ASCII art diagram converter: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 537: Line 537:


=={{header|Julia}}==
=={{header|Julia}}==
The validator() function can be customized. The one used only checks length.
<lang julia>diagram = """
<lang julia>diagram = """
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Line 582: Line 583:
binbyte(c) = string(parse(UInt8, c, base=16), base=2, pad=8)
binbyte(c) = string(parse(UInt8, c, base=16), base=2, pad=8)
hextobinary(s) = reduce(*, map(binbyte, map(x -> s[x:x+1], 1:2:length(s)-1)))
hextobinary(s) = reduce(*, map(binbyte, map(x -> s[x:x+1], 1:2:length(s)-1)))
validator(binstring, fields) = length(binstring) == sum(x -> x.bits, fields)


function bitreader(bitfields, hexdata)
function bitreader(bitfields, hexdata)
Line 587: Line 589:
println("Name Size Bits\n------- ---- ----------------")
println("Name Size Bits\n------- ---- ----------------")
b = hextobinary(hexdata)
b = hextobinary(hexdata)
@assert(validator(b, bitfields))
for bf in bitfields
for bf in bitfields
pat = b[bf.fieldstart+1:bf.fieldend+1]
pat = b[bf.fieldstart+1:bf.fieldend+1]

Revision as of 17:04, 16 June 2019

ASCII art diagram converter is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Given the RFC 1035 message diagram from Section 4.1.1 (Header section format) as a string: http://www.ietf.org/rfc/rfc1035.txt

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                      ID                       |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    QDCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    ANCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    NSCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    ARCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Where (every column of the table is 1 bit):

ID is 16 bits
QR = Query (0) or Response (1)
Opcode = Four bits defining kind of query:
  0:    a standard query (QUERY)
  1:    an inverse query (IQUERY)
  2:    a server status request (STATUS)
  3-15: reserved for future use
AA = Authoritative Answer bit
TC = Truncation bit
RD = Recursion Desired bit
RA = Recursion Available bit
Z = Reserved
RCODE = Response code
QC = Question Count
ANC = Answer Count
AUC = Authority Count
ADC = Additional Count

Write a function, member function, class or template that accepts a similar multi-line string as input to define a data structure or something else able to decode or store a header with that specified bit structure.

If your language has macros, introspection, code generation, or powerful enough templates, then accept such string at compile-time to define the header data structure statically.

Such "Header" function or template should accept a table with 8, 16, 32 or 64 columns, and any number of rows. For simplicity the only allowed symbols to define the table are + - | (plus, minus, pipe), and whitespace. Lines of the input string composed just of whitespace should be ignored. Leading and trailing whitespace in the input string should be ignored, as well as before and after each table row. The box for each bit of the diagram takes four chars "+--+". The code should perform a little of validation of the input string, but for brevity a full validation is not required.

Bonus: perform a thoroughly validation of the input string.

D

This solution generates anonymous struct code at compile-time, that can be mixed-in inside a struct or class. <lang d>string makeStructFromDiagram(in string rawDiagram) pure @safe {

   import std.conv: text;
   import std.format: format;
   import std.string: strip, splitLines, indexOf;
   import std.array: empty, popFront;
   static void commitCurrent(ref uint anonCount,
                             ref uint totalBits,
                             ref size_t currentBits,
                             ref string code,
                             ref string currentName) pure @safe {
       if (currentBits) {
           code ~= "\t";
           currentName = currentName.strip;
           if (currentName.empty) {
               anonCount++;
               currentName = "anonymous_field_" ~ anonCount.text;
           }
           string type;
           if (currentBits == 1)
               type = "bool";
           else if (currentBits <= ubyte.sizeof * 8)
               type = "ubyte";
           else if (currentBits <= ushort.sizeof * 8)
               type = "ushort";
           else if (currentBits <= uint.sizeof * 8)
               type = "uint";
           else if (currentBits <= ulong.sizeof * 8)
               type = "ulong";
           //else if (currentBits <= ucent.sizeof * 8)
           //    type = "ucent";
           else assert(0, "Too many bits for the item " ~ currentName);
           immutable byteOffset = totalBits / 8;
           immutable bitOffset = totalBits % 8;


           // Getter:
           code ~= "@property " ~ type ~ " " ~ currentName ~
                   "() const pure nothrow @safe {\n";
           code ~= "\t\t";
           if (currentBits == 1) {
               code ~= format("return (_payload[%d] & (1 << (7-%d))) ? true : false;",
                              byteOffset, bitOffset);
           } else if (currentBits < 8) {
               auto mask = (1 << currentBits) - 1;
               mask <<= 7 - bitOffset - currentBits + 1;
               code ~= format("return (_payload[%d] & 0b%08b) >> %d;",
                              byteOffset, mask, 7 - bitOffset - currentBits + 1);
           } else {
               assert(currentBits % 8 == 0);
               assert(bitOffset == 0);
               code ~= type ~ " v = 0;\n\t\t";
               code ~= "version(LittleEndian) {\n\t\t";
               foreach (immutable i; 0 .. currentBits / 8)
                   code ~=  "\tv |= (cast(" ~ type ~ ") _payload[" ~
                            text(byteOffset + i) ~ "]) << (" ~
                            text((currentBits / 8) - i - 1) ~
                            " * 8);\n\t\t";
               code ~= "} else static assert(0);\n\t\t";
               code ~= "return v;";
           }
           code ~= "\n";
           code ~= "\t}\n\t";


