);
writeln("a + b = " <& a + b);
writeln("a - b = " <& a - b);
writeln("a * b = " <& a * b);
writeln("a div b = " <& a div b); # Rounds towards zero
writeln("a rem b = " <& a rem b); # Sign of the first operand
writeln("a mdiv b = " <& a mdiv b); # Rounds towards negative infinity
writeln("a mod b = " <& a mod b); # Sign of the second operand
end func;</syntaxhighlight>
 
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">ask "Enter the first number:"
put it into number1
 
ask "Enter the second number:"
put it into number2
 
put "Sum: " & number1 plus number2
put "Difference: " & number1 minus number2
put "Product: " & number1 multiplied by number2
put "Integer quotient: " & number1 div number2 -- Rounding towards 0
put "Remainder: " & number1 rem number2
put "Exponentiation: " & number1 to the power of number2</syntaxhighlight>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">var a = Sys.scanln("First number: ").to_i;
var b = Sys.scanln("Second number: ").to_i;
 
%w'+ - * // % ** ^ | & << >>'.each { |op|
"#{a} #{op} #{b} = #{a.$op(b)}".say;
}</syntaxhighlight>
 
{{out}}
<pre>
First number: 1234
Second number: 7
1234 + 7 = 1241
1234 - 7 = 1227
1234 * 7 = 8638
1234 // 7 = 176
1234 % 7 = 2
1234 ** 7 = 4357186184021382204544
1234 ^ 7 = 1237
1234 | 7 = 1239
1234 & 7 = 2
1234 << 7 = 157952
1234 >> 7 = 9
</pre>
 
=={{header|Slate}}==
<langsyntaxhighlight lang="slate">[| :a :b |
inform: (a + b) printString.
inform: (a - b) printString.
Line 1,169 ⟶ 5,241:
inform: (a \\ b) printString.
 
] applyTo: {Integer readFrom: (query: 'Enter a: '). Integer readFrom: (query: 'Enter b: ')}.</langsyntaxhighlight>
 
=={{header|SmallBASIC}}==
<syntaxhighlight lang="SmallBASIC">
input "Enter first number : "; A
input "Enter second number: "; B
 
print "Sum : "; A + B
print "Difference: "; A - B
print "Product : "; A * B
print "Quotient : "; A \ B ' Integer quotient rounds towards smaller number
print "Remainder : "; A % B ' sign of remainder is given by sign of first operand
print "Power : "; A ^ B
</syntaxhighlight>
 
=={{header|Smalltalk}}==
{{works with|GNU Smalltalk}}
<langsyntaxhighlight lang="smalltalk">| a b |
'Input number a: ' display.
a := (stdin nextLine) asInteger.
Line 1,182 ⟶ 5,267:
('a*b=%1' % { a * b }) displayNl.
('a/b=%1' % { a // b }) displayNl.
('a%%b=%1' % { a \\ b }) displayNl.</langsyntaxhighlight>
 
{{works with|Smalltalk/X}} (and all other Smalltalks)
<syntaxhighlight lang="smalltalk">|a b|
a := (Dialog request:'Enter first number:') asNumber.
b := (Dialog request:'Enter second number:') asNumber.
#( + - / * // \\ quo: rem: raisedTo: **) do:[:operator |
|result|
result := a perform:operator with:b.
'%P %s %P => %P\n' printf:{a . operator . b . result} on:Transcript
].</syntaxhighlight>
/ is exact division
<br>// is truncating division (towards negative infinity)
<br>\\ is remainder from \\
<br>quo: is truncating division (towards zero)
<br>\\ is remainder from quo:
<br>** is just an alias for raisedTo:
<p>Entering 10 and 3, generates:
{{out}}
<pre>
10 + 3 => 13
10 - 3 => 7
10 / 3 => (10/3)
10 * 3 => 30
10 // 3 => 3
10 \\ 3 => 1
10 quo: 3 => 3
10 rem: 3 => 1
10 raisedTo: 3 => 1000
10 ** 3 => 1000
</pre>
Entering 10 and -3 generates:
{{out}}
<pre>
10 + -3 => 7
10 - -3 => 13
10 / -3 => (-10/3)
10 * -3 => -30
10 // -3 => -4
10 \\ -3 => -2
10 quo: -3 => -3
10 rem: -3 => 1
10 raisedTo: -3 => (1/1000)
10 ** -3 => (1/1000)
</pre>
Entering 20 and 50 generates (notice the fraction and the long integer results):
{{out}}
<pre>
20 + 50 => 70
20 - 50 => -30
20 / 50 => (2/5)
20 * 50 => 1000
20 // 50 => 0
20 \\ 50 => 20
20 quo: 50 => 0
20 rem: 50 => 20
20 raisedTo: 50 => 112589990684262400000000000000000000000000000000000000000000000000
20 ** 50 => 112589990684262400000000000000000000000000000000000000000000000000
</pre>
 
