Apply a callback to an array: Difference between revisions

(74 intermediate revisions by 41 users not shown)
Line 1:
{{task|Basic language learning}}
[[Category:Iteration]]
{{task|Basic language learning}}
 
;Task:
Line 8:
=={{header|11l}}==
{{trans|Kotlin}}
<langsyntaxhighlight lang="11l">V array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
V arrsq = array.map(i -> i * i)
print(arrsq)</langsyntaxhighlight>
{{out}}
<pre>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]</pre>
 
=={{header|6502 Assembly}}==
For this example, assume both the source array and the destination have a size of 86 elements (memory offsets base+0x00 to base+0x55.)
This was implemented in easy6502.
<syntaxhighlight lang="6502asm">define SRC_LO $00
define SRC_HI $01
 
define DEST_LO $02
define DEST_HI $03
 
define temp $04 ;temp storage used by foo
 
;some prep work since easy6502 doesn't allow you to define arbitrary bytes before runtime.
 
SET_TABLE:
TXA
STA $1000,X
INX
BNE SET_TABLE
;stores the identity table at memory address $1000-$10FF
 
CLEAR_TABLE:
LDA #0
STA $1200,X
INX
BNE CLEAR_TABLE
;fills the range $1200-$12FF with zeroes.
 
 
LDA #$10
STA SRC_HI
LDA #$00
STA SRC_LO
;store memory address $1000 in zero page
 
LDA #$12
STA DEST_HI
LDA #$00
STA DEST_LO
;store memory address $1200 in zero page
 
 
loop:
LDA (SRC_LO),y ;load accumulator from memory address $1000+y
JSR foo ;multiplies accumulator by 3.
STA (DEST_LO),y ;store accumulator in memory address $1200+y
 
INY
CPY #$56 ;alternatively you can store a size variable and check that here instead.
BCC loop
BRK
 
foo:
STA temp
ASL ;double accumulator
CLC
ADC temp ;2a + a = 3a
RTS</syntaxhighlight>
 
 
 
{{out}}
<pre>
1200: 00 03 06 09 0c 0f 12 15 18 1b 1e 21 24 27 2a 2d
1210: 30 33 36 39 3c 3f 42 45 48 4b 4e 51 54 57 5a 5d
1220: 60 63 66 69 6c 6f 72 75 78 7b 7e 81 84 87 8a 8d
1230: 90 93 96 99 9c 9f a2 a5 a8 ab ae b1 b4 b7 ba bd
1240: c0 c3 c6 c9 cc cf d2 d5 d8 db de e1 e4 e7 ea ed
1250: f0 f3 f6 f9 fc ff
</pre>
 
=={{header|68000 Assembly}}==
{{trans|11l}}
The following assumes all code/data is stored/executed in RAM and is therefore mutable.
<syntaxhighlight lang="68000devpac">LEA MyArray,A0
MOVE.W #(MyArray_End-MyArray)-1,D7 ;Len(MyArray)-1
MOVEQ #0,D0 ;sanitize D0-D2 to ensure nothing from any previous work will affect our math.
MOVEQ #0,D1
MOVEQ #0,D2
 
loop:
MOVE.B (A0),D0
MOVE.B D0,D1
MOVE.B D0,D2
MULU D1,D2
MOVE.B D2,(A0)+
dbra d7,loop
jmp * ;halt the CPU
 
MyArray:
DC.B 1,2,3,4,5,6,7,8,9,10
MyArray_End:</syntaxhighlight>
 
 
=={{header|8th}}==
The builtin word "a:map" does this:
<langsyntaxhighlight lang="forth">
[ 1 , 2, 3 ]
' n:sqr
a:map
</syntaxhighlight>
</lang>
That results in the array [1,4,9]
 
Line 27 ⟶ 120:
ACL2 does not have first-class functions; this is close, however:
 
<langsyntaxhighlight lang="lisp">(defun apply-to-each (xs)
(if (endp xs)
nil
Line 35 ⟶ 128:
(defun fn-to-apply (x)
(* x x))
</syntaxhighlight>
</lang>
 
=={{header|ActionScript}}==
<langsyntaxhighlight lang="actionscript">package
{
public class ArrayCallback
Line 56 ⟶ 149:
}
}
}</langsyntaxhighlight>
 
=={{header|Ada}}==
{{works with|GNAT|GPL 2005}}
<langsyntaxhighlight lang="ada">with Ada.Text_Io;
with Ada.Integer_text_IO;
Line 96 ⟶ 189:
begin
Map(Sample, Display'access);
end Call_Back_Example;</langsyntaxhighlight>
 
=={{header|Aime}}==
<langsyntaxhighlight lang="aime">void
map(list l, void (*fp)(object))
{
Line 117 ⟶ 210:
 
return 0;
}</langsyntaxhighlight>
 
=={{header|ALGOL 68}}==
Line 124 ⟶ 217:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<langsyntaxhighlight lang="algol68"> PROC call back proc = (INT location, INT value)VOID:
(
printf(($"array["g"] = "gl$, location, value))
Line 140 ⟶ 233:
[4]INT array := ( 1, 4, 9, 16 );
map(array, call back proc)
)</langsyntaxhighlight>
 
{{Out}}
Line 149 ⟶ 242:
array[ +4] = +16
</pre>
 
=={{header|ALGOL W}}==
<syntaxhighlight lang="algolw">begin
procedure printSquare ( integer value x ) ; writeon( i_w := 1, s_w := 0, " ", x * x );
% applys f to each element of a from lb to ub (inclusive) %
procedure applyI ( procedure f; integer array a ( * ); integer value lb, ub ) ;
for i := lb until ub do f( a( i ) );
% test applyI %
begin
integer array a ( 1 :: 3 );
a( 1 ) := 1; a( 2 ) := 2; a( 3 ) := 3;
applyI( printSquare, a, 1, 3 )
end
end.</syntaxhighlight>
 
=={{header|APL}}==
By default functions in APL work on arrays as it is an array oriented language. Some examples:
 
<langsyntaxhighlight APLlang="apl"> - 1 2 3
¯1 ¯2 ¯3
2 * 1 2 3 4
Line 163 ⟶ 270:
81 243 729
2187 6561 19683
</syntaxhighlight>
</lang>
 
=={{header|AppleScript}}==
<langsyntaxhighlight lang="applescript">on callback for arg
-- Returns a string like "arc has 3 letters"
arg & " has " & (count arg) & " letters"
Line 176 ⟶ 283:
-- to callback, then speaks the return value.
say (callback for aref)
end repeat</langsyntaxhighlight>
 
If the callback would <code>set arg's contents to "something"</code>, then <code>alist</code> would be mutated.
Line 183 ⟶ 290:
For a more general implementation of '''map(function, list)''', '''foldl(function, startValue, list)''', and '''filter(predicate, list)''', we could write:
 
<langsyntaxhighlight lang="applescript">on run
set xs to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Line 260 ⟶ 367:
return lst
end tell
end map</langsyntaxhighlight>
{{Out}}
<pre>{{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}, {2, 4, 6, 8, 10}, 55}</pre>
 
=={{header|Arturo}}==
<syntaxhighlight lang="rebol">arr: [1 2 3 4 5]
 
print map arr => [2*&]</syntaxhighlight>
<lang arturo>arr #(1 2 3 4 5)
 
print $(map arr { & * 2 })</lang>
 
{{out}}
 
<pre>#(2 4 6 8 10)</pre>
 
=={{header|AutoHotkey}}==
<langsyntaxhighlight AutoHotkeylang="autohotkey">map("callback", "3,4,5")
 
callback(array){
Line 284 ⟶ 390:
map(callback, array){
%callback%(array)
}</langsyntaxhighlight>
 
=={{header|AWK}}==
<langsyntaxhighlight lang="awk">$ awk 'func psqr(x){print x,x*x}BEGIN{split("1 2 3 4 5",a);for(i in a)psqr(a[i])}'
4 16
5 25
1 1
2 4
3 9</langsyntaxhighlight>
 
=={{header|Babel}}==
Line 298 ⟶ 404:
Let us define a squaring operator:
 
<langsyntaxhighlight lang="babel">sq { dup * } <</langsyntaxhighlight>
 
Now, we apply the sq operator over a list and display the result using the lsnum utility:
 
<langsyntaxhighlight lang="babel">( 0 1 1 2 3 5 8 13 21 34 ) { sq ! } over ! lsnum !</langsyntaxhighlight>
 
{{Out}}
Line 309 ⟶ 415:
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> DIM a(4)
a() = 1, 2, 3, 4, 5
PROCmap(a(), FNsqrt())
Line 325 ⟶ 431:
NEXT
ENDPROC
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 334 ⟶ 440:
2.23606798
</pre>
 
=={{header|Binary Lambda Calculus}}==
In the lambda calculus, we can map over a list as in https://github.com/tromp/AIT/blob/master/lists/map.lam, which gives the following BLC program to negate every bit of input:
<pre>010001101000000101100000000001011000000101111111010110010111111101111110111010</pre>
 
=={{header|BQN}}==
<syntaxhighlight lang="bqn">Square ← ט
 
array ← 2‿3‿5‿7‿11‿13
 
Square¨ array</syntaxhighlight>
The use of the ¨ modifier is the general approach, but actually not necessary with arithmetic functions.
{{out}}
<pre>⟨ 4 9 25 49 121 169 ⟩</pre>
 
=={{header|Bracmat}}==
<langsyntaxhighlight lang="bracmat">( ( callbackFunction1
= location value
. !arg:(?location,?value)
Line 364 ⟶ 484:
& mapar$(array,4,callbackFunction2)
& mapar$(array,4,callbackFunction1)
);</langsyntaxhighlight>
{{Out}}
<pre>array[0] = 1
Line 377 ⟶ 497:
=={{header|Brat}}==
 
<langsyntaxhighlight lang="brat">#Print out each element in array
[:a :b :c :d :e].each { element |
p element
}</langsyntaxhighlight>
 
Alternatively:
 
<langsyntaxhighlight lang="brat">[:a :b :c :d :e].each ->p</langsyntaxhighlight>
 
=={{header|C}}==
 
'''callback.h'''
<langsyntaxhighlight lang="c">#ifndef CALLBACK_H
#define CALLBACK_H
 
Line 404 ⟶ 524:
void map(int* array, int len, void(*callback)(int,int));
 
#endif</langsyntaxhighlight>
 
'''callback.c'''
<langsyntaxhighlight lang="c">#include <stdio.h>
#include "callback.h"
 
Line 433 ⟶ 553:
map(array, 4, callbackFunction);
return 0;
}</langsyntaxhighlight>
 
{{Out}}
Line 443 ⟶ 563:
</pre>
 
=={{header|C sharp|C#}}==
{{works with|C sharp|C#|3.0+}}
This version uses the C# 3 lambda notation.
 
<langsyntaxhighlight lang="csharp">int[] intArray = { 1, 2, 3, 4, 5 };
// Simplest method: LINQ, functional
int[] squares1 = intArray.Select(x => x * x).ToArray();
Line 457 ⟶ 577:
// Or, if you only want to call a function on each element, just use foreach
foreach (var i in intArray)
Console.WriteLine(i * i);</langsyntaxhighlight>
 
{{works with|C sharp|C#|2.0+}}
 
{{works with|Visual C sharp|Visual C#|2005}}
<langsyntaxhighlight lang="csharp">using System;
 
static class Program
Line 495 ⟶ 615:
Console.WriteLine(value * value);
}
}</langsyntaxhighlight>
 
=={{header|C++}}==
Line 501 ⟶ 621:
{{works with|g++|4.1.1}}
===C-Style Array===
<langsyntaxhighlight lang="cpp">#include <iostream> //cout for printing
#include <algorithm> //for_each defined here
 
Line 516 ⟶ 636:
return 0;
}
//prints 1 4 9 16 25</langsyntaxhighlight>
 
===std::vector===
{{libheader|STL}}
<langsyntaxhighlight lang="cpp">#include <iostream> // cout for printing
#include <algorithm> // for_each defined here
#include <vector> // stl vector class
Line 541 ⟶ 661:
return 0;
}
//prints 1 4 9 16 25</langsyntaxhighlight>
 
More tricky with binary function
<langsyntaxhighlight lang="cpp">#include <iostream> // cout for printing
#include <algorithm> // for_each defined here
#include <vector> // stl vector class
Line 567 ⟶ 687:
return 0;
}
//prints 1x 2x 3x 4x 5x</langsyntaxhighlight>
 
===Boost.Lambda===
{{libheader|Boost}}
<langsyntaxhighlight lang="cpp">using namespace std;
using namespace boost::lambda;
vector<int> ary(10);
int i = 0;
for_each(ary.begin(), ary.end(), _1 = ++var(i)); // init array
transform(ary.begin(), ary.end(), ostream_iterator<int>(cout, " "), _1 * _1); // square and output</langsyntaxhighlight>
 
===C++11===
<langsyntaxhighlight lang="cpp">#include <vector>
#include <iostream>
#include <algorithm>
Line 593 ⟶ 713:
std::cout << std::endl;
return 0;
}</langsyntaxhighlight>
 
=={{header|Clean}}==
Line 599 ⟶ 719:
Define a function and an initial (unboxed) array.
 