           // Setter:
           code ~= "@property void " ~ currentName ~ "(in " ~ type ~
                   " value) pure nothrow @safe {\n";
           code ~= "\t\t";
           if (currentBits < 8) {
               auto mask = (1 << currentBits) - 1;
               mask <<= 7 - bitOffset - currentBits + 1;
               code ~= format("_payload[%d] &= ~0b%08b;\n\t\t",
                              byteOffset, mask);
               code ~= "assert(value < " ~ text(1 << currentBits) ~
                       ");\n\t\t";
               code~=format("_payload[%d] |= cast(ubyte) value << %d;",
                              byteOffset, 7 - bitOffset - currentBits + 1);
           } else {
               assert(currentBits % 8 == 0);
               assert(bitOffset == 0);
               code ~= "version(LittleEndian) {\n\t\t";
               foreach (immutable i; 0 .. currentBits / 8)
                   code ~= "\t_payload[" ~ text(byteOffset + i) ~
                           "] = (value >> (" ~
                           text((currentBits / 8) - i - 1) ~
                           " * 8) & 0xff);\n\t\t";
               code ~= "} else static assert(0);";
           }
           code ~= "\n";
           code ~= "\t}\n";
           totalBits += currentBits;
       }
       currentBits = 0;
       currentName = null;
   }
   enum C : char { pipe='|', cross='+' }
   enum cWidth = 3; // Width of a bit cell in the table.
   immutable diagram = rawDiagram.strip;
   size_t bitCountPerRow = 0, currentBits;
   uint anonCount = 0, totalBits;
   string currentName;
   string code = "struct {\n"; // Anonymous.
   foreach (line; diagram.splitLines) {
       assert(!line.empty);
       line = line.strip;
       if (line[0] == C.cross) {
           commitCurrent(anonCount, totalBits, currentBits, code, currentName);
           if (bitCountPerRow == 0)
               bitCountPerRow = (line.length - 1) / cWidth;
           else
               assert(bitCountPerRow == (line.length - 1) / cWidth);
       } else {
           // A field of some sort.
           while (line.length > 2) {
               assert(line[0] != '/',
                      "Variable length data not supported");
               assert(line[0] == C.pipe, "Malformed table");
               line.popFront;
               const idx = line[0 .. $ - 1].indexOf(C.pipe);
               if (idx != -1) {
                   const field = line[0 .. idx];
                   line = line[idx .. $];
                   commitCurrent(anonCount, totalBits, currentBits, code, currentName);
                   currentName = field;
                   currentBits = (field.length + 1) / cWidth;
                   commitCurrent(anonCount, totalBits, currentBits, code, currentName);
               } else {
                   // The full row or a continuation of the last.
                   currentName ~= line[0 .. $ - 1];
                   // At this point, line does not include the first
                   // C.pipe, but the length will include the last.
                   currentBits += line.length / cWidth;
                   line = line[$ .. $];
               }
           }
       }
   }
   // Using bytes to avoid endianness issues.
   // hopefully the compiler will optimize it, otherwise
   // maybe we could specialize the properties more.
   code ~= "\n\tprivate ubyte[" ~ text((totalBits + 7) / 8) ~ "] _payload;\n";
   return code ~ "}";

}


void main() { // Testing.

   import std.stdio;
   enum diagram = "
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                      ID                       |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    QDCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ANCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    NSCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ARCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+";
   // To debug the code generation:
   //pragma(msg, diagram.makeStructFromDiagram);
   // Usage.
   static struct Header {
       mixin(diagram.makeStructFromDiagram);
   }
   Header h;
   h.ID = 10;
   h.RA = true;
   h.ARCOUNT = 255;
   h.Opcode = 7;
   // See the byte representation to test the setter's details.
   h._payload.writeln;
   // Test the getters:
   assert(h.ID == 10);
   assert(h.RA == true);
   assert(h.ARCOUNT == 255);
   assert(h.Opcode == 7);

}</lang>

Output:
[0, 10, 56, 128, 0, 0, 0, 0, 0, 0, 0, 255]

Static support for BigEndian is easy to add.

It also supports larger values like this, that is 32 bits long:

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                   ThirtyTwo                   |
|                                               |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Go

<lang go>package main

import (

   "fmt"
   "log"
   "math/big"
   "strings"

)

type result struct {

   name  string
   size  int
   start int
   end   int

}

func (r result) String() string {

   return fmt.Sprintf("%-7s   %2d    %3d   %3d", r.name, r.size, r.start, r.end)

}

func validate(diagram string) []string {

   var lines []string
   for _, line := range strings.Split(diagram, "\n") {
       line = strings.Trim(line, " \t")
       if line != "" {
           lines = append(lines, line)
       }
   }
   if len(lines) == 0 {
       log.Fatal("diagram has no non-empty lines!")
   }
   width := len(lines[0])
   cols := (width - 1) / 3
   if cols != 8 && cols != 16 && cols != 32 && cols != 64 {
       log.Fatal("number of columns should be 8, 16, 32 or 64")
   }
   if len(lines)%2 == 0 {
       log.Fatal("number of non-empty lines should be odd")
   }
   if lines[0] != strings.Repeat("+--", cols)+"+" {
       log.Fatal("incorrect header line")
   }
   for i, line := range lines {
       if i == 0 {
           continue
       } else if i%2 == 0 {
           if line != lines[0] {
               log.Fatal("incorrect separator line")
           }
       } else if len(line) != width {
           log.Fatal("inconsistent line widths")
       } else if line[0] != '|' || line[width-1] != '|' {
           log.Fatal("non-separator lines must begin and end with '|'")
       }
   }
   return lines

}

func decode(lines []string) []result {

   fmt.Println("Name     Bits  Start  End")
   fmt.Println("=======  ====  =====  ===")
   start := 0
   width := len(lines[0])
   var results []result
   for i, line := range lines {
       if i%2 == 0 {
           continue
       }
       line := line[1 : width-1]
       for _, name := range strings.Split(line, "|") {
           size := (len(name) + 1) / 3
           name = strings.TrimSpace(name)
           res := result{name, size, start, start + size - 1}
           results = append(results, res)
           fmt.Println(res)
           start += size
       }
   }
   return results