=={{header|smart BASIC}}==
<syntaxhighlight lang="qbasic">INPUT "Enter first number.":first
INPUT "Enter second number.":second
PRINT "The sum of";first;"and";second;"is ";first+second&"."
PRINT "The difference between";first;"and";second;"is ";ABS(first-second)&"."
PRINT "The product of";first;"and";second;"is ";first*second&"."
IF second THEN
PRINT "The integer quotient of";first;"and";second;"is ";INTEG(first/second)&"."
ELSE
PRINT "Division by zero not cool."
ENDIF
PRINT "The remainder being...";first%second&"."
PRINT STR$(first);"raised to the power of";second;"is ";first^second&"."</syntaxhighlight>
 
'''NOTES:''' Some curious aspects of smart BASIC to note in this code example:
<ol>
<li>In smart BASIC, The command INTEG is a true integer function providing only the value of the characteristic. The smart BASIC INT command calculates as a rounding function. This differs from some other versions of BASIC.</li>
<li>smart BASIC automatically inserts spaces ahead of and behind numbers. This can cause unexpected formatting issues when combining output from numeric variables with text. In order to suppress the trailing space, you must use the ampersand (&) to concatenate the numeric value with the following text (in this case, a period at the end of each sentence). In the case of leading spaces, you must convert the numeric value to text using the STR$ command (as with the last line of the code).
</ol>
 
=={{header|SNOBOL4}}==
<langsyntaxhighlight lang="snobol4">
output = "Enter first integer:"
first = input
Line 1,195 ⟶ 5,358:
output = "quot = " (qout = first / second)
output = "rem = " first - (qout * second)
output = "expo = " first ** second
end</lang>
end</syntaxhighlight>
 
=={{header|Standard ML}}==
<lang sml>val () = let
val a = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
val b = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
in
print ("a + b = " ^ Int.toString (a + b) ^ "\n");
print ("a - b = " ^ Int.toString (a - b) ^ "\n");
print ("a * b = " ^ Int.toString (a * b) ^ "\n");
print ("a div b = " ^ Int.toString (a div b) ^ "\n"); (* truncates towards negative infinity *)
print ("a mod b = " ^ Int.toString (a mod b) ^ "\n"); (* same sign as second operand *)
print ("a quot b = " ^ Int.toString (Int.quot (a, b)) ^ "\n");(* truncates towards 0 *)
print ("a rem b = " ^ Int.toString (Int.rem (a, b)) ^ "\n"); (* same sign as first operand *)
print ("~a = " ^ Int.toString (~a) ^ "\n") (* unary negation, unusual notation compared to other languages *)
end</lang>
 
=={{header|SNUSP}}==
Line 1,216 ⟶ 5,365:
 
''See also: [[Ethiopian Multiplication]]''
<syntaxhighlight lang="snusp">$\
<lang SNUSP>$\
,
@
Line 1,273 ⟶ 5,422:
\=@@@+@+++++#
.
#</langsyntaxhighlight>
 
=={{header|SQL}}==
{{works with|Oracle}}
<syntaxhighlight lang="sql">
-- test.sql
-- Tested in SQL*plus
 
drop table test;
 
create table test (a integer, b integer);
 
insert into test values ('&&A','&&B');
 
commit;
 
select a-b difference from test;
 
select a*b product from test;
 
select trunc(a/b) integer_quotient from test;
 
select mod(a,b) remainder from test;
 
select power(a,b) exponentiation from test;
</syntaxhighlight>
 
<pre>
SQL> @test.sql
 
Table dropped.
 
 
Table created.
 
Enter value for a: 3
Enter value for b: 4
old 1: insert into test values ('&&A','&&B')
new 1: insert into test values ('3','4')
 
1 row created.
 
 
Commit complete.
 