<langsyntaxhighlight lang="clean">square x = x * x
 
values :: {#Int}
values = {x \\ x <- [1 .. 10]}</langsyntaxhighlight>
 
One can easily define a map for arrays, which is overloaded and works for all kinds of arrays (lazy, strict, unboxed).
 
<langsyntaxhighlight lang="clean">mapArray f array = {f x \\ x <-: array}</langsyntaxhighlight>
 
Apply the function to the initial array (using a comprehension) and print result.
 
<langsyntaxhighlight lang="clean">Start :: {#Int}
Start = mapArray square values</langsyntaxhighlight>
 
=={{header|Clio}}==
'''Math operations'''
<langsyntaxhighlight lang="clio">[1 2 3 4] * 2 + 1 -> print</langsyntaxhighlight>
'''Quick functions'''
<syntaxhighlight lang="text">[1 2 3 4] -> * n: n * 2 + 1 -> print</langsyntaxhighlight>
'''Anonymous function'''
<langsyntaxhighlight lang="clio">[1 2 3 4]
-> * fn n:
n * 2 + 1
-> print</langsyntaxhighlight>
'''Named function'''
<langsyntaxhighlight lang="clio">fn double-plus-one n:
n * 2 + 1
 
[1 2 3 4] -> * double-plus-one -> print</langsyntaxhighlight>
 
=={{header|Clojure}}==
 
<langsyntaxhighlight lang="lisp">;; apply a named function, inc
(map inc [1 2 3 4])</langsyntaxhighlight>
 
<langsyntaxhighlight lang="lisp">;; apply a function
(map (fn [x] (* x x)) [1 2 3 4])</langsyntaxhighlight>
 
<langsyntaxhighlight lang="lisp">;; shortcut syntax for a function
(map #(* % %) [1 2 3 4])</langsyntaxhighlight>
 
=={{header|COBOLCLU}}==
<syntaxhighlight lang="clu">% This procedure will call a given procedure with each element
% of the given array. Thanks to CLU's type parameterization,
% it will work for any type of element.
apply_to_all = proc [T: type] (a: array[T], f: proctype(int,T))
for i: int in array[T]$indexes(a) do
f(i, a[i])
end
end apply_to_all
 
% Callbacks for both string and int
Basic implementation of a map function:
show_int = proc (i, val: int)
<lang cobol> IDENTIFICATION DIVISION.
po: stream := stream$primary_output()
PROGRAM-ID. Map.
stream$putl(po, "array[" || int$unparse(i) || "] = " || int$unparse(val));
end show_int
 
show_string = proc (i: int, val: string)
DATA DIVISION.
po: stream := stream$primary_output()
WORKING-STORAGE SECTION.
stream$putl(po, "array[" || int$unparse(i) || "] = " || val);
01 Table-Size CONSTANT 30.
end show_string
 
% Here's how to use them
LOCAL-STORAGE SECTION.
start_up = proc ()
01 I USAGE UNSIGNED-INT.
po: stream := stream$primary_output()
ints: array[int] := array[int]$[2, 3, 5, 7, 11]
strings: array[string] := array[string]$
["enemy", "lasagna", "robust", "below", "wax"]
stream$putl(po, "Ints: ")
apply_to_all[int](ints, show_int)
stream$putl(po, "\nStrings: ")
apply_to_all[string](strings, show_string)
end start_up</syntaxhighlight>
{{out}}
<pre>Ints:
array[1] = 2
array[2] = 3
array[3] = 5
array[4] = 7
array[5] = 11
 
Strings:
LINKAGE SECTION.
array[1] = enemy
01 Table-Param.
array[2] = lasagna
03 Table-Values USAGE COMP-2 OCCURS Table-Size TIMES.
array[3] = robust
array[4] = below
array[5] = wax</pre>
 
=={{header|COBOL}}==
01 Func-Id PIC X(30).
{{Works with|COBOL 2002}}
Basic implementation of a map function:
<syntaxhighlight lang="cobolfree"> >>SOURCE FORMAT IS FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. map.
 
DATA DIVISION.
PROCEDURE DIVISION USING Table-Param Func-Id.
LOCAL-STORAGE SECTION.
PERFORM VARYING I FROM 1 BY 1 UNTIL Table-Size < I
01 i CALL Func-Id USING BY REFERENCE Table-ValuesUSAGE (I)IS INDEX.
01 table-size END-PERFORMCONSTANT AS 30.
LINKAGE SECTION.
01 table-param.
03 table-values USAGE IS FLOAT-LONG, OCCURS table-size TIMES.
01 func-ptr USAGE IS PROGRAM-POINTER.
 
PROCEDURE DIVISION USING BY REFERENCE table-param, BY VALUE func-ptr.
GOBACK
PERFORM VARYING i FROM 1 BY 1 UNTIL i IS GREATER THAN table-size
.</lang>
CALL func-ptr USING BY REFERENCE table-values(i)
END-PERFORM
GOBACK.
 
END PROGRAM map.</syntaxhighlight>
 
=={{header|CoffeeScript}}==
<langsyntaxhighlight lang="coffeescript">
map = (arr, f) -> (f(e) for e in arr)
arr = [1, 2, 3, 4, 5]
f = (x) -> x * x
console.log map arr, f # prints [1, 4, 9, 16, 25]
</syntaxhighlight>
</lang>
 
 
=={{header|Common Lisp}}==
Line 680 ⟶ 846:
Imperative: print 1, 2, 3, 4 and 5:
 
<langsyntaxhighlight lang="lisp">(map nil #'print #(1 2 3 4 5))</langsyntaxhighlight>
 
Functional: collect squares into new vector that is returned:
 
<langsyntaxhighlight lang="lisp">(defun square (x) (* x x))
(map 'vector #'square #(1 2 3 4 5))</langsyntaxhighlight>
 
Destructive, like the Javascript example; add 1 to every slot of vector *a*:
 
<langsyntaxhighlight lang="lisp">(defvar *a* (vector 1 2 3))
(map-into *a* #'1+ *a*)</langsyntaxhighlight>
 
=={{header|Component Pascal}}==
BlackBox Component Builder
<langsyntaxhighlight lang="oberon2">
MODULE Callback;
IMPORT StdLog;
Line 749 ⟶ 915:
END Do;
END Callback.
</syntaxhighlight>
</lang>
Execute: ^Q Callback.Do<br/>
{{Out}}
Line 775 ⟶ 941:
6561
</pre>
 
=={{header|Crystal}}==
Calling with a block
<syntaxhighlight lang="ruby">values = [1, 2, 3]
 
new_values = values.map do |number|
number * 2
end
 
puts new_values #=> [2, 4, 6]</syntaxhighlight>
 
Calling with a function/method
<syntaxhighlight lang="ruby">values = [1, 2, 3]
 
def double(number)
number * 2
end
 
# the `->double(Int32)` syntax creates a proc from a function/method. argument types must be specified.
# the `&proc` syntax passes a proc as a block.
# combining the two passes a function/method as a block
new_values = values.map &->double(Int32)
 
puts new_values #=> [2, 4, 6]</syntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm;
 
void main() {
Line 783 ⟶ 973:
auto m = items.map!(x => x + 5)();
writeln(m);
}</langsyntaxhighlight>
{{out}}
<pre>[6, 7, 8, 9, 10]</pre>
 
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">
<lang Delphi>
// Declare the callback function
procedure callback(const AInt:Integer);
Line 806 ⟶ 996:
callback(myArray[i]);
end.
</syntaxhighlight>
</lang>
 
=={{header|Dyalect}}==
 
<syntaxhighlight lang="dyalect">func Array.Select(pred) {
let ys = []
for x in this when pred(x) {
ys.Add(x)
}
return ys
}
var arr = [1, 2, 3, 4, 5]
var squares = arr.Select(x => x * x)
print(squares)</syntaxhighlight>
 
=={{header|Déjà Vu}}==
There is a <code>map</code> builtin that does just this.
<langsyntaxhighlight lang="dejavu">!. map @++ [ 1 4 8 ]
 
#implemented roughly like this:
Line 816 ⟶ 1,022:
# for i in lst:
# f i
# [</langsyntaxhighlight>
{{out}}
<pre>[ 2 5 9 ]</pre>
 
=={{header|Dyalect}}==
 
<lang Dyalect>func Array.select(pred) {
for x in this when pred(x) {
yield x
}
}
 
var arr = [1, 2, 3, 4, 5]
var squares = arr.select(x => x * x)
print(squares)</lang>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def array := [1,2,3,4,5]
def square(value) {
return value * value
}</langsyntaxhighlight>
 
Example of builtin iteration:
 
<langsyntaxhighlight lang="e">def callback(index, value) {
println(`Item $index is $value.`)
}
array.iterate(callback)</langsyntaxhighlight>
 
There is no built-in map function '''yet'''.
Line 851 ⟶ 1,044:
returning a plain list (which is usually an array in implementation).
 
<langsyntaxhighlight lang="e">def map(func, collection) {
def output := [].diverge()
for item in collection {
Line 858 ⟶ 1,051:
return output.snapshot()
}
println(map(square, array))</langsyntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
(vector-map sqrt #(0 4 16 49))
→ #( 0 2 4 7)
Line 873 ⟶ 1,066:
v[2] = 4
→ #( 4 9 16)
</syntaxhighlight>
</lang>
 
=={{header|Efene}}==
 
<langsyntaxhighlight lang="efene">square = fn (N) {
N * N
}
Line 909 ⟶ 1,102:
io.format("squares3 : ~p~n", [squares3(Numbers)])
}
</syntaxhighlight>
</lang>
 
=={{header|EGL}}==
<langsyntaxhighlight EGLlang="egl">delegate callback( i int ) returns( int ) end
 
program ApplyCallbackToArray
Line 931 ⟶ 1,124:
return( i * i );
end
end</langsyntaxhighlight>
 
=={{header|Elena}}==
ELENA 46.0x :
<langsyntaxhighlight lang="elena">import system'routines;
 
PrintSecondPower(n){ console.writeLine(n * n) }
Line 941 ⟶ 1,134:
public program()
{
new int[]::({1, 2, 3, 4, 5, 6, 7, 8, 9, 10)}.forEach:(PrintSecondPower)
}</langsyntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">
<lang Elixir>
Enum.map([1, 2, 3], fn(n) -> n * 2 end)
Enum.map [1, 2, 3], &(&1 * 2)
</syntaxhighlight>
</lang>
 
{{Out}}
Line 958 ⟶ 1,151:
A list would be more commonly used in Erlang rather than an array.
 
<syntaxhighlight lang="erlang">
<lang Erlang>
1> L = [1,2,3].
[1,2,3]
</syntaxhighlight>
</lang>
 
You can use lists:foreach/2 if you just want to apply the callback to each element of the list.
 
<syntaxhighlight lang="text">
2> lists:foreach(fun(X) -> io:format("~w ",[X]) end, L).
1 2 3 ok
</syntaxhighlight>
</lang>
 
Or you can use lists:map/2 if you want to create a new list with the result of the callback on each element.
 
<syntaxhighlight lang="erlang">
<lang Erlang>
3> lists:map(fun(X) -> X + 1 end, L).
[2,3,4]
</syntaxhighlight>
</lang>
 
Or you can use lists:foldl/3 if you want to accumulate the result of the callback on each element into one value.
 