}

func unpack(results []result, hex string) {

   fmt.Println("\nTest string in hex:")
   fmt.Println(hex)
   fmt.Println("\nTest string in binary:")
   bin := hex2bin(hex)
   fmt.Println(bin)
   fmt.Println("\nUnpacked:\n")
   fmt.Println("Name     Size  Bit pattern")
   fmt.Println("=======  ====  ================")
   for _, res := range results {
       fmt.Printf("%-7s   %2d   %s\n", res.name, res.size, bin[res.start:res.end+1])
   }

}

func hex2bin(hex string) string {

   z := new(big.Int)
   z.SetString(hex, 16)
   return fmt.Sprintf("%0*b", 4*len(hex), z)

}

func main() {

   const diagram = `
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                      ID                       |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    QDCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    ANCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    NSCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    ARCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   `
   lines := validate(diagram)
   fmt.Println("Diagram after trimming whitespace and removal of blank lines:\n")
   for _, line := range lines {
       fmt.Println(line)
   }
   fmt.Println("\nDecoded:\n")
   results := decode(lines)
   hex := "78477bbf5496e12e1bf169a4" // test string
   unpack(results, hex)

}</lang>

Output:
Diagram after trimming whitespace and removal of blank lines:

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                      ID                       |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    QDCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    ANCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    NSCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|                    ARCOUNT                    |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Decoded:

Name     Bits  Start  End
=======  ====  =====  ===
ID        16      0    15
QR         1     16    16
Opcode     4     17    20
AA         1     21    21
TC         1     22    22
RD         1     23    23
RA         1     24    24
Z          3     25    27
RCODE      4     28    31
QDCOUNT   16     32    47
ANCOUNT   16     48    63
NSCOUNT   16     64    79
ARCOUNT   16     80    95

Test string in hex:
78477bbf5496e12e1bf169a4

Test string in binary:
011110000100011101111011101111110101010010010110111000010010111000011011111100010110100110100100

Unpacked:

Name     Size  Bit pattern
=======  ====  ================
ID        16   0111100001000111
QR         1   0
Opcode     4   1111
AA         1   0
TC         1   1
RD         1   1
RA         1   1
Z          3   011
RCODE      4   1111
QDCOUNT   16   0101010010010110
ANCOUNT   16   1110000100101110
NSCOUNT   16   0001101111110001
ARCOUNT   16   0110100110100100

J

<lang J>require'strings'

soul=: -. {. normalize=: [:soul' ',dltb;._2

mask=: 0: _1} '+' = {. partition=: '|' = mask #"1 soul labels=: ;@(([: <@}: <@dltb;._1)"1~ '|'&=)@soul names=: ;:^:(0 = L.)

unpacker=:1 :0

 p=. , partition normalize m
 p #.;.1 (8#2) ,@:#: ]

)

packer=:1 :0

 w=. -#;.1 ,partition normalize m
 _8 (#.\ ;) w ({. #:)&.> ] 

)

getter=:1 :0

 nm=. labels normalize m
 (nm i. names@[) { ]

)

setter=:1 :0

 q=. '
 n=. q,~q,;:inv labels normalize m
 1 :('(',n,' i.&names m)}')

)

starter=:1 :0

 0"0 labels normalize m

)</lang>

Sample definition (note the deliberate introduction of extraneous whitespace in locations the task requires us to ignore it.

<lang j>sample=: 0 :0

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |QR| Opcode |AA|TC|RD|RA| Z | RCODE | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | QDCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ANCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | NSCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ARCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

)

unpack=: sample unpacker pack=: sample packer get=: sample getter set=: sample setter start=: sample starter</lang>

Example data for sample definition:

<lang J>

  4095 13 5 6144 4096 'ID Opcode RCODE ARCOUNT QDCOUNT' set start

4095 0 13 0 0 0 0 0 5 4096 0 0 6144

  pack 4095 13 5 6144 4096 'ID Opcode RCODE ARCOUNT QDCOUNT' set start

15 255 104 5 16 0 0 0 0 0 24 0

  unpack 0 10 56 128 0 0 0 0 0 0 0 255

10 0 7 0 0 0 1 0 0 0 0 0 255

  'Opcode' get unpack 0 10 56 128 0 0 0 0 0 0 0 255

7</lang>

In other words:

unpack converts an octet sequence to the corresponding numeric sequence
pack converts a numeric sequence to the corresponding octet sequence
get extracts named elements from the numeric sequence
set updates named elements in the numeric sequence
start represents the default "all zeros" sequence which may be used to derive other sequences

Note that this implementation assumes that the ascii diagram represents the native word width on a single line, and assumes well formed data.


Julia

The validator() function can be customized. The one used only checks length. <lang julia>diagram = """

        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                      ID                       |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                    QDCOUNT                    |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                    ANCOUNT                    |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                    NSCOUNT                    |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |                    ARCOUNT                    |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+"""

testhexdata = "78477bbf5496e12e1bf169a4"

struct BitField

   name::String
   bits::Int
   fieldstart::Int
   fieldend::Int

end

function diagramtostruct(txt)

   bitfields = Vector{BitField}()
   lines = map(strip, split(txt, "\n"))
   for row in 1:2:length(lines)-1
       nbits = sum(x -> x == '+', lines[row]) - 1
       fieldpos = findall(x -> x == '|', lines[row + 1])
       bitaccum = div(row, 2) * nbits
       for (i, field) in enumerate(fieldpos[1:end-1])
           endfield = fieldpos[i + 1]
           bitsize = div(endfield - field, 3)
           bitlabel = strip(lines[row + 1][field+1:endfield-1])
           bitstart = div(field - 1, 3) + bitaccum
           bitend = bitstart + bitsize - 1
           push!(bitfields, BitField(bitlabel, bitsize, bitstart, bitend))
       end
   end
   bitfields