 
DIFFERENCE
----------
-1
 
 
PRODUCT
----------
12
 
 
INTEGER_QUOTIENT
----------------
0
 
 
REMAINDER
----------
3
 
 
EXPONENTIATION
--------------
81
</pre>
 
=={{header|SSEM}}==
The only operation that the SSEM supports natively is substraction. This program uses the <tt>001 Sub.</tt> instruction to find the difference between <i>a</i> and <i>b</i>, assuming they are loaded into storage addresses 20 and 21 respectively.
<syntaxhighlight lang="ssem">00101000000000100000000000000000 0. -20 to c
10100000000001100000000000000000 1. c to 5
10100000000000100000000000000000 2. -5 to c
10101000000000010000000000000000 3. Sub. 21
00000000000001110000000000000000 4. Stop
00000000000000000000000000000000 5. 0</syntaxhighlight>
The routine is slightly more complicated than it would otherwise be, because the SSEM cannot load a value into the accumulator (<tt>c</tt> register) from storage without negating it in the process—so we have to shuffle the negation of <i>a</i> back out into storage and then negate it again before we can subtract <i>b</i> from it. This does, however, make it easy to implement addition using negation and subtraction. In this program, we first negate <i>a</i>; then subtract <i>b</i>, and store the result; and finally negate that result, thereby obtaining the sum of the two integers.
<syntaxhighlight lang="ssem">00101000000000100000000000000000 0. -20 to c
10101000000000010000000000000000 1. Sub. 21
10100000000001100000000000000000 2. c to 5
10100000000000100000000000000000 3. -5 to c
00000000000001110000000000000000 4. Stop
00000000000000000000000000000000 5. 0</syntaxhighlight>
A multiplication program will be found at [[Function definition#SSEM]], and one that performs integer division at [[Loops/For with a specified step#SSEM]].
 
=={{header|Standard ML}}==
<syntaxhighlight lang="sml">val () = let
val a = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
val b = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
in
print ("a + b = " ^ Int.toString (a + b) ^ "\n");
print ("a - b = " ^ Int.toString (a - b) ^ "\n");
print ("a * b = " ^ Int.toString (a * b) ^ "\n");
print ("a div b = " ^ Int.toString (a div b) ^ "\n"); (* truncates towards negative infinity *)
print ("a mod b = " ^ Int.toString (a mod b) ^ "\n"); (* same sign as second operand *)
print ("a quot b = " ^ Int.toString (Int.quot (a, b)) ^ "\n");(* truncates towards 0 *)
print ("a rem b = " ^ Int.toString (Int.rem (a, b)) ^ "\n"); (* same sign as first operand *)
print ("~a = " ^ Int.toString (~a) ^ "\n") (* unary negation, unusual notation compared to other languages *)
end</syntaxhighlight>
 
=={{header|Swift}}==
<syntaxhighlight lang="swift">
let a = 6
let b = 4
 
print("sum =\(a+b)")
print("difference = \(a-b)")
print("product = \(a*b)")
print("Integer quotient = \(a/b)")
print("Remainder = (a%b)")
print("No operator for Exponential")
</syntaxhighlight>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">puts "Please enter two numbers:"
 
set x [expr {int([gets stdin])}]; # Force integer interpretation
Line 1,286 ⟶ 5,550:
puts "$x / $y = [expr {$x / $y}]"
puts "$x mod $y = [expr {$x % $y}]"
puts "$x 'to the' $y = [expr {$x ** $y}]"</langsyntaxhighlight>
 
Since Tcl doesn't really know about the "type" of a variable, the "<tt>expr</tt>" command is used to declare whatever follows as an "expression". This means there is no such thing as "integer arithmetic" and hence the kludge with <tt>int([gets&nbsp;stdin])</tt>.
Line 1,292 ⟶ 5,556:
Often, these operations would be performed in a different way from what is shown here. For example, to increase the variable "x" by the value of the variable "y", one would write
 
<syntaxhighlight lang ="tcl">incr x $y</langsyntaxhighlight>
 
Also, it's important to surround the arguments to the <code>expr</code> in braces, especially when any of the parts of the expression are not literal constants. Discussion of this is on [http://wiki.tcl.tk/10225 The Tcler's Wiki].
 