<syntaxhighlight lang="erlang">
<lang Erlang>
4> lists:foldl(fun(X, Sum) -> X + Sum end, 0, L).
6
</syntaxhighlight>
</lang>
 
 
=={{header|ERRE}}==
<syntaxhighlight lang="text">
PROGRAM CALLBACK
 
Line 1,011 ⟶ 1,203:
PRINT
END PROGRAM
</syntaxhighlight>
</lang>
This example shows how to pass a function to a procedure.
{{Out}}
Line 1,019 ⟶ 1,211:
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function apply_to_all(sequence s, integer f)
-- apply a function to all elements of a sequence
sequence result
Line 1,036 ⟶ 1,228:
-- add1() is visible here, so we can ask for its routine id
? apply_to_all({1, 2, 3}, routine_id("add1"))
-- displays {2,3,4}</langsyntaxhighlight>
This is also "Example 2" in the Euphoria documentation for <code>routine_id()</code>.
Note that this example will not work for multi-dimensional sequences.
 
=={{header|F_Sharp|F#}}==
Apply a named function to each member of the array. The result is a new array of the same size as the input.
<syntaxhighlight lang="fsharp">let evenp x = x % 2 = 0
let result = Array.map evenp [| 1; 2; 3; 4; 5; 6 |]</syntaxhighlight>
The same can be done using anonymous functions, this time squaring the members of the input array.
<syntaxhighlight lang="fsharp">let result = Array.map (fun x -> x * x) [|1; 2; 3; 4; 5|]</syntaxhighlight>
Use ''iter'' if the applied function does not return a value.
<syntaxhighlight lang="fsharp">Array.iter (fun x -> printfn "%d" x) [|1; 2; 3; 4; 5|]</syntaxhighlight>
 
=={{header|Factor}}==
Print each element squared:
<langsyntaxhighlight lang="factor">{ 1 2 3 4 } [ sq . ] each</langsyntaxhighlight>
 
Collect return values:
<langsyntaxhighlight lang="factor">{ 1 2 3 4 } [ sq ] map</langsyntaxhighlight>
 
=={{header|Fantom}}==
Line 1,051 ⟶ 1,252:
In Fantom, functions can be passed to a collection iterator, such as 'each'. 'map' is used similarly, and the results are collected into a list.
 
<langsyntaxhighlight lang="fantom">
class Main
{
Line 1,061 ⟶ 1,262:
}
}
</syntaxhighlight>
</lang>
 
{{Out}}
Line 1,075 ⟶ 1,276:
=={{header|FBSL}}==
'''User-defined mapping function:'''
<langsyntaxhighlight lang="qbasic">#APPTYPE CONSOLE
 
FOREACH DIM e IN MyMap(Add42, {1, 2, 3})
Line 1,091 ⟶ 1,292:
END FUNCTION
 
FUNCTION Add42(n): RETURN n + 42: END FUNCTION</langsyntaxhighlight>
{{Out}}
<pre>43 44 45
Line 1,097 ⟶ 1,298:
 
'''Standard MAP() function:'''
<langsyntaxhighlight lang="qbasic">#APPTYPE CONSOLE
 
DIM languages[] = {{"English", {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"}}, _
Line 1,113 ⟶ 1,314:
MAP(NameANumber, lang[0], 1 TO 10, lang[1])
PRINT LPAD("", 40, "-")
END SUB</langsyntaxhighlight>
{{Out}}
<pre>The number 1 is called "one" in English
Line 1,139 ⟶ 1,340:
Press any key to continue...</pre>
 
=={{header|FōrmulæFe}}==
<syntaxhighlight lang="clojure">
 
(= map (fn (f lst)
In [http://wiki.formulae.org/Apply_a_callback_to_an_array this] page you can see the solution of this task.
(let res (cons nil nil))
 
(let tail res)
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation &mdash;i.e. XML, JSON&mdash; they are intended for transportation effects more than visualization and edition.
(while lst
(setcdr tail (cons (f (car lst)) nil))
(= lst (cdr lst))
(= tail (cdr tail)))
(cdr res)))
 
(print (map (fn (x) (* x x)) '(1 2 3 4 5 6 7 8 9 10)))
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
</syntaxhighlight>
 
=={{header|Forth}}==
Line 1,151 ⟶ 1,358:
This is a word that will call a given function on each cell in an array.
 
<langsyntaxhighlight lang="forth">: map ( addr n fn -- )
-rot cells bounds do i @ over execute i ! cell +loop ;</langsyntaxhighlight>
 
{{Out|Example usage}}
<langsyntaxhighlight lang="forth">create data 1 , 2 , 3 , 4 , 5 ,
data 5 ' 1+ map \ adds one to each element of data</langsyntaxhighlight>
 
=={{header|Fortran}}==
Line 1,162 ⟶ 1,369:
 
{{Works with |Fortran|ISO 95 and later}}
<langsyntaxhighlight lang="fortran">module arrCallback
contains
elemental function cube( x )
Line 1,170 ⟶ 1,377:
cube = x * x * x
end function cube
end module arrCallback</langsyntaxhighlight>
 
<langsyntaxhighlight lang="fortran">program testAC
use arrCallback
implicit none
Line 1,188 ⟶ 1,395:
write(*,*) b(i,:)
end do
end program testAC</langsyntaxhighlight>
 
{{Works with|ANSI FORTRAN| 77 (with MIL-STD-1753 structured DO) and later}}
<langsyntaxhighlight lang="fortran"> program test
C
C-- Declare array:
Line 1,204 ⟶ 1,411:
end do
C
end</langsyntaxhighlight>
 
=={{header|FP}}==
<langsyntaxhighlight lang="fp">{square * . [id, id]}
& square: <1,2,3,4,5></langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
Sub PrintEx(n As Integer)
Line 1,229 ⟶ 1,436:
Print
Print "Press any key to quit the program"
Sleep</langsyntaxhighlight>
 
{{out}}
Line 1,248 ⟶ 1,455:
 
=={{header|Frink}}==
<langsyntaxhighlight lang="frink">
f = {|x| x^2} // Anonymous function to square input
a = [1,2,3,5,7]
println[map[f, a]]
</syntaxhighlight>
</lang>
 
=={{header|F_Sharp|F#}}==
Apply a named function to each member of the array. The result is a new array of the same size as the input.
<lang fsharp>let evenp x = x % 2 = 0
let result = Array.map evenp [| 1; 2; 3; 4; 5; 6 |]</lang>
The same can be done using anonymous functions, this time squaring the members of the input array.
<lang fsharp>let result = Array.map (fun x -> x * x) [|1; 2; 3; 4; 5|]</lang>
Use ''iter'' if the applied function does not return a value.
<lang fsharp>Array.iter (fun x -> printfn "%d" x) [|1; 2; 3; 4; 5|]</lang>
 
=={{header|FunL}}==
<langsyntaxhighlight lang="funl">[1, 2, 3].foreach( println )
 
[1, 2, 3].foreach( a -> println(2a) )</langsyntaxhighlight>
 
{{out}}
Line 1,280 ⟶ 1,478:
 
=={{header|Futhark}}==
<syntaxhighlight lang="futhark">
<lang Futhark>
map f l
</syntaxhighlight>
</lang>
e.g.
<syntaxhighlight lang="futhark">
<lang Futhark>
map (\x->x+1) [1,2,3] -- [2,3,4]
</syntaxhighlight>
</lang>
or equivalently
<syntaxhighlight lang="futhark">
<lang Futhark>
map (+1) [1,2,3] -- [2,3,4]
</syntaxhighlight>
</lang>
 
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">
 
include "NSLog.incl"
 
void local fn Callback( n as NSInteger )
NSLog( @"Square root of %ld = %f", n, sqr(n) )
end fn
 
void local fn DoIt
NSUInteger i, count
CFArrayRef array = @[@1, @2, @3, @4, @5, @6, @7, @8, @9, @10]
 
count = len(array)
for i = 0 to count -1
fn Callback( fn NumberIntegerValue( array[i] ) )
next
end fn
 
fn DoIt
 
HandleEvents
</syntaxhighlight>
 
Another option is to enumerate the array.
<syntaxhighlight lang="futurebasic">include "NSLog.incl"
 
void local fn Callback( array as CFArrayRef, obj as CFTypeRef )
long value = intVal(obj)
NSLog( @"Square root of %ld = %f", value, sqr(value) )
end fn
 
void local fn DoIt
CFArrayRef array = @[@1, @2, @3, @4, @5, @6, @7, @8, @9, @10]
ArrayEnumerateObjects( array, @fn Callback, NULL )
end fn
 
fn DoIt
 
HandleEvents</syntaxhighlight>
 
{{out}}
<pre>
Square root of 1 = 1.000000
Square root of 2 = 1.414214
Square root of 3 = 1.732051
Square root of 4 = 2.000000
Square root of 5 = 2.236068
Square root of 6 = 2.449490
Square root of 7 = 2.645751
Square root of 8 = 2.828427
Square root of 9 = 3.000000
Square root of 10 = 3.162278
</pre>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Apply_a_callback_to_an_array}}
 
'''Solution'''
 
Most programming languages define a high-order map function. In Fōrmulæ, there is ''arraization'' (by analogy with ''summation''). In the following expression, the "big" curly braces resembles the "big" sigma of a summation:
 
[[File:Fōrmulæ - Apply a callback to an array 01.png]]
 
[[File:Fōrmulæ - Apply a callback to an array 02.png]]
 
The elements of the array are not required to be of the same type:
 
[[File:Fōrmulæ - Apply a callback to an array 03.png]]
 
[[File:Fōrmulæ - Apply a callback to an array 04.png]]
 
=={{header|GAP}}==
<langsyntaxhighlight lang="gap">a := [1 .. 4];
b := ShallowCopy(a);
 
Line 1,313 ⟶ 1,586:
 
b;
# [ 1 .. 4 ]</langsyntaxhighlight>
 
=={{header|Go}}==
Line 1,320 ⟶ 1,593:
 
Perhaps in contrast to Ruby, it is idiomatic in Go to use the for statement:
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 1,328 ⟶ 1,601:
fmt.Println(i * i)
}
}</langsyntaxhighlight>
 
Alternatively though, an array-like type can be defined and callback-style methods can be defined on it to apply a function to the elements.
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 1,361 ⟶ 1,634:
return i * i
}))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,375 ⟶ 1,648:
 
Print each value in a list
<langsyntaxhighlight lang="groovy">[1,2,3,4].each { println it }</langsyntaxhighlight>
 
Create a new list containing the squares of another list
<langsyntaxhighlight lang="groovy">[1,2,3,4].collect { it * it }</langsyntaxhighlight>
 
=={{header|Haskell}}==
Line 1,384 ⟶ 1,657:
===List===
{{works with|GHC}}
<langsyntaxhighlight lang="haskell">let square x = x*x
let values = [1..10]
map square values</langsyntaxhighlight>
 
Using list comprehension to generate a list of the squared values
<langsyntaxhighlight lang="haskell">[square x | x <- values]</langsyntaxhighlight>
 
More directly
<langsyntaxhighlight lang="haskell">[1 .. 10] >>= pure . (^ 2)</langsyntaxhighlight>
 
Or with one less layer of monadic wrapping
<langsyntaxhighlight lang="haskell">(^ 2) <$> [1..10]</langsyntaxhighlight>
 
Using function composition to create a function that will print the squares of a list
<langsyntaxhighlight lang="haskell">let printSquares = mapM_ (print.square)
printSquares values</langsyntaxhighlight>
 
===Array===
{{works with|GHC|7.10.3}}
<langsyntaxhighlight lang="haskell">import Data.Array (Array, listArray)
 
square :: Int -> Int
Line 1,412 ⟶ 1,685:
 
main :: IO ()
main = print $ fmap square values</langsyntaxhighlight>
{{Out}}
<pre>array (1,10) [(1,1),(2,4),(3,9),(4,16),(5,25),(6,36),(7,49),(8,64),(9,81),(10,100)]</pre>
 
=={{header|Guish}}==
{{works with|guish|2.5.1}}
<syntaxhighlight lang="guish">
# applies add2 (adds 2) to each element
add2 = {
return add(@1, 2)
}
l = {1, 2, 3, 4, 5, 6, 7}
puts each(add2, flat(@l))
</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight lang="icon">procedure main()
local lst
lst := [10, 20, 30, 40]
Line 1,425 ⟶ 1,709:
procedure callback(p,arg)
return p(" -> ", arg)
end</langsyntaxhighlight>
 
=={{header|IDL}}==
Line 1,431 ⟶ 1,715:
Hard to come up with an example that isn't completely contrived. IDL doesn't really distinguish between a scalar and an array; thus
 
<langsyntaxhighlight lang="idl">b = a^3</langsyntaxhighlight>
 
will yield a scalar if <tt>a</tt> is scalar or a vector if <tt>a</tt> is a vector or an n-dimensional array if <tt>a</tt> is an n-dimensional array
 
=={{header|Insitux}}==
 
<syntaxhighlight lang="insitux">; apply a named function
(map inc [1 2 3 4])</syntaxhighlight>
 
<syntaxhighlight lang="insitux">; apply a parameterised closure
(map (fn x (+ x 1)) [1 2 3 4])</syntaxhighlight>
 
<syntaxhighlight lang="insitux">; apply a non-parameterised closure
(map #(+ % 1) [1 2 3 4])</syntaxhighlight>
 
<syntaxhighlight lang="insitux">; apply an explicit partial closure
(map @(+ 1) [1 2 3 4])</syntaxhighlight>
 
<syntaxhighlight lang="insitux">; apply an implicit partial closure
(map (+ 1) [1 2 3 4])</syntaxhighlight>
 
=={{header|Io}}==
<langsyntaxhighlight lang="io">list(1,2,3,4,5) map(squared)</langsyntaxhighlight>
 
=={{header|J}}==
 
'''Solution''':
<langsyntaxhighlight lang="j"> "_1</langsyntaxhighlight>
 
'''Example''':
<langsyntaxhighlight lang="j"> callback =: *:
array =: 1 2 3 4 5
callback"_1 array
1 4 9 16 25</langsyntaxhighlight>
 
But note that this is a trivial example since <code>*: 1 2 3 4 5</code> would get the same result. Then again, this is something of a trivial exercise in J since all of J is designed around the idea of applying functions usefully to arrays.
 