end

binbyte(c) = string(parse(UInt8, c, base=16), base=2, pad=8) hextobinary(s) = reduce(*, map(binbyte, map(x -> s[x:x+1], 1:2:length(s)-1))) validator(binstring, fields) = length(binstring) == sum(x -> x.bits, fields)

function bitreader(bitfields, hexdata)

   println("\nEvaluation of hex data $hexdata as bitfields:")
   println("Name     Size          Bits\n-------  ----  ----------------")
   b = hextobinary(hexdata)
   @assert(validator(b, bitfields))
   for bf in bitfields
       pat = b[bf.fieldstart+1:bf.fieldend+1]
       println(rpad(bf.name, 9), rpad(bf.bits, 6), lpad(pat, 16))
   end

end

const decoded = diagramtostruct(diagram)

println("Diagram as bit fields:\nName Bits Start End\n------ ---- ----- ---") for bf in decoded

   println(rpad(bf.name, 8), rpad(bf.bits, 6), rpad(bf.fieldstart, 6), lpad(bf.fieldend, 6))

end

bitreader(decoded, testhexdata)

</lang>

Output:
Diagram as bit fields:
Name    Bits  Start  End
------  ----  -----  ---
ID      16    0         15
QR      1     16        16
Opcode  4     17        20
AA      1     21        21
TC      1     22        22
RD      1     23        23
RA      1     24        24
Z       3     25        27
RCODE   4     28        31
QDCOUNT 16    32        47
ANCOUNT 16    48        63
NSCOUNT 16    64        79
ARCOUNT 16    80        95

Evaluation of hex data 78477bbf5496e12e1bf169a4 as bitfields:
Name     Size          Bits
-------  ----  ----------------
ID       16    0111100001000111
QR       1                    0
Opcode   4                 1111
AA       1                    0
TC       1                    1
RD       1                    1
RA       1                    1
Z        3                  011
RCODE    4                 1111
QDCOUNT  16    0101010010010110
ANCOUNT  16    1110000100101110
NSCOUNT  16    0001101111110001
ARCOUNT  16    0110100110100100

Perl 6

Works with: Rakudo version 2018.05

<lang perl6>grammar RFC1025 {

   rule  TOP {  <.line-separator> [<line> <.line-separator>]+ }
   rule  line-separator { <.ws> '+--'+ '+' }
   token line  { <.ws> '|' +%% <field>  }
   token field  { \s* <label> \s* }
   token label { \w+[\s+\w+]* }

}

sub bits ($item) { ($item.chars + 1) div 3 }

sub deconstruct ($bits, %struct) {

   map { $bits.substr(.<from>, .<bits>) }, @(%struct<fields>);

}

sub interpret ($header) {

   my $datagram = RFC1025.parse($header);
   my %struct;
   for $datagram.<line> -> $line {
       FIRST %struct<line-width> = $line.&bits;
       state $from = 0;
       %struct<fields>.push: %(:bits(.&bits), :ID(.<label>.Str), :from($from.clone), :to(($from+=.&bits)-1))
         for $line<field>;
   }
   %struct

}

use experimental :pack;

my $diagram = q:to/END/;

   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                      ID                       |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    QDCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ANCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    NSCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ARCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

END

my %structure = interpret($diagram);

say 'Line width: ', %structure<line-width>, ' bits'; printf("Name: %7s, bit count: %2d, bit %2d to bit %2d\n", .<ID>, .<bits>, .<from>, .<to>) for @(%structure<fields>); say "\nGenerate a random 12 byte \"header\""; say my $buf = Buf.new((^0xFF .roll) xx 12); say "\nShow it converted to a bit string"; say my $bitstr = $buf.unpack('C*')».fmt("%08b").join; say "\nAnd unpack it"; printf("%7s, %02d bits: %s\n", %structure<fields>[$_]<ID>, %structure<fields>[$_]<bits>,

 deconstruct($bitstr, %structure)[$_]) for ^@(%structure<fields>);</lang>
Output:
Line width: 16 bits
Name:      ID, bit count: 16, bit  0 to bit 15
Name:      QR, bit count:  1, bit 16 to bit 16
Name:  Opcode, bit count:  4, bit 17 to bit 20
Name:      AA, bit count:  1, bit 21 to bit 21
Name:      TC, bit count:  1, bit 22 to bit 22
Name:      RD, bit count:  1, bit 23 to bit 23
Name:      RA, bit count:  1, bit 24 to bit 24
Name:       Z, bit count:  3, bit 25 to bit 27
Name:   RCODE, bit count:  4, bit 28 to bit 31
Name: QDCOUNT, bit count: 16, bit 32 to bit 47
Name: ANCOUNT, bit count: 16, bit 48 to bit 63
Name: NSCOUNT, bit count: 16, bit 64 to bit 79
Name: ARCOUNT, bit count: 16, bit 80 to bit 95

Generate a random 12 byte "header"
Buf:0x<78 47 7b bf 54 96 e1 2e 1b f1 69 a4>

Show it converted to a bit string
011110000100011101111011101111110101010010010110111000010010111000011011111100010110100110100100

And unpack it
     ID, 16 bits: 0111100001000111
     QR, 01 bits: 0
 Opcode, 04 bits: 1111
     AA, 01 bits: 0
     TC, 01 bits: 1
     RD, 01 bits: 1
     RA, 01 bits: 1
      Z, 03 bits: 011
  RCODE, 04 bits: 1111
QDCOUNT, 16 bits: 0101010010010110
ANCOUNT, 16 bits: 1110000100101110
NSCOUNT, 16 bits: 0001101111110001
ARCOUNT, 16 bits: 0110100110100100