=={{header|Terraform}}==
HCL doesn't have an exponentiation operator and even integer division is contrived as shown in the code, but at least it prints the output variables alphabetically without any effort.......
<syntaxhighlight lang="terraform">
#Aamrun, 15th August 2022
 
variable "a" {
type = number
}
 
variable "b" {
type = number
}
 
output "Sum" {
value = var.a + var.b
}
 
output "Difference" {
value = var.a - var.b
}
 
output "Product" {
value = var.a * var.b
}
 
output "Quotient" {
value = floor(var.a / var.b)
}
 
output "Remainder" {
value = var.a % var.b
}
</syntaxhighlight>
The floor function rounds to the closest lowest integer. Invocation and output are as below :
{{out}}
<pre>
$ terraform apply -var="a=19" -var="b=7" -auto-approve
 
Changes to Outputs:
+ Difference = 12
+ Product = 133
+ Quotient = 2
+ Remainder = 5
+ Sum = 26
 
You can apply this plan to save these new output values to the Terraform state, without changing any real infrastructure.
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed.
 
Outputs:
 
Difference = 12
Product = 133
Quotient = 2
Remainder = 5
Sum = 26
$
</pre>
 
=={{header|TI-83 BASIC}}==
Pauses added due to TI-83's lack of screen size.
<syntaxhighlight lang="ti83b">
Prompt A,B
Disp "SUM"
Pause A+B
Disp "DIFFERENCE"
Pause A-B
Disp "PRODUCT"
Pause AB
Disp "INTEGER QUOTIENT"
Pause int(A/B)
Disp "REMAINDER"
Pause A-B*int(A/B)
</syntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
<langsyntaxhighlight lang="ti89b">Local a, b
Prompt a, b
Disp "Sum: " & string(a + b)
Line 1,304 ⟶ 5,643:
Disp "Product: " & string(a * b)
Disp "Integer quotient: " & string(intDiv(a, b))
Disp "Remainder: " & string(remain(a, b))</langsyntaxhighlight>
 
=={{header|Toka}}==
 
<langsyntaxhighlight lang="toka">[ ( a b -- )
2dup ." a+b = " + . cr
2dup ." a-b = " - . cr
2dup ." a*b = " * . cr
2dup ." a/b = " / . ." remainder " mod . cr
] is mathops</langsyntaxhighlight>
 
=={{header|TUSCRIPT}}==
<syntaxhighlight lang="tuscript">
$$ MODE TUSCRIPT
a=5
b=3
c=a+b
c=a-b
c=a*b
c=a/b
c=a%b
</syntaxhighlight>
{{out}}
<pre>
a=5
b=3
c=a+b
c = 8
c=a-b
c = 2
c=a*b
c = 15
c=a/b
c = 1
c=a%b
c = 2
</pre>
 
=={{header|UNIX Shell}}==
 
The Unix shell does not directly support arithmetic operations, so external tools, such as ''expr'' are used to perform arithmetic calculations when required:
With external utilities:
 
{{works with|Bourne shellShell}}
{{works with|Almquist SHell}}
<lang bash>#!/bin/sh
<syntaxhighlight lang="bash">#!/bin/sh
read a; read b;
echo "a+b = " `expr $a + $b`
Line 1,326 ⟶ 5,693:
echo "a*b = " `expr $a \* $b`
echo "a/b = " `expr $a / $b` # truncates towards 0
echo "a mod b = " `expr $a % $b` # same sign as first operand</langsyntaxhighlight>
 
(Notes: Using the ` (backtick operators, also available in most Bourne shells via the ''$(...)'' syntax) allows us to keep the results on their labels in the most efficient and portable way. The spaces around the operators in the ''expr'' command line arguments are required and the shell requires us to quote or escape the ''*'' character has shown, to prevent any possible "globbing" --- filename expansion of the ''*'' as a wildcard character.
 
With SUSv3 parameter expansions:
 
{{works with|Almquist SHell}}
{{works with|Bourne Again SHell|3.2}}
{{works with|Korn SHellpdksh|5.2.14}}
{{works with|Z SHell}}
<langsyntaxhighlight lang="bash">#!/bin/sh
read a; read b;
echo "a+b = $(($a+$b))"
echo "a-b = $(($a-$b))"
echo "a*b = $(($a*$b))"
echo "a/b = $(($a/$b))" # truncates towards 0
echo "a mod b = $(($a%$b))" # same sign as first operand</langsyntaxhighlight>
 
(Note: spaces inside the ''$((...))'' are optional and not required; the ''$((...))'' expressions can be inside or outside the double quotes, but the `...` expressions couldfrom alsothe haveprevious beenexample enclosedcan inalso thebe doubleinside quotesor inoutside the previousdouble example)quotes.
 