=={{header|Jakt}}==
<syntaxhighlight lang="jakt">
fn map<T, U>(anon array: [T], function: fn(anon x: T) -> U) throws -> [U] {
mut result: [U] = []
result.ensure_capacity(array.size())
for item in array {
result.push(value: function(item))
}
return result
}
 
fn main() {
let array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
let array_squared = map(array, function: fn(anon n: i64) => n * n)
println("{}", array_squared)
}
</syntaxhighlight>
 
{{out}}
<pre>
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
</pre>
 
=={{header|Java}}==
Line 1,458 ⟶ 1,782:
while the <code>IntToInt</code> is used to replace the array values.
 
<langsyntaxhighlight lang="java">public class ArrayCallback7 {
 
interface IntConsumer {
Line 1,502 ⟶ 1,826:
});
}
}</langsyntaxhighlight>
 
Using Java 8 streams:
{{works with|Java|8}}
 
<langsyntaxhighlight lang="java">import java.util.Arrays;
 
public class ArrayCallback {
Line 1,523 ⟶ 1,847:
System.out.println("sum: " + sum);
}
}</langsyntaxhighlight>
 
=={{header|JavaScript}}==
 
===ES3===
<langsyntaxhighlight lang="javascript">function map(a, func) {
var ret = [];
for (var i = 0; i < a.length; i++) {
Line 1,536 ⟶ 1,860:
}
 
map([1, 2, 3, 4, 5], function(v) { return v * v; });</langsyntaxhighlight>
 
===ES5===
<langsyntaxhighlight lang="javascript">[1, 2, 3, 4, 5].map(function(v) { return v * v; });</langsyntaxhighlight>
 
===ES6===
<langsyntaxhighlight lang="javascript">[1, 2, 3, 4, 5].map(v => v * v);</langsyntaxhighlight>
 
The result is always:
Line 1,549 ⟶ 1,873:
 
=={{header|Joy}}==
<langsyntaxhighlight lang="joy">[1 2 3 4 5] [dup *] map.</langsyntaxhighlight>
 
=={{header|jq}}==
<langsyntaxhighlight lang="jq"># Illustration of map/1 using the builtin filter: exp
map(exp) # exponentiate each item in the input list
 
Line 1,566 ⟶ 1,890:
# Elementwise operation
[.[] + 1 ] # add 1 to each element of the input array
</langsyntaxhighlight>Here is a transcript illustrating how the last of these jq expressions can be evaluated:
<langsyntaxhighlight lang="jq">$ jq -c ' [.[] + 1 ]'
[0, 1 , 10]
[1,2,11]</langsyntaxhighlight>
 
=={{header|Jsish}}==
<langsyntaxhighlight lang="javascript">/* Apply callback, in Jsish using array.map() */
;[1, 2, 3, 4, 5].map(function(v,i,a) { return v * v; });
 
Line 1,579 ⟶ 1,903:
[1, 2, 3, 4, 5].map(function(v,i,a) { return v * v; }) ==> [ 1, 4, 9, 16, 25 ]
=!EXPECTEND!=
*/</langsyntaxhighlight>
 
{{out}}
Line 1,587 ⟶ 1,911:
=={{header|Julia}}==
{{works with|Julia|0.6}}
<langsyntaxhighlight lang="julia">numbers = [1, 3, 5, 7]
 
@show [n ^ 2 for n in numbers] # list comprehension
Line 1,594 ⟶ 1,918:
@show [n * n for n in numbers] # no need for a function,
@show numbers .* numbers # element-wise operation
@show numbers .^ 2 # includes .+, .-, ./, comparison, and bitwise operations as well</langsyntaxhighlight>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">fun main(args: Array<String>) {
val array = arrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) // build
val function = { i: Int -> i * i } // function to apply
val list = array.map { function(it) } // process each item
println(list) // print results
}</langsyntaxhighlight>
{{out}}
<pre>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]</pre>
 
=={{header|Klingphix}}==
<syntaxhighlight lang="klingphix">include ..\Utilitys.tlhy
 
( 1 2 3 4 ) [dup *] map
 
pstack
 
" " input</syntaxhighlight>
{{out}}
<pre>((1, 4, 9, 16))</pre>
 
=={{header|Lambdatalk}}==
<syntaxhighlight lang="scheme">
{A.map {lambda {:x} {* :x :x}} {A.new 1 2 3 4 5 6 7 8 9 10}}
-> [1,4,9,16,25,36,49,64,81,100]
</syntaxhighlight>
 
=={{header|Lang}}==
<syntaxhighlight lang="lang">
&arr = fn.arrayGenerateFrom(fn.inc, 10)
fn.println(&arr)
fn.arrayMap(&arr, fn.combC(fn.pow, 2))
fn.println(&arr)
</syntaxhighlight>
{{out}}
<pre>
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
</pre>
 
=={{header|Lang5}}==
<langsyntaxhighlight lang="lang5">: square(*) dup * ;
[1 2 3 4 5] square . "\n" .
[1 2 3 4 5] 'square apply . "\n" .</langsyntaxhighlight>
 
=={{header|langur}}==
<syntaxhighlight lang="langur">writeln map fn{^2}, 1..10</syntaxhighlight>
 
{{out}}
<pre>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]</pre>
 
=={{header|Lasso}}==
<langsyntaxhighlight Lassolang="lasso">define cube(n::integer) => #n*#n*#n
 
local(
Line 1,623 ⟶ 1,983:
}
 
#mycube</langsyntaxhighlight>
-> array(1, 8, 27, 64, 125)
 
=={{header|Lisaac}}==
<langsyntaxhighlight Lisaaclang="lisaac">+ a : ARRAY(INTEGER);
+ b : {INTEGER;};
 
Line 1,640 ⟶ 2,000:
};
 
a.foreach b;</langsyntaxhighlight>
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to square :x
output :x * :x
end
show map "square [1 2 3 4 5] ; [1 4 9 16 25]
show map [? * ?] [1 2 3 4 5] ; [1 4 9 16 25]
foreach [1 2 3 4 5] [print square ?] ; 1 4 9 16 25, one per line</langsyntaxhighlight>
 
=={{header|Lua}}==
 
Say we have an array:
<langsyntaxhighlight lang="lua">myArray = {1, 2, 3, 4, 5}</langsyntaxhighlight>
A map function for this would be
<langsyntaxhighlight lang="lua">map = function(f, data)
local result = {}
for k,v in ipairs(data) do
Line 1,661 ⟶ 2,021:
end
return result
end</langsyntaxhighlight>
Together with our array and a square function this yields:
<langsyntaxhighlight lang="lua">myFunc = function(x) return x*x end
 
print(unpack( map(myFunc, myArray) ))
--> 1 4 9 16 25</langsyntaxhighlight>
If you used pairs() instead of ipairs(), this would even work on a hash table in general.
However, remember that hash table do not have an implicit ordering on their elements, like arrays do,
Line 1,672 ⟶ 2,032:
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
a=(1,2,3,4,5)
b=lambda->{
Line 1,700 ⟶ 2,060:
Print s=>sum=115
 
</syntaxhighlight>
</lang>
 
=={{header|M4}}==
<langsyntaxhighlight M4lang="m4">define(`foreach', `pushdef(`$1')_foreach($@)popdef(`$1')')dnl
define(`_arg1', `$1')dnl
define(`_foreach', `ifelse(`$2', `()', `',
Line 1,711 ⟶ 2,071:
dnl
define(`z',`eval(`$1*2') ')dnl
apply(`(1,2,3)',`z')</langsyntaxhighlight>
 
{{Out}}
Line 1,721 ⟶ 2,081:
For lists and sets, which in Maple are immutable, a new object is returned.
Either the built-in procedure map, or the short syntax of a trailing tilde (~) on the applied operator may be used.
<syntaxhighlight lang="maple">
<lang Maple>
> map( sqrt, [ 1.1, 3.2, 5.7 ] );
[1.048808848, 1.788854382, 2.387467277]
Line 1,733 ⟶ 2,093:
> (x -> x + 1)~( { 1, 3, 5 } );
{2, 4, 6}
</syntaxhighlight>
</lang>
For Arrays (Vectors, Matrices, etc.) both map and trailing tilde also work, and by default create a new object, leaving the input Array unchanged.
<syntaxhighlight lang="maple">
<lang Maple>
> a := Array( [ 1.1, 3.2, 5.7 ] );
a := [1.1, 3.2, 5.7]
Line 1,750 ⟶ 2,110:
> a;
[1.1, 3.2, 5.7]
</syntaxhighlight>
</lang>
However, since these are mutable data structures in Maple, it is possible to use map to modify its input according to the applied procedure.
<syntaxhighlight lang="maple">
<lang Maple>
> map[inplace]( sqrt, a );
[1.048808848, 1.788854382, 2.387467277]
Line 1,758 ⟶ 2,118:
> a;
[1.048808848, 1.788854382, 2.387467277]
</syntaxhighlight>
</lang>
The Array a has been modified.
 