Phix

Should work on any width, but didn't actually test, or verify width is 8/16/32/64. <lang Phix>function interpret(sequence lines)

   if remainder(length(lines),2)!=1 then
       crash("missing header/footer?")
   end if
   string l1 = lines[1]
   integer w = length(l1)
   integer bits = (w-1)/3  -- sug: check this is 8/16/32/64
   if l1!=join(repeat("+",bits+1),"--") then
       crash("malformed header?")
   end if
   sequence res = {}
   integer offset = 0
   for i=1 to length(lines) do
       string li = lines[i]
       if remainder(i,2) then
           if li!=l1 then
               crash("missing separator (line %d)?",{i})
           end if
       else
           if li[1]!='|' or li[w]!='|' then
               crash("missing separator on line %d",{i})
           end if
           integer k = 1
           while true do
               integer l = find('|',li,k+1)
               string desc = trim(li[k+1..l-1])
               {k,l} = {l,(l-k)/3}
               res = append(res,{desc,l,offset})
               offset += l
               if k=w then exit end if
           end while                   
       end if
   end for
   res = append(res,{"total",0,offset})
   return res

end function

procedure unpack(string data, sequence res)

   if length(data)*8!=res[$][3] then
       crash("wrong length")
   end if
   string bin = ""
   for i=1 to length(data) do
       bin &= sprintf("%08b",data[i])
   end for
   printf(1,"\n\nTest bit string:\n%s\n\nUnpacked:\n",{bin})
   for i=1 to length(res)-1 do
       {string name, integer bits, integer offset} = res[i]
       printf(1,"%7s, %02d bits: %s\n",{name,bits,bin[offset+1..offset+bits]})
   end for

end procedure

function trimskip(string diagram) -- -- split's ",no_empty:=true)" is not quite enough here. -- Note that if copy/paste slips in any tab characters, -- it will most likely trigger a length mismatch error. --

   sequence lines = split(diagram,'\n')
   integer prevlli = 0
   for i=length(lines) to 1 by -1 do
       string li = trim(lines[i])
       integer lli = length(li)
       if lli then
           if prevlli=0 then
               prevlli = lli
           elsif lli!=prevlli then
               crash("mismatching lengths")
           end if
           lines[i] = li
       else
           lines[i..i] = {}
       end if
   end for
   return lines

end function

constant diagram = """

   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                      ID                       |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    QDCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ANCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    NSCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                    ARCOUNT                    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

"""

sequence lines = trimskip(diagram) sequence res = interpret(lines) printf(1,"--Name-- Size Offset\n") for i=1 to length(res) do

   printf(1," %-7s   %2d  %5d\n",res[i])

end for

unpack(x"78477bbf5496e12e1bf169a4",res)</lang>

Output:
--Name--  Size  Offset
 ID        16      0
 QR         1     16
 Opcode     4     17
 AA         1     21
 TC         1     22
 RD         1     23
 RA         1     24
 Z          3     25
 RCODE      4     28
 QDCOUNT   16     32
 ANCOUNT   16     48
 NSCOUNT   16     64
 ARCOUNT   16     80
 total      0     96


Test bit string:
011110000100011101111011101111110101010010010110111000010010111000011011111100010110100110100100

Unpacked:
     ID, 16 bits: 0111100001000111
     QR, 01 bits: 0
 Opcode, 04 bits: 1111
     AA, 01 bits: 0
     TC, 01 bits: 1
     RD, 01 bits: 1
     RA, 01 bits: 1
      Z, 03 bits: 011
  RCODE, 04 bits: 1111
QDCOUNT, 16 bits: 0101010010010110
ANCOUNT, 16 bits: 1110000100101110
NSCOUNT, 16 bits: 0001101111110001
ARCOUNT, 16 bits: 0110100110100100

Racket

Three files:

  • ascii-art-parser.rkt: provides the function ascii-art->struct, which converts ASCII art from a string (or input port) to a list of word-number, bit range and id
  • ascii-art-reader.rkt: uses this to provide a sytntax define-ascii-art-structure which defines a structure using the art work
  • test-ascci-art-reader.rkt: gives it all a rigourousish going over

Note that if you want to extend the word width too 32-bits (or more) add multiples of eight bit blocks horizontally (i.e. --+--+--+--+--+--+--+--+). IMO Having the diagrams 16-bits wide reflects the choice of a 16-bit word as the natural word size of the interface. If it were 32 or 64, the blocks would have to be wider.

ascii-art-parser.rkt Note that this is in the racket/base language so it doesn't overburden the modules that import it, especially since they're at the suntax phase. <lang racket>#lang racket/base (require (only-in racket/list drop-right)

        (only-in racket/string string-trim))

(provide ascii-art->struct)

reads ascii art from a string or input-port
returns
list of (word-number highest-bit lowest-bit name-symbol)
bits per word

(define (ascii-art->struct art)

 (define art-inport
   (cond
     [(string? art) (open-input-string art)]
     [(input-port? art) art]
     [else (raise-argument-error 'ascii-art->struct
                                 "(or/c string? input-port?)"
                                 art)]))
 (define lines
   (for/list ((l (in-port (lambda (p)
                            (define pk (peek-char p))
                            (case pk ((#\+ #\|) (read-line p))
                              (else eof)))
                          art-inport)))
     l))
 (when (null? lines)
   (error 'ascii-art->struct "no lines"))
 (define bit-re #px"[|+]([^|+]*)")
 (define cell-re #px"[|]([^|]*)")
 
 (define bit-boundaries (regexp-match-positions* bit-re (car lines)))
 
 (define bits/word (sub1 (length bit-boundaries)))
 
 (unless (zero? (modulo bits/word 8))
   (error 'ascii-art->struct "diagram is not a multiple of 8 bits wide"))
 