=={{header|Vedit macro languageUrsa}}==
<syntaxhighlight lang="ursa">#
<lang vedit>#1 = Get_Num("Give number a: ")
# integer arithmetic
#2 = Get_Num("Give number b: ")
#
Message("a + b = ") Num_Type(#1 + #2)
 
Message("a - b = ") Num_Type(#1 - #2)
decl int x y
Message("a * b = ") Num_Type(#1 * #2)
out "number 1: " console
Message("a / b = ") Num_Type(#1 / #2)
set x (in int console)
Message("a % b = ") Num_Type(#1 % #2)</lang>
out "number 2: " console
set y (in int console)
 
out "\nsum:\t" (int (+ x y)) endl console
out "diff:\t" (int (- x y)) endl console
out "prod:\t" (int (* x y)) endl console
# quotient doesn't round at all, but the int function rounds up
out "quot:\t" (int (/ x y)) endl console
# mod takes the sign of x
out "mod:\t" (int (mod x y)) endl console</syntaxhighlight>
 
Sample session:
<pre>number 1: 15
number 2: 7
 
sum: 22
diff: 8
prod: 105
quot: 2
mod: 1</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">
'Arithmetic - Integer
Sub RosettaArithmeticInt()
Dim opr As Variant, a As Integer, b As Integer
On Error Resume Next
 
a = CInt(InputBox("Enter first integer", "XLSM | Arithmetic"))
b = CInt(InputBox("Enter second integer", "XLSM | Arithmetic"))
 
Debug.Print "a ="; a, "b="; b, vbCr
For Each opr In Split("+ - * / \ mod ^", " ")
Select Case opr
Case "mod": Debug.Print "a mod b", a; "mod"; b, a Mod b
Case "\": Debug.Print "a \ b", a; "\"; b, a \ b
Case Else: Debug.Print "a "; opr; " b", a; opr; b, Evaluate(a & opr & b)
End Select
Next opr
End Sub
</syntaxhighlight>
 
=={{header|VBScript}}==
VBScript's variables are all Variants. What starts out as an integer may be converted to something else if the need arises.
 
=====Implementation=====
<syntaxhighlight lang="vb">option explicit
<lang vb>
option explicit
dim a, b
wscript.stdout.write "A? "
Line 1,376 ⟶ 5,782:
wscript.echo "a \ b=", a \ b
wscript.echo "a mod b=", a mod b
wscript.echo "a ^ b=", a ^ b</syntaxhighlight>
</lang>
 
=====Another Implementation=====
Gives the same output for the same input. Inspired by Python version.
<syntaxhighlight lang="vb">option explicit
<lang vb>
option explicit
dim a, b
wscript.stdout.write "A? "
Line 1,395 ⟶ 5,799:
for each op in split("+ - * / \ mod ^", " ")
wscript.echo "a",op,"b=",eval( "a " & op & " b")
next</syntaxhighlight>
next
</lang>
 
=====Invocation=====
<pre>
C:\foo>arithmetic.vbs
Line 1,411 ⟶ 5,814:
a ^ b= 1.5322783012207E+18
</pre>
 
=={{header|Vedit macro language}}==
<syntaxhighlight lang="vedit">#1 = Get_Num("Give number a: ")
#2 = Get_Num("Give number b: ")
Message("a + b = ") Num_Type(#1 + #2)
Message("a - b = ") Num_Type(#1 - #2)
Message("a * b = ") Num_Type(#1 * #2)
Message("a / b = ") Num_Type(#1 / #2)
Message("a % b = ") Num_Type(#1 % #2)</syntaxhighlight>
 
 
=={{header|Verilog}}==
<syntaxhighlight lang="verilog">module main;
integer a, b;
integer suma, resta, producto;
integer division, resto, expo;
initial begin
a = -12;
b = 7;
suma = a + b;
resta = a - b;
producto = a * b;
division = a / b;
resto = a % b;
expo = a ** b;
$display("Siendo dos enteros a = -12 y b = 7");
$display(" suma de a + b = ", suma);
$display(" resta de a - b = ", resta);
$display(" producto de a * b = ", producto);
$display(" división de a / b = ", division);
$display(" resto de a mod b = ", resto);
$display("exponenciación a ^ b = ", expo);
$finish ;
end
endmodule</syntaxhighlight>
 