It is also possible to pass additional arguments to the mapped procedure.
<syntaxhighlight lang="maple">
<lang Maple>
> map( `+`, [ 1, 2, 3 ], 3 );
[4, 5, 6]
</syntaxhighlight>
</lang>
Passing additional arguments *before* the arguments from the mapped data structure is achieved using map2, or the more general map[n] procedure.
<syntaxhighlight lang="maple">
<lang Maple>
> map2( `-`, 5, [ 1, 2, 3 ] );
[4, 3, 2]
Line 1,773 ⟶ 2,133:
> map[2]( `/`, 5, [ 1, 2, 3 ] );
[5, 5/2, 5/3]
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}}==
<lang Mathematica>(#*#)& /@ {1, 2, 3, 4}
 
=={{header|Mathematica}}//{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">(#*#)& /@ {1, 2, 3, 4}
Map[Function[#*#], {1, 2, 3, 4}]
 
Map[((#*#)&,{1,2,3,4}]
Map[Function[w,w*w],{1,2,3,4}]</syntaxhighlight>
 
Map[Function[w,w*w],{1,2,3,4}]</lang>
 
=={{header|MATLAB}}==
Line 1,788 ⟶ 2,145:
Example:
For both of these function the first argument is a function handle for the function we would like to apply to each element. The second argument is the array whose elements are modified by the function. The function can be any function, including user defined functions.
<langsyntaxhighlight MATLABlang="matlab">>> array = [1 2 3 4 5]
 
array =
Line 1,822 ⟶ 2,179:
Column 5
 
-3.380515006246586</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">/* for lists or sets */
 
map(sin, [1, 2, 3, 4]);
Line 1,832 ⟶ 2,189:
/* for matrices */
 
matrixmap(sin, matrix([1, 2], [2, 4]));</langsyntaxhighlight>
 
=={{header|min}}==
{{works with|min|0.19.3}}
<langsyntaxhighlight lang="min">(1 2 3 4 5) (sqrt puts) foreach ; print each square root
(1 2 3 4 5) 'sqrt map ; collect return values</langsyntaxhighlight>
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">MODULE Callback EXPORTS Main;
 
IMPORT IO, Fmt;
Line 1,865 ⟶ 2,222:
BEGIN
Map(sample, NUMBER(sample), callback);
END Callback.</langsyntaxhighlight>
 
=={{header|Nanoquery}}==
<langsyntaxhighlight Nanoquerylang="nanoquery">// create a list of numbers 1-10
numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Line 1,880 ⟶ 2,237:
// display the squared list
println numbers</langsyntaxhighlight>
{{out}}
<pre>[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Line 1,887 ⟶ 2,244:
=={{header|Nemerle}}==
The <tt>Nemerle.Collections</tt> namespace defines the methods <tt>Iter()</tt> (if the function applied is <tt>void</tt>) and <tt>Map()</tt> (if the function applied returns a value).
<langsyntaxhighlight Nemerlelang="nemerle">def seg = array[1, 2, 3, 5, 8, 13];
def squares = seq.Map(x => x*x);</langsyntaxhighlight>
 
=={{header|NetLogo}}==
<syntaxhighlight lang="netlogo">
;; NetLogo “anonymous procedures”
;; stored in a variable, just to show it can be done.
let callback [ [ x ] x * x ]
show (map callback [ 1 2 3 4 5 ])
</syntaxhighlight>
 
=={{header|NewLISP}}==
 
<langsyntaxhighlight NewLISPlang="newlisp">> (map (fn (x) (* x x)) '(1 2 3 4))
(1 4 9 16)
</syntaxhighlight>
</lang>
 
=={{header|NGS}}==
<syntaxhighlight lang="ngs">{
<lang NGS>{
[1, 2, 3, 4, 5].map(F(x) x*x)
}</langsyntaxhighlight>
 
=={{header|Nial}}==
 
<langsyntaxhighlight lang="nial">each (* [first, first] ) 1 2 3 4
=1 4 9 16</langsyntaxhighlight>
 
=={{header|Nim}}==
 
<syntaxhighlight lang="nim">
<lang nim>var arr = @[1,2,3,4]
from std/sequtils import apply
arr.apply proc(some: var int) = echo(some, " squared = ", some*some)</lang>
let arr = @[1,2,3,4]
arr.apply proc(some: int) = echo(some, " squared = ", some*some)</syntaxhighlight>
 
{{Out}}
Line 1,916 ⟶ 2,283:
3 squared = 9
4 squared = 16
 
=={{header|Nutt}}==
<syntaxhighlight lang="Nutt">
module main
imports native.io.output.say
 
operator |> (arr:Array,f:Procedure):Array==>{f(x) of x |-> arr}
 
say({0,1,2,3,4,5}|>a==>a+2)//|{2,3,4,5,6,7}
 
end
</syntaxhighlight>
 
 
=={{header|Oberon-2}}==
{{Works with|oo2x}}
<langsyntaxhighlight lang="oberon2">
MODULE ApplyCallBack;
IMPORT
Line 2,008 ⟶ 2,388:
Init(a);r := Map3(Fun3,a);Show(r^);
END ApplyCallBack.
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 2,017 ⟶ 2,397:
 
=={{header|Objeck}}==
<langsyntaxhighlight lang="objeck">
use Structure;
 
Line 2,039 ⟶ 2,419:
}
}
</syntaxhighlight>
</lang>
 
=={{header|OCaml}}==
This function is part of the standard library:
 
<syntaxhighlight lang ="ocaml">Array.map</langsyntaxhighlight>
 
Usage example:
<langsyntaxhighlight lang="ocaml">let square x = x * x;;
let values = Array.init 10 ((+) 1);;
Array.map square values;;</langsyntaxhighlight>
 
Or with lists (which are more typical in OCaml):
<langsyntaxhighlight lang="ocaml">let values = [1;2;3;4;5;6;7;8;9;10];;
List.map square values;;</langsyntaxhighlight>
 
Use <tt>iter</tt> if the applied function does not return a value.
 
<langsyntaxhighlight lang="ocaml">Array.iter (fun x -> Printf.printf "%d" x) [|1; 2; 3; 4; 5|];;</langsyntaxhighlight>
<langsyntaxhighlight lang="ocaml">List.iter (fun x -> Printf.printf "%d" x) [1; 2; 3; 4; 5];;</langsyntaxhighlight>
 
with partial application we can also write:
 
<langsyntaxhighlight lang="ocaml">Array.iter (Printf.printf "%d") [|1; 2; 3; 4; 5|];;</langsyntaxhighlight>
<langsyntaxhighlight lang="ocaml">List.iter (Printf.printf "%d") [1; 2; 3; 4; 5];;</langsyntaxhighlight>
 
=={{header|Octave}}==
Line 2,069 ⟶ 2,449:
Almost all the built-in can operate on each element of a vector or matrix; e.g. sin([pi/2, pi, 2*pi]) computes the function sin on pi/2, pi and 2*pi (returning a vector). If a function does not accept vectors/matrices as arguments, the <tt>arrayfun</tt> can be used.
 
<langsyntaxhighlight lang="octave">function e = f(x, y)
e = x^2 + exp(-1/(y+1));
endfunction
Line 2,075 ⟶ 2,455:
% f([2,3], [1,4]) gives and error, but
arrayfun(@f, [2, 3], [1,4])
% works</langsyntaxhighlight>
 
(The function <tt>f</tt> can be rewritten so that it can accept vectors as argument simply changing operators to their dot ''relatives'': <code>e = x.^2 + exp(-1 ./ (y.+1))</code>)
 
=={{header|Odin}}==
 
<syntaxhighlight lang="odin">package main
 
import "core:slice"
import "core:fmt"
 
squared :: proc(x: int) -> int {
return x * x
}
 
main :: proc() {
arr := []int{1, 2, 3, 4, 5}
res := slice.mapper(arr, squared)
 
fmt.println(res) // prints: [1, 4, 9, 16, 25]
}</syntaxhighlight>
 
=={{header|Oforth}}==
apply allows to perform a function on all elements of a list :
<langsyntaxhighlight Oforthlang="oforth">0 #+ [ 1, 2, 3, 4, 5 ] apply</langsyntaxhighlight>
 
map regroups all results into a new list :
<langsyntaxhighlight Oforthlang="oforth">#sq [ 1, 2, 3, 4, 5 ] map</langsyntaxhighlight>
 
=={{header|Ol}}==
Apply custom callback (lambda) to every element of list.
<langsyntaxhighlight lang="scheme">
(for-each
(lambda (element)
Line 2,094 ⟶ 2,492:
'(1 2 3 4 5))
; ==> 12345
</syntaxhighlight>
</lang>
 
=={{header|ooRexx}}==
ooRexx doesn't directly support callbacks on array items, but this is pretty easy to implement using Routine objects.
<langsyntaxhighlight ooRexxlang="oorexx">start = .array~of("Rick", "Mike", "David", "Mark")
new = map(start, .routines~reversit)
call map new, .routines~sayit
Line 2,121 ⟶ 2,519:
use arg string
say string
return .true -- called as a function, so a result is required</langsyntaxhighlight>
{{out}}
<pre>kciR
Line 2,130 ⟶ 2,528:
=={{header|Order}}==
Both sequences and tuples support the usual map operation seen in many functional languages. Sequences also support <code>8seq_for_each</code>, and a few variations, which returns <code>8nil</code>.
<langsyntaxhighlight lang="c">#include <order/interpreter.h>
 
ORDER_PP( 8tuple_map(8fn(8X, 8times(8X, 8X)), 8tuple(1, 2, 3, 4, 5)) )
Line 2,139 ⟶ 2,537:
 
ORDER_PP( 8seq_for_each(8fn(8X, 8print(8X 8comma)), 8seq(1, 2, 3, 4, 5)) )
// prints 1,2,3,4,5, and returns 8nil</langsyntaxhighlight>
 
=={{header|Oz}}==
<langsyntaxhighlight lang="oz">declare
fun{Square A}
A*A
Line 2,154 ⟶ 2,552:
%% apply a FUNCTION to every element
Result = {Map Lst Square}
{Show Result}</langsyntaxhighlight>
 
=={{header|PARI/GP}}==
{{works with|PARI/GP|2.4.2 and above}}
<langsyntaxhighlight lang="parigp">callback(n)=n+n;
apply(callback, [1,2,3,4,5])</langsyntaxhighlight>
 
This should be contrasted with <code>call</code>:
<langsyntaxhighlight lang="parigp">call(callback, [1,2,3,4,5])</langsyntaxhighlight>
which is equivalent to <code>callback(1, 2, 3, 4, 5)</code> rather than <code>[callback(1), callback(2), callback(3), callback(4), callback(5)]</code>.
 
Line 2,169 ⟶ 2,567:
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl"># create array
my @a = (1, 2, 3, 4, 5);
 
Line 2,198 ⟶ 2,596:
 
# filter an array
my @e = grep { $_ % 2 == 0 } @a; # @e is now (2, 4)</langsyntaxhighlight>
 
=={{header|Perl 6Phix}}==
{{libheader|Phix/basics}}
{{works with|Rakudo|2015.10-11}}
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #7060A8;">requires</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"0.8.2"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">add1</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">x</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">apply</span><span style="color: #0000FF;">({</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">},</span><span style="color: #000000;">add1</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
{2,3,4}
</pre>
There are in fact three ways to invoke apply:<br>
The oldest/original, as above, is apply(s,fn), where fn is invoked length(s) times with a single parameter of s[i].<br>
apply(false,fn,s) likewise invokes fn length(s) times, but each time with length(s[i]) parameters.<br>
apply(true,sprintf,{{"%d"},s}), the third way, invokes sprintf length(s) times with two parameters, being "%d" and each s[i].<br>
This last way scans it's third argument looking for a (consistent) longest length to determine how many times to invoke sprintf, <br>
uses the length of it's third argument to determine how many parameters each call will get, and <br>
uses the same value on every call for any atom or length 1 elements, such as that {"%d"}.
 
=={{header|Phixmonti}}==
<lang perl6>sub function { 2 * $^x + 3 };
<syntaxhighlight lang="phixmonti">/# Rosetta Code problem: http://rosettacode.org/wiki/Apply_a_callback_to_an_array
my @array = 1 .. 5;
by Galileo, 05/2022 #/
 
include ..\Utilitys.pmt
# via map function
.say for map &function, @array;
 
def ++
# via map method
1 +
.say for @array.map(&function);
enddef
 
def square
# via for loop
dup *
for @array {
enddef
say function($_);
}
 
( 1 2 3 ) dup
# via the "hyper" metaoperator and method indirection
say @array».&function;
 
getid ++ map swap
# we neither need a variable for the array nor for the function
getid square map
say [1,2,3]>>.&({ $^x + 1});
</lang>
 
=={{header|Phix}}==
<lang Phix>function apply(integer f, sequence s)
-- apply function f to all elements of sequence s
for i = 1 to length(s) do
s[i] = call_func(f, {s[i]})
end for
return s
end function
 
function add1(integer x)
return x + 1
end function
 
pstack</syntaxhighlight>
? apply(routine_id("add1"),{1,2,3})</lang>
{{out}}
<pre>
{[[2, 3, 4}], [1, 4, 9]]
 
</pre>
=== Press any key to exit ===</pre>
 
=={{header|PHP}}==
<langsyntaxhighlight lang="php">function cube($n)
{
return($n * $n * $n);
Line 2,251 ⟶ 2,655:
$a = array(1, 2, 3, 4, 5);
$b = array_map("cube", $a);
print_r($b);</langsyntaxhighlight>
 
=={{header|Picat}}==
Picat doesn't support anonymous (lambda) functions so the function must be defined in the program to be used by - say - map/2.
There are - however - quite a few ways without proper lambdas, using map/2, apply/2, or list comprehensions.
<syntaxhighlight lang="picat">go =>
L = 1..10,
 
% Using map/2 in different ways
println(L.map(fun)),
println(map(L,fun)),
println(map(fun,L)),
 
% List comprehensions
println([fun(I) : I in L]),
 
% Using apply/2
println([apply(fun,I) : I in L]),
 
% And using list comprehension with the function directly.
println([I*I : I in L]),
nl.
 