 (define-values (pos->bit-start# pos->bit-end#)
   (for/fold ((s# (hash)) (e# (hash)))
             ((box (in-range bits/word))
              (boundary (in-list bit-boundaries)))
     (define bit (- bits/word box 1))
     (values (hash-set s# (car boundary) bit)
             (hash-set e# (cdr boundary) bit))))
 
 (define fields
   (apply append
          (for/list ((line-number (in-naturals))
                     (line (in-list lines))
                     #:when (odd? line-number))
            (define word (quotient line-number 2))
            (define cell-positions (regexp-match-positions* cell-re line))
            (define cell-contents (regexp-match* cell-re line))
            (for/list ((cp (in-list (drop-right cell-positions 1)))
                       (cnt (in-list cell-contents)))
              (define cell-start-bit (hash-ref pos->bit-start# (car cp)))
              (define cell-end-bit (hash-ref pos->bit-end# (cdr cp)))
              (list word cell-start-bit cell-end-bit (string->symbol (string-trim (substring cnt 1))))))))
 (values fields bits/word))</lang>

ascii-art-reader.rkt <lang racket>#lang racket (require (for-syntax "ascii-art-parser.rkt")) (require (for-syntax racket/syntax))

(provide (all-defined-out))

(define-syntax (define-ascii-art-structure stx)

 (syntax-case stx ()
   [(_ id art)
    (let*-values (((all-fields bits/word) (ascii-art->struct (syntax-e #'art))))
      (with-syntax
          ((bytes->id (format-id stx "bytes->~a" #'id))
           (id->bytes (format-id stx "~a->bytes" #'id))
           (word-size (add1 (car (for/last ((f all-fields)) f))))
           (fld-ids (map cadddr all-fields))
           
           (fld-setters
            (cons
             #'id
             (for/list ((fld (in-list all-fields)))
               (let* ((bytes/word (quotient bits/word 8))
                      (start-byte (let ((word-no (car fld))) (* word-no bytes/word))))
                 `(bitwise-bit-field (integer-bytes->integer bs
                                                             #f
                                                             (system-big-endian?)
                                                             ,start-byte
                                                             ,(+ start-byte bytes/word))
                                     ,(caddr fld)
                                     ,(add1 (cadr fld)))))))
           
           (set-fields-bits
            (list*
             'begin
             (for/list ((fld (in-list all-fields)))
               (define val (cadddr fld))
               (define start-bit (cadr fld))
               (define end-bit (caddr fld))
               (define start-byte (let ((word-no (car fld))) (* word-no (quotient bits/word 8))))
               (define fld-bit-width (- start-bit end-bit -1))
               (define aligned?/width (and (= end-bit 0)
                                           (= (modulo start-bit 8) 7)
                                           (quotient fld-bit-width 8)))
               (case aligned?/width
                 [(2 4)
                  `(integer->integer-bytes ,val
                                           ,aligned?/width
                                           #f
                                           (system-big-endian?)
                                           rv
                                           ,start-byte)]
                 [else
                  (define the-byte (+ start-byte (quotient end-bit 8)))
                  `(bytes-set! rv
                               ,the-byte
                               (bitwise-ior (arithmetic-shift (bitwise-bit-field ,val 0 ,fld-bit-width)
                                                              ,(modulo end-bit 8))
                                            (bytes-ref rv ,the-byte)))])))))
        #`(begin
            (struct id fld-ids #:mutable)
            
            (define (bytes->id bs)
              fld-setters)
            
            (define (id->bytes art-in)
              (match-define (id #,@#'fld-ids) art-in)
              (define rv (make-bytes (* word-size #,(quotient bits/word 8))))
              set-fields-bits
              rv))))]))</lang>

test-ascii-art-reader.rkt <lang racket>#lang racket (require "ascii-art-reader.rkt") (require "ascii-art-parser.rkt") (require tests/eli-tester)

(define rfc-1035-header-art

 #<<EOS

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ID | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |QR| Opcode |AA|TC|RD|RA| Z | RCODE | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | QDCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ANCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | NSCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ARCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ EOS

 )

(define-values (rslt rslt-b/w) (ascii-art->struct rfc-1035-header-art))

(test

rslt-b/w => 16
rslt =>
'((0 15  0 ID)
  (1 15 15 QR)
  (1 14 11 Opcode)
  (1 10 10 AA)
  (1  9  9 TC)
  (1  8  8 RD)
  (1  7  7 RA)
  (1  6  4 Z)
  (1  3  0 RCODE)
  (2 15  0 QDCOUNT)
  (3 15  0 ANCOUNT)
  (4 15  0 NSCOUNT)
  (5 15  0 ARCOUNT)))

(define-ascii-art-structure rfc-1035-header #<<EOS +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ID | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |QR| Opcode |AA|TC|RD|RA| Z | RCODE | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | QDCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ANCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | NSCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ARCOUNT | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ EOS

                    )

(define h-bytes

 (bytes-append
  (integer->integer-bytes #x1234 2 #f)
  (integer->integer-bytes #x5678 2 #f)
  (integer->integer-bytes #x9abc 2 #f)
  (integer->integer-bytes #xdef0 2 #f)
  (integer->integer-bytes #xfedc 2 #f)
  (integer->integer-bytes #xba98 2 #f)))

(define h-bytes~

 (bytes-append
  (integer->integer-bytes #x1234 2 #f (not (system-big-endian?)))
  (integer->integer-bytes #x5678 2 #f (not (system-big-endian?)))
  (integer->integer-bytes #x9abc 2 #f (not (system-big-endian?)))
  (integer->integer-bytes #xdef0 2 #f (not (system-big-endian?)))
  (integer->integer-bytes #xfedc 2 #f (not (system-big-endian?)))
  (integer->integer-bytes #xba98 2 #f (not (system-big-endian?)))))