=={{header|Vim Script}}==
<syntaxhighlight lang="vim">let a = float2nr(input("Number 1: ") + 0)
let b = float2nr(input("Number 2: ") + 0)
echo "\nSum: " . (a + b)
echo "Difference: " . (a - b)
echo "Product: " . (a * b)
" The result of an integer division is truncated
echo "Quotient: " . (a / b)
" The sign of the result of the remainder operation matches the sign of
" the first operand
echo "Remainder: " . (a % b)</syntaxhighlight>
 
=={{header|Visual Basic .NET}}==
<langsyntaxhighlight lang="vbnet">Imports System.Console
Module Module1
Sub Main
Line 1,426 ⟶ 5,879:
WriteLine("Exponent " & a ^ b)
End Sub
End Module</langsyntaxhighlight>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="go">// Arithmetic-integer in V (Vlang)
// Tectonics: v run arithmetic-integer.v
module main
import math
import os
 
// starts here
pub fn main() {
mut a := 0
mut b := 0
 
// get numbers from console
print("Enter two integer numbers, separated by a space: ")
text := os.get_raw_line()
values := text.split(' ')
a = values[0].int()
b = values[1].int()
 
// 4 basics, remainder, no exponentiation operator
println("values: a $a, b $b")
println("sum: a + b = ${a + b}")
println("difference: a - b = ${a - b}")
println("product: a * b = ${a * b}")
println("integer quotient: a / b = ${a / b}, truncation")
println("remainder: a % b = ${a % b}, sign follows dividend")
 
println("no exponentiation operator")
println(" math.pow: pow(a,b) = ${math.pow(a,b)}")
}</syntaxhighlight>
 
{{out}}
<pre>prompt$ v run arithmetic-integer.v
Enter two integer numbers, separated by a space: -5 3
values: a -5, b 3
sum: a + b = -2
difference: a - b = -8
product: a * b = -15
integer quotient: a / b = -1, truncation
remainder: a % b = -2, sign follows dividend
no exponentiation operator
math.pow: pow(a,b) = -125</pre>
 
=={{header|Wart}}==
<syntaxhighlight lang="python">a <- (read)
b <- (read)
prn "sum: " a+b
prn "difference: " a-b
prn "product: " a*b
prn "quotient: " a/b
prn "integer quotient: " (int a/b)
prn "remainder: " a%b
prn "exponent: " a^b</syntaxhighlight>
 
=={{header|Wren}}==
In Wren the quotient operator '/' does not round but, when the ''floor'' method is applied to the result, it rounds to the lower integer.
 
The sign of the remainder operator '%' matches the sign of the first operand.
<syntaxhighlight lang="wren">import "io" for Stdin, Stdout
System.write("first number: ")
Stdout.flush()
var a = Num.fromString(Stdin.readLine())
System.write("second number: ")
Stdout.flush()
var b = Num.fromString(Stdin.readLine())
System.print("sum: %(a + b)")
System.print("difference: %(a - b)")
System.print("product: %(a * b)")
System.print("integer quotient: %((a / b).floor)")
System.print("remainder: %(a % b)")
System.print("exponentiation: %(a.pow(b))")</syntaxhighlight>
 
{{out}}
Sample input/output:
<pre>
first number: 4
second number: 3
sum: 7
difference: 1
product: 12
integer quotient: 1
remainder: 1
exponentiation: 64
</pre>
 
=={{header|x86 Assembly}}==
Input and output would be OS-specific and are not implemented. This routine works on the 16-bit 8086, as well as on its 32-bit and 64-bit successors: it could be trivially modified to perform 32-bit or 64-bit arithmetic on machines where those are supported. The quotient is truncated towards zero; the remainder takes its sign from the first operand.
<syntaxhighlight lang="asm">arithm: mov cx, a
mov bx, b
xor dx, dx
mov ax, cx
add ax, bx
mov sum, ax
mov ax, cx
imul bx
mov product, ax
mov ax, cx
sub ax, bx
mov difference, ax
mov ax, cx
idiv bx
mov quotient, ax
mov remainder, dx
 