% Some function
fun(X) = X*X.
</syntaxhighlight>
 
{{trans|Prolog}}
This variant is inspired by the Prolog solution (using assert/1 to define a predicate) and shows the integration with Picat's underlying B-Prolog engine.
 
Picat does not support assert/1 directly, so one have to do the assert/1 in the bp module space (the module/space for the B-Prolog engine). To call the defined predicate, one must prepend the predicate name with "bp.".
 
Note that fun2/2 is not a function so map/2 or apply/2 cannot be used here.
<syntaxhighlight lang="picat">go2 =>
L = 1..10,
 
% Define the predicate _in the bp space_.
bp.assert( $(fun2(X,Y) :- Y is X*X) ),
 
% Use bp.fun2 to call the function.
println([B : A in L, bp.fun2(A,B)]),
nl.
</syntaxhighlight>
 
Using this technique one can do quite much "real" Prolog stuff even though Picat doesn't support it directly. However, one should be careful with this approach since it can sometimes be confusing and it doesn't work in all cases.
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">: (mapc println (1 2 3 4 5)) # Print numbers
1
2
Line 2,269 ⟶ 2,717:
 
: (mapcar if '(T NIL T NIL) '(1 2 3 4) '(5 6 7 8)) # Conditional function
-> (1 6 3 8)</langsyntaxhighlight>
 
=={{header|Pike}}==
<langsyntaxhighlight lang="pike">int cube(int n)
{
return n*n*n;
Line 2,279 ⟶ 2,727:
array(int) a = ({ 1,2,3,4,5 });
array(int) b = cube(a[*]); // automap operator
array(int) c = map(a, cube); // conventional map function</langsyntaxhighlight>
 
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii"> declare x(5) initial (1,3,5,7,8);
x = sqrt(x);
x = sin(x);</langsyntaxhighlight>
 
=={{header|PL/SQL}}==
PL/SQL doesn't have callbacks, though we can pass around an object and use its method to simulate one. Further, this callback method can be defined in an abstract class that the mapping function will expect.
<langsyntaxhighlight lang="plsql">-- Let's create a generic class with one method to be used as an interface:
create or replace
TYPE callback AS OBJECT (
Line 2,363 ⟶ 2,811:
PKG_CALLBACK.TEST_CALLBACK();
END;
/</langsyntaxhighlight>
 
=={{header|Pop11}}==
 
<langsyntaxhighlight lang="pop11">;;; Define a procedure
define proc(x);
printf(x*x, '%p,');
Line 2,376 ⟶ 2,824:
 
;;; Apply procedure to array
appdata(ar, proc);</langsyntaxhighlight>
 
If one wants to create a new array consisting of transformed values then procedure mapdata may be more convenient.
Line 2,382 ⟶ 2,830:
=={{header|PostScript}}==
The <code>forall</code> operator applies a procedure to each element of an array, a packed array or a string.
<langsyntaxhighlight lang="postscript">[1 2 3 4 5] { dup mul = } forall</langsyntaxhighlight>
In this case the respective square numbers for the elements are printed.
 
To create a new array from the results above code can simply be wrapped in <code>[]</code>:
<langsyntaxhighlight lang="postscript">[ [1 2 3 4 5] { dup mul } forall ]</langsyntaxhighlight>
 
{{libheader|initlib}}
<langsyntaxhighlight lang="postscript">
[1 2 3 4 5] {dup *} map
</syntaxhighlight>
</lang>
 
=={{header|PowerShell}}==
This can be done in PowerShell with the <code>ForEach-Object</code> cmdlet which applies a scriptblock to each element of an array:
<langsyntaxhighlight lang="powershell">1..5 | ForEach-Object { $_ * $_ }</langsyntaxhighlight>
To recreate a ''map'' function, found in other languages the same method applies:
<langsyntaxhighlight lang="powershell">function map ([array] $a, [scriptblock] $s) {
$a | ForEach-Object $s
}
map (1..5) { $_ * $_ }</langsyntaxhighlight>
 
=={{header|Prolog}}==
Prolog doesn't have arrays, but we can do it with lists. This can be done in the console mode.
<langsyntaxhighlight Prologlang="prolog"> ?- assert((fun(X, Y) :- Y is 2 * X)).
true.
 
?- maplist(fun, [1,2,3,4,5], L).
L = [2,4,6,8,10].
</syntaxhighlight>
</lang>
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">Procedure Cube(Array param.i(1))
Protected n.i
For n = 0 To ArraySize(param())
Line 2,425 ⟶ 2,873:
Next
 
Cube(AnArray()) </langsyntaxhighlight>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">def square(n):
return n * n
Line 2,445 ⟶ 2,893:
 
import itertools
isquares2 = itertools.imap(square, numbers) # iterator, lazy</langsyntaxhighlight>
To print squares of integers in the range from 0 to 9, type:
<langsyntaxhighlight lang="python">print " ".join(str(n * n) for n in range(10))</langsyntaxhighlight>
Or:
<langsyntaxhighlight lang="python">print " ".join(map(str, map(square, range(10))))</langsyntaxhighlight>
Result:
<langsyntaxhighlight lang="python">0 1 4 9 16 25 36 49 64 81</langsyntaxhighlight>
 
=={{header|QB64}}==
<syntaxhighlight lang="qb64">
'Task
'Take a combined set of elements and apply a function to each element.
'UDT
Type Friend
Names As String * 8
Surnames As String * 8
Age As Integer
End Type
 
Dim Friends(1 To 6) As Friend
Restore
FillArray
SearchForAdult Friends(), LBound(friends), UBound(friends)
 
End
 
Data "John","Beoz",13,"Will","Strange",22
Data "Arthur","Boile",16,"Peter","Smith",21
Data "Tom","Parker",14,"Tim","Wesson",24
 
Sub FillArray
Shared Friends() As Friend
Dim indeX As Integer
For indeX = LBound(friends) To UBound(friends) Step 1
Read Friends(indeX).Names, Friends(indeX).Surnames, Friends(indeX).Age
Next
End Sub
 
Sub SearchForAdult (F() As Friend, Min As Integer, Max As Integer)
Dim Index As Integer
Print "Friends with more than 18 years old"
For Index = Min To Max Step 1
If F(Index).Age > 18 Then Print F(Index).Names; " "; F(Index).Surnames; " "; F(Index).Age
Next Index
End Sub
 
</syntaxhighlight>
 
=={{header|Quackery}}==
 
As a dialogue in the Quackery shell (REPL), applying the word <code>cubed</code> to the nest <code>[ 1 2 3 4 5 6 7 8 9 10 ]</code>, first treating the nest as a list, then as an array.
 
<syntaxhighlight lang="quackery">/O> [ 3 ** ] is cubed ( n --> n )
...
 
Stack empty.
 
/O> ' [ 1 2 3 4 5 6 7 8 9 10 ]
... [] swap witheach
... [ cubed join ]
...
 
Stack: [ 1 8 27 64 125 216 343 512 729 1000 ]
 
/O> drop
...
 
Stack empty.
 
/O> ' [ 1 2 3 4 5 6 7 8 9 10 ]
... dup witheach
... [ cubed swap i^ poke ]
...
 
Stack: [ 1 8 27 64 125 216 343 512 729 1000 ]</syntaxhighlight>
 
=={{header|R}}==
Many functions can take advantage of implicit vectorisation, e.g.
<langsyntaxhighlight Rlang="r">cube <- function(x) x*x*x
elements <- 1:5
cubes <- cube(elements)</langsyntaxhighlight>
Explicit looping over array elements is also possible.
<langsyntaxhighlight Rlang="r">cubes <- numeric(5)
for(i in seq_along(cubes))
{
cubes[i] <- cube(elements[i])
}</langsyntaxhighlight>
Loop syntax can often simplified using the [http://stat.ethz.ch/R-manual/R-patched/library/base/html/apply.html *apply] family of functions.
<langsyntaxhighlight Rlang="r">elements2 <- list(1,2,3,4,5)
cubes <- sapply(elements2, cube)</langsyntaxhighlight>
In each case above, the value of 'cubes' is
1 8 27 64 125
Line 2,472 ⟶ 2,988:
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 2,480 ⟶ 2,996:
;; the usual functional `map'
(vector-map sqr #(1 2 3 4 5))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|Rakudo|2015.10-11}}
 
<syntaxhighlight lang="raku" line>sub function { 2 * $^x + 3 };
my @array = 1 .. 5;
 
# via map function
.say for map &function, @array;
 
# via map method
.say for @array.map(&function);
 
# via for loop
for @array {
say function($_);
}
 
# via the "hyper" metaoperator and method indirection
say @array».&function;
 
# we neither need a variable for the array nor for the function
say [1,2,3]>>.&({ $^x + 1});
</syntaxhighlight>
 
=={{header|Raven}}==
<langsyntaxhighlight lang="raven"># To print the squared elements
[1 2 3 4 5] each dup * print</langsyntaxhighlight>
 
<langsyntaxhighlight lang="raven"># To obtain a new array
group [1 2 3 4 5] each
dup *
list</langsyntaxhighlight>
 
=={{header|REBOL}}==
<langsyntaxhighlight REBOLlang="rebol">REBOL [
Title: "Array Callback"
URL: http://rosettacode.org/wiki/Apply_a_callback_to_an_Array
Line 2,517 ⟶ 3,058:
 
print [crlf "Applying native function with 'map':"]
assert [[2 4 6] = map :square-root [4 16 36]]</langsyntaxhighlight>
 
{{Out}}
Line 2,533 ⟶ 3,074:
Retro provides a variety of array words. Using these to multiply each value in an array by 10 and display the results:
 
<langsyntaxhighlight Retrolang="retro">{ #1 #2 #3 #4 #5 } [ #10 * ] a:map [ n:put sp ] a:for-each</langsyntaxhighlight>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX pgmprogram applies a callback to an array (using factorials for a demonstration).*/
numeric digits 100 /*be able to display some huge numbers.*/
a.=; b.=; a.0 = 0
parse arg # . a.1 = 1 /*obtain an optional value from the CL.*/
a.= a.2 = 2 /*initialize the array A to all nulls*/
if #=='' | #=="," then #= 12 a.3 = 3 /*Not assigned? Then use default value*/
do j=0 to #; a.4j= j /*assign the integer J ───► A.j = 4*/
a.5 =end 5 /*j*/ /*array A will have N values: 0 ──► #*/
 
a.6 = 6
call listA 'before callback' a.7 =/*display 7A array before the callback*/
say /*display a.8 blank =line for 8readability.*/
say ' ··· applying callback to array A ···' /*display what is about to happen to aB.9 = 9*/
say /*display a.10 =blank 10line for readability.*/
call bangit 'a' /*factorialize (the values) of A array.*/
call listAB 'before'
call bangit 'a','b' /*factorialize the A array, store results───►Bthe results ───► array B.*/
call listA ' after callback' /*display A array after the callback.*/
call listAB ' after'
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*────────────────────────────────────────────────────────────────────────────*/
bangit: do iv=0; $= _=value(arg(1)'.'iv); if _$=='' then return /*No value? Then return*/
call value arg(21)'.'iv, fact(_$) /*assign a value (a factorial) to array*/
end /*i*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*────────────────────────────────────────────────────────────────────────────*/
fact: procedure; arg x; != 1; do jf=2 to arg(1)x; != !*jf; end; /*f*/; return !
listA: do k=0 while a.k\==''; say arg(1) 'a.'k"=" a.k; end /*k*/; return</syntaxhighlight>
/*────────────────────────────────────────────────────────────────────────────*/
{{out|output|text=&nbsp; when using the default input:}}
listAB: do j=0 while a.j\==''; say arg(1) 'a.'j"="a.j; end /*j*/; say
do k=0 while b.k\==''; say arg(1) 'b.'k"="b.k; end /*k*/
return</lang>
{{Out}}
<pre>
before callback a.0= 0
before callback a.1= 1
before callback a.2= 2
before callback a.3= 3
before callback a.4= 4
before callback a.5= 5
before callback a.6= 6
before callback a.7= 7
before callback a.8= 8
before callback a.9= 9
before callback a.10= 10
before callback a.11= 11
before callback a.12= 12
 
··· applying callback to array A ···
after a.0=0
after a.1=1
after a.2=2
after a.3=3
after a.4=4
after a.5=5
after a.6=6
after a.7=7
after a.8=8
after a.9=9
after a.10=10
 
after bcallback a.0= 1
after bcallback a.1= 1
after bcallback a.2= 2
after bcallback a.3= 6
after bcallback a.4= 24
after bcallback a.5= 120
after bcallback a.6= 720
after bcallback a.7= 5040
after bcallback a.8= 40320
after bcallback a.9= 362880
after bcallback a.10= 3628800
after callback a.11= 39916800
after callback a.12= 479001600
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
for x in [1,2,3,4,5]
x = x*x
next
</syntaxhighlight>
 
=={{header|RLaB}}==
Line 2,615 ⟶ 3,154:
Consider an example:
 
<syntaxhighlight lang="rlab">
<lang RLaB>
>> x = rand(2,4)
0.707213207 0.275298961 0.396757763 0.232312312
Line 2,622 ⟶ 3,161:
0.649717845 0.271834652 0.386430003 0.230228332
0.213952984 0.205601224 0.536006923 0.617916954
</syntaxhighlight>
</lang>
 
This can be done on entry-by-entry basis, but one has to keep in mind that the
'for' or 'while' loops are slow in interpreted languages, and RLaB is no exception.
 