(define h (bytes->rfc-1035-header h-bytes)) (define bytes-h (rfc-1035-header->bytes h))

(define h~ (bytes->rfc-1035-header h-bytes~)) (define bytes-h~ (rfc-1035-header->bytes h~))

(test

(rfc-1035-header-ID h) => #x1234
(rfc-1035-header-ARCOUNT h) => #xBA98
(rfc-1035-header-RCODE h) => 8
(rfc-1035-header-ID h~) => #x3412
(rfc-1035-header-ARCOUNT h~) => #x98BA
(rfc-1035-header-RCODE h~) => 6
h-bytes => bytes-h
h-bytes~ => bytes-h~)

(set-rfc-1035-header-RA! h 0)

(set-rfc-1035-header-Z! h 7) (test

(rfc-1035-header-Z (bytes->rfc-1035-header (rfc-1035-header->bytes h))) => 7
(rfc-1035-header-RA (bytes->rfc-1035-header (rfc-1035-header->bytes h))) => 0)

(set-rfc-1035-header-Z! h 15) ;; naughty -- might splat RA (test

(rfc-1035-header-Z (bytes->rfc-1035-header (rfc-1035-header->bytes h))) => 7
(rfc-1035-header-RA (bytes->rfc-1035-header (rfc-1035-header->bytes h))) => 0)</lang>
Output:

Nothing much to see... all tests pass

REXX

Some code was added to validate the input file. <lang rexx>/*REXX program interprets an ASCII art diagram for names and their bit length(s). */ numeric digits 100 /*be able to handle large numbers. */ parse arg iFID test . /*obtain optional input─FID & test─data*/ if iFID== | iFID=="," then iFID= 'ASCIIART.TXT' /*use the default iFID.*/ if test== | test=="," then test= 'cafe8050800000808080000a' /* " " " data.*/ e = '***error*** illegal input txt' /*a literal used for error messages. */ w= 0; wb= 0;  !.= 0; $= /*W (max width name), bits, names. */ p.= 0; p.0= 1 /*P.α is structure bit position. */

                                                /* [↓]  read the input text file.      */
 do j=1  while lines(iFID)\==0;     q= linein(iFID);             say  '■■■■■text►'q
 q=strip(q);      if q==  then iterate        /*strip leading and trailing blanks.   */
 _L= left(q, 1);  _R= right(q, 1)               /*get extreme left and right characters*/
 if _L=='+'  then do                            /*is this record an  "in-between" ?    */
                  if verify(q, '+-')\==0  then say e    "(invalid grid):"     q
                  iterate                       /*skip this record, it's a single "+". */
                  end
 if _L\=='|' | _R\=="|"  then do;      say e '(boundary): '   q;        iterate;       end
    do  until q=='|'                            /* [↓]  parse a record for names.      */
    parse var q  '|'  n  "|"  -1  q;       x=n;      n=strip(n);      w=max(w, length(n))
    if n==  then leave                        /*Is  N   null?   We're done scanning. */
    if words(n)\==1  then do;  say e'(invalid name): '    n;          iterate j;      end
                                                /* [↑]  add more name validations.     */
    $$= $;     nn= n;       upper $$ n          /*N   can be a mixed─case name.        */
    if wordpos(nn, $$)\==0  then do;    say e  '(dup name):'   n;     iterate j;      end
    $= $ n                                      /*add the   N   (name)  to the $ list. */
    #= words($);     !.#= (length(x) + 1) % 3   /*assign the number of bits for  N.    */
    wb= max(wb, !.#)                            /*find the maximum number of bits.     */
    prev= # - 1                                 /*number of names previous to this name*/
    p.#= p.prev + !.prev                        /*calculate the structure bit position.*/
    end   /*until*/
 end      /*j*/

if j==1 then do; say e '(file not found): ' iFID; exit 12; end say

    do k=1  for words($)
    say right( word($, k), w)right(!.k, 4)        "bits,  bit position:"right(p.k, 5)
    end   /*k*/

say /* [↓] Any (hex) data to test? */ if test== then exit /*stick a fork in it, we're all done. */ bits= x2b(test); L= length(test) /*convert test data to a bit string. */ wm=length( x2d( b2x( copies(1, wb) ) ) ) + 1 /*used for displaying maximum numbers. */ say 'test (hex)=' test " length=" L 'hexadecimal digits.' say

   do r=1  by 8+8  to L*4
   _1= substr(bits, r, 8, 0);                 _2= substr(bits, r+8, 8, 0)
   say 'test (bit)='   _1 _2        "   hex="        b2x(_1)    b2x(_2)
   end   /*r*/

say

   do m=1  for words($)                         /* [↓]  display hex string in lowercase*/
   _= translate( b2x( substr( bits, p.m, !.m) ),     'abcdef',    "ABCDEF" )
   say right( word($, m), w+2)     '  decimal='right( x2d(_), wm)         '      hex='  _
   end   /*m*/                                  /*stick a fork in it,  we're all done. */</lang>
output   when using the default input:
■■■■■text►
■■■■■text►
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |                      ID                       |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |                    QDCOUNT                    |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |                    ANCOUNT                    |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |                    NSCOUNT                    |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►     |                    ARCOUNT                    |
■■■■■text►     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
■■■■■text►
■■■■■text►

     ID  16 bits,  bit position:    1
     QR   1 bits,  bit position:   17
 OPCODE   4 bits,  bit position:   18
     AA   1 bits,  bit position:   22
     TC   1 bits,  bit position:   23
     RD   1 bits,  bit position:   24
     RA   1 bits,  bit position:   25
      Z   3 bits,  bit position:   26
  RCODE   4 bits,  bit position:   29
QDCOUNT  16 bits,  bit position:   33
ANCOUNT  16 bits,  bit position:   49
NSCOUNT  16 bits,  bit position:   65
ARCOUNT  16 bits,  bit position:   81

test (hex)= cafe8050800000808080000a     length= 24 hexadecimal digits.