ret</syntaxhighlight>
 
=={{header|XLISP}}==
<syntaxhighlight lang="xlisp">(DEFUN INTEGER-ARITHMETIC ()
(DISPLAY "Enter two integers separated by a space.")
(NEWLINE)
(DISPLAY "> ")
(DEFINE A (READ))
(DEFINE B (READ))
(DISPLAY `(SUM ,(+ A B)))
(NEWLINE)
(DISPLAY `(DIFFERENCE ,(- A B)))
(NEWLINE)
(DISPLAY `(PRODUCT ,(* A B)))
(NEWLINE)
(DISPLAY `(QUOTIENT ,(QUOTIENT A B))) ; truncates towards zero
(NEWLINE)
(DISPLAY `(REMAINDER ,(REM A B))) ; takes sign of first operand
(NEWLINE)
(DISPLAY `(EXPONENTIATION ,(EXPT A B))))</syntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">include c:\cxpl\codes;
int A, B;
[A:= IntIn(0);
B:= IntIn(0);
IntOut(0, A+B); CrLf(0);
IntOut(0, A-B); CrLf(0);
IntOut(0, A*B); CrLf(0);
IntOut(0, A/B); CrLf(0); \truncates toward zero
IntOut(0, rem(0)); CrLf(0); \remainder's sign matches first operand (A)
]</syntaxhighlight>
 
=={{header|XSLT}}==
<langsyntaxhighlight lang="xml"><xsl:template name="arithmetic">
<xsl:param name="a">5</xsl:param>
<xsl:param name="b">2</xsl:param>
Line 1,436 ⟶ 6,030:
<fo:block>a * b = <xsl:value-of select="$a * $b"/></fo:block>
<fo:block>a / b = <xsl:value-of select="round($a div $b)"/></fo:block>
<fo:block>a mod b = <xsl:value-of select="$a mod $b"/></fo:block></lang>
</xsl:template></syntaxhighlight>
 
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">input "ingrese un numero? " a
input "ingrese otro numero? " b
 
print "suma ", a, " + ", b, " = ", (a + b)
print "resta ", a, " - ", b, " = ", (a - b)
print "producto ", a, " * ", b, " = ", (a * b)
print "division ", a, " \ ", b, " = ", int(a / b)
print "modulo ", a, " % ", b, " = ", mod(a, b)
print "potencia ", a, " ^ ", b, " = ", (a ^ b)
end</syntaxhighlight>
 
 
=={{header|Yorick}}==
<syntaxhighlight lang="yorick">x = y = 0;
read, x, y;
write, "x + y =", x + y;
write, "x - y =", x - y;
write, "x * y =", x * y;
write, "x / y =", x / y; // rounds toward zero
write, "x % y =", x % y; // remainder; matches sign of first operand when operands' signs differ
write, "x ^ y =", x ^ y; // exponentiation</syntaxhighlight>
 
=={{header|zkl}}==
<syntaxhighlight lang="zkl">x,y:=ask("Two ints: ").split(" ").apply("toInt");
println("x+y = ",x + y);
println("x-y = ",x - y);
println("x*y = ",x * y);
println("x/y = ",x / y); // rounds toward zero
println("x%y = ",x % y); // remainder; matches sign of first operand when operands' signs differ
println("x.divr(y) = ",x.divr(y)); // (x/y,remainder); sign as above</syntaxhighlight>
 
=={{header|zonnon}}==
<syntaxhighlight lang="zonnon">
module Main;
var
i,j: integer;
begin
write("A integer?:");readln(i);
write("another?: ");readln(j);
writeln("sum: ",i + j);
writeln("difference: ", i - j);
writeln("product: ", i * j);
writeln("quotient: ", i div j);
writeln("remainder: ", i mod j);
end Main.
</syntaxhighlight>
{{Out}}
<pre>
A integer?:2
another?: 3
sum: 5
difference: -1
product: 6
quotient: 0
remainder: 2
</pre>
 
=={{header|ZX Spectrum Basic}}==
<syntaxhighlight lang="zxbasic">5 LET a=5: LET b=3
10 PRINT a;" + ";b;" = ";a+b
20 PRINT a;" - ";b;" = ";a-b
30 PRINT a;" * ";b;" = ";a*b
40 PRINT a;" / ";b;" = ";INT (a/b)
50 PRINT a;" mod ";b;" = ";a-INT (a/b)*b
60 PRINT a;" to the power of ";b;" = ";a^b
</syntaxhighlight>
Anonymous user