<syntaxhighlight lang="rlab">
<lang RLaB>
x = rand(2,4);
y = zeros(2,4);
Line 2,637 ⟶ 3,176:
}
}
</syntaxhighlight>
</lang>
 
 
Line 2,644 ⟶ 3,183:
function 'members' which returns a string vector with the names of the elements of the list.
 
<syntaxhighlight lang="rlab">
<lang RLaB>
x = <<>>;
for (i in 1:9)
Line 2,656 ⟶ 3,195:
y.[i] = sin( x.[i] );
}
</syntaxhighlight>
</lang>
 
=={{header|RingRPL}}==
{{works with|Halcyon Calc|4.2.7}}
<lang ring>
≪ → array func
for x in [1,2,3,4,5]
xarray =0 CON x*x
1 array SIZE FOR j
next
j array j GET func EVAL PUT
</lang>
NEXT
≫ ≫
´MAP’ STO
 
[1,2,3,4,5,6,7,8,9] ≪ SQ ≫ MAP
{{out}}
<pre>
1: [ 1 4 9 16 25 36 49 64 81 ]
</pre>
 
=={{header|Ruby}}==
You could use a traditional "for i in arr" approach like below:
<langsyntaxhighlight lang="ruby">for i in [1,2,3,4,5] do
puts i**2
end</langsyntaxhighlight>
 
Or you could the more preferred ruby way of an iterator (which is borrowed from SmallTalk)
<langsyntaxhighlight lang="ruby">[1,2,3,4,5].each{ |i| puts i**2 }</langsyntaxhighlight>
 
To create a new array of each value squared
<langsyntaxhighlight lang="ruby">[1,2,3,4,5].map{ |i| i**2 }</langsyntaxhighlight>
 
=={{header|Rust}}==
 
<langsyntaxhighlight lang="rust">fn echo(n: &i32) {
println!("{}", n);
}
Line 2,687 ⟶ 3,235:
a = [1, 2, 3, 4, 5];
let _: Vec<_> = a.into_iter().map(echo).collect();
}</langsyntaxhighlight>
 
=={{header|Salmon}}==
Line 2,693 ⟶ 3,241:
These examples apply the square function to a list of the numbers from 0 through 9 to produce a new list of their squares, then iterate over the resulting list and print the squares.
 
<langsyntaxhighlight Salmonlang="salmon">function apply(list, ageless to_apply)
(comprehend(x; list) (to_apply(x)));
 
Line 2,699 ⟶ 3,247:
 
iterate(x; apply([0...9], square))
x!;</langsyntaxhighlight>
 
With short identifiers:
 
<langsyntaxhighlight Salmonlang="salmon">include "short.salm";
 
fun apply(list, ageless to_apply)
Line 2,711 ⟶ 3,259:
 
iter(x; apply([0...9], square))
x!;</langsyntaxhighlight>
 
With the numbers given as a list of individual elements:
 
<langsyntaxhighlight Salmonlang="salmon">function apply(list, to_apply)
(comprehend(x; list) (to_apply(x)));
 
Line 2,721 ⟶ 3,269:
 
iterate(x; apply([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], square))
x!;</langsyntaxhighlight>
 
=={{header|Sather}}==
<langsyntaxhighlight lang="sather">class MAIN is
do_something(i:INT):INT is
return i * i;
Line 2,735 ⟶ 3,283:
loop #OUT + a.elt! + "\n"; end;
end;
end;</langsyntaxhighlight>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">val l = List(1,2,3,4)
l.foreach {i => println(i)}</langsyntaxhighlight>
 
When the argument appears only once -as here, i appears only one in println(i) - it may be shortened to
<syntaxhighlight lang ="scala">l.foreach(println(_))</langsyntaxhighlight>
Same for an array
<langsyntaxhighlight lang="scala">val a = Array(1,2,3,4)
a.foreach {i => println(i)}
a.foreach(println(_)) '' // same as previous line''</langsyntaxhighlight>
 
Or for an externally defined function:
<langsyntaxhighlight lang="scala">def doSomething(in: int) = {println("Doing something with "+in)}
l.foreach(doSomething)</langsyntaxhighlight>
 
There is also a ''for'' syntax, which is internally rewritten to call foreach. A foreach method must be defined on ''a''
<langsyntaxhighlight lang="scala">for(val i <- a) println(i)</langsyntaxhighlight>
 
It is also possible to apply a function on each item of an list to get a new list (same on array and most collections)
<langsyntaxhighlight lang="scala">val squares = l.map{i => i * i} ''//squares is'' List(1,4,9,16)</langsyntaxhighlight>
 
Or the equivalent ''for'' syntax, with the additional keyword ''yield'', map is called instead of foreach
<langsyntaxhighlight lang="scala">val squares = for (val i <- l) yield i * i</langsyntaxhighlight>
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">(define (square n) (* n n))
(define x #(1 2 3 4 5))
(map square (vector->list x))</langsyntaxhighlight>
 
A single-line variation
<langsyntaxhighlight lang="scheme">(map (lambda (n) (* n n)) '(1 2 3 4 5))</langsyntaxhighlight>
 
For completeness, the <tt>map</tt> function (which is R5RS standard) can be coded as follows:
<langsyntaxhighlight lang="scheme">(define (map f L)
(if (null? L)
L
(cons (f (car L)) (map f (cdr L)))))</langsyntaxhighlight>
 
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">
put each item in [1,2,3,5,9,14,24] squared
 
put myFunc of each for each item of [1,2,3,5,9,14,24]
 
to handle myFunc of num
return 2*num + 1
end myFunc</syntaxhighlight>
Output:
<syntaxhighlight lang="sensetalk">(1,4,9,25,81,196,576)
(3,5,7,11,19,29,49)</syntaxhighlight>
 
=={{header|Sidef}}==
Defining a callback function:
<langsyntaxhighlight lang="ruby">func callback(i) { say i**2 }</langsyntaxhighlight>
 
The function will get called for each element:
<langsyntaxhighlight lang="ruby">[1,2,3,4].each(callback)</langsyntaxhighlight>
 
Same as above, but with the function inlined:
<langsyntaxhighlight lang="ruby">[1,2,3,4].each{|i| say i**2 }</langsyntaxhighlight>
 
For creating a new array, we can use the Array.map method:
<langsyntaxhighlight lang="ruby">[1,2,3,4,5].map{|i| i**2 }</langsyntaxhighlight>
 
=={{header|Simula}}==
<langsyntaxhighlight lang="simula">BEGIN
 
! APPLIES A CALLBACK FUNCTION TO AN ARRAY ;
Line 2,809 ⟶ 3,371:
FOR I := 1 STEP 1 UNTIL 5 DO OUTFIX(A(I), 2, 8); OUTIMAGE;
 
END.</langsyntaxhighlight>
{{out}}
<pre>
Line 2,816 ⟶ 3,378:
 
=={{header|Slate}}==
<langsyntaxhighlight lang="slate">#( 1 2 3 4 5 ) collect: [| :n | n * n].</langsyntaxhighlight>
 
=={{header|Smalltalk}}==
<langsyntaxhighlight lang="smalltalk">#( 1 2.0 3 4 5 'three') collectdo: [:neach | neach * ndisplayNl].</langsyntaxhighlight>
You can tell symbols how to react to the <tt>value:</tt> message, and then write &sup2;:
<syntaxhighlight lang="smalltalk">#( 1 2.0 'three') do: #displayNl.</syntaxhighlight>
2) actually most dialects already have it, and it is trivial to add, if it does not.
 
There is a huge number of additional enumeration messages implemented in Collection, from which Array inherits. Eg.:
<syntaxhighlight lang="smalltalk">#( 1 2 3 4 5 ) collect: [:n | n * n].</syntaxhighlight>
 
=={{header|Sparkling}}==
The <tt>foreach</tt> function calls the supplied callback on each element of the (possibly associative) array, passing it each key and the corresponding value:
<langsyntaxhighlight lang="sparkling">let numbers = { 1, 2, 3, 4 };
foreach(numbers, function(idx, num) {
print(num);
});</langsyntaxhighlight>
 
The <tt>map</tt> function applies the transform to each key-value pair and constructs a new array, of which the keys are the keys of the original array, and the corresponding values are the return values of each call to the transform function:
<langsyntaxhighlight lang="sparkling">let dict = { "foo": 42, "bar": 13, "baz": 37 };
let doubled = map(dict, function(key, val) {
return val * 2;
});</langsyntaxhighlight>
 
=={{header|SQL PL}}==
{{works with|Db2 LUW}} version 9.7 or higher.
With SQL PL:
<langsyntaxhighlight lang="sql pl">
--#SET TERMINATOR @
 
Line 2,869 ⟶ 3,437:
END;
END @
</syntaxhighlight>
</lang>
Output:
<pre>
Line 2,882 ⟶ 3,450:
 
=={{header|Standard ML}}==
<syntaxhighlight lang="standard ml">
<lang Standard ML>
map f l
</syntaxhighlight>
</lang>
i.e.
<syntaxhighlight lang="standard ml">
<lang Standard ML>
map (fn x=>x+1) [1,2,3];; (* [2,3,4] *)
</syntaxhighlight>
</lang>
 
=={{header|Stata}}==
There is no 'map' function in Mata, but it's easy to implement. Notice that you can only pass functions that are written in Mata, no builtin ones. For instance, the trigonometric functions (cos, sin) or the exponential are builtin. To pass a builtin function to another function, one needs to write a wrapper in Mata. See also Stata help about '''[https://www.stata.com/help.cgi?m2_pointers pointers]''' and '''[https://www.stata.com/help.cgi?m2_ftof passing functions to functions]'''. There are two versions of the function: one to return a numeric array, another to return a string array.
 