test (bit)= 11001010 11111110    hex= CA FE
test (bit)= 10000000 01010000    hex= 80 50
test (bit)= 10000000 00000000    hex= 80 00
test (bit)= 00000000 10000000    hex= 00 80
test (bit)= 10000000 10000000    hex= 80 80
test (bit)= 00000000 00001010    hex= 00 0A

       ID   decimal= 51966       hex= cafe
       QR   decimal=     1       hex= 1
   OPCODE   decimal=     0       hex= 0
       AA   decimal=     0       hex= 0
       TC   decimal=     0       hex= 0
       RD   decimal=     0       hex= 0
       RA   decimal=     0       hex= 0
        Z   decimal=     5       hex= 5
    RCODE   decimal=     0       hex= 0
  QDCOUNT   decimal= 32768       hex= 8000
  ANCOUNT   decimal=   128       hex= 0080
  NSCOUNT   decimal= 32896       hex= 8080
  ARCOUNT   decimal=    10       hex= 000a

Tcl

This example is in need of improvement:

This example is *incorrect*. It relies on an assumption that sequential bitfields in the same byte can be parsed by the [binary] command, which is not the case. The test "appears" correct because encode and decode suffer the same bug and hence round-trip works. A wrapper which doesn't disturb the below code too much is in progress.

This is a nice task to illustrate a couple of important concepts in Tcl:

 * using dictionaries, taking advantage of their ordering properties
 * the binary command
 * using (semi-)structured text as part of your source code

In this implementation, parse produces a dictionary from names to bit-lengths. encode and decode use these to produce appropriate binary format strings, and then do what they say on the tin. As implemented, this is limited to unsigned numeric values in fields. Supporting unsigned values, strings and enums would require parsing a more complex annotation than only the ASCII art packet structure, but ought not take much more code. <lang Tcl> namespace eval asciipacket {

   proc assert {expr} {    ;# for "static" assertions that throw nice errors
       if {![uplevel 1 [list expr $expr]]} {
           raise {ASSERT ERROR} "{$expr} {[subst -noc $expr]}"
       }
   }
   proc b2h {data} {       ;# format a binary string in hex digits
       binary scan $data H* hex; set hex
   }
   proc parse {s} {
       set result {}                       ;# we will return a dictionary
       set s [string trim $s]              ;# remove whitespace
       set s [split $s \n]                 ;# split into lines
       set s [lmap x $s {string trim $x}]  ;# trim whitespace from each line
       set s [lassign $s border0]          ;# pop off top border row
                                           ;# calculate chars per row, chars per bit
       set rowlen [llength [string map {+ \ } $border0]]
       set bitlen [expr {([string length $border0] - 1) / $rowlen}]
       assert {$bitlen * $rowlen + 1 == [string length $border0]}
       foreach {row border} $s {
           assert {$border eq $border0}
           set row [string trim $row |]
           foreach field [split $row |] {
               set len [string length |$field]
               assert {$len % $bitlen == 0}
               set name [string trim $field]
               set nbits [expr {$len / $bitlen}]
               assert {![dict exists $result $name]}
               dict set result $name $nbits
           }
       }
       return $result
   }
   proc encode {schema values} {
       set bincodes {1 B 8 c 16 S 32 W}    ;# see binary(n)
       set binfmt ""                       ;# format string
       set binargs ""                      ;# positional args
       dict for {name bitlen} $schema {
           set val [dict get $values $name]
           if {[dict exists $bincodes $bitlen]} {
               set fmt "[dict get $bincodes $bitlen]"
           } else {
               set val [format %0${bitlen}b $val]
               set fmt "B${bitlen}"
           }
           append binfmt $fmt
           lappend binargs $val
       }
       binary format $binfmt {*}$binargs
   }


   proc decode {schema data} {
       set result   {}                     ;# we will return a dict
       set bincodes {1 B 8 c 16 S 32 W}    ;# see binary(n)
       set binfmt   ""                     ;# format string
       set binargs  ""                     ;# positional args
       dict for {name bitlen} $schema {
           if {[dict exists $bincodes $bitlen]} {
               set fmt "[dict get $bincodes $bitlen]u" ;# note unsigned
           } else {
               set fmt "B${bitlen}"
           }
           append binfmt $fmt
           lappend binargs $name
       }
       binary scan $data $binfmt {*}$binargs
       foreach _ $binargs {
           dict set result $_ [set $_]
       }
       return $result
   }

} </lang> And here is how to use it with the original test data: <lang Tcl> proc test {} {

   set header {
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                      ID                       |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |QR|   Opcode  |AA|TC|RD|RA|   Z    |   RCODE   |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    QDCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    ANCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    NSCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                    ARCOUNT                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   }
   set schema [asciipacket::parse $header]
   set values {
       ID 0xcafe
       QR 1
       Opcode 5
       AA 1
       TC 0
       RD 0
       RA 1
       Z  4
       RCODE 8
       QDCOUNT 0x00a5
       ANCOUNT 0x0a50
       NSCOUNT 0xa500
       ARCOUNT 0x500a
   }
   set pkt [asciipacket::encode $schema $values]
   puts "encoded packet (hex): [asciipacket::b2h $pkt]"
   array set decoded [asciipacket::decode $schema $pkt]
   parray decoded

} test </lang>

Output:
encoded packet (hex): cafe805080000080808000a50a50a500500a
decoded(AA)      = 1
decoded(ANCOUNT) = 2640
decoded(ARCOUNT) = 20490
decoded(ID)      = 51966
decoded(NSCOUNT) = 42240
decoded(Opcode)  = 0101
decoded(QDCOUNT) = 165
decoded(QR)      = 1
decoded(RA)      = 1
decoded(RCODE)   = 1000
decoded(RD)      = 0
decoded(TC)      = 0
decoded(Z)       = 100