<langsyntaxhighlight lang="stata">function map(f,a) {
nr = rows(a)
nc = cols(a)
Line 2,915 ⟶ 3,483:
function square(x) {
return(x*x)
}</langsyntaxhighlight>
 
'''Output'''
Line 2,928 ⟶ 3,496:
=={{header|SuperCollider}}==
Actually, there is a builtin <tt>squared</tt> operator:
<langsyntaxhighlight SuperColliderlang="supercollider">[1, 2, 3].squared // returns [1, 4, 9]</langsyntaxhighlight>
Anything that is a <tt>Collection</tt> can be used with <tt>collect</tt>:
<langsyntaxhighlight SuperColliderlang="supercollider">[1, 2, 3].collect { |x| x * x }</langsyntaxhighlight>
[[List Comprehension#SuperCollider|List comprehension]] combined with a higher-order function can also be used:
<langsyntaxhighlight SuperColliderlang="supercollider">var square = { |x| x * x };
var map = { |fn, xs|
all {: fn.value(x), x <- xs };
};
map.value(square, [1, 2, 3]);</langsyntaxhighlight>
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">func square(n: Int) -> Int {
return n * n
}
Line 2,951 ⟶ 3,519:
let squares1b = numbers.map { $0 * $0 } // map method on array with anonymous function and unnamed parameters
 
let isquares1 = numbers.lazy.map(square) // lazy sequence</langsyntaxhighlight>
 
=={{header|Tailspin}}==
<langsyntaxhighlight lang="tailspin">
def numbers: [1,3,7,10];
 
Line 2,962 ⟶ 3,530:
 
// Using inline array templates (which also allows access to index by $i)
$numbers -> \[i]($ * $i !\) -> !OUT::write
$numbers -> \[i]($ * $ !\) -> !OUT::write
$numbers -> \[i]($ -> cube !\) -> !OUT::write
 
// Using array literal and deconstructor
[ $numbers... -> $ * $ ] -> !OUT::write
[ $numbers... -> cube ] -> !OUT::write
</syntaxhighlight>
</lang>
 
=={{header|Tcl}}==
 
If I wanted to call "<tt>myfunc</tt>" on each element of <tt>dat</tt> and <tt>dat</tt> were a list:
<langsyntaxhighlight lang="tcl">foreach var $dat {
myfunc $var
}</langsyntaxhighlight>
This does not retain any of the values returned by <tt>myfunc</tt>.
 
if <tt>dat</tt> were an (associative) array, however:
<langsyntaxhighlight lang="tcl">foreach name [array names dat] {
myfunc $dat($name)
}</langsyntaxhighlight>
 
More functional, with a simple <code>map</code> function:
<langsyntaxhighlight Tcllang="tcl">proc map {f list} {
set res {}
foreach e $list {lappend res [$f $e]}
Line 2,993 ⟶ 3,561:
 
% map square {1 2 3 4 5}
1 4 9 16 25</langsyntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
<langsyntaxhighlight lang="ti89b">© For no return value
Define foreach(fe_cname,fe_list) = Prgm
Local fe_i
Line 3,013 ⟶ 3,581:
 
foreach("callback", {1,2,3,4,5})
Disp map("√", {1,2,3,4,5})</langsyntaxhighlight>
 
{{Out}}
Line 3,027 ⟶ 3,595:
JavaScript alike:
 
<langsyntaxhighlight lang="javascript">var a = [1, 2, 3, 4, 5];
a.map(function(v) { return v * v; })
</syntaxhighlight>
</lang>
 
Using short form of lambda notation:
<langsyntaxhighlight lang="javascript">var a = [1, 2, 3, 4, 5];
a.map( :v: v*v );
</syntaxhighlight>
</lang>
 
=={{header|Toka}}==
 
<langsyntaxhighlight lang="toka">( array count function -- )
{
value| array fn |
Line 3,054 ⟶ 3,622:
 
( Add 1 to each item in the array )
a 5 [ 1 + ] map-array</langsyntaxhighlight>
 
=={{header|TorqueScript}}==
Line 3,062 ⟶ 3,630:
Callbacks:
 
<syntaxhighlight lang="torquescript">
<lang TorqueScript>
function map(%array,%arrayCount,%function)
{
Line 3,071 ⟶ 3,639:
}
}
</syntaxhighlight>
</lang>
 
Now to set up an array:
 
<syntaxhighlight lang="torquescript">
<lang TorqueScript>
$array[0] = "Hello.";
$array[1] = "Hi.";
$array[2] = "How are you?";
</syntaxhighlight>
</lang>
 
Now to call the function correctly:
 
<syntaxhighlight lang="torquescript">
<lang TorqueScript>
map("$array",3,"echo");
</syntaxhighlight>
</lang>
 
Which should result in:
 
<syntaxhighlight lang="torquescript">
<lang TorqueScript>
=> Hello.
 
Line 3,095 ⟶ 3,663:
 
=> How are you?
</syntaxhighlight>
</lang>
 
=={{header|TXR}}==
Line 3,101 ⟶ 3,669:
Print 1 through 10 out of a vector, using <code>prinl</code> the callback, right from the system shell command prompt:
 
<langsyntaxhighlight lang="bash">$ txr -e '[mapdo prinl #(1 2 3 4 5 6 7 8 9 10)]'
1
2
Line 3,111 ⟶ 3,679:
8
9
10</langsyntaxhighlight>
 
<code>mapdo</code> is like <code>mapcar</code> but doesn't accumulate a list, suitable for imperative programming situations when the function is invoked to perform a side effect.
Line 3,119 ⟶ 3,687:
=={{header|uBasic/4tH}}==
We cannot transfer the array address, since uBasic/4tH has only got one, but we can transfer the function pointer and size.
<syntaxhighlight lang="text">S = 5 ' Size of the array
 
For x = 0 To S - 1 ' Initialize array
Line 3,180 ⟶ 3,748:
Push 10000+((Pop()*-(Pop()/2))/10000)
If a@ Then Push -Pop() ' Result is directly transferred
Return ' through the stack</langsyntaxhighlight>
{{out}}
<pre>SQRT(1) = 1.0000
Line 3,195 ⟶ 3,763:
 
0 OK, 0:514</pre>
 
=={{header|UNIX Shell}}==
{{works with|Bourne Shell}}
<langsyntaxhighlight lang="bash">map() {
map_command=$1
shift
Line 3,203 ⟶ 3,772:
}
list=1:2:3
(IFS=:; map echo $list)</langsyntaxhighlight>
 
{{works with|ksh93}}
{{works with|pdksh}}
{{works with|zsh}}
<langsyntaxhighlight lang="bash">map() {
typeset command=$1
shift
Line 3,214 ⟶ 3,783:
}
set -A ary 1 2 3
map print "${ary[@]}"</langsyntaxhighlight>
 
{{works with|zsh}}
<langsyntaxhighlight lang="bash">map(){for i ($*[2,-1]) $1 $i}
a=(1 2 3)
map print $a</langsyntaxhighlight>
 
=={{header|Ursala}}==
The * is a built-in map operator.
This example shows a map of the successor function over a list of natural numbers.
<langsyntaxhighlight Ursalalang="ursala">#import nat
 
#cast %nL
 
demo = successor* <325,32,67,1,3,7,315></langsyntaxhighlight>
{{Out}}
<pre>
Line 3,236 ⟶ 3,805:
=={{header|V}}==
apply squaring (dup *) to each member of collection
<langsyntaxhighlight lang="v">[1 2 3 4] [dup *] map</langsyntaxhighlight>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">
<lang vb>
Option Explicit
 
Line 3,259 ⟶ 3,829:
Fibonacci = Fibonacci(N - 1) + Fibonacci(N - 2)
End If
End Function</langsyntaxhighlight>
{{out}}
<pre>0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55</pre>
Line 3,268 ⟶ 3,838:
 
=====Implementation=====
<syntaxhighlight lang="vb">
<lang vb>
class callback
dim sRule
Line 3,285 ⟶ 3,855:
end function
end class
</syntaxhighlight>
</lang>
 
=====Invocation=====
<syntaxhighlight lang="vb">
<lang vb>
dim a1
dim cb
Line 3,302 ⟶ 3,872:
cb.applyto a1
wscript.echo join( a1, ", " )
</syntaxhighlight>
</lang>
 
{{Out}}
Line 3,315 ⟶ 3,885:
The result of evaluating the string will be the new value.
The list/dictionary is modified in place.
<langsyntaxhighlight lang="vim">echo map([10, 20, 30], 'v:val * v:val')
echo map([10, 20, 30], '"Element " . v:key . " = " . v:val')
echo map({"a": "foo", "b": "Bar", "c": "BaZ"}, 'toupper(v:val)')
echo map({"a": "foo", "b": "Bar", "c": "BaZ"}, 'toupper(v:key)')</langsyntaxhighlight>
 
{{Out}}
Line 3,337 ⟶ 3,907:
and System.Linq.Enumerable.ToArray(Of TSource)(IEnumerable(Of TSource)) eagerly converts the enumerable to an array.
 
<langsyntaxhighlight lang="vbnet">Module Program
Function OneMoreThan(i As Integer) As Integer
Return i + 1
Line 3,361 ⟶ 3,931:
Array.ForEach(resultArr, AddressOf Console.WriteLine)
End Sub
End Module</langsyntaxhighlight>
 
{{out}}
Line 3,371 ⟶ 3,941:
=={{header|Vorpal}}==
Given and array, A, and a function, F, mapping F over the elements of A is simple:
<syntaxhighlight lang ="vorpal">A.map(F)</langsyntaxhighlight>
If F takes 2 arguments, x and , then simply pass them to map.
They will be passed to F when as it is applied to each element of A.
<langsyntaxhighlight lang="vorpal">A.map(F, x, y)</langsyntaxhighlight>
 
=={{header|Wart}}==
<langsyntaxhighlight lang="wart">map prn '(1 2 3 4 5)</langsyntaxhighlight>
 
{{Out}}
Line 3,387 ⟶ 3,957:
 
=={{header|WDTE}}==
<langsyntaxhighlight WDTElang="wdte">let a => import 'arrays';
let s => import 'stream';
 
Line 3,395 ⟶ 3,965:
-> s.map (* 2)
-> s.collect
;</langsyntaxhighlight>
 
In WDTE, mapping can be accomplished using the <code>stream</code> module. Streams are essentially lazy iterators. The <code>arrays</code> module provides a function for creating a stream from an array, and then the <code>stream</code> module's functions can be used to perform a map operation. <code>collect</code> runs the iteration, collecting the elements yielded in a new array.
 
=={{header|Wren}}==
<langsyntaxhighlight lang="wren">var arr = [1, 2, 3, 4, 5]
arr = arr.map { |x| x * 2 }.toList
arr = arr.map(Fn.new { |x| x / 2 }).toList
arr.each { |x| System.print(x) }</syntaxhighlight>
 
</lang>
{{out}}
<pre>
1
2
3
4
5
</pre>
 
=={{header|XBS}}==
<syntaxhighlight lang="xbs">func map(arr:array,callback:function){
set newArr:array = [];
foreach(k,v as arr){
newArr[k]=callback(v,k,arr);
}
send newArr;
}
set arr:array = [1,2,3,4,5];
set result:array = map(arr,func(v){
send v*2;
});
log(arr.join(", "));
log(result.join(", "));</syntaxhighlight>
{{out}}
<pre>
1, 2, 3, 4, 5
2, 4, 6, 8, 10
</pre>
 
=={{header|Yabasic}}==
<langsyntaxhighlight Yabasiclang="yabasic">sub map(f$, t())
local i
 
Line 3,437 ⟶ 4,037:
print t(i), "\t";
next i
print</langsyntaxhighlight>
 
=={{header|Yacas}}==
<langsyntaxhighlight Yacaslang="yacas">Sin /@ {1, 2, 3, 4}
 
MapSingle(Sin, {1,2,3,4})
 
MapSingle({{x}, x^2}, {1,2,3,4})
</syntaxhighlight>
</lang>
 
=={{header|Z80 Assembly}}==
<syntaxhighlight lang="z80">Array:
byte &01,&02,&03,&04,&05
Array_End:
 
foo:
ld hl,Array
ld b,Array_End-Array ;ld b,5
 
bar:
inc (hl)
inc (hl)
inc (hl)
inc hl ;next entry in array
djnz bar</syntaxhighlight>
 
{{out}}
The program above doesn't show the new values but here they are:
<pre>
&04,&05,&06,&07,&08
</pre>
 
=={{header|Zig}}==
<syntaxhighlight lang="zig">pub fn main() !void {
var array = [_]i32{1, 2, 3};
apply(@TypeOf(array[0]), array[0..], func);
}
 
fn apply(comptime T: type, a: []T, f: fn(T) void) void {
for (a) |item| {
f(item);
}
}
 
fn func(a: i32) void {
const std = @import("std");
std.debug.print("{d}\n", .{a-1});
}</syntaxhighlight>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">L(1,2,3,4,5).apply('+(5))</langsyntaxhighlight>
{{Out}}
<pre>
Line 3,455 ⟶ 4,094:
 
=={{header|zonnon}}==
<langsyntaxhighlight lang="zonnon">
module Main;
type
Line 3,495 ⟶ 4,134:
Write(Map(x,Power))
end Main.
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 3,502 ⟶ 4,141:
 
=={{header|ZX Spectrum Basic}}==
<langsyntaxhighlight lang="zxbasic">10 LET a$="x+x"
20 LET b$="x*x"
30 LET c$="x+x^2"
Line 3,512 ⟶ 4,151:
190 STOP
200 DATA 2,5,6,10,100
</syntaxhighlight>
</lang>
 
{{omit from|gnuplot}}
885

